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Abstract

Finite difference schemes for the 2-D wave equation operating on hexagonal grids and the accompanying

numerical dispersion properties have received little attention in comparison to schemes operating on recti-

linear grids. This paper considers the hexagonal tiling of the wavenumber plane in order to show that the

hexagonal grid is a more natural choice to emulate the isotropy of the Laplacian operator and the wave equa-

tion. Performance of the 7-point scheme on a hexagonal grid is better than previously reported as long as the

correct stability limit and tiling of the wavenumber plane are taken into account. Numerical dispersion is

analysed as a function of temporal frequency to demonstrate directional cutoff frequencies. A comparison to

9-point compact explicit schemes on rectilinear grids is presented using metrics relevant to acoustical simu-

lation. It is shown that the 7-point hexagonal scheme has better computational efficiency than parameterised

9-point compact explicit rectilinear schemes. A novel multiply-free 7-point hexagonal scheme is introduced

and the 4-point scheme on a honeycomb grid is discussed.

∗b.hamilton-2@sms.ed.ac.uk
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INTRODUCTION

The finite difference method can be used to make a numerical approximation to the solution of a partial

differential equation (PDE). When applied to the second-order scalar wave equation [1] or equivalent first-

order vector equations [2], the method is more commonly known as the finite difference time domain (FDTD)

method [3]. In this study, we are concerned with the 2-D scalar wave equation. One drawback of the FDTD

method for the 2-D wave equation is numerical dispersion, which is unfavourable for acoustical simulations

because it can produce audible artifacts due to mistuning of resonant modes and non-linear group delay [4].

Numerical dispersion is unavoidable but its severity depends on the particular choice of the finite difference

operators in the scheme, and mostly on the approximation to the Laplacian operator and the spatial grid on

which it operates (the same centered time difference operator is used in most explicit FDTD methods). Most

FDTD research has focused on the use of rectilinear grids (most often square grids), on which the simplest

second-order accurate FDTD scheme employs five points in space. In the 5-point scheme, numerical dispersion

is worst for waves travelling in axial directions of the grid [4]. Second-order accurate 9-point schemes can

better emulate the isotropy of the wave equation [4], but numerical dispersion is still significant over most

of the simulated bandwidth. Aside from pre- and post-processing with frequency-warping techniques [5], the

only way to reduce the numerical dispersion in a given scheme over some bandwidth of interest is to reduce the

grid spacing and time step, but this incurs a greater computational cost. The computational cost of minimising

numerical dispersion over some range of frequencies in second-order accurate explicit FDTD schemes for the

2-D wave equation has been the subject of many studies [6, 7, 8]. Fourth-order accurate schemes do more

to reduce numerical dispersion and can be achieved through implicit formulations [9], but the parallelism

of explicit schemes is lost. Using wider spatial stencils in explicit schemes can also achieve higher-order

accuracy [10, 11, 12], but this can complicate the implementation of stable boundary conditions.

Another less employed strategy, and the focus of this paper, is to use the hexagonal spatial grid to ap-

proximate the Laplacian operator with seven points [13]. The hexagonal grid has been used in other finite

differences approximations [14, 15, 16, 17, 18], but has not received much attention in FDTD literature aside

from some studies [19, 3, 7, 20, 21]. It has received some attention in the Transmission Line Matrix (TLM) [22]

and the Digital Waveguide Mesh (DWM) [23, 5, 24] literatures, both of which are scattering-based methods

equivalent to the FDTD method at the passivity limit [7]. In the case of the 7-point hexagonal scheme, how-

ever, the more general FDTD method allows for a larger Courant number than the DWM/TLM formulation,

resulting in less numerical dispersion [7]. It is well-known that 2-D signals on a hexagonal grid have spectra

which are periodic as a hexagonal tiling [25]. This has been applied to finite difference schemes for other

PDEs [18], but has yet to be correctly used to analyse the numerical dispersion in the wavenumbers of the

7-point FDTD scheme on a hexagonal grid. The purpose of this paper is two-fold: to analyse the numerical

dispersion of the 7-point FDTD scheme on a hexagonal grid and to compare the 7-point hexagonal scheme

to the 9-point rectilinear scheme in terms of computational efficiency. The paper is organised as follows. We

introduce finite difference schemes for the 2-D wave equation, we present the numerical dispersion of the

hexagonal scheme, and finally, we compare its computational efficiency to the 9-point rectilinear schemes.

FINITE DIFFERENCE SCHEMES FOR 2-D WAVE EQUATION

We are interested in the 2-D wave equation:

(

∂2

∂t2
− c2

∆

)

u = 0 , ∆=
∂2

∂x2
+

∂2

∂y2
≡

2

3

(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)

, (1)

where c is the wave speed, ∆ is the 2-D Laplacian operator, t is time, and u = u(t, x, y) is the solution we

approximate. Boundary conditions will not be considered here, so (x, y) ∈ R
2. In Eq. (1) we have rewritten

the 2-D Laplacian in terms of three linearly dependent axes x1, x2, x3 to simplify notation using a hexagonal

spatial grid. The axes x1, x2, x3 are represented by the unit vectors in R
2:

x1 =
(

1

0

)

, x2 =
(

−1/2
p

3/2

)

, x3 =
(

−1/2

−
p

3/2

)

. (2)



Grids and Grid Functions

To approximate our solution we must choose a spatial grid or lattice.1 A regular 2-D spatial grid is a

collection of points defined as:

Gh = {rm1,m2
= (m1x1 +m2x2)h, (m1,m2) ∈Z

2} , (3)

where x1,x2 are unit vectors that span R
2 and h is the grid spacing. The rectilinear (square) grid uses the

unit vectors x1 = (1,0), x2 = (0,1) and is shown in Fig. 1a. The density of points of the rectilinear spatial grid is

1/h2. The hexagonal grid uses the unit vectors x1,x2 defined in Eq. (2) and is shown in Fig. 1b. We note that

two interleaved hexagonal spatial grids can be overlaid on a rectilinear spatial grid with two grid spacings

hx,hy such that h2
x = 3h2

y and h = 2hx [31].2 The density of points of the hexagonal spatial grid is 2/
p

3h2.

We define a grid function un
m1,m2

as a time series at each point on the spatial grid which approximates the

continuous function u(t, x, y) at time t = nk, where k is the time step, and at the spatial position (x, y)= rm1,m2
.
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FIGURE 1: Grids (lattices) and their duals. (a) Rectilinear (square) grid. (b) Hexagonal grid. (c) Dual of square grid and wavenumber

tiling. (d) Dual of hexagonal grid and wavenumber tiling.

Tilings in Wavenumber Space

Discrete functions on a 2-D spatial grid have Fourier transforms which are periodic in the spatial frequen-

cies, or, wavenumbers [25]. This periodicity is a tiling of the wavenumber space which is given by the Voronoi

tessellation of the reciprocal lattice (dual grid) of the direct lattice. There are many definitions of the reciprocal

lattice [29, 25, 32], and we adopt a definition and approach similar to Hammond [32]. We define the vectors x̂i

of the reciprocal lattice as the normal vectors to the lattice lines (lines connecting nearest neighbouring points

on the grid) of the direct lattice scaled by the ratio hs/h where hs is the spatial period of the grid (known as

the d-spacing in crystallography [32]). The points on the reciprocal lattice are multiplied by 2π/h to represent

the wavenumbers in units rad/m:

ξm1,m2
= 2π(m1x̂1 +m2x̂2)/h ∈R

2, (m1,m2) ∈Z
2 . (4)

The wavenumbers ξm1,m2
denote the centers of the translated copies of the wavenumber cell, known as the

Brillouin zone in crystallography [32], which make up the wavenumber tiling of (ξx,ξy) ∈R
2.

1We use the terms grid and lattice interchangeably throughout this paper. The common use of the word ‘grid’ in the finite difference

literature talks about a ‘grid of points’ [26], rather than a tessellation of space with ‘grid cells’ as in the finite element method litera-

ture [27]. In group theory, a lattice is a collection of points which can be generated by one set of lattice vectors [28]. In crystallography,

a lattice can have more than one set of generating vectors, such as the ‘honeycomb lattice’ (the vertices of a hexagonal tiling) and the

‘diamond cubic lattice’ [29]. A crystal lattice is known as a ‘Bravais lattice’ when it is a lattice in the group theory sense [29]. Other finite

difference texts [13] and the DWM literature [30], speak about nets or meshes, which are tilings of space by polygons. The finite difference

approximation is made at the vertices of the tiling, which denote a lattice, so the ‘triangular mesh’ denotes the ‘hexagonal lattice’ and the

‘hexagonal mesh’ denotes the ‘honeycomb lattice’. A spatial grid is a grid with units of space. A regular spatial grid is a spatial grid which

has a single grid spacing. We also use the terms ‘grid’ and ‘spatial grid’ interchangeably.
2The same 7-point stencil considered in the following section is used by Bystrytskyi & Moskal’kov on such a rectilinear grid [31].

Ultimately, this results in two uncoupled approximations, one on each interleaved grid (without considering coupling at boundaries).



In the square lattice, the spatial period hs is simply h, the reciprocal lattice vectors are simply x̂1 = (1,0)

and x̂2 = (0,1), and the Voronoi tessellation is a square tiling of the wavenumbers made up of square cells

with sides of length 2π/h, as shown in Fig. 1c. In the hexagonal lattice, the spatial period is hs =
p

3h/2, so the

reciprocal lattice is given by the vectors:

x̂1 =
(

1

1/
p

3

)

, x̂2 =
(

0

2/
p

3

)

. (5)

The dual of hexagonal grid and its wavenumber tiling are shown in Fig. 1d. Note that the distance between

parallel sides of the hexagonal cell is 2π/hs. A square cell with sides of length 2π/h is inscribed in a hexagonal

cell for comparison.

Finite Difference Operators

In the FDTD method, differential operators are approximated by finite difference operators. We start by

defining the unit shift operators for our grid function:

st±un
m1,m2

= un±1
m1,m2

, sx1±un
m1,m2

= un
m1±1,m2

, sx2±un
m1,m2

= un
m1,m2±1 , sx3± = sx1∓sx2∓ . (6)

For the hexagonal grid, we have an extra shift operator, sx3±, along the x3 axis for ease of analysis. Now we

can build second-order finite difference operators as:

δtt = (st−+ st+−2)/k2 , δxi xi
= (sxi−+ sxi+−2)/h2 . (7)

Using Taylor series expansions it is straightforward to show that these operators are second-order accurate ap-

proximations to the partial derivatives in Eq. (1). We can build a second-order accurate 5-point approximation

to the Laplacian, δ∆ ..... , on the rectilinear grid using the center point and its four nearest neighbours (NN); a

5-point approximation, δ∆..... , using the center point and its four next nearest neighbours (NNN); and a second-

order accurate 9-point approximation, δ∆α......... , as their linear combination with a free parameter α ∈R,α 6= (0,1):

δ∆ ..... = δx1x1
+δx2x2

, δ∆..... = ((sx1−+ sx1+)(sx2−+ sx2+)−4)/2h2 , δ∆α......... =αδ∆ ..... + (1−α)δ∆..... . (8)

For the 9-point approximation, two special cases of interest are α= 2/3, from [13, 1], which results in isotropic

error up to the fourth-order error term, and α= 1/2, which, when combined with δtt [33], can propagate waves

with frequencies up to π/k rad/s in every spatial direction [8]. This anisotropic scheme, dubbed the Interpolated

Wideband (IWB) scheme, was found to be the most computationally efficient 9-point compact explicit scheme

according to the efficiency measure devised by van Walstijn & Kowalczyk [8].

On the hexagonal grid we employ seven points (center point and 6 NNs) to build a second-order accurate

approximation to the Laplacian [13]:

δ∆ ....... =
2

3
(δx1x1

+δx2x2
+δx3x3

)=∆+
h2

16
∆

2 +O(h4) . (9)

The series expansion of Eq. (9) shows that δ∆ ....... is isotropic to the fourth-order in the grid spacing h [13].

Explicit Finite Difference Schemes

We can now use the following difference equation to approximate a solution to Eq. (1):

(

δtt − c2δ∆
)

un
m1,m2

= 0 , (10)

where δ∆ is some unspecified approximation to the Laplacian on a regular grid. On the rectilinear grid we use

δ∆α......... and we have the explicit update equation:

un+1
m1,m2

=λ2α(un
m1+1,m2

+un
m1−1,m2

+un
m1,m2+1 +un

m1,m2−1)

+λ2 (1−α)

2
(un

m1+1,m2+1 +un
m1+1,m2−1 +un

m1−1,m2+1 +un
m1−1,m2−1)+2(1−λ2(α+1))un

m1,m2
−un−1

m1,m2
, (11)



where λ = ck/h is the Courant number, which is the ratio between the time step and the grid spacing for a

given wave speed c. On the hexagonal grid we use δ∆ ....... and the explicit update is:

un+1
m1,m2

=λ2 2

3
(un

m1+1,m2
+un

m1−1,m2
+un

m1,m2+1+un
m1,m2−1+un

m1+1,m2+1+un
m1−1,m2−1)+(2−4λ2)un

m1,m2
−un−1

m1,m2
.

(12)

For a given scheme, λ has a maximum value for which numerical stability is guaranteed [26].

Stability Conditions

Stability conditions are determined by finding the maximum value of λ such that no exponentially-growing

plane wave solutions of the form un
m1,m2

= e j(ωnk+(ξx,ξy)·(m1x1+m2x2)h), (ω,ξx,ξy) ∈C
3, (n,m1,m2) ∈Z

3 are permit-

ted in the numerical scheme [26]. In general, the stability condition is completely determined by considering

plane wave solutions with frequencies ω ∈ [0,π] and real wavenumbers ξx,ξy in one wavenumber cell of the

grid, since the Fourier symbol of δ∆ is periodic in the wavenumbers. In the case of the rectilinear grid, the

stability condition is found at the corners of the square wavenumber cell because the Fourier symbol of δ∆α.........

is multilinear in ξx,ξy [33]. The stability condition for the 9-point explicit scheme is [33]:

α≥ 0 , λ≤min
(

1,1/
p

2α
)

. (13)

The stability condition for the hexagonal case requires more care because multilinearity is lost in the Fourier

symbol of δ∆ ....... and because the region to be considered is a hexagon.3 Consequently, many studies have given

the wrong stability limits [31, 21],4 while other studies have used a TLM/DWM formulation [22, 23, 5], which

employs the Courant number at a lower passivity limit [7]: λ =
p

1/2.5 The correct stability condition for the

7-point hexagonal scheme, given by Liu [19] for the equivalent FDTD scheme for Maxwell’s equations, and by

Fabero & Bautista [34] and Bilbao [7] for the wave equation scheme, is:

λ≤
p

2/3 . (14)

Notice in Fig. 1d that considering ξx,ξy ∈ [−π/h,π/h] is not sufficient to cover the entire hexagonal wavenumber

cell. In fact, the bound in Eq. (14) is achieved at the corners of the hexagon. Searching over a larger area will

inevitably encompass the corners, so considering the hexagonal tiling of the wavenumbers is not necessary

in determining the stability condition. However, considering such a tiling is necessary to fully analyse the

numerical dispersion of the scheme, as we will see in the next section.

NUMERICAL DISPERSION

The conditions for which plane waves of the form u = e j(ωt+ξxx+ξy y) are solutions to the 2-D wave equation

are given by the well-known dispersion relation:

ω2 = c2|ξ|2 , (15)

where ξ= (ξx,ξy). The phase velocity, or wave speed, for |ξ| > 0 is then ω/|ξ| = c. The finite-difference scheme

approximates Eq. (15) in the frequency domain (space and time), and the numerical dispersion relation is:

Dtt(ω)= c2
D∆(ξ) (16)

for some Dtt : C → C, D∆ : C2 → C which are the Fourier symbols of the finite difference operators of the

scheme. In practice, we only consider the real frequencies and wavenumbers, but in general, the mapping is

complex. For the 7-point hexagonal scheme, we can write these operators as:

Dtt(ω)=−
4

k2
sin2(ωk/2) , D∆ ....... (ξ)=−

8

3h2

3
∑

i=1

sin2(ξ ·xih/2) . (17)

3The operator δ∆ ....... can be viewed as a 2-D filter on the hexagonal grid [25].
4Bystrytskyi & Moskal’kov arrived at λ≤

p
3/2 for the same scheme [31] but this is slightly higher than Eq. (14) and leads to instability.

5This was incorrectly given as the stability condition by Fei et al. [21]. It is worth noting that their FDTD scheme is equivalent to that

of Liu [19], just reformulated for the transverse electric modes.



For the 9-point rectilinear scheme, only D∆ changes:

D∆α......... (ξ)=−
4

h2
(sin2(ξxh/2)+sin2(ξyh/2)−2(1−α)sin2(ξxh/2)sin2(ξyh/2)) . (18)

To make Dtt injective we consider the real wavenumbers ξ ∈ B, where B is the wavenumber cell of the grid,

and we consider only the positive square root. If the stability conditions are satisfied then D
−1
tt (c2

D∆(ξ)) maps

from B→ [0,π/k]. We can then write the phase velocity as a function of the wavenumber (|ξ| > 0):

v(ξ)=
ω(ξ)

|ξ|
, ω(ξ)=D

−1
tt (c2

D∆(ξ)) . (19)

This has been the traditional way to analyse numerical wave speed error in FDTD schemes across all the

wavenumbers [4], but v(ξ) has not, to our knowledge, been examined on the correct domain B for the hexagonal

scheme. We plot the dispersion of the hexagonal scheme in Fig. 2 for both the stable and passive schemes on

the appropriate domain B for the hexagonal grid. If one assumes a square wavenumber cell, either some of

the wavenumbers will be missing, or the cell will contain aliased wavenumbers, which will give an incorrect

numerical wave speed without adjusting the denominator in Eq. (19) accordingly. It is less apparent in Fig. 2a

than in Fig. 2b, but the 7-point scheme is isotropic (to the fourth-order error term) due to the result in Eq. (9).6

Van Walstijn & Kowalczyk [8] realised that another useful representation of the numerical dispersion is

given by translating Eq. (19) back to an angle and temporal frequency via the dispersion relation and gener-

ating polar plots where the polar radius represents the temporal frequency ω, and the polar angle represents

the angle of propagation θ for ξ = (|ξ|,θ). In other words, we write the numerical wave speed as v(ω(|ξ|,θ),θ)

instead of v(ξ). Polar plots generated from v(ω(|ξ|,θ),θ) happen to be more useful for audio simulations since

we hear pressure variations over time. Using this representation, the error in the wave speed for the two

hexagonal schemes is plotted in Figs. 3a and 3b.
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FIGURE 2: Relative percent error in v(ξ) for hexagonal scheme in wavenumber cell, 2% error contours

These polar plots also show the cutoff frequency in each direction. The cutoff frequency for a fixed an-

gle θ is the maximum frequency ω of a plane wave that will propagate in the scheme.7 We note that the

stable 7-point scheme has a global cutoff frequency at π/k rad/s, and the minimum directional cutoff fre-

quency is ω= 2sin−1(2
p

2/3)/k ≈ 0.784π/k rad/s. The passive 7-point scheme has a minimum cutoff frequency

of ω= 2sin−1(
p

2/3)/k ≈ 0.608π/k rad/s and a maximum global cutoff at ω= 2π/3k rad/s. We also plot the wave

speed error for the two special cases of the 9-point rectilinear scheme in Figs. 3c and 3d (the 5-point scheme

can be found elsewhere [8]). A quick comparison shows that the 7-point stable scheme has a 2% error at just

over 0.5π/k for the worst direction (along the diagonals), while the IWB scheme reaches 2% error at about

0.4π/k for its worst direction (along the diagonals). Indeed, the IWB scheme is exact for plane waves travelling

6The Taylor series only tells us that the scheme is isotropic in the neighbourhood of ξh = 0.
7In fact, frequencies higher than the cutoff can propagate over short distances, as shown by Schneider [35], but this phenomenon is

negligible.
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FIGURE 3: Relative percent error in v(ω(|ξ|,θ),θ) for 7-point hexagonal scheme and 9-point rectilinear schemes, 2% error contours, radial

axis is ω ∈ (0,π/k] rad/s. Colour axis is the same as in Fig. 2.

along the axes, but we consider the worst-case direction to be most critical since the numerical wave speed

error should be acceptable in any given direction.

COMPUTATIONAL EFFICIENCY

The computational cost of a finite difference scheme can be measured in terms of the computational density

of the scheme, defined as the number of grid points that need to be updated per unit area per unit time.

The computational density for the rectilinear scheme, ρR , with grid spacing hR and time step kR , and the

computational density for the hexagonal scheme, ρH , with hH ,kH , can be written as:

ρR = (h2
R kR)−1 , ρH = (2/

p
3)(h2

H kH)−1 . (20)

We compare just the IWB scheme (α = 1/2,λR = 1) to the 7-point hexagonal scheme (λH =
p

2/3) since it was

found to be the most efficient of the 9-point compact explicit family of schemes [8]. Fixing the time step

such that kR = kH = k, we plot the dispersion along the worst direction for each scheme in Fig. 4a. We see

that the hexagonal scheme has less dispersion than the IWB scheme up to about 0.73π/k rad/s, but above

that frequency, the IWB has less dispersion and the 7-point scheme cuts off. However, with kR = kH the

computational density of the 7-point scheme is less (ρH = 4/3
p

3ρR ≈ 0.77ρR), so we could afford to reduce the

time step and use more points. This makes it difficult to compare the two schemes in terms of computational

efficiency, so we employ the relative efficiency measure adopted by van Walstijn & Kowalczyk [8].
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FIGURE 4: (a) Relative error in v(ω(|ξ|,θ),θ) along worst direction θ for 7-point hexagonal scheme and IWB scheme. (b) Relative efficiency

of 7-point hexagonal scheme over IWB scheme.

The relative efficiency measures how well a scheme maintains the wave speed error below some threshold

up to some critical frequency relative to another scheme. It reveals the increase or decrease in the compu-

tational density, relative to another scheme, required to achieve that threshold up to some critical frequency,



since reducing the time step is the only way to reduce the wave speed error at a given temporal frequency in

a scheme already at the stability limit. It is important to note that this measure is independent of the critical

frequency [8]. The IWB scheme was found to be four times more efficient than the standard 5-point rectilinear

scheme at every critical error using this measure [8]. The relative efficiency of the hexagonal scheme over the

IWB scheme is plotted in Fig. 4b, from 0.01% to 15% error. We see that the 7-point hexagonal is more efficient

than the IWB scheme when 10% error or less is considered to be the critical error. When less than 1% error

is considered, the 7-point scheme has anywhere from 3 to 3.7 times the computational efficiency of the IWB

scheme. This translates to 12 to 15 times the efficiency of the 5-point scheme, and better efficiency than all

other 9-point explicit schemes. We can also consider the specific arithmetic operations required at each point

and time step, but the 7-point scheme requires fewer additions (seven vs nine) and the same number of mul-

tiplications (two) so it remains more efficient. Finally, since the hexagonal scheme uses fewer neighbouring

points, the memory bandwidth is also lower.

Multiply-free Implementation

If the IWB scheme is implemented in a fixed point binary representation multiplications can be replaced

with bit shifts. We can use a similar trick for the hexagonal scheme with λ2 = 21/32≈ 2/3. The multiplications

in Eq. (12) can then be implemented with 2λ2/3= 2−2+2−3+2−4 and 2−4λ2 =−(2−1+2−3). This multiply-free

scheme is suboptimal, yet still more efficient than the IWB scheme below 10% error, as seen by the dashed

line in Fig. 4b, even with three extra additions.

Honeycomb Grid

Without going into much detail, we note that one can use two mirror-image first-order accurate 4-point

approximations to the Laplacian on a honeycomb grid [13] to build a second-order accurate FDTD scheme

for the 2-D wave equation [7] (known as the ‘hexagonal DWM’ from [30]). Considering two time steps, this

scheme at the stability limit can be reduced to two uncoupled (not considering boundaries) 7-point schemes on

hexagonal grids at the stability limit with grid spacing h′ =
p

3h, where h is the grid spacing on the honeycomb

grid [7]. The 7-point hexagonal scheme has a relative efficiency of four over the 4-point honeycomb scheme

because the honeycomb scheme uses twice the number of grid points (two uncoupled hexagonal grids) and

requires twice the number of time steps.

CONCLUSION

In this paper, we have analysed the 7-point hexagonal FDTD scheme for the 2-D wave equation in terms of

its numerical dispersion over the full hexagonal wavenumber cell and in terms of computational costs relative

to the 9-point compact explicit rectilinear schemes. It was shown that when less than 10% error in the wave

speed is desired at some critical frequency the 7-point scheme is more efficient than all 9-point compact explicit

schemes. A new, suboptimal multiply-free implementation of the 7-point scheme was introduced, which is

better than optimal multiply-free 9-point rectilinear schemes. The relationship of the 7-point scheme to the

4-point FDTD scheme on a honeycomb grid was discussed.

We have only used one efficiency measure, but others could be considered. For example, instead of choosing

a critical error for one frequency, we can consider the integrated wave speed error over a range of frequencies,

or the rate of change of the wave speed error. Perceptual tests will be conducted in future work to determine

what efficiency measure is most suitable for acoustical simulations. Other future work will include establish-

ing stable frequency-dependent and absorbing boundary conditions for the hexagonal scheme, and examining

higher-order schemes on the hexagonal grid.

Acknowledgements

This work was supported by the European Research Council, under grant StG-2011-279068-NESS, and

by the Natural Sciences and Engineering Research Council of Canada.



REFERENCES

[1] G. Forsythe and W. Wasow, Finite-difference methods for partial differential equations (New York: Wiley) (1960).

[2] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media”,

IEEE Trans. Antennas and Propagation 14, 302–307 (1966).

[3] A. Taflove and S. Hagness, Computational electrodynamics, volume 160 (Artech House London) (2000).

[4] L. Trefethen, “Group velocity in finite difference schemes”, SIAM review 24, 113–136 (1982).

[5] L. Savioja and V. Valimaki, “Reducing the dispersion error in the digital waveguide mesh using interpolation and

frequency-warping techniques”, IEEE Trans. Acoustics, Speech, and Signal Processing 8, 184–194 (2000).

[6] F. Fontana and D. Rocchesso, “Signal-theoretic characterization of waveguide mesh geometries for models of two-

dimensional wave propagation in elastic media”, IEEE Trans. Acoustics, Speech, and Signal Processing 9, 152–161

(2001).

[7] S. Bilbao, Wave and scattering methods for numerical simulation (Wiley) (2004).

[8] M. van Walstijn and K. Kowalczyk, “On the numerical solution of the 2D wave equation with compact FDTD schemes”,

in Proc. Digital Audio Effects (DAFx), 205–212 (Espoo, Finland) (2008).

[9] G. Fairweather and A. Mitchell, “A high accuracy alternating direction method for the wave equation”, IMA J. Applied

Mathematics 1, 309–316 (1965).

[10] G. Shubin and J. Bell, “A modified equation approach to constructing fourth order methods for acoustic wave propa-

gation”, SIAM J. Scientific and Statistical Computing 8, 135–151 (1987).

[11] G. Cohen and P. Joly, “Description and analysis of schemes, fourth-order in time and space, for 1-D and 2-D acoustic

equations”, in Society of Exploration Geophysicists Annual Meeting (1987).

[12] S. Bilbao and B. Hamilton, “Construction and optimization techniques for high order schemes for the two-dimensional

wave equation”, in Proc. 21st International Congress on Acoustics (Montréal, Canada) (2013).

[13] L. Kantorovich and V. Krylov, Approximate methods of higher analysis. Translated by Curtis D. Benster (Interscience

Publishers) (1958).

[14] R. Sadourny and P. Morel, “A finite-difference approximation of the primitive equations for a hexagonal grid on a

plane”, Monthly Weather Review 97, 439–445 (1969).

[15] K. Pruess and F. Bodvarsson, “A seven-point finite difference method for improved grid orientation performance in

pattern steamfloods”, in SPE Reservoir Simulation Symposium (1983).

[16] M. Woodward and F. Muir, “Hexagonal finite difference operators and 3-d wave equation migration”, Stanford Explo-

ration Project 38, 195–206 (1984).

[17] D. Zingg and H. Lomax, “Finite-difference schemes on regular triangular grids”, J. Computational Physics 108, 306–

313 (1993).
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