
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Large Scale Physical Modeling Sound Synthesis

Citation for published version:
Bilbao, S, Hamilton, B, Torin, A, Webb, C, Graham, P, Gray, A, Kavoussanakis, K & Perry, J 2013, 'Large
Scale Physical Modeling Sound Synthesis'. in Proceedings of the Stockholm Musical Acoustics
Conference/Sound and Music Computing Conference. Stockholm, Sweden.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Proceedings of the Stockholm Musical Acoustics Conference/Sound and Music Computing Conference

Publisher Rights Statement:
© Bilbao, S., Hamilton, B., Torin, A., Webb, C., Graham, P., Gray, A., Kavoussanakis, K., & Perry, J. (2013).
Large Scale Physical Modeling Sound Synthesis. In Proceedings of the Stockholm Musical Acoustics
Conference/Sound and Music Computing Conference. Stockholm, Sweden.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28972194?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/large-scale-physical-modeling-sound-synthesis(3a92e92b-4eaa-4c3c-b0dc-c16ce3dcc7df).html


Large Scale Physical Modeling Sound Synthesis

Stefan Bilbao, Brian Hamilton,
Alberto Torin and Craig Webb

Acoustics Group, University of Edinburgh
sbilbao@staffmail.ed.ac.uk

Paul Graham, Alan Gray,
Kostas Kavoussanakis and James Perry

EPCC, University of Edinburgh

ABSTRACT

Sound synthesis based on physical models of musical in-
struments is, ultimately, an exercise in numerical simula-
tion. As such, for complex systems of the type seen in mu-
sical acoustics, simulation can be a computationally costly
undertaking, particularly if simplifying hypotheses, such
as those of traveling wave or mode decompositions are not
employed. In this paper, large scale time stepping meth-
ods, such as the finite difference time domain and finite
volume time domain methods are explored for a variety of
systems of interest in musical acoustics, including brass in-
struments, percussion instruments based on thin plate and
shell vibration, and also their embeddings in 3D acoustic
spaces. Attention is paid here to implementation issues,
particularly on parallel hardware, which is well-suited to
time stepping methods operating over regular grids. Sound
examples are presented.

1. INTRODUCTION

Physical modeling sound synthesis has been approached in
a variety of ways; perhaps the best known methods are the
lumped mass spring network methodology, developed by
Cadoz and associates [1], modal synthesis, developed at
IRCAM [2] and digital waveguide methods developed by
Smith at CCRMA [3], and subsequently greatly extended
[4, 5, 6]. A direct comparison of these methods is dif-
ficult (but possible [7])—all possess distinct advantages:
lumped network methods allow an extreme degree of con-
trol over the system, to the level of individual masses and
springs; modal methods offer the possibility of exact so-
lutions when modal data is available in closed form, or
easily computed, and waveguides are extremely efficient
when the system under consideration behaves (nearly) as
the 1D wave equation, which is roughly true for a variety
of systems of interest in musical acoustics.

Direct numerical simulation techniques, essentially time
stepping methods such as the finite difference time domain
method (FDTD) [8], or finite volume time domain method
[9], though mainly used in other mainstream domains can
also be applied to the problem of sound synthesis; indeed,
they were proposed as long ago as 1969 by Ruiz [10], in the
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case of the vibrating string, and, in the scattering context
by Kelly and Lochbaum [11] in the case of the vocal tract,
and have been applied to a variety of problems, particu-
larly in the musical acoustics setting, first by Chaigne and
associates [12, 13, 14], and then others for synthesis [15].
Such brute force methods are often more computationally
costly than the other techniques mentioned above; and yet,
one advantage they possess is generality, in the sense that
one may approach a great variety of systems, without the
need for considering simplifying hypotheses (such as, e.g.,
linearity, or the availability of a modal decomposition or
efficient traveling wave decomposition).

Until recently, it has been infeasible, computationally, to
approach very large scale physical modeling synthesis us-
ing time stepping methods; however, the emergence into
the mainstream of parallel hardware such as, e.g., general
purpose graphical processing units (GPGPUs), has allowed
the exploration of more complex systems. A project cur-
rently under way at the University of Edinburgh (NESS) is
an exploratory attempt at producing synthetic sound for a
variety of model systems, ultimately in 3D. Though not
real time, computation time is becoming reasonable for
certain systems; for other, particularly large systems (such
as, e.g., the emulation of room acoustics), it is only now
becoming possible to perform such simulations at all at
audio rates, and on relatively cheap commerical hardware.
GPGPUs offer one approach to optimisation among many,;
whilst it would be feasible to use large-scale grid com-
puting to run such simulations, the emphasis here is on
hardware that is generally available for desktop computing.
The overall aim of the project is to develop systems which
can be used by musicians and composers, rather than to run
simulations on a supercomputing machine.

There are many complications in designing such systems.
Some are the usual difficulties in working with time step-
ping methods, such as, e.g., determining sufficient con-
ditions for numerical stability, particularly under nonlin-
ear conditions (the case of most interest in musical sound
synthesis), or determining appropriate numerical boundary
conditions when the geometry of the object under consid-
eration is not simple. Others involve a reexamination of
the properties of general numerical methods when audio
synthesis is the goal, leading to various algorithmic con-
straints. Finally the question of parallelizability must be
addressed if one is to eventually make the most of parallel
hardware such as GPGPUs. There has been a good deal
of recent work in modeling of room acoustics on GPGPU
[16, 17, 18], but sound synthesis, both through physical

mailto:sbilbao@staffmail.ed.ac.uk
mailto:author2@smcnetwork.org
http://creativecommons.org/licenses/by/3.0/


modeling [19] and other methods [20] has also been ap-
proached.

In this article, the emphasis is on design and implementa-
tion issues for FDTD methods for sound synthesis, rather
than on musical acoustics. To this end, a simple family
of model problems is introduced in Section2. A brief
overview of simple time stepping methods is given in Sec-
tion 3, followed by a discussion of algorithm design issues,
geared towards audio applications, in Section4, and fur-
ther parallelization issues on GPU in Section5. Simulation
results are presented in Section6.

2. MODEL SYSTEMS

2.1 Second Order Systems

As a representative system, consider an object for which
the dynamics are described by a partial differential equa-
tion of the form

∂2U

∂t2
= F (1)

Here,t is a time variable, andU = U(t,x) is the variable
of interest to be solved for, such as a displacement of a bar,
or plate, or pressure in an acoustic tube, andx is a spatial
coordinate ind dimensions (normallyd = 1, 2 or 3); gen-
erally the object is defined over a regionx ∈ V ⊂ R

d. F
generally depends onU and its spatial derivatives (usually
even) or temporal derivatives, or their combinations.

Such a model equation, though extremely simple, serves
as a good first approximation to various systems of interest
in musical acoustics. For example, consider the choices of
F of

F = c2∇2U (2)

F = −κ2∇2∇2U (3)

F =
c2

S(x)

∂

∂x
(S(x)U) (4)

F = c2

(

1 + α

∫

V

(

∂U

∂x

)2

dx

)

∂2U

∂x2
(5)

Here,c, κ andα are constants, and∇2 is thed-dimensional
Laplacian operator, defined as

∇2 =

d
∑

η=1

∂2

∂x2
η

(6)

Equation2 is the wave equation; whend = 1, it serves
as an approximation to the vibration of a uniform string,
whereU is transverse displacement, and to the dynamics
of a uniform acoustic tube, whereU is pressure. When
d = 2, it corresponds to the vibration of an ideal mem-
brane, whereU is transverse displacement, and whend =
3, it approximates wave propagation in an acoustic enclo-
sure, whereU is a variable such as a pressure or velocity
potential.

Equation3 is a linear model of vibration of a thin uni-
form bar (d = 1) or plate (d = 2), whereU is transverse
displacement.

Equation4 is sometimes referred to as Webster’s equation
[21], and is a lossless 1D model of wave propagation, at

speedc, in a tube of variable cross sectionS(x), whereU
represents pressure or velocity potential.

Equation5 is perhaps the simplest possible distributed
nonlinearity in musical acoustics, sometimes referred to
as the Kirchoff-Carrier equation [22, 23], and is used to
model tension modulation effects [24] in strings, where
again,U represents transverse displacement.

The model systems presented above are extremely sim-
ple, and in fact much too simple for good quality synthesis.
For brevity, various features have been neglected here:

All the systems above are lossless; real systems possess
a variety of internal dissipation mechanisms, such as ther-
mal/viscous effects, and also transfer energy to their sur-
roundings through radiation. In fully 3D synthesis models,
radiation is neatly handled through direct coupling to the
acoustic field; modeling of thermal/viscous effects, how-
ever, is much more involved using time stepping methods.
See Section6.1for more on this topic.

Boundary conditions have not been specified here; in some
cases in musical acoustics, these can be trivial (as in, e.g.,
the case of an ideal rigidly terminated string), but in oth-
ers can require extreme care as in, e.g., free edges of thin
structures such as cymbals or gongs, radiation impedance
conditions in 1D models of wind instruments, and absorb-
ing boundary conditions in 3D acoustic simulations.

Equation1 represents the behaviour of an unforced sys-
tem; that is to say, it is lacking, as yet, an excitation term.
For most systems of interest, the excitation is nonlinearly
dependent onU , but acts at a single location (or very small
region) on the object; nonlinearity inF itself has a much
greater impact on analysis and numerical design for the
system, and is sometimes referred to as a distributed non-
linearity.

Not all systems of interest take the above form—one ex-
ample is the system describing nonlinear wave propagation
in an acoustic tube, which is most naturally written as a
first order system [9]. In a modular setting, when deal-
ing with systems in contact with the acoustic field, and
also in more elaborate models of stiff systems such as bars
and plates the variableU is coupled to other variables—
alternatively, in such cases, one could interpretU as a vec-
tor variable.

3. TIME STEPPING METHODS

The first approximation necessary is discretization in time.
A simple choice, and a natural one in audio applications, is
an approximation at equally spaced intervals ofk seconds
(Fs = 1/k is the sample rate), and thus in discrete time,
un(x) represents an approximation toU(nk,x), wheren
is an integer (the time index).

Considering first the second time derivative operator, a
multitude of approximation methods are available, and in
particular multistep methods such as Runge Kutta, Adams
Bashfort, etc. [25]. Given that in large simulations in par-
allel hardware, memory use may be a bottleneck, depend-
ing on accuracy requirement it may be useful to make use
of the simplest possible approximation:

∂2U

∂t2

∣

∣

∣

t=nk
=⇒

1

k2
(

un+1 − 2un + un−1
)

(7)



Such an approximation, though only second order accurate
[26] is minimal in terms of memory usage. (For some sys-
tems, particularly if there are long memory effects associ-
ated with viscothermal losses requiring more memory, then
the need for such simple approximations is less urgent—
see Section6.1.)

The character of the resulting algorithm depends greatly
on the discretization ofF . If the simple approximation
Fn = f(U(nk,x)) is used, then an update for1 will be of
the form

un+1 = 2un − un−1 + k2fn (8)

and, after suitable discretization over a grid (see Section
3.1), will be fully explicit: at each time step, values of
un+1 at the next time step may be computed directly from
previously calculated values ofu andf at time stepsn and
n− 1.

In some cases, however, for reasons having to do with sta-
bility [ 26], and also in reducing artifacts resulting from nu-
merical dispersion [15], it may be preferable to use a differ-
ent approximation, such as, e.g.,f̄n = 1

2

(

fn+1 + fn−1
)

;
in this case, the update for1 becomes

un+1 = 2un − un−1 +
k2

2

(

fn+1 + fn−1
)

(9)

which is implicit—un+1 andfn+1 (which depends onun+1)
must be computed together at each time step. If the system
under consideration is linear, then this amounts to a linear
system solution, which often complicates implementation
in parallel hardware. If the system is nonlinear, then exis-
tence and uniqueness issues in the update above may ap-
pear. For more on issues related to implicit methods, see
Section3.2.

3.1 Grids

In the FDTD setting, numerical solutions are often repre-
sented over uniform grids—see Figure1, showing simple
Cartesian grids in 1D, 2D and 3D. Working over such reg-
ular grids has, of course, strengths and weaknesses. The
most significant benefit is in terms of parallelizability, par-
ticularly when the problem under consideration is uniform
over space, as the action of a given approximation to a dif-
ferential operator is the same at each point in the domain.
Such is the case, for example, for membranes and plates
of constant thickness, in tubes of uniform cross section,
and for 3D acoustic wave propagation. Difficulties emerge,
however, when treating irregular boundaries, both in terms
of analysis, as well as in parallel implementation. The for-
mer difficulty, however, can be addressed by an appeal to
methods over unstructured grids, such as, e.g., finite vol-
ume techniques [9]; see [27] for more on this topic in the
case of the 3D wave equation and room acoustics applica-
tions.

Supposing operation over a regular Cartesian grid, of spac-
ing h between adjacent grid points, then grid functionsû
are fully discrete approximations to the solutionU . For
example, the grid functionŝun

l , ûn
l,m and ûn

l,m,p are ap-
proximations to the solutionU(t,x) at timet = nk, and at
locationsx = lh, x = [l m]h andx = [l m p]h in 1D, 2D
and 3D respectively, for integerl, m andp.
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Figure 1. Top row: Cartesian grids in 1D, 2D and 3D.
At a given grid point (in blue), the family of neighboring
points over which a simple approximation to the Laplacian
operates is indicated in red. Bottom row: sparsity plots
for Laplacian approximations, when the operation is rep-
resented as a matrix multiplication.

Difference operations approximating differential opera-
tors are straightforward to obtain. Consider the Laplacian
operator, which plays a central role in many physical mod-
els. The simplest approximations in 1D, 2D and 3D, writ-
ten here asδ(1D)

∇2 , δ(2D)
∇2 andδ(3D)

∇2 , respectively, are

δ
(1D)
∇2 un

l =
1

h2

(

un
l+1 − 2un

l + un
l−1

)

(10)

δ
(2D)
∇2 un

l,m =
1

h2

(

un
l+1,m + un

l−1,m + un
l,m+1 + un

l,m−1

−4un
l,m

)

(11)

δ
(3D)
∇2 un

l,m,p =
1

h2

(

un
l+1,m,p + un

l−1,m,p + un
l,m+1,p

+un
l,m−1,p + un

l,m,p+1 + un
l,m,p−1

−6un
l,m,p

)

(12)

Such approximations employ nearest neighbours only on a
regular grid—see Figure1 for a graphical representation of
the region of operation of such operators (or stencils) over
Cartesian grids.

3.2 Sparse Vector Matrix Representations and
Recursions

For computing purposes, is often convenient to represent
the grid functionshatu, which are multidimensional ar-
rays, as vectorŝu—see Figure2, showing concatenation
of columns of a 2D array into a vector. In this formalism,
difference operators are represented as matrix multiplica-
tions, where, due to the local character of finite difference
operations, the matrices are sparse. See the bottom row of
Figure1, showing sparsity plots of matrix representations
of the Laplacian operator, in 1D, 2D and 3D.

Using this formalism, in many cases, it is then possible to
write recursions such as (8) and (9) in vector matrix form
as

Aû
n+1 = Bû

n +Cû
n−1 (13)

where here,A, B andC are update matrices incorporating
the effects of various finite difference approximations over
the grid, and are generally sparse.



un
l,m û

n

Figure 2. Reorganisation of a 2D arrayun
l,m as a vector,

by concatenation of columns.

Various special cases emerge at this point.
If the scheme is explicit, as in, say, the case of (8), then

A is simply the identity matrix, and thus the solution may
be updated solely through sparse matrix multiplication op-
erations (ofB andC in (13)). This is the ideal case in a
parallel realization.

If the scheme is implicit, but linear, thenA will not be
the identity, and a linear system solution will be required
in the loop in order to solve for̂un+1. However, as it is
constant, it is possible to some perform preconditioning
once, offline.

If the scheme is implicit, and also nonlinear, then it may
not be possible to write a recursion such as the above—in
some cases, and particularly when the nonlinearity is of a
simple form (such as, e.g., cubic, as occurs frequently in
models of vibration of strings and plates, and as exhibited
in (5)), then one may arrive at such a form—but generally
A is dependent on previously computed values of the so-
lution û

n, and thus must be constructed anew at each time
step. This is certainly the most challenging case in a paral-
lel realization.

4. ALGORITHM DESIGN ISSUES

4.1 Linear System Solutions

For implicit methods, as described above, linear system
solutions are necessary in updating the state of the system.
For methods defined locally over a grid, such as FDTD,
such matrices are sparse and possess a banded structure
(see Figure1).

Many efficient methods are available in approaching the
solution of sparse banded systems; among the best known
are methods such as the Thomas algorithm (and exten-
sions) [26]; but such methods generally require diagonal
dominance, which is not always the case for matrix rep-
resentations of FDTD schemes. Also, they are inherently
serial—one must proceed, step by step, along the bands
of the matrix in order to arrive at a solution. For an effi-
cient realization in parallel hardware, parallelizable meth-
ods must clearly be employed. There are many such meth-
ods available—particularly well-suited to sparse systems
are iterative methods such as the conjugate gradient fam-
ily, employing a sparse preconditioner (such as incomplete
Cholesky factorization). The problem of determining this
preconditioner (possibly anew at each time step) must be

weighed against the computational cost of determining the
preconditioner.

In other cases, such as, e.g., those involving interpolation
between distinct grids (as in the case of systems coupled
to the acoustic field), this banded structure may be lost;
in compensation, however, the system to be solved may
be strongly diagonally dominant, allowing the use of very
simple iterative methods (such as, e.g., Gauss-Seidel [26]).
For an example of such interpolation between grids in ma-
trix form, see, e.g., [19].

4.2 Stability

For explicit schemes, which are of most interest in paral-
lel implementation, stability conditions for schemes for the
model system1 are best framed in terms of a lower bound
on the grid spacingh in terms ofk, the time step (which,
in audio applications, is normally set a priori): in other
words,

h ≥ hmin(k) (14)

One way of arriving at such conditions, for linear prob-
lems, is through the use of frequency domain techniques,
or von Neumann analysis [26]; such methods, however, do
not apply directly to nonlinear systems, nor do they allow
the determination of sufficient stability conditions when
boundary are included. As an alternative, methods based
on discrete energy conservation/dissipation are employed
[15, 28], which do allow such stability conditions to be de-
termined under very general conditions.

4.3 Bandwidth Limitation

Given the lower bound onh in (14), it may be tempt-
ing to choose a value ofh which is larger than the mini-
mum, in the interest of reducing computational complex-
ity; this, however, leads to severe limitations on output
bandwidth—see Figure3. Accompanying this is a phe-
nomenon known as numerical dispersion, leading to a mis-
tuning of modal frequencies; for this reason, in audio ap-
plications, it is generally best to choose the grid spacing as
close to the stability condition as possible.
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Figure 3. Spectrum of sound output from a simple stiff
string physical model, at 44.1 kHz. Left: where the grid
spacing is chosen at the minimum allowable value from the
stability condition, and right, at twice the minimum value,
illustrating a severe numerical cutoff at approximately 5
kHz.

4.4 Computational Complexity

Computational complexity, as expected, scales strongly with
the dimension of the system; in particular, in 3D, computa-
tional costs for large volume simulations are extreme. See



Table1 for typical computational costs for FDTD methods,
in terms of memory required to hold the state, and floating
point operations per second output, at a typical audio rate.
Such costs motivate an examination of acceleration in par-
allel hardware, as discussed in the next section.

Memory (B) Flop/s
Tube, length 1 m 3.11×10

3 2.86×10
7

String, steel, length 1 m 1.66×10
4 1.53×10

8

radius 1×10
−3 m, tension 100 N

Plate, steel, area 1 m3, 3.46×10
5 1.08×10

10

thickness 5×10
−4 m

Small enclosure (1 m3) 1.00×10
7 1.67×10

11

Large room (104 m3) 1.00×10
11 1.67×10

15

Table 1. Memory requirements, in B, and floating point
operations per second output for several typical systems,
for standard FDTD schemes operating atFs = 44.1 kHz,
and using double precision arithmetic.

5. IMPLEMENTATION ON GPU

In this section, the focus is on the use of GPGPUs, using
Nvidia’s CUDA architecture.

The starting point for the implementation of the time step-
ping schemes described above is generally a prototype code
in a high level language such as MATLAB that is espe-
cially useful for dealing with the matrix structures and op-
erations that arise. In order to move to a GPU implemen-
tation, the prototype models are rewritten first as serial
C code, and then the time critical elements are threaded
to run in parallel using the CUDA language (see Figure
4). Threads perform a kernel operation in a SIMD man-
ner (Single Instruction Multiple Data) on the GPU device.
These threads are grouped into blocks of up to 1024 threads,
and then multiple blocks form the thread grid.

Host Device

Figure 4. Code design for host and device

Following from the discussion in Section3.2, from an
implementation perspective, the systems can be grouped
into four categories:

1. Uniform explicit schemes.

2. Non-uniform, but explicit, schemes.

3. Implicit schemes, with constant update matrices.

4. Implicit schemes, with update matrices constructed
at each time step.

The first case, of uniform schemes, are explicit and where
the update matricesB andC contain bands of constant
coefficients. They are often of Toeplitz or block Toeplitz
form. For such systems, the matrix form can be ‘unrolled’
such that grid points can be updated by a simple equation
using scalar coefficients and neighbouring points. This
greatly reduces the amount of memory access required,
which is one of the main concerns for the GPU imple-
mentation. FDTD schemes generally suffer from a low
compute-to-memory access ratio, and so efficiency is al-
ways limited by data transfer rather than peak comput-
ing performance. For even the simplest scheme there are
still many possible approaches to thread design and various
other optimisations, and therefore a certain amount of ex-
perimentation is usually required to find the most efficient
CUDA solution.

The second case, where the update matrices are not uni-
form but the scheme is still explicit (such as, e.g., the case
of schemes for Webster’s equation (4)), requires either some
storage system for holding the coefficients, or operating di-
rectly with sparse matrix objects. A suitable code library is
required to handle sparse matrices in C code and perform
basic linear algebra operations. These operations then need
to be performed, and hopefully accelerated, on the GPU.
Whilst some libraries are available for this purpose, such
as Nvidia’s cuSparse [29], custom-designed functions may
well provide a more efficient solution.

The majority of the matrices involved are of multi-banded,
or block banded form. Of the various sparse matrix formats
available, the DIA (or diagonal) format is particularly suit-
able. Each band is set as a column in a table, with a small
integer array to indicate the distance of each column away
from the centre diagonal, as shown in Figure5. This format
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Figure 5. Sparse matrix representation in DIA format.

provides an efficient representation, and a library of lin-
ear algebra functions is being developed that are optimised
specifically for the systems that arise. Some elements, such
as the interpolation between 2D and 3D systems, result in
matrices that are not banded in structure. In this case a
more general format, such as CSR, is still required.

The third and fourth categories of code are implicit, and
thus require a solution to a system of linear equations at
each time step of the simulation. This may use either a
persistent, unchanging matrix, or may require the construc-
tion of a matrix system at each iteration. In prototyping it
is simple enough to use MATLAB’s backslash operator in
this situation. Accelerating this in C code and on the GPU
requires more complex libraries such as PETSc [30], or the
development of custom functions based on iterative meth-
ods [31].



6. SYSTEMS AND SIMULATIONS

In this section, simulation results using FDTD methods are
presented for several families of systems. Accompanying
sound examples and video demonstrations appear on the
NESS project website:www.ness-music.eu

6.1 Brass Instruments

As mentioned in Section2, a starting point for brass instru-
ment synthesis is a 1D model such as Webster’s equation
4. In the lossless case, simple, provably stable numeri-
cal methods are available [15]; for good quality synthesis,
however, various refinements are necessary. Chief among
these is the modeling of viscothermal boundary layer losses
in the tube, which is typically described in terms of input
impedance [32, 33]; when translated to the time domain,
fractional time derivative terms appear, which in FDTD re-
quires recursions of order higher than two, and thus the
memory requirement/operation count is increased. A sec-
ond feature of interest involves user-controlled time vari-
ation (through, e.g., slides or valves); such time variation
is handled locally within an FDTD scheme, requiring no
additional precomputation (in contrast with, e.g., modal
methods, which would require a recalculation of modal
shapes and frequencies for every valve configuration). Fi-
nally, if nonlinear effects (due to shock formation in long
cylindrical bore instruments such as the trombone [34])
are to be introduced, variants of Webster’s equation are
no longer suitable, and it is best to revert to a first order
system, as is common in the maintream finite volume lit-
erature [9]; numerical stability is difficult to maintain un-
der such conditions, without introducing artificial viscos-
ity, which can impact negatively on sound quality.

6.2 Percussion: Nonlinear Plate and Shell Vibration

The high amplitude vibration of thin rigid structures such
as plates and shells features strongly in many percussion
instruments, including cymbals, gongs and tamtams, and
also impacts to a lesser extent on the sound of drums. In
general, for such instruments, under a striking excitation,
there is a migration of energy from low frequencies to high,
giving rise to crash like effects in cymbals, and slow swells
in gongs—see Figure6, showing a spectrogram of sound
output for a typical nonlinear flat plate model. Linear mod-
els, such as that of, e.g., Kirchhoff Love [35] do not capture
such effects, and thus nonlinear models are necessary—
that of von Kármán [36] is probably the simplest to ade-
quately render such effects. In the modal setting, the non-
linearity leads to the transfer of energy between modes—
see Figure7.

From an implementation perspective, the main difficulty
is in performing linear system solutions in the time recur-
sion; though sparse, due to the nonlinearity, the linear sys-
tem to be solved must be constructed anew at each time
step, as described in Section3.2, and thus linear system so-
lution techniques can become computationally quite heavy.

Figure 6. Spectrogram of sound output for a rectangu-
lar plate under linear conditions (left) and nonlinear condi-
tions (right).
Linear

Non-linear

time→

Figure 7. Linear (top) and nonlinear (bottom) time evolu-
tion of the displacement of a thin square plate, under sim-
ply supported boundary conditions. In both cases, the ini-
tial condition is set to the lowest linear mode of vibration.

6.3 Modular Environments

One of the main goals of many physical modeling sound
synthesis paradigms (including the CORDIS environment
[37], MOSAIC/Modalys [38], and BlockCompiler [39] is
modular construction of new virtual instruments. The goal
is no different in the present case of FDTD methods, where
here, the canonical elements are distributed, possibly non-
linear objects such as bars, plates, strings, membranes and
acoustic tubes, all represented over distinct grids, and cou-
pled through a variety of connection types.

In Figure8, at left, a plate based percussion instrument is
shown, with connections (of mass/spring/damper type, as
in CORDIS) indicated by blue lines. In Figure8, at right,
a modular instrument constructed from a set of acoustic
tubes is shown—here, as discussed in Section6.1, the con-
figuration is time varying, allowing for half-valve effects
[40].

Figure 8. Left: Modular percussion instrument made up
of a collection of thin plates, with connections indicated
by blue lines. Right: Modular brass instrument made up of
a collection of acoustic tubes.

6.4 3D Acoustic Spaces

Modeling of 3D acoustic spaces using FDTD, for room
acoustics modeling and artificial reverberation applications



is a well-researched topic [41, 42, 43]. Acceleration using
GPGPUs is of great importance in this case, given the com-
putational scale of the problem.

Table2 shows benchmark times for the standard rectilin-
ear 3D FDTD scheme at various grid sizes; the simulation
was computed for 44,100 samples at 44.1kHz. Serial C
code was tested on an Intel Xeon E5-2620 with -O3 com-
piler optimisation, whilst the CUDA code was tested on
an Nvidia Tesla K20. Both double (DP) and single (SP)
precision floating-point arithmetic tests were performed.

Test Serial C Intel CUDA Tesla Speedup
1m3 DP 55 sec 8.7 sec x6.3
1m3 SP 55 sec 7.2 sec x7.3
50m3 DP 52.7 min 3.3 min x16.0
50m3 SP 51.6 min 2.0 min x25.8
500m3 DP 531.3 min 31.9 min x16.6
500m3 SP 528.7 min 18.9 min x28.0

Table 2. Benchmarks for serial C code vs CUDA.

Beyond the question of raw acceleration, numerous other
features in room acoustics required a detailed examination
from a numerical perspective. One is air viscosity, leading
to damping of wave propagation at high frequencies [44],
and which is especially important to avoid unnatural ring-
ing in computed solutions in large spaces. Another is that
of stable boundary termination, especially over irregular
geometries, and when realistic wall impedance conditions
are taken into account. Finally, care must be taken when
choosing the grid to be used in 3D space—see Figure9 for
two such choices. There are great variations in the effects
of numerical dispersion depending on the grid—and also
on GPU implementation.

Figure 9. Computational grids in 3D: Left, body-centred
cubic, and right, face-centred cubic.

6.5 Embeddings of Instruments in 3D

The ultimate goal of physical modeling is, perhaps, the
full emulation of musical instruments in a 3D enclosure.
New issues emerge here regarding the coupling between
the acoustic field (described by a variant of the 3D wave
equation2, as detailed above) and the object at hand.

See Figure10, illustrating the time evolution of the acous-
tic field surrounding a set of timpani drums, within a 3D
enclosure.

7. CONCLUSIONS AND PERSPECTIVES

This paper is intended as an overview of the use of FDTD
methods in sound synthesis, particularly as applied to large,

t = 0.85ms t = 1.25 ms

t = 2.15ms t = 3.29ms

Figure 10. Snaphots of the time evolution of the acoustic
field surrounding a set of four struck timpani drums.

real-world physical models, and ultimately in 3D. Such
methods, which involve local or nearest neighbour updates,
are a good match to implementation in parallel hardware.
As one might expect, when a state space representation is
employed, such methods reduce to large sparse matrix op-
erations performed in a time loop—and in particular mul-
tiplications, and inversions (or linear system solutions). In
general, it is the latter which poses the most problems in
a parallel implementation, though due to matrix sparsity,
specialized methods are available. For very large prob-
lems, when a linear system solution is unnecessary (as is
the case for large 3D simulations), an implementation on
GPU leads to great accelerations in computation time.

From an algorithm design point of view, time stepping
methods represent, in some respects, a last resort—for suf-
ficiently complex systems, involving distributed nonlinear-
ities, and nontrivial couplings among disparate components
(including the acoustic field itself), there does not appear
to be any other avenue of approach. One great strength
of such an approach not mentioned in the Introduction is
that, ultimately, in 3D simulations, one has complete ac-
cess to the acoustic field surrounding such as instrument—
and thus complete control over spatialization of the result-
ing sound output. The difficulties, however, are many—
great care must be taken at the design stage, compared
with other methodologies, to ensure that numerical arti-
facts (such as, e.g., bandwidth limitation and numerical
dispersion) do not impact negatively on sound output.

One issue which has not been broached here in any de-
tail (and which is premature, given current compute times)
is, as is usual in physical modeling synthesis, user control.
Particularly in the setting of modular instrument construc-
tions, which may be quite a bit more complex than real
world acoustic instruments, finding a meaningful and par-
simonious means of both designing and playing such in-
struments presents a daunting challenge.
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