

Edinburgh Research Explorer

Three Challenges to Chalmers on Computational Implementation

Citation for published version:
Sprevak, M 2012, 'Three Challenges to Chalmers on Computational Implementation' Journal of Cognitive
Science, vol 13, no. 2, pp. 107-143.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Cognitive Science

Publisher Rights Statement:
© Mark Sprevak, 2012. Sprevak, M. (2012). Three Challenges to Chalmers on Computational Implementation.
Journal of Cognitive Science, 13(2), 107-143

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28972228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/three-challenges-to-chalmers-on-computational-implementation(5b83d145-d260-42bf-a3b8-985c19b7d19d).html

Published in Journal of Cognitive Science (2012) 13: 107–143. mark.sprevak@ed.ac.uk

�ree challenges to Chalmers on
computational implementation

Mark Sprevak
University of Edinburgh

12 June 2012

�e notion of computational implementation is foundational to modern scienti�c prac-
tice, and in particular, to explanation in cognitive science. However, there is remarkably
little in the way of theoretical understanding of what computational implementation
involves. In a series of papers, David Chalmers has given one of ourmost in�uential and
thorough accounts of computational implementation (Chalmers 1995, 1996, 2012). In
this paper, I do three things. First, I outline three important desiderata that an adequate
account of computational implementation should meet. Second, I analyse Chalmers’
theory of computational implementation and how it attempts to meet these desiderata.
�ird, I argue that despite its virtues, Chalmers’ account has three shortcomings. I argue
that Chalmers’ account is (i) not su�ciently general; (ii) leaves certain key relations
unclear; (iii) does not block the triviality arguments.

1 Introduction

What does it mean for a physical system (e.g. a brain, a desktop computer) to implement
a computation? �e �rst step in answering this question is usually to talk about a special
relation—implementation—between abstract mathematical computations and physical
systems. Implementation is understood as the bridge between the realm of abstract
mathematical computations and the nuts and bolts of concrete physical systems. But
what is the implementation relation, and how does it work? What are the necessary
and su�cient conditions for computational implementation to obtain? Is computational
implementation a matter of objective fact, or is it only something that is in the eye of the
beholder? Despite our widespread use of the notion of computational implementation
in explanation, and despite its foundational role in cognitive science, the concept has
received remarkably little attention. O�en computational implementation is treated as
an explanatory primitive: other things are explained in terms of it, but it itself remains

1

mailto:mark.sprevak@ed.ac.uk

2 What is at stake in a theory of implementation?

unexplained. In a series of papers, David Chalmers has done more than anyone else to
provide an account of what computational implementation involves (Chalmers 1995, 1996,
2012).

In this paper, I aim to do three things. First, I outline three desiderata that an account
of computational implementation should meet. Second, I describe Chalmers’ theory of
computational implementation and how it attempts to meet those desiderata. �ird, I
argue that despite the virtues of Chalmers’ account, there are three challenges that it faces.
I argue that Chalmers’ account is (i) not su�ciently general; (ii) leaves certain key relations
unclear; (iii) does not block the triviality arguments. �ese critical remarks should not
take away from the spectacular progress that Chalmers has achieved in articulating the
notion of computational implementation. My claim is only that, as it stands, Chalmers’
account falls short of a complete account. Some distance has yet to be travelled before we
reach an adequate account of implementation, and in particular, before we have a clear
view of the metaphysical commitments involved in using computational implementation
in explanations in cognitive science.

2 What is at stake in a theory of implementation?

Before starting, it is worth pausing to consider what is at stake when one gives an account
of computational implementation. As noted above, the notion of computational imple-
mentation is o�en treated as an unanalysed explanatory primitive. �is is particularly
evident in the day-to-day practice of cognitive science where the notion rarely receives
explicit articulation. Over the past forty years, cognitive science has scored spectacular
explanatory and predictive successes without explicitly articulating the notion of com-
putational implementation, and cognitive science appears to have the potential to score
plenty more successes in the future. So one might wonder why one should even bother
looking for a theory of computational implementation. If many cognitive scientists have
not found the nature of computational implementation a particularly pressing problem,
why should we?

�ere are at least three inter-related issueswhich jointlymotivate a theory of computational
implementation.

(R1) Clarity:
Ultimately, the foundations of our sciences should be clear. Although it might
be acceptable to treat computational implementation as an explanatory primitive
for the nonce (e.g. for the purposes of model-building), eventually we are owed
an explanation of that notion. If cognitive science is successfully to explain the
mind, the foundations of cognitive science should be clear and transparent. �e
foundations will, of course, ultimately resort to appealing to certain basic sui generis
concepts—concepts that cannot be reductively explained in terms of other concepts.
But at the very least we should understand clearly what those basic concepts involve.
�e notion of computational implementation—despite being a concept of which
we have a rough-and-ready grasp—is not clear and transparent in the required

2

2 What is at stake in a theory of implementation?

sense. �ere is no consensus on the content of the concept of computational im-
plementation (as (R2) and (R3) below illustrate). �e concept of implementation,
and whether it picks out an objective feature of the world, is fundamentally obscure.
As it stands, the notion of computational implementation does not function as a
suitable sui generis concept for the foundation of cognitive science. Some sort of
explanation is owed of what computational implementation involves.
�is explanatory motivation—a desire for clarity about the conceptual foundations
of cognitive science—is mirrored by a metaphysical motivation—a desire for min-
imising needless commitments on the part of our best science to basic ontological
furniture in the universe. �e catalogue of ultimate ontological constituents of the
universe may end up containing the elementary particles and forces of physics, but
it should not end up also containing the sui generis relation of computational imple-
mentation. If computational implementation is real, it must really be something
else. But if that is the case, we need some story about how facts about computational
implementation are made true by other facts in the world. If we are completely in
the dark about this, then we will have no choice but to be lumbered with computa-
tional implementation as a basic ontological ingredient alongside the fundamental
constituents of physics.

(R2) Response to triviality arguments:
As we will see in Section 4, our conventional understanding of the notion of com-
putational implementation is threatened by triviality arguments. �ese triviality
arguments claim that almost every physical system implements every computation.
�e triviality arguments are an open challenge to anyone who wants to make the
notion of computational implementation do explanatory work in cognitive science.
�e intention of the triviality arguments is to show that the notion of computational
implementation is completely unsuited for use in cognitive science. �ere are many
motivations for developing an explicit theory of a concept. But perhaps the most
powerful motivation is the threat of a challenge to our conventional understanding
of that concept. Typically, such threats aim to show that a concept that we thought
was perfectly in order, and capable of functioning in explanations, is in fact trivial,
empty, or otherwise problematic in a way that makes trouble for its presumed role
in explanation. For example, there are powerful motivations to come up with an
explicit theory of knowledge,meaning, and personal identity arising from a series
of challenges—sceptical arguments, reference indeterminacy arguments, �ssion
arguments—that appears to show that our ordinary understanding of those con-
cepts has unacceptable consequences. Such challenges prompt us to articulate the
relevant concept in a way that allows it to justi�ably deliver the explanatory work
that we require (or as much as possible). �e challenges provide a motivation for
theory building, and a wealth of constraints on such theories. �e triviality argu-
ments of Section 4 concerning computational implementation operate in precisely
this way.

(R3) Naturalistic foundations:
�e ultimate aim of cognitive science is to o�er, not just any explanation of mental
phenomena, but a naturalistic explanation of the mind. �e objective is to explain

3

2 What is at stake in a theory of implementation?

how a system can be mental in terms that do not already presuppose mental life.
�is naturalistic character is one of salient features of modern cognitive psychology,
and why its explanatory ambitions, in contrast to much of past psychological theor-
ising, are so revolutionary. Cognitive science promises to deliver an explanation
of the mind that folds mental life into a broader synthesis of physics, chemistry,
evolutionary biology, molecular biology, and the other natural sciences.
To a �rst approximation, cognitive science’s strategy for achieving this goal is to
explain mental life in terms of computations implemented by the brain. If this
strategy is to work, then explanation in terms of implementation of computation had
better be explanation in non-mental terms. �e alternative would be incompatible
with the naturalistic project. It wouldmean that, rather than explainingmental life in
non-mental terms—in terms of computations implemented by the brain—cognitive
science would ultimately be explaining mental life in terms of, inter alia, other
mental properties. If it turns out that computational implementation itself needs
to be explained in terms of mental properties like our beliefs, interests, attitudes,
then the naturalistic aim of cognitive science—explaining mental life in non-mental
terms via the notion of computation—is doomed to failure.
Call the claim that computational implementation can be explained in non-mental
terms, realism about computation. Call the claim that computational implementa-
tion has to be explained in mental terms (e.g. in terms of our beliefs, interests, and
attitudes), anti-realism about computation. In order for cognitive science to be able
to naturalise the mind, realism about computation must be true. �e problem is
that it is far from obvious whether realism about computation is true or not. �ere
appear to be strong reasons that pull in both directions.1 A major motivation for a
theory of computational implementation is to settle this question: to discover what
is involved in computational implementation, and clarify whether computational
implementation has eliminable or ineliminable anti-realist commitments. �e
status of cognitive science as a natural science depends on it. It is hard to imagine
higher stakes.

(R1), (R2), and (R3) are three major motivations for a theory of computational implement-
ation. (R1), (R2), and (R3) also provide three desiderata for such a theory to serve the
needs of cognitive science. A notion of computational implementation that is adequate
to the needs of cognitive science should at least be: (D1) clear, (D2) avoid the triviality
arguments, and (D3) provide a naturalistic foundation. If an account of implementation
falls short in any one of these areas, then we have reason to complain.

Chalmers achieves a great deal of progress in all three areas. However, I argue that his
account does not fully satisfy all three desiderata. It falls short in three main areas: (i)
it is not su�ciently general and leaves certain features of the implementation relation
unclear (D1), (ii) it does not block the triviality worry (D2), and (iii) it does not secure
naturalistic foundations for cognitive science (D3). Chalmers makes a major step forward
in explaining the nature of computational implementation, but the resulting account is
not complete.

1. For examples of the pull of anti-realism about computation, see Bringsjord (1995); Hardcastle (1996);
Putnam (1988); Searle (1992).

4

3 �e Standard Position on implementation

Before assessing Chalmers’ account of implementation, it is important to have two other
pieces in play. In Section 3, I describe the account on which Chalmers builds: what I will
call the Standard Position on computational implementation. In Section 4, I describe the
triviality arguments that render the Standard Position untenable, and which motivate
Chalmers’ position.

3 �e Standard Position on implementation

Despite the widespread use of computational implementation as an explanatory primitive,
it would not be right to say that there are no widely-held theoretical beliefs about the
nature of computational implementation. On those occasions when computational imple-
mentation is called into question, practitioners tend to produce a proto-theory—a theory
that is almost certainly correct inmany respects. �e proto-theory says that computational
implementation involves amirroring relation between an abstract mathematical formalism
and the physical states and transitions of a physical system. Chalmers provides a nice
statement of the view:

A physical system implements a given computation when the causal structure
of the physical system mirrors the formal structure of the computation.

(Chalmers 2012, p. 326)

I will call this the Standard Position (SP) on computational implementation. SP provides a
plausible starting point for a theory of computational implementation. Chalmers’ account
can be understood as a sophisticated elaboration of SP.

How does SP apply to a particular case? Chalmers applies SP to �nite state automata
(FSAs):

A physical system P implements an FSA M if there is a mapping f that maps
internal states of P to internal states of M, inputs to P to input states of M,
and outputs of P to output states of M, such that: for every state-transition
relation (S , I) → (S′,O′) of M, the following conditional holds: if P is in
internal state s and receiving input i where f (s) = S and f (i) = I, this reliably
causes it to enter internal state s′ and produce output o′ such that f (s′) = S′
and f (o′) = O′ (p. 327)

A physical system implements an FSA just in case the formal structure of that FSA is
mirrored in the physical structure of that system. �e notion of mirroring is identi�ed
with that of a structure-preserving mapping, a move which I take to be part and parcel of
the Standard Position. Physical states of physical system P are paired (mapped) to each
formal state of the FSA M. If P’s physical states follow the same sequence of transitions
as the counterpart formal states of M to which they are mapped, then P implements M.
In other words, if a mapping exists between P and M that preserves the structure of the
state-transitions of M, then P implements M.

5

4 Triviality arguments Searle’s informal triviality argument

Straight o� one can see that SP meets two of the desiderata on a theory of implementation:
clarity (D1) and naturalistic foundations (D3). SP appears to give clear conditions for
computational implementation. It explains computational implementation in terms of
other concepts, primarily that of a structure-preserving mapping. At the very least, this
uni�es computational implementation with other notions involving structure-preserving
mappings: measurement (Dresner 2010), andmodel-theoretic interpretation (Copeland
1996).

SP also secures naturalistic foundations for cognitive science. Whether a physical system
implements a computation depends only on whether a structure-preserving mapping
exists between the physical system and the formal computation. It does not depend, for
example, on whether someone judges such a mapping to exist, or whether it suits their
interests to look for such mapping, or whether the mapping appears to them perspicuous.
SP does not require reference to any subject or agent at all. Computational implementation
is a purely objective matter: either a mapping between the computational formalism and
the physical system obtains, or it does not.

Unfortunately, SP spectacularly fails to meet the third desideratum: blocking the triviality
results (D2). Chalmers’ theory of computational implementation can be seen as a way
of revising SP to get around this problem while keeping the other two virtues. Before
considering the way in which Chalmers revises SP, it is important to get the triviality
arguments clearly in view.

4 Triviality arguments

�ere are two major triviality arguments: an informal argument from Searle (1992) and a
formal argument from Putnam (1988).

4.1 Searle’s informal triviality argument

Searle (1992) asks one to imagine one’s desktop computer running Microso� Word. What
is happening? �ere are many physical state transitions inside the desktop computer:
transitions in electrical activity, transitions in thermal activity, transitions in vibrational
activity, transitions in gravitational activity. According to SP, the computer implements
Microso�Word because one of these patterns of activity—the pattern of electrical activity—
has the right structure. If one were to build another physical system, perhaps made out of
di�erent materials (e.g. brass wheels and cogs), which had physical transitions with the
same structure, then it too would implement Microso� Word. Now consider a brick wall
behind the computer. Despite its static appearance, on a microscopic level a brick wall is
teeming with physical state transitions. Within the wall there are physical transitions of
vibrational activity, electromagnetic activity, atoms changing state, subatomic particles
moving around—a typical wall contains more than 1025 atoms, which for one thing are all
in microscopic motion. Searle claims there is so much physical activity inside a brick wall
that there is almost certain to be at least one pattern of activity with the same structure
as that inside the desktop computer. �erefore, according to SP, a brick wall implements
Microso� Word.

6

4 Triviality arguments Putnam’s triviality argument

Similar reasoning appears to show that almost anymacro-size physical system implements
any computation one likes. Chalmers (2012) identi�es two important computational
theses in cognitive science: computational su�ciency and computational explanation.
Computational su�ciency claims that implementing the right computation is a su�cient
condition to possess a mind. If the triviality argument is right, then computational
su�ciency would entail an absurdly strong form of panpsychism: brick walls would have
minds just as much as we do. Computational explanation describes the methodology
above: one explains why we have the particular cognitive processes we do by appeal to
the fact that our brains implement particular computations.2 If the triviality argument is
right, then this explanatory methodology has to be abandoned. One could not explain our
distinctive cognitive processes in terms of the brain implementing particular computations
because the brain, like every macro-sized physical system, trivially implements almost
every computation.

4.2 Putnam’s triviality argument

One might have two immediate concerns about Searle’s argument. First, one might be
unmoved by his claim that a brick wall contains some pattern of physical transitions with
the same structure as Microso� Word. One might reasonably insist that the burden of
proof is on Searle to demonstrate that such a pattern exists. Second, one might think
that his triviality argument only applies to macro-sized physical systems. Perhaps if one
restricts attention to smaller or simpler physical systems, one can regain a non-trivial
form of computational implementation.

Putnam (1988) presents a triviality argument that neatly scotches both of these worries.
Putnam o�ers an argument that �nds the relevant pattern of physical transitions that
mirror almost any computation one likes in almost any physical system one likes.

Putnam states his argument in terms of �nite state automata (FSAs). Pick an arbitrary FSA.
Putnam chooses a simple FSA,M, which transits between two computational states, A and
B, with the following formal transitions, A→ B → A→ B. Pick an arbitrary open physical
system (say, a rock), and a �nite time interval, t0 to tn. For Putnam’s argument, an open
physical system is a physical system that is not shielded from, and so remains in causal
interaction with, its environment. Almost all physical systems in which we are interested
are open in this sense. Next, consider the phase space of the rock over time. �e phase
space is the space of every possible value of every one of the rock’s physical parameters.
Over time, and even though the rock may appear to our eyes to be unchanging, the rock
will trace a path through its phase space as its microscopic physical parameters evolve.
Its microscopic physical parameters will evolve both due to endogenous physical factors
(internal atoms changing state, vibrations, atomic decay, etc.), and because of external
causal in�uences (gravitational, electromagnetic, vibrational in�uences, etc.) Putnam
argues that among these external in�uences are external ‘clocks’: causal in�uences that
cause the rock never to return to precisely the same set of values of its microphysical
parameters in the course of its evolution.

2. Computational su�ciency, although once an important principle of AI, has now fallen into the
background. However, computational explanation remains utterly central to explanation in cognitive
science.

7

5 Chalmers’ solution

Consider the rock’s trajectory through its phase space from t0 to tn. Since the rock will not
revisit precisely the same point in phase space, its trajectory from t0 to tn will not contain
loops. Putnam divides the rock’s path through its phase space into a journey through
four regions, labelled r1, r2, r3, r4. �ese regions pick out the set of the rock’s physical
state in four time intervals between t0 and tn. Since the rock’s physical state is entirely
characterised by its position in phase space, regions in phase space provide a description
of the physical state of the rock. We can say that in the �rst time interval, the rock is in
physical state r1, in the second, it is physical state r2, in the third, in physical state r3, and
in the fourth, in physical state r4.

We can now ask about the physical transitions that the rock exhibits over the interval.
One sequence of physical transitions that the rock exhibits is: r1 → r2 → r3 → r4. But,
Putnam observes, this is not the only sequence of transitions exhibited by the rock. �e
rock also exhibits the pattern: r1 ∨ r3 → r2 ∨ r4 → r1 ∨ r3 → r2 ∨ r4. In other words, as well
moving between four regions of phase space (r1, r2, r3, r4), the rock also oscillates between
two disjoined regions of phase space (r1 ∨ r3 and r2 ∨ r4). In principle, there is nothing
wrong with identifying a physical state with a disjunction of unconnected regions of phase
space. �at is how many perfectly legitimate physical states types are characterised, e.g.
net thermal energy and electric charge of the rock. It is also how the physical states of
many electronic PCs are characterised, e.g. as disjunctions of electrical signals occurring
in various electronic components in di�erent internal locations.3 Now map physical
state r1 ∨ r3 to computational state A, and map physical state r2 ∨ r4 to computational
state B. Putnam has demonstrated a structure-preserving mapping between the physical
transitions of the rock and the formal transitions of FSA M. �e physical transitions in
the rock mirror the formal transitions: A→ B → A→ B. �erefore, according to SP, the
rock implements FSA M. Putnam’s mapping trick could be repeated for other FSAs and
other open physical systems. �erefore, an unvarnished version of SP appears to commit
one to the claim that every open physical system implements every FSA.

5 Chalmers’ solution

�e two triviality arguments above show that SP in its bare form cannot be right. Com-
putational implementation must involve more than a simple mirroring between formal
transitions and physical transitions. Chalmers revises SP to block the triviality result while
aiming to keep SP’s virtues of clarity (D1) and naturalistic foundations (D3).

It is helpful to divide Chalmers’ revision of SP into three steps.

3. An anonymous referee helpfully points out that many objections to Putnam’s argument hinge on
objecting to taking disjunctions of phase space regions. �e point above is only that there is nothing wrong
in taking disjunctions per se. �e objections are rather that some disjunctions are legitimate bases for
computational implementation, while others are not. In Section 6, I consider an objection of this kind
based around an element of Chalmers’ account that I call the independent-components condition.

8

5 Chalmers’ solution Step 1: Transitions must support counterfactuals

5.1 Step 1: Transitions must support counterfactuals

One feature of the triviality arguments is that they assume that mirroring a pattern of
actual physical activity is su�cient for computational implementation. Putnam’s argument
identi�es a structure-preserving mapping between the actual evolution of physical states
between t0 and tn and the evolution of an FSA. But what if the physical state of the rock
had been slightly di�erent: e.g. the rock had been hit by one photon extra at t0, or its
temperature one trillionth of a degree warmer, or the Sun 1 cm further away? Putnam’s
construction is silent about whether the mapping to M would still obtain, and there
appears to be no reason to assume that it would. We appear to have identi�ed a potential
weakness in the triviality arguments: they exploit accidental, not counterfactually robust,
patterns of physical activity.

Chalmers argues that we should introduce two counterfactual requirements into SP.

First, in order for a physical system to implement a computation, the relevant physical
transitions should be reliable. �e transitions should not be at the mercy of small physical
changes. If an extra photon arrives that should not disrupt the mirroring between physical
states and formal states. Some work would need to go into spelling this out—for example,
what counts as reliable is likely to vary with context—but a reliability condition of some
sort is clearly required. Second, it should be true that certain physical transitions would
have occurred even if, as a matter of contingent fact, they did not. For example, for a
physical system to be an adder, it is not enough that it gives the right answer to every
pair of numbers it is in fact asked. It should also be true that were it to have been asked
a di�erent sum, it would have given the correct answer. In the case of FSAs, even if
certain formal transitions do not �gure in the actual history of the system, they should be
mirrored in counterfactuals about what the physical system would have done.

Initially, Chalmers presented these counterfactual requirements as doing ‘all the work’
in blocking triviality arguments (Chalmers 2012, p. 331), (Chalmers 1995, p. 398). �is
was a view that enjoyed widespread currency in the literature at the time: it was gener-
ally assumed that counterfactual conditionals deal a knock-down blow to the triviality
arguments (for example, see Block (1995) and Maudlin (1989)). Interestingly, Chalmers
later showed that these kind of considerations cannot block the triviality arguments. Even
if SP is strengthened with the counterfactual conditions above, a similar triviality result
still obtains (Chalmers 1996, pp. 316–319). Bee�ng up one’s account of computational
implementation to include counterfactual conditionals is not a silver bullet to deal with
triviality worries. It is instructive to see why.

In the revised argument, Chalmers (1996) de�nes a ‘clock’ as a physical component that
reliably transits through a sequence of physical states over the time interval. He de�nes a
‘dial’ as a physical component with an arbitrary number of physical states such that when
it is put into one of those states it stays in that state during the time interval. �e triviality
result for the counterfactually-strengthened version of SP is that every physical system
with a clock and a dial implements every FSA.

�e argument involves a similar construction to Putnam’s, but over possible, not actual,
trajectories in phase space. In one respect the construction is simpler, since the only states
that need to be considered are the physical system’s clock and dial; the other physical

9

5 Chalmers’ solution Step 2: Add input and output constraints

states can be safely ignored. Chalmers’ strategy is to identify a mapping between each
formal FSA state and a disjunction of physical states [i , j] of the implementing system,
where i corresponds to a numbered clock state, and j to a numbered dial state, and the
relevant physical states stand in the right counterfactual relations to each other. Here is
the argument.

Suppose the system starts in physical state [1, j], then it will reliably transit to [2, j], [3, j],
and so on, as the clock progresses. Suppose, without loss of generality, that the system
starts its actual run in dial state 1. �e start state of the FSA can then be mapped to
[1, 1], and the subsequent formal states in the evolution of the FSA to [2, 1], [3, 1], and
so on. At the end of this mapping process, if some FSA states have not come up, then
choose one of those formal states as the new start state of the FSA and map [1, 2] to
it. �en pair physical states [2, 2], [3, 2], and so on with the formal states that follow in
the evolution of the FSA. Continue until all of the un-manifested states of the FSA have
been covered. Now, for each formal state of the FSA, we will have a non-empty set of
associated physical states {[i1, j1], [i2, j2], . . . , [in , jn]}. Assign the disjunction of these
states to each FSA state. �e resultingmapping between formal and physical states satis�es
the counterfactually-strengthened version of SP.

It is worth noting that almost all physical systems in which we are interested will have
a clock and a dial. A clock could simply be any law-like sequence of physical changes
inside the system. A dial could be the entire trajectory of phase space through which the
system travels on a particular run. As Chalmers notes, a clock and a dial could also be
easily added just by placing a wristwatch inside the physical system. Clearly, some extra
condition needs to be added to solve the triviality problem.

5.2 Step 2: Add input and output constraints

Another striking feature of the triviality arguments is that the computations they consider
lack inputs and outputs. Chalmers argues that the triviality results can be avoided, or at
least attenuated, if inputs or outputs are added. SP should require that a physical system
not only mirror the internal states of the formal computation, but also have appropriate
inputs and outputs. �ere is a weak and strong way of reading the input-output condition.

On the weak reading, all that it means to have appropriate inputs and outputs is that there
exists a structure-preservingmapping between the inputs and outputs of the physical system
and the inputs and outputs of the formal FSA. Just as a structure-preserving mapping
is su�cient to implement internal formal states, a structure-preserving mapping is also
su�cient to implement formal inputs and outputs. It is not hard to see that this reading
of the condition would do almost nothing to solve the triviality problem. Consider a thin
spatial boundary around the implementing physical system. �is boundary itself is an
open physical system, and it will trace its own (non-looping) trajectory through phase
space over the time interval. As before, one can map disjunctions of regions of its phase
space to formal inputs and outputs. It is not hard to construct a similar triviality result.

�e strong reading of the input-output condition requires more than the existence of a
structure-preserving mapping. It also requires that the physical inputs and outputs be of a
certain physical type. For example, an implementation of a word processor should take

10

5 Chalmers’ solution Step 3: Move to CSA architecture

physical key strokes as input, and yield written physical text as output—something a brick
wall clearly fails to do. An implementation of a calculator should take button-presses as
input, and yield written physical numerals as output. �e strong reading, unlike the weak
reading, does appear to provide defence against a Putnam-style construction. As a matter
of brute fact, a brick wall does not have the right type of physical input and output to be
an implementation of Microso� Word, regardless of the mappings that might obtain.

Nevertheless, even on the strong reading, a triviality result still obtains. �is triviality
result is that any physical system that implements some FSA with a certain input-output
behaviour, will implement every FSA with that behaviour. We must distinguish between
physical systems with di�erent internal computational structures. Two physical systems
may have the same (counterfactually-robust) pattern of input-output behaviour, but
di�erent computational methods for achieving that behaviour. Internal structure matters
a great deal to cognitive science. Disagreements o�en concern the internal computational
structure of cognitive processes (classical, connectionist, etc.), rather than their inputs and
outputs. A strong input-output condition constrains implementation only up to the level
of inputs and outputs. It places no constraints on internal structure, leaving it open to
Putnam’s attack. As Putnam observes, the input-output response would, in e�ect, collapse
cognitive science into a form of behaviourism. �erefore, even on the strong reading, the
input-output condition still leaves us with the meat of the triviality challenge intact.4

5.3 Step 3: Move to CSA architecture

�e �nal revision to SP proposed by Chalmers is to replace the FSA architecture with a
more complex computational architecture. Chalmers claims that the triviality arguments
can be resisted for a type of formal architecture that he calls combinatorial state automata
(CSAs). He claims that once we refocus attention on CSAs, non-trivial conditions on
implementation can be obtained.

Chalmers concedes that Putnam is right that the implementation conditions of FSAs are
trivial in the ways described above.5 Nevertheless, this would be tolerable if non-trivial
implementation are secured for all computational architectures relevant to cognitive science.
It was originally aworry about cognitive science thatmotivated a theory of implementation
satisfying (D1), (D2), (D3). If this worry could be dealt with, then much of the heat would
go out of the debate. It would then be a further question whether the same desiderata
need to be met in other contexts where we rely on computational explanation (arguably,

4. Chalmers (1996, pp. 320–323) claims that SP should be supplemented with the additional condition
that inputs would reliably cause the right internal states, even if they do not actually cause such states
(e�ectively combining Step 1 + Step 2). He argues that this allows the input-output condition to get a
toe-hold on constraining internal structure, and helps defend it from Putnam’s attack. However, Chalmers
goes on to show that a similar triviality result still obtains: any physical system with an input memory and a
dial implements any FSA with a given input-output behaviour. An input memory is a physical component
that goes into a unique physical state for every sequence of inputs. Having an input memory is again not
hard to satisfy (Chalmers gives the example of adding a tape recorder to the system). See Godfrey-Smith
(2009, Section 2) for a more detailed discussion of how a triviality result for a combined Step 1 + Step 2
condition obtains under even less exacting conditions. A combined Step 1 + Step 2 condition therefore
does not by itself solve the triviality problem.

5. Chalmers (1995), pp. 394–395; Chalmers (2012), p. 334.

11

6 �ree challenges to Chalmers SP-C does not cover all architectures

(D3) in many cases would not). Consequently, Chalmers claims that CSAs cover all those
computational architectures relevant to cognitive science.6

Combinatorial state automata are just like �nite state automata except that their states
have a combinatorial structure rather than a monadic state structure. Instead of having a
single internal state, S, the internal state of a CSA is a vector of sub-states, [S1, S2, . . . , Sn],
where the ith component of the state vector is the ith sub-state of the system. �e state
transitions of a CSA are de�ned by specifying, for each component of the state vector,
how its new value depends on the old state vector and an input vector.

Chalmers claims that a physical system implements a CSA when the following conditions
are met:

A physical system implements a given CSA if there is a decomposition of
its internal states into sub-states [s1, s2, . . . , sn], and a mapping f from those
sub-states onto corresponding sub-states S j of the CSA, along with similar
mappings for inputs and outputs, such that: for every formal state transition
([I1, . . . , Ik], [S1, . . . , Sn]) → ([S1′, . . . , Sn′], [O1, . . . ,Ol]) of the CSA, if the
system is in internal state [s1, . . . , sn] and receiving input [i1, . . . , in] such that
the physical states and inputs map to the formal states and inputs, this causes
it to enter an internal state and produce an output that map appropriately to
the required formal state and output. (Chalmers 1996, p. 325)

�is completes Chalmers’ account of computational implementation. Call it SP-C.
Chalmers claims that SP-C meets the three desiderata: it is clear (D1), blocks the triviality
arguments (D2), and it provides naturalistic foundations for cognitive science (D3).

6 �ree challenges to Chalmers

I will argue that there are three problems with Chalmers’ theory of computational imple-
mentation, SP-C. �ese problems are: (i) SP-C does not cover all architectures relevant to
cognitive science; (ii) SP-C leaves certain key features of implementation unclear; (iii)
SP-C does not block the triviality arguments. I argue that SP-C cannot simultaneously
satisfy (D1), (D2), (D3).

6.1 SP-C does not cover all architectures relevant to cognitive science

Chalmers observes that CSA architectures aremore relevant to explanations in cognitive
science than FSAs: FSAs have unstructured internal states, which seem poor formal
analogues of human cognitive states (p. 326).7 However, even if CSAs are better models
of human cognition than FSAs, that does not show that CSAs are the only, or the best,

6. Ibid.; Chalmers (1996), p. 324.
7. Nevertheless, see Brooks 1991 for an argument that cognition should be modelled via a series of

nested FSAs. If Brooks is right, then FSAs, and their implementation conditions, matter a great deal to
cognitive science.

12

6 �ree challenges to Chalmers SP-C does not cover all architectures

computational architectures for cognitive science. �e possibility appears to be open
that there are other computational architectures, which are equally, ormore, relevant to
cognitive science than CSAs, and for which (non-trivial) implementation conditions have
not yet been secured.
Chalmers attempts to guard against this worry by claiming that the CSA formalism is
capable of accurately describing any computational architecture. SP-C is therefore a
perfectly general account of computational implementation. According to Chalmers, it is
possible to translate any other computational formalism into the CSA formalism. SP-C
can then be applied to that CSA translation, yielding the implementation conditions of
the original architecture:

�is de�nition [of CSA implementation] can straightforwardly be applied to
yield implementation conditions for more speci�c computational formalisms.
To develop an account of the implementation-conditions for a Turing ma-
chine, say, we need only redescribe the Turing machine as a CSA. �e overall
state of a Turing machine can be seen as a giant vector, consisting of (a) the
internal state of the head, and (b) the state of each square of the tape . . . A
similar story holds for computations in other formalisms. Some formalisms,
such as cellular automata, are even more straightforward. Others, such as
Pascal programs, are more complex, but the overall principles are the same.
In each case there is some room for maneuver, and perhaps some arbitrary
decisions to make (does writing a symbol and moving the head count as two
state-transitions or one?) but little rests on the decisions we make. . . . �e
theory of implementation for combinatorial-state automata provides a basis
for the theory of implementation in general. (Chalmers 2012, p. 330)

It is worth emphasising that Chalmers’ claim is not the relatively modest claim that the
CSA formalism can reproduce the input-output behaviour of any other computational
formalism.8 Chalmers’ claim is stronger: that the internal workings of any of computational
formalism can be adequately expressed in the CSA formalism. Call the former claim weak-
equivalence, and the latter claim strong-equivalence.
�e weak-equivalence claim concerns what function a given machine computes: the ma-
chine’s input-output behaviour. �e strong-equivalence claim concerns how that function
is computed: the mechanism by which the machine moves from input to output.9 �e
weak-equivalence claim says that, for any computational architecture, there is some CSA
which has the same input-output behaviour—that solves the same overall computational
task—as the original architecture. Typically, weak-equivalence claims are justi�ed by the
kind of evidence that Chalmers provides: translation rules, which involve a �nite number
of steps, that take one from the original architecture to some CSA. Weak-equivalence
proofs (o�en called ‘simulation’ or ‘computational equivalence’ proofs) play a major role
in mathematical computation theory.

8. Like Chalmers, I will restrict attention to computational architectures with �nite storage (e.g. Turing
machines with �nite tape). As Chalmers notes, �nite storage architectures are the ones most relevant to
modelling human cognition. Chalmers sketches how SP-C can be extended to apply to architectures with
unbounded storage, but will do not need to consider his extension here.

9. Cf. Pylyshyn (1984), Ch. 4.

13

6 �ree challenges to Chalmers SP-C does not cover all architectures

Weak-equivalence is one thing, strong-equivalence is another. �e strong-equivalence
claim requires that at least one of the CSAs which ‘solves the same computational task’
also accurately describes—without loss or distortion in its algorithmic description—how
that task was solved. For architectures to be strongly equivalent, it is crucial that the CSA
description accurately captures all computationally-relevant properties of the original
formalism. As discussed above, cognitive science not only cares about the input-output
behaviour, but also about the method by which the system gets from input to output.
�erefore, a weak-equivalence proof alone would not be su�cient to justify SP-C as a gen-
eral theory of computational implementation. One would also need to show that the CSA
formalism describes, without loss or distortion, the internal computational mechanism by
which the original architecture operates. A�er all, if asked for the implementation condi-
tions of a computer X, it would be no good to reply with the implementation of a di�erent
(albeit input-output equivalent) computer Y . We want to know what are the implement-
ation conditions of a machine that works like X, not the implementation conditions of
another computer that solves the same problem in a di�erent way.

Whether SP-C succeeds as a general account of computational implementation hinges
on the truth of the strong-equivalence claim: on whether translation of any computa-
tional method into a CSA is an accurate description (without loss or distortion) of that
computational method. I think that there are good reasons for doubting this claim.

Let us start by examining Chalmers’ poster-case of strong-equivalence: CSAs and Turing
machines.10 Chalmers argues that a Turing machine can be re-described, without loss
or distortion, as a CSA. In the quotation above, he gives a number of translation rules
that take one from a Turing machine to an equivalent CSA. For example, the state of the
head of the Turing machine is mapped to the state of some of the elements of a CSA’s
state vector. �e state of the tape of the Turing machine is mapped to the state of other
elements of the CSA’s state vector. �e transition table of the Turing machine (how the
head acts on the tape) is mapped to how some of the state of some of the CSA’s state-
vector elements depend on the state of other elements inside the CSA’s transition table.
Using Chalmers’ translation rules, it seems possible to construct a weak-equivalence
proof for CSAs and Turing machines. But do the translation rules also establish strong-
equivalence? Does the speci�ed CSA accurately capture, without loss or distortion, all the
computationally-signi�cant features of the original Turing machine? Arguably not.

�ere are a number of computationally-signi�cant features of Turing machines that are
lost in the CSA translation. One such feature is a distinction between data and control. �e
Turing machine formalism separates data from control: the formalismmarks a distinction
between the data on which the computer operates (tape states), and the control states that
govern changes to that data (head states). �e distinction between data and control plays
a major role in theoretical and engineering computer science. �is distinction is one of
reasons why the Turing machine formalism (rather than a purely state-based formalism
such as a CSA) is o�en used to express and categorise di�erent computational methods.
Di�erent computational methods are categorised, at a �rst pass, by the di�erent ways in
which they manage data and control. A touchstone of engineering practice that there are
trade-o�s between investment of computational resources in control mechanisms versus
data structures. �ese trade-o�s can take subtle forms. But a crude example would be

10. Again, restricting attention to Turing machines with �nite storage.

14

6 �ree challenges to Chalmers SP-C does not cover all architectures

that a Turing machine with a handful of head states could ‘o�-load’ control information
onto data on its tape, thereby performing its computation with a very simple control
structure but rich data representations. In contrast, a Turing machine with a large number
of head states could do more computational work in the head and get away with sparser
and simpler data representations on the tape. Computer science treats these two kinds
of Turing machine as imposing di�erent demands on implementation. Data and control
structures are assumed to govern distinct physical features of the implementing system.
Changes to onemay involve modifying the physical logic unit (e.g. the CPU), the other the
physical memory bank (e.g. the RAM). �ey are assumed to involve qualitatively distinct
physical components in the system. In short, it is important to both theoretical and
engineering computer science to keep data and control elements in the Turing machine
formalism distinct, and that this distinction should be re�ected in the implementation.

Pylyshyn argues that a distinction between data and control is also important to cognitive
science:

To understand what is essential about computing—or, at least, the aspect of
it that is relevant to cognitive science—it is mandatory that we preserve a
number of distinctions. . . . �e di�erence between an extremely complex
device characterized merely as proceeding through distinguishable states
(but not processing symbols) and what I call a “computer” is precisely the
di�erence between a device viewed as a complex �nite-state automaton and
one viewed as a variant of a Turing machine . . . the fundamental distinction
that I also want to press, [is] namely, the distinction between a strictly �nite
control mechanism (the Turing machine’s �nite-state “control-box”) and a
�nite but unbounded string of symbols . . . Describing the computer at the
symbol level is to make the crucial distinction I have been arguing must be
made: separate the �nite mechanism from the (to a �rst approximation)
arbitrarily expandable symbol structures. (Pylyshyn 1984, pp. 70–72)

�e distinction between data and control is a computationally-signi�cant feature of Turing
machines that matters to both computer science and cognitive science.

�e fundamental idea expressed by SP is that formal structure should bemirrored in physical
structure. Computationally-signi�cant distinctions and similarities in the computational
formalism should be mirrored by physically-signi�cant distinctions and similarities in
the implementation. What we saw above was that a distinction between tape states and
head states is a computationally-signi�cant distinction for a Turing machine: tape states
and head states are treated as formally distinct from each other, but similar amongst
themselves. An implementation of a Turing machine should therefore have its tape states
and head states implemented in ways that are physically distinct from each other, but
physically similar amongst themselves. For example, the head and tape states should be
implemented by distinct types of physical component. A physical system only implements
a Turing machine if it works like a Turing machine. And a physical system only works like
a Turing machine if its head states and tape states are implemented in distinct physical
ways that are physically similar amongst themselves.

15

6 �ree challenges to Chalmers SP-C does not cover all architectures

�e problem is that the distinction between data and control is entirely lost in the CSA
translation. Both head states and tape states are just sub-states alike of a giant undif-
ferentiated state vector. SP-C places no constraints that head states and tape states be
implemented in distinct physical ways that are physically similar amongst themselves. In-
deed, SP-C does not even have the resources to state such a condition, since the distinction
between a Turing machine’s data and control elements disappears in the CSA translation.
Strong-equivalence—the claim that the CSA translation captures every computationally-
signi�cant feature of the original Turing machine formalism—appears to be false. �e CSA
translation does not preserve a critically important feature of Turing machine formalism:
its distinction between data and control.

A natural response would be to augment the CSA architecture so that it encodes the
distinction between the data and control elements of the original Turing machine. For
example, one might introduce within the CSA formalism a distinction between two types
of sub-state of a CSA: data sub-states and control sub-states. �e monolithic state vector
of the CSA [s1, s2, . . . , sn] would then contain certain ‘highlighted’ elements, which are
marked out within the CSA formalism as ‘data’ elements or ‘control’ elements. SP-C could
then be supplemented with a condition that requires that the ‘data’ and ‘control’ elements
of a CSA’s state vector be implemented in distinct physical ways, e.g. by distinct types of
physical component.

�is response is good as far as it goes, but other computationally-signi�cant di�erences
still threaten a strong-equivalence claim. One such feature that a Turing machine’s data is
not random access: if the Turing machine’s head is on square 1, and the machine wishes
to read square 15,000, then it must read the state of all intermediate squares �rst. Non-
random access memory is a computationally-signi�cant feature of Turing machines that
marks out their computational methods from, say, those of a von Neumannmachine. �is
formal property—non-random access memory—does not hold true of CSAs. A CSA’s
subsequent state vector can be immediately determined by any of its current sub-states
without stepping through ‘intermediate’ elements �rst.

A natural response again would be to require that a CSA translation of a Turing machine
step through a sequence of intermediate ‘data reading’ states—each corresponding to the
original Turing machine reading an intermediate tape square—before the CSA reaches
the state that corresponds to the Turing machine ‘reading’ the desired square. �is would
not be the most e�cient way for a CSA to operate, but it would appear to replicate the
non-random-access property of the Turing machine inside the CSA formalism.

�e problem is that this response locates the formal property—non-random access
memory—in the wrong place: it locates the formal property in the CSA’s control ele-
ment (its contingent rules and transition table), not in the functional architecture of the
computer. �is reveals a wider problem with the CSA translationmethod described above:
it collapses the di�erence between two qualitatively distinct aspects of the CSA—those
that encode the transition table of the Turing machine, and those are used to simulate
the Turing machine’s background functional architecture. Just as the CSA’s state vector
collapsed the distinction between the Turing machine’s head state and tape state, so the
CSA’s transition table collapses the distinction between the Turing machine’s transition
table and its background functional architecture. Both are merely features alike of the
CSA’s undi�erentiated transition table. But the di�erence between the two matters, both

16

6 �ree challenges to Chalmers SP-C does not cover all architectures

to computer science and cognitive science. For something to implement a Turing machine,
it should work like a Turing machine. And for something to work like a Turing machine,
there should be a distinction between its control element (its transition table), and its
background functional architecture. �e implementation conditions of a Turing machine
should require that the Turing machine’s transition table and its background architectural
features be implemented in physically distinct ways that are physically similar amongst
themselves. �ese two properties of Turingmachines—functional architecture and control
element—are treated as formally distinct but similar among themselves in the formalism,
and they should be treated as physically distinct but physically similar among themselves
in the implementation. However, there is no way SP-C can require this to be true. �e
di�erence between these two elements of a Turing machine—functional architecture and
control element—simply disappears in the CSA formalism.

A natural way to respond is to repeat the ‘highlighting’ trick above. One could augment the
CSA formalism to encode a distinction between transitionswithin the giant CSA transition
table. For example, one might explicitly distinguish between simulation transitions and
target transitions. A simulation transition is one that is needed to reproduce some aspect of
the Turing machine’s background functional architecture (e.g. to reproduce properties like
non-random-access memory as above). A target transition would be a transition of that
encodes the Turing machine’s transition table (i.e. its control element). A condition could
then be added to SP-C that these di�erent types of transitions should be implemented in
physically distinct ways that are physically similar among themselves (e.g. by di�erent
types of physical mechanism). �e properties of the physical implementation would then
mirror, and preserve the relevant di�erence between, computationally-signi�cant features
of the Turing machine formalism.

�is �xes two translation problems, but plenty more remain. �ere are no shortage of
computationally-signi�cant features of Turing machines that are lost or distorted in the
CSA translation: what counts as an atomic operation, what can happen synchronously,
and at what stages input or output is permitted. All of these matter to way in which Turing
machines work. All characterise the distinctive methods by which Turing machines
achieve their behaviour. All should be preserved and re�ected in the implementation
conditions of Turing machines. And all are distorted or lost in the CSA translation.

A hard-headed solution would be to keep replaying the ‘highlighting’ trick above, aug-
menting the CSA formalism to capture each and every computationally-signi�cant feature
of Turing machines until all of the relevant formal distinctions and similarities of the
Turing machine formalism are captured in an enriched CSA formalism. Conceivably, at
the end of this procedure one would represent the computational methods of a Turing
machine within an enriched CSA formalism without loss or distortion. SP-C could then
be revised in light of this CSA formalism, and appropriate constraints placed on physical
implementation. We would then have achieved our goal of stating the implementation
conditions of a Turing machine using the CSA formalism—albeit a heavily modi�ed and
augmented version of the CSA formalism.

But all this has a serious cost.

First, it loses the simplicity and generality of Chalmers’ original proposal. �e only way
to capture the computationally-signi�cant features of Turing machines appears to be to

17

6 �ree challenges to Chalmers SP-C does not cover all architectures

revise the CSA formalism to such an extent as to e�ectively recreate the Turing machine
formalism inside it. It appears that there is little or no redundancy lurking in the Turing
machine formalism for the original CSA formalism to exploit. But if this is so, then it
appears that the strong-equivalence claim as originally proposed is not, in any interesting
sense, true.

Second and more seriously, the CSA formalism was claimed to be capable of expressing
without loss or distortion the computational methods, not just of Turing machines, but of
any computational architecture. We have seen that the CSA architecture needed major
revision to capture the computational properties of the Turing machine formalism. How-
ever, the translation problems encountered in the case of Turing machines are nothing in
comparison to those of other computational architectures.

As a �rst step, consider switching from the original Turing machine architecture to a
multi-head Turingmachine architecture, or amulti-tape Turingmachine architecture. �e
CSA formalism and SP-C would need to be revised again. Di�erent features of the target
formalismwill need to be ‘highlighted’ in the CSA translation. For example, the distinction
between di�erent heads and tapes in a multi-head/multi-tape Turing machine will need
to preserved in the CSA translation and re�ected in the implementation conditions. Each
head and tape should be implemented by a distinct type of physical component that is
similar amongst themselves (heads), and di�erent in kind again from the others (tapes).
More highlighting and tweaks to the CSA formalism and SP-C would be required.

Now consider moving to an architecture that departs more dramatically from that of
Turing machines: register machines, Church’s λ-calculus, quantum computers, data�ow
computers, billiard-ball computers, enzymatic computers. �ese formalisms have radically
di�erent ways of splitting control and data, di�erent clocking paradigms, di�erent paral-
lelisms, di�erent synchronous natures, di�erent atomic operations, and di�erent ways of
handling input and output. �ey di�er from CSAs, Turing machines, and each other, in
major and o�en incompatible ways. �ey employ di�erent computational methods, and
introduce new and incompatible computationally-signi�cant properties. Accurately trans-
lating each formalism, without loss or distortion, to the CSA formalism would require the
CSA formalism ‘highlight’ the computationally-signi�cant properties of that particular
architecture. Given the open-ended nature of the list of possible alternative architectures,
and the incompatible nature of the decisions they make about computationally-signi�cant
properties, it is hard to see how this could be done. Tweaking the CSA formalism to
achieve strong-equivalence with all such architectures simultaneously without that form-
alism becoming massively disjunctive and open-ended seems impossible. Moreover, the
brunt of the work of a theory of implementation seems to be done by how the CSA
formalism should be modi�ed in each case, not by what the CSA formalism itself says.

�erefore, replaying the ‘highlighting’ trick—hard-wiring the desired formalism inside the
CSA formalism—may achieve strong-equivalence between CSAs and Turing machines,
but it would be a short-sighted move. Indeed, tailoring the CSA architecture to Turing
machines has the cost that it moves us further away from accurately modelling other
computational architectures. As the CSA formalism becomes a better model of Turing
machines, it becomes a worse model for other architectures (register machines, Church’s
λ-calculus, quantum computers, data�ow computers, enzymatic computers). �e hard-
wired modi�cations proposed to the CSA architecture to model Turing machines—a

18

6 �ree challenges to Chalmers SP-C does not cover all architectures

Turing machine-style control/data split, non-random access memory, atomic operations,
etc.—are precisely the wrong sorts of modi�cations to the CSA formalism to accurately
represent other architectures.

�is worry has particular bite in the case of the computational models in cognitive science.
Contemporary computational models in cognitive science have little resemblance to either
CSAs or Turing machines. It is worth bearing in mind just how distant they are, and
the incompatible nature of the decisions they make about computationally-signi�cant
properties. �ey help to bring into sharp focus the magnitude of the challenge faced by a
strong-equivalence claim for cognitive science.

For example, Marr (1982)’s computational architecture for the early visual system is a
series of discrete nested computational �lters that pass signals to each other in serial or
parallel. Marr’s formal architecture di�ers in numerous ways from both Turing machines
and CSAs. It di�ers in terms of its control/data split, atomic operations, introduction of
nesting relations between �lters, requirements on what can happen synchronously, and
at what stages input and output are permitted. Neither the original CSA formalism nor
the modi�ed CSA formalism above accurately capture the computationally-signi�cant
properties ofMarr’s formal architecture. Anderson (2007)’s ACT-R architecture is di�erent,
but just as challenging for a CSA architecture to model. ACT-R is tailored to explain
di�erent cognitive capacities from Marr’s architecture and has di�erent computationally-
signi�cant properties: a di�erence between declarative and procedural data, a di�erence
between chunks and bu�ers, an organisation into modules, a production-driven rather
than state-driven control system. Again, CSAs seem a poor model: they would fold all
these properties into the workings of a giant transition table and state vector, with no
guarantee that the relevant distinctions and similarities in the original architecture would
be preserved by distinctions and similarities in kind between the components of the
implementation. Wolpert and Kawato (1998)’s MOSAIC architecture is di�erent again,
and requires di�erent formal distinctions. MOSAIC has a highly modularised structure,
it has continuous dependence of output on input, it has computational relations that are
best described by di�erential equations, it has error comparison and error summation
operations as atomic steps, it is fully asynchronous, it uses probabilistic generative models
among its basic representations, and it has a radically di�erent way of managing control
to traditional computers (Wolpert, Doya and Kawato 2003). �e CSA formalism does
not appear capable of expressing the methods of the MOSIAC architecture without loss
or distortion. If strong-equivalence between Turing machines and the original CSA
architecture was hard to achieve, strong-equivalence with the computational models in
cognitive science appears even harder. And if one tries to secure strong-equivalence by
departing from the original CSA formalism by using the highlighting trick, then one faces
the problem that di�erent models depart from the CSA formalism in open-ended and
incompatible ways.

�ere is a claim that is closely related to strong-equivalence which is almost certainly true,
and which may be the source of possible resistance to the concerns above. It is almost
certainly true that a physical system that is described as, say, a MOSIAC system can also
be described as a CSA. If Chalmers (2012) is right, almost any physical system can be
described as a CSA merely in virtue of having a causal structure of some kind or other
(p. 341). But the fact that two computational descriptions are simultaneously true of the

19

6 �ree challenges to Chalmers What is SP-C’s mapping relation?

physical system does not establish that a MOSIAC formalism and a CSA are the same (or
strongly-equivalent) computational formalisms. Just as a quantummechanical description
and molecular biological description of a cat can both be true of the same physical system
does not establish that the two descriptions express the same information. It is o�en the
case that multiple distinct computational descriptions are satis�ed by the same physical
system. �e same physical system (e.g. an electronic PC) may simultaneously implement
an FSA, a CSA, a Turing machine, a register machine, and Microso�Word. But this in
no way shows that all these computational descriptions are strongly-equivalent. Just as
a cat’s quantum mechanical description and the molecular description have neither the
same content nor the same satisfaction conditions, so a CSA and MOSAIC computational
description have neither the same content nor the same implementation conditions, even
if both are (non-accidentally) satis�ed by the same physical system.
Finally, it is worth wondering why, if strong-equivalence were true, we would feel the
need for talking about di�erent architectures at all. If strong-equivalence were true, why
would computer science even bother using other computational architectures? Pragmatic
factors may provide part of the answer: some formalisms are simply easier for humans
to manipulate than others. But pragmatic factors only go so far, and a plausible deeper
explanation, which �ts with the assertions made in computer science, lies at hand. We
have such a rich variety of computational formalisms because of their di�erent expressive
resources. Di�erent architectures allow us to describe di�erent computational methods
for solving problems. �e same overall e�ect may be achievable with another formalism,
but not in the same way. We pick our architecture with an eye to its control structure,
basic operations, data structures, whether it is synchronous or asynchronous, etc. �ese
choices enable di�erent computational tricks, distinctive twists and turns in moving from
input to output. �is is seen in the di�erences between algorithms that are enabled by von
Neumann machines, λ-calculus, quantum computers, DNA computers, enzymatic com-
puters.11 Strong-equivalence would render these other architectures super�uous: there
is no method that cannot be expressed without loss or distortion in the CSA formalism.
But why then does computer science and cognitive science place such a premium on the
resources o�ered by a switch in architecture? Isn’t the point of such a switch to open up a
space for expressing new computational methods?

6.2 What is SP-C’s mapping relation?

�e �rst problem with SP-C is that it is not su�ciently general as a theory of implement-
ation, and in particular, that SP-C does not secure the implementation conditions of
computational models in cognitive science. �e second problem concerns the mapping
relation between physical states and abstract machine states—the relation that SP-C inher-
its from SP. So far we have treated this mapping relation as an explanatory primitive. We
also said that SP satis�ed (D1) on clarity because it uni�ed computational implementation
with model-theoretic interpretation and measurement. But what is this mapping relation?
What metaphysical commitments does it bring with it?
�is may seem like a strange question, but it should be pressed. SP’s mapping relation
plays an absolutely central role in computational implementation. One of the desiderata

11. See Backus (1978) for how formal architecture determines the available computational methods.

20

6 �ree challenges to Chalmers SP-C does not escape the triviality result

for a theory of computational implementation is that it provide a naturalistic foundation
for cognitive science (D3). We saw that, to a �rst approximation, this means that com-
putational implementation has to be explicable in wholly non-mental terms. But then it
looks like SP is hostage to the fortunes of the mapping relation. If the mapping relation
turns out to be mind-dependent, then this will infect computational implementation too.
And it is not clear whether the mapping relation is innocent in this regard. Indeed, it is
far from clear what the mapping relation is, and what commitments it introduces into
computational implementation.

One might claim that the mapping relation is an internal relation and hence does not
introduce any extra commitments over and above the metaphysical commitments brought
by its relata. �ere are two problems with this response. First, it is not obvious that
the mapping relation is an internal relation. Merely claiming that it is does not settle it;
stipulations cannot make it so. Second, an internal relation requires the existence of its
relata. �erefore, in order for a mapping relation to obtain, both the physical state and
the abstract mathematical formalism that is the CSA need to exist. But this appears to
commit one to the existence of mathematical objects, which is far from uncontroversial.
Explaining the mapping relation in terms of other relations such as correspondence or
pairing between individuals runs into similar problems. Either move seems to commit
one to the existence, not only of individual physical objects, but also of abstract objects
described in the mathematical formalism.

One might object that this is a general problem, not one that is speci�c to SP.12 �e
mapping relation that SP employs is shared by other domains, not just computational
implementation. If the nature of themapping relation introducesworrisome commitments,
or is unclear, then that is a problem not just for SP, but for a wide range of other areas.
However, the general nature of the worries should not blunt their force. A parallel can be
drawn with the treatment of the representation relation. Chalmers (2012) argues that the
representation relation should not �gure in an account of computational implementation
because it is obscure and poorly understood (violating (D1)).13 Searle (1992) argues that the
representation relation should not �gure because it introduces illicit mind-dependency
(violating (D3)). One might take issue with either of these claims, but both employ
general concerns about the representation relation to place constraints on computational
implementation. If general worries about representation justify keeping it out of an
account of implementation, then general worries about the mapping relation should have
force too.

6.3 SP-C does not escape the triviality result

A �nal problem for SP-C is that, even for the speci�c case of CSA computations, SP-
C does not block Putnam-style triviality arguments. We saw in Section 5 that Step 1
and Step 2 of SP-C were neither individually nor jointly su�cient to block the triviality
arguments. �e work of blocking the triviality arguments therefore falls almost entirely
on Step 3. �e problem is that it is not clear how Step 3—switching from an FSA to a CSA
architecture—helps to solve the triviality problem at all.

12. �anks to an anonymous referee for pressing this point.
13. Chalmers (1995), pp. 399–400; Chalmers (2012), p. 334.

21

6 �ree challenges to Chalmers SP-C does not escape the triviality result

One worry is that CSAs immediately fall prey to Putnam’s triviality argument. Formally,
it is easy to translate between CSAs and FSAs. If one is persuaded by the line of reasoning
that Chalmers gives to justify strong-equivalence above, one might be inclined to think
that CSAs and FSAs are not genuinely di�erent formalisms, but just notational variants.

Without loss of generality, denote the sub-states that the elements of the CSA state vector
can take, S1, S2, . . . , Sn, with numerical values (1, 2, 3, etc.). Now consider an FSA with
states S = 2S13S2 . . . pnSn for every possible sub-state Si , where pi is the ith prime number,
and transitions S → S′ i� [S1, . . . , Sn] → [S1′, . . . , Sn′]. �e FSA so de�ned is a state-based
automaton with exactly the same states and transitions. �e only di�erence is that FSA
states are described by a scalar and the CSA states are described by a vector. Both CSA
and FSA descriptions appear to identify the same state-based automata, just with di�erent
notations. If as Putnam argues, the implementation conditions of FSAs are trivial (which
Chalmers admits), then so too are the implementation conditions of CSAs.

Chalmers is of course aware of this problem. He knows that an extra constraint must
be added to avoid collapsing the CSA case into the FSA case. �e key move is to �ag
the vectorial nature of the CSA notation as computationally-signi�cant with speci�c im-
plications for implementation, which di�er from those of a scalar notation. Chalmers
does this by proposing that ‘each element of the [CSA] vector corresponds to an inde-
pendent element of the physical system’ (Chalmers 1996, p. 325, my italics). Call this the
independent-components condition. To my mind, the independent-components
condition is the single most important element of SP-C. It does the lion’s share of the work
in blocking the triviality arguments. Without this condition, it is unclear how switching
to a CSA architecture o�ers any gain in blocking the triviality arguments over SP.

Given the amount of work that the independent-components condition does, it is
frustrating that it is not easier to spell out the content of the condition. What does it mean
for something to be an independent element of the physical system? One answer can be
ruled out straightaway: ‘independent element’ cannot mean treated as independent by us,
or some such, since that would immediately concede anti-realism about computation,
and lose us naturalistic foundations for cognitive science (D3). �ere must be an objective,
naturalistic, answer to what makes something an independent element of the physical
system. But it is not obvious what this is. Any candidate proposal has to strike a delicate
balance. It has to be strict enough to block the Putnam-style triviality arguments. But
it also has to be liberal enough to accommodate the vast number of legitimate way of
dividing up and deploying physical properties in genuine computations.

Chalmers proposes an answer that attempts to strike this balance: each component of the
state vector of a CSA should correspond to a distinct physical region of the implementing
system.14 Call this the spatial-regions proposal. spatial-regions aims to spell out the
content of the independent-components condition. �e spatial-regions proposal
has the virtue of being clear (D1) and naturalistic (D3), but unfortunately it is neither
necessary nor su�cient for computational implementation of CSAs.

�e spatial-regions proposal is not necessary because a system could implement a CSA
even if its sub-states occupy the same spatial regions. �ere are many ways in which this
could happen. First, a system could use properties to encode its sub-states, and distinct

14. Chalmers (1996), p. 325, Chalmers (2012), p. 328.

22

6 �ree challenges to Chalmers SP-C does not escape the triviality result

properties can be instantiated at the same spatial location. For example, a systemmight use
di�erent vibrational frequencies (e.g. di�erent electromagnetic frequencies) to implement
di�erent elements of its state vector, even if those frequencies are instantiated in the same
spatial locations (as in AM radio). Second, a system might use pulses that travel back
and forth over the same spatial regions, but which are individuated by their delays to
implement di�erent elements of its state vector (for example, as in a mercury delay line
(Eckert 1997)). Finally, as Chalmers suggests, the sub-states of a CSA could change their
implemented spatial region over time as part of the computation. Two sub-states could
swap over to occupy each other’s spatial regions. An example would be the use of pointers
in PCs which allow the physical memory location of data to be changed without a�ecting
the computation (Chalmers 1996, pp. 329–330).

Perhaps more worrying is that the spatial-regions condition is not su�cient for im-
plementation. Even with the spatial-regions condition in place, a triviality result for
CSAs still obtains. Choose an open physical system P and pick within it n spatial regions,
e1, . . . , en, which are (i) spatially distinct and (ii) share some spatial border with each
other (say, via a connective region). Each spatial region is itself an open physical system.
Hence, by Putnam’s result, each spatial region ei implements any FSA. �erefore, at any
moment in time, each region ei can be associated with an arbitrary state S j of any FSA.�e
spatial regions e1, . . . , en share common borders. De�ne the borders of these connective
regions as the weak inputs and outputs to each spatial region ei . A weak input or output
merely requires that there exists a structure-preserving mapping between the physical
inputs and outputs and the inputs and outputs of the abstract FSA. As we saw above, weak
inputs and outputs impose almost no constraints on implementation. Since the regions ei
implement any FSA, they implement any FSA with weak inputs and outputs so de�ned.
�erefore, physical system P implements a group of n FSAs such that if those FSAs are
in states S1, . . . , Sn at one moment, they will be in states S1′, . . . , Sn′ at the next moment,
with the transition governed by all the previous Si states via the inter-region weak inputs
and outputs. �erefore, the physical system as a whole implements the state transitions
[S1, . . . , Sn] → [S1′, . . . , Sn′]. Modifying the result so that it also accepts overall input and
output (Step 2), and its transitions have modal force (Step 1) is not hard. Similarly, the
requirement that there be at least n distinct spatial regions that border with each other
inside the physical system is easy to meet.

Even if one were to reject spatial-regions, the independent-components condition
still seems to be a fundamentally correct thought about the nature of computational
implementation. �e basic idea of independent-components also generalises beyond
the speci�cs of the CSA formalism (as we saw in Section 6.1). �at idea is that distinct com-
putational elements in the abstract computational formalism should be implemented by
independent physical components in the physical system. �is is an instance of the general
idea explored in Section 6.1 that computationally-signi�cant di�erences and similarities
in the abstract formalism should be mirrored by physically-signi�cant di�erences and
similarities in the implementation. �e independent-components condition appears
to o�er the seed of a response to the triviality arguments. Presumably, not just any physical
system has physical components that are independent in the right sense and wired up
in the right ways. However, to make good on this, one must spell out the content of the
independent-components condition. In particular, one must give a naturalistic, object-

23

Conclusion

ive characterisation of the conditions under which two physical features are independent
components that strikes the correct balance above between being too liberal and too strict.
In the absence of such an account, using the independent-components condition to
block the triviality arguments remains a promissory note.

If independent-components cannot be spelt out as spatial-regions, how should it
be understood? My own view is that independent-components should be understood
as placing constraints on what various physical features represent. �is brings extra
resources into play, and I believe allows one to strike the right balance described above.
However, this representational approach to implementation di�ers signi�cantly from that
of Chalmers, and it brings further challenges, which I will not discuss here.

7 Conclusion

We identi�ed three desiderata on an account of computational implementation. �ese
were that an account should be (D1) clear, (D2) avoid the triviality arguments, and (D3)
provide naturalistic foundations for cognitive science. Chalmers’ account of implement-
ation, which I have called SP-C, can be understood as an attempt to meet these three
desiderata.

I raised three challenges to SP-C. �ese were that SP-C is (i) not su�ciently general, (ii)
leaves certain key relations unclear, (iii) does not block the triviality arguments. We saw a
trade-o� between meeting the desiderata. Individually, each desideratum is easy to meet.
Even if one gives up one of the three desiderata, meeting the other two is relatively easy. For
example, a common way to block the triviality arguments (D2) and keep clarity (D1) is to
allow non-naturalistic factors into the facts that determine computational implementation
(e.g. our judgements, interests, and attitudes concerning the merits of di�erent mappings)
(giving up (D3)). Meeting all three desiderata simultaneously is hard. Chalmers’ account
provides the best attempt to do so, but even his proposal falls short. In each of the three
challenges above (i)-(iii), we saw some or other trade-o� was pressed on us—either giving
up clarity (D1), the response to the triviality arguments (D2), or naturalistic foundations
(D3).

Even if one is convinced by the challenges above, Chalmers’ account remains of ab-
solutely central importance. Chalmers’ account presents insightful and plausible ne-
cessary conditions on computational implementation. What I have called Chalmers’
independent-components condition expresses an important insight: that di�erent ele-
ments of the computational formalism should be implemented by independent physical
components. Tantalisingly, this thought appears to contain the seeds of an answer that
meets all three desiderata. Cashing out what independent physical component means in
the context of an account of computational implementation is one of the major challenges
facing future work on implementation.

24

References

Acknowledgements

I would like to thank two anonymous referees for helpful comments on a previous dra�
of this paper.

References

Anderson, J. R. 2007. How Can the Human Mind Occur in a Physical Universe? Oxford:
Oxford University Press.

Backus, J. 1978. ‘Can programming be liberated from the vonNeumann style? A functional
style and its algebra of programs’. Communications of the ACM 21:613–641.

Block, N. 1995. ‘�emind as the so�ware of the brain’. InAn Invitation to Cognitive Science,
Vol. 3, �inking, edited by E. E. Smith and D. N. Osherson, 377–425. Cambridge, MA:
MIT Press.

Bringsjord, S. 1995. ‘Computation, among other things, is beneath us’.Minds andMachines
4:469–488.

Brooks, R. A. 1991. ‘Intelligence without representation’. Arti�cial Intelligence 47:139–159.

Chalmers, D. J. 1995. ‘On implementing a computation’.Minds and Machines 4:391–402.

. 1996. ‘Does a rock implement every �nite-state automaton’. Synthese 108:309–333.

. 2012. ‘A computational foundation for the study of cognition’. Journal of Cognitive
Science 12:323–357.

Copeland, B. J. 1996. ‘What is computation?’ Synthese 108:335–359.

Dresner, E. 2010. ‘Measurement-theoretic representation and computation-theoretic real-
ization’.�e Journal of Philosophy 107:275–292.

Eckert, J. P., Jr. 1997. ‘A survey of digital computer memory systems’. First published 1953.
Proceedings of the IEEE 85:184–197.

Godfrey-Smith, P. 2009. ‘Triviality arguments against functionalism’. Philosophical Studies
145:273–295.

Hardcastle, V. 1996. ‘Computationalism’. Synthese 105:303–317.

Marr, D. 1982. Vision. San Francisco, CA: W. H. Freeman.

Maudlin, T. 1989. ‘Computation and consciousness’.�e Journal of Philosophy 86:407–432.

Putnam, H. 1988. Representation and Reality. Cambridge, MA: MIT Press.

Pylyshyn, Z. W. 1984. Computation and Cognition. Cambridge, MA: MIT Press.

Searle, J. R. 1992.�e Rediscovery of the Mind. Cambridge, MA: MIT Press.

Wolpert, D. M., K. Doya and M. Kawato. 2003. ‘A unifying computational framework for
motor control and social interaction’. Philosophical Transactions of the Royal Society
of London, Series B 358:593–602.

25

References

Wolpert, D. M., and M. Kawato. 1998. ‘Multiple paired forward and inverse models for
motor control’. Neural Networks 11:1317–1329.

26

	1 Introduction
	2 What is at stake in a theory of implementation?
	3 The Standard Position on implementation
	4 Triviality arguments
	4.1 Searle's informal triviality argument
	4.2 Putnam's triviality argument

	5 Chalmers' solution
	5.1 Step 1: Transitions must support counterfactuals
	5.2 Step 2: Add input and output constraints
	5.3 Step 3: Move to CSA architecture

	6 Three challenges to Chalmers
	6.1 SP-C does not cover all architectures
	6.2 What is SP-C's mapping relation?
	6.3 SP-C does not escape the triviality result

	7 Conclusion

