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L arge Scale Physical M odeling Sound Synthesis

Stefan Bilbao, Brian Hamilton, Paul Graham, Alan Gray,
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Acoustics Group, University of Edinburgh EPCC, University of Edinburgh

sbi | bao@t af fmai | . ed. ac. uk

ABSTRACT case of the vibrating string, and, in the scattering context
by Kelly and Lochbaum1] in the case of the vocal tract,

Sound synthesis based on physical models of musical in-and have been applied to a variety of problems, particu-
struments is, ultimately, an exercise in numerical simula- |arly in the musical acoustics setting, first by Chaigne and
tion. As such, for complex systems of the type seen in mu- associatesl[2, 13, 14], and then others for synthesitq.
sical acoustics, simulation can be a computationally gostl  Such brute force methods are often more computationally
undertaking, particularly if simplifying hypotheses, Buc  costly than the other techniques mentioned above; and yet,
as those of traveling wave or mode decompositions are notone advantage they possess is generality, in the sense that
employed. In this paper, large scale time stepping meth-one may approach a great variety of systems, without the
ods, such as the finite difference time domain and finite need for considering simplifying hypotheses (such as, e.g.
volume time domain methods are explored for a variety of |inearity, or the availability of a modal decomposition or
systems of interest in musical acoustics, including brass i efficient traveling wave decomposition).
struments, percussion instruments based on thin plate and

shell vibration, and also their embeddings in 3D acoustic h | le bhvsical modeli hesi
spaces. Attention is paid here to implementation issues,2PProach very large scalé physical modeling synthesis us-

particularly on parallel hardware, which is well-suited to "9 M€ stepping methods; however, the emergence into

time stepping methods operating over regular grids. Soundt"€ Mainstream of parallel hardware such as, e.g., general
examples are presented. purpose graphical processing units (GPGPUSs), has allowed

the exploration of more complex systems. A project cur-
rently under way at the University of Edinburgh (NESS) is
1. INTRODUCTION an exploratory attempt at producing synthetic sound for a

Physical modeling sound synthesis has been approached iMariety of model systems, ultimately in 3D. Though not
a variety of ways; perhaps the best known methods are the€al time, computation time is becoming reasonable for
lumped mass spring network methodology, developed by certain systems; for other, particularly large systemsk{su
Cadoz and associate$]| modal synthesis, developed at as, €.9., the emulation of room acoustics), it is only now
IRCAM [2] and digital waveguide methods developed by becoming possible to perform such simulations at all at
Smith at CCRMA B], and subsequently greatly extended audio rates, and on relatively cheap commerical hardware.
[4, 5, 6]. A direct comparison of these methods is dif- GPGPUs offer one approach to optimisation among many,;
ficult (but possible 7])—all possess distinct advantages: Whilst it would be feasible to use large-scale grid com-
lumped network methods allow an extreme degree of con-Puting to run such simulations, the emphasis here is on
trol over the system, to the level of individual masses and hardware thatis generally available for desktop computing
springs; modal methods offer the possibility of exact so- The overall aim of the project is to develop systems which
lutions when modal data is available in closed form, or €an be used by musicians and composers, rather than to run
easily computed, and waveguides are extremely efficientSimulations on a supercomputing machine.

when the system under consideration behaves (nearly) as There are many complications in designing such systems.
the 1D wave equation, which is roughly true for a variety some are the usual difficulties in working with time step-
of systems of interest in musical acoustics. ping methods, such as, e.g., determining sufficient con-
Direct numerical simulation techniques, essentially time {itions for numerical stability, particularly under namii
stepping methods such as the finite difference time domaingar conditions (the case of most interest in musical sound
method (FDTD) 8], or finite volume time domain method  synthesis), or determining appropriate numerical boundar
[9], though mainly used in other mainstream domains can conditions when the geometry of the object under consid-
also be applied to the problem of sound synthesis; indeed eration is not simple. Others involve a reexamination of
they were proposed as long ago as 1969 by RL0 [n the the properties of general numerical methods when audio
synthesis is the goal, leading to various algorithmic con-
Copyright:  (©2013 Stefan Bilbao, Brian Hamilton, et al. This  straints. Finally the question of parallelizability must b
is an open-access article distributed under the terms of the addressed if one is to eventually make the most of parallel
Creative Commons Attribution 3.0 Unported License which  permits  unre- hardware such as GPGPUs. There has been a good deal
stricted use, distribution, and reproduction in any mediyprovided the original of recent work in modeling of room acoustics on GPGPU
author and source are credited. [16, 17, 18], but sound synthesis, both through physical

Until recently, it has been infeasible, computationatby, t



mailto:sbilbao@staffmail.ed.ac.uk
mailto:author2@smcnetwork.org
http://creativecommons.org/licenses/by/3.0/

modeling L9 and other method<2[] has also been ap-
proached.

speed, in a tube of variable cross sectidtiz), wherelU
represents pressure or velocity potential.

In this article, the emphasis is on design and implementa- Equation5 is perhaps the simplest possible distributed
tion issues for FDTD methods for sound synthesis, rathernonlinearity in musical acoustics, sometimes referred to
than on musical acoustics. To this end, a simple family as the Kirchoff-Carrier equatior2p, 23], and is used to

of model problems is introduced in Secti@ A brief

overview of simple time stepping methods is given in Sec-

tion 3, followed by a discussion of algorithm design issues,
geared towards audio applications, in Sectprand fur-
ther parallelization issues on GPU in SectrSimulation
results are presented in Sect@n

2. MODEL SYSTEMS
2.1 Second Order Systems

model tension modulation effect24] in strings, where
again,U represents transverse displacement.

The model systems presented above are extremely sim-
ple, and in fact much too simple for good quality synthesis.
For brevity, various features have been neglected here:

All the systems above are lossless; real systems possess
a variety of internal dissipation mechanisms, such as ther-
mal/viscous effects, and also transfer energy to their sur-
roundings through radiation. In fully 3D synthesis models,
radiation is neatly handled through direct coupling to the

As a representative system, consider an object for which@coustic field; modeling of thermal/viscous effects, how-
the dynamics are described by a partial differential equa- Ve, is much more involved using time stepping methods.

tion of the form
0*U B

o @

Here,t is a time variable, an@ = U (t, x) is the variable

See Sectio®.1for more on this topic.

Boundary conditions have not been specified here; in some
cases in musical acoustics, these can be trivial (as in, e.g.
the case of an ideal rigidly terminated string), but in oth-

of interest to be solved for, such as a displacement of a bar €S ¢an require extreme care as in, e.g., free edges of thin

or plate, or pressure in an acoustic tube, arid a spatial
coordinate ind dimensions (hormally = 1, 2 or 3); gen-
erally the object is defined over a regigne V c R?. F
generally depends dii and its spatial derivatives (usually
even) or temporal derivatives, or their combinations.

structures such as cymbals or gongs, radiation impedance
conditions in 1D models of wind instruments, and absorb-
ing boundary conditions in 3D acoustic simulations.
Equationl represents the behaviour of an unforced sys-
tem; that is to say, it is lacking, as yet, an excitation term.

Such a model equation, though extremely simple servesFOr most systems of interest, the excitation is nonlinearly
as a good first approximation to various systems of interestdependent of¥, but acts at a single location (or very small
in musical acoustics. For example, consider the choices of/€9i0n) on the object; nonlinearity ift itself has a much

F of
F = &VU (2)
F = —kr*V3VU (3)
F = = 2 (s@u 4
= S(m)%( (2)U) (4)
U \> 92U

Here,c, k anda are constants, arid? is thed-dimensional
Laplacian operator, defined as

2 _
v *ga—

Equation2 is the wave equation; wheh = 1, it serves
as an approximation to the vibration of a uniform string,

(6)

I N

greater impact on analysis and numerical design for the
system, and is sometimes referred to as a distributed non-
linearity.

Not all systems of interest take the above form—one ex-
ample is the system describing nonlinear wave propagation
in an acoustic tube, which is most naturally written as a
first order systemd]. In a modular setting, when deal-
ing with systems in contact with the acoustic field, and
also in more elaborate models of stiff systems such as bars
and plates the variablEg is coupled to other variables—
alternatively, in such cases, one could interpfets a vec-
tor variable.

3. TIME STEPPING METHODS

The first approximation necessary is discretization in time
A simple choice, and a natural one in audio applications, is
an approximation at equally spaced intervalé aeconds

whereU is transverse displacement, and to the dynamics (s = 1/k is the sample rate), and thus in discrete time,

of a uniform acoustic tube, whel€ is pressure. When
d = 2, it corresponds to the vibration of an ideal mem-
brane, wheré/ is transverse displacement, and whkes

3, it approximates wave propagation in an acoustic enclo-

u™(x) represents an approximation&(nk, x), wheren
is an integer (the time index).

Considering first the second time derivative operator, a
multitude of approximation methods are available, and in

sure, wherd/ is a variable such as a pressure or velocity particular multistep methods such as Runge Kutta, Adams

potential.

Equation3 is a linear model of vibration of a thin uni-
form bar @ = 1) or plate ¢ = 2), whereU is transverse
displacement.

Equationdis sometimes referred to as Webster’s equation 527
[21], and is a lossless 1D model of wave propagation, at 92

Bashfort, etc. 25]. Given that in large simulations in par-
allel hardware, memory use may be a bottleneck, depend-
ing on accuracy requirement it may be useful to make use
of the simplest possible approximation:

i (u'rL+1 — 2" + un—l) (7)

— kQ

t=nk



Such an approximation, though only second order accurate

[26] is minimal in terms of memory usage. (For some sys-

tems, particularly if there are long memory effects associ- DU
ated with viscothermal losses requiring more memory, then

the need for such simple approximations is less urgent—

see SectioB.1) L R . ®
The character of the resulting algorithm depends greatly . :'If‘-... Q
on the discretization of". If the simple approximation I 0 g, 50 \\
F" = f(U(nk,x)) is used, then an update fbmwill be of 4 cee » "-.,.. R N\
the form 6 Y
nd+1 n n—1 2 rn 0 - 5 0 107 20 0 507 100
u =2u" —u + k f (8) nz=13 nz =105 nz=725

and, after suitable discretization over a grid (see Section
3.1), will be fully explicit: at each time step, values of
u™*! at the next time step may be computed directly from

Figure 1. Top row: Cartesian grids in 1D, 2D and 3D.

At a given grid point (in blue), the family of neighboring

previously calculated values afand f at time steps and points over Wh"?h a S|rr_1ple approximationto the Lgplaman
operates is indicated in red. Bottom row: sparsity plots

n—1. . . . L
In some cases, however, for reasons having to do with sta—for Laplacian approximations, when the operation is rep-

bility [ 26], and also in reducing artifacts resulting from nu- resented as a matrix multiplication.

merical dispersionl5], it may be preferable to use a differ-

ent approximation, such as, e.g", = 1 ("' 4+ f71); Difference operations approximating differential opera-

in this case, the update fartbecomes tors are straightforward to obtain. Consider the Laplacian
2 operator, which plays a central role in many physical mod-

'ttt = o — g (f"+1 + f"—l) 9) els. The simplest approxima}tions in 1D, 2D and 3D, writ-

2 ten here aé(VIQD ), 5(V22D ) andé(vﬂD ), respectively, are

which is implicit—u"*! andf"*+! (which depends on™*1)

. , 1
must be computed together at each time step. If the system 6(v12D)ul” = 13 (uj'y — 2uf +uj' ) (10)
under consideration is linear, then this amounts to a linear 1
system solution, which often comp!icates.implementatit_)n 6(v22D )u}fm = 2 (u'{;lm U U g1 T U
in parallel hardware. If the system is nonlinear, then exis-
tence and uniqueness issues in the update above may ap- *4U§fm) (11)
pear. For more on issues related to implicit methods, see . 1

. 6(5D) n N + +
Section3.2 v2 Ymp 12 Uit 1,m,p T W—1,mp T Ulm+1,p
3.1 Grids +’U’Z'rn—1,p + u?,m,p-‘rl + U’Z'rn,p—l
_ n

In the FDTD setting, numerical solutions are often repre- 6ulvm=1’) (12)

sented over uniform grids—see Figureshowing simple  gy;ch approximations employ nearest neighbours only on a
Cartesian grids in 1D, 2D and 3D. Working over such reg- reqular grid—see Figurkfor a graphical representation of

ular grids has, of course, strengths and weaknesses. These region of operation of such operators (or stencils) over
most significant benefit is in terms of parallelizabilityrpa  cartesian grids.

ticularly when the problem under consideration is uniform

over space, as the action of a given approximationto a dif- 32 Sparse Vector Matrix Representationsand

ferential operator is the same at each point in the domain.Rrecursions

Such is the case, for example, for membranes and plates ) ) )

of constant thickness, in tubes of uniform cross section, FOF computing purposes, is often convenient to represent
and for 3D acoustic wave propagation. Difficulties emerge, e 9rid functionshatu, which are multidimensional ar-
however, when treating irregular boundaries, both in terms "2YS: @s vectorsi—see Figure2, showing concatenation

of analysis, as well as in parallel implementation. The for- Of columns of a 2D array into a vector. In this formalism,

mer difficulty, however, can be addressed by an appeal todifference operators are represented as matrix multiplica
methods over unstructured grids, such as, e.g., finite Vo|_tions, where, due to the local character of finite difference

ume techniquesd]; see P7] for more on this topic in the operations, thg matrices_ are sparse. Sge the bottom row of
case of the 3D wave equation and room acoustics applica-':'gure 1, shoyvmg sparsny_plots of matrix representations
tions. of the Laplacian operator, in 1D, 2D and 3D.

Supposing operation over a regular Cartesian grid, of spac-USing this formalism, in many cases, itis then possible to
ing » between adjacent grid points, then grid functians write recursions such ag8)(and @) in vector matrix form
are fully discrete approximations to the solutibn For as i1 . et
example, the grid functions}’, 4;',, and4f,, , are ap- AG"T =Bu" + Ca (13)
proximations to the solutiobl (¢, x) at timet = nk, and at where hereA, B andC are update matrices incorporating
locationsx = lh, x = [I'm]h andx = [[mp]h in 1D, 2D the effects of various finite difference approximationsrove
and 3D respectively, for integérm andp. the grid, and are generally sparse.



weighed against the computational cost of determining the
preconditioner.

In other cases, such as, e.g., those involving interpalatio
between distinct grids (as in the case of systems coupled
to the acoustic field), this banded structure may be lost;
in compensation, however, the system to be solved may
be strongly diagonally dominant, allowing the use of very
simple iterative methods (such as, e.g., Gauss-Seépl
For an example of such interpolation between grids in ma-
trix form, see, e.g.,19.

n o o)
ULy u

Figure 2. Reorganisation of a 2D array’

! m @S aVeCWor, 42 Stahility
by concatenation of columns.

For explicit schemes, which are of most interest in paral-
lel implementation, stability conditions for schemes foz t
Various special cases emerge at this point. model systeni are best framed in terms of a lower bound
If the scheme is explicit, as in, say, the case8)f then on the grid spacing in terms ofk, the time step (which,
A is simply the identity matrix, and thus the solution may in audio applications, is normally set a priori): in other
be updated solely through sparse matrix multiplication op- words,
erations (ofB andC in (13)). This is the ideal case in a h > hpin (k) (14)
parallel realization.
If the scheme is implicit, but linear, theAA will not be
the identity, and a linear system solution will be required
in the loop in order to solve foi™*!. However, as it is

One way of arriving at such conditions, for linear prob-
lems, is through the use of frequency domain techniques,
or von Neumann analysi2§]; such methods, however, do
L . ... . not apply directly to nonlinear systems, nor do they allow
constant,. it is possible to some perform preconditioning the determination of sufficient stability conditions when
once, offline. L . _ boundary are included. As an alternative, methods based
If the scheme is implicit, and also nonlinear, then it MaY on discrete energy conservation/dissipation are employed

not be possible to writg arecursion such as .the a.bo.ve—m[lS, 28], which do allow such stability conditions to be de-
some cases, and particularly when the nonlinearity is of &, ineq under very general conditions.

simple form (such as, e.g., cubic, as occurs frequently in

models of vibration of strings and plates, and as exhibited 4 3 Bandwidth Limitation

in (5)), then one may arrive at such a form—but generally _ _

A is dependent on previously computed values of the so-Given the lower bound o in (14), it may be tempt-
lution @™, and thus must be constructed anew at each timeing to choose a value df which is larger than the mini-

step. This is certainly the most challenging case in a paral-mum, in the interest of reducing computational complex-
lel realization. ity; this, however, leads to severe limitations on output

bandwidth—see Figur8. Accompanying this is a phe-

nomenon known as numerical dispersion, leading to a mis-
4. ALGORITHM DESIGN ISSUES tuning of modal frequencies; for this reason, in audio ap-

4.1 Linear System Solutions plications, it is generally best to choose the grid spacsg a

. ) i close to the stability condition as possible.
For implicit methods, as described above, linear system

solutions are necessary in updating the state of the system i

For methods defined locally over a grid, such as FDTD,

such matrices are sparse and possess a banded structu g .,

(see Figurdl).
Many efficient methods are available in approaching the

solution of sparse banded systems; among the best knowi. ’ / ;

are methods such as the Thomas algorithm (and exten-

sions) p6]; but such methods generally require diagonal Figure 3. Spectrum of sound output from a simple stiff

dominance, which is not always the case for matrix rep- string physical model, at 44.1 kHz. Left: where the grid

resentations of FDTD schemes. Also, they are inherently Spacing is chosen at the minimum allowable value from the

serial—one must proceed, Step by Step, a|ong the band§tablllty condition, and rlght, at twice the minimum value,

of the matrix in order to arrive at a solution. For an effi- illustrating a severe numerical cutoff at approximately 5

cient realization in parallel hardware, parallelizabletme ~ kHz.

ods must clearly be employed. There are many such meth-

ods available—particularly well-suited to sparse systems . .

are iterative methods such as the conjugate gradient fam—4'4 Computational Complexity

ily, employing a sparse preconditioner (such as incomplete Computational complexity, as expected, scales strongly wi

Cholesky factorization). The problem of determining this the dimension of the system; in particular, in 3D, computa-

preconditioner (possibly anew at each time step) must betional costs for large volume simulations are extreme. See

i (dB)




Tablel for typical computational costs for FDTD methods, The first case, of uniform schemes, are explicit and where
in terms of memory required to hold the state, and floating the update matriceB and C contain bands of constant
point operations per second output, at a typical audio rate.coefficients. They are often of Toeplitz or block Toeplitz
Such costs motivate an examination of acceleration in par-form. For such systems, the matrix form can be ‘unrolled’

allel hardware, as discussed in the next section. such that grid points can be updated by a simple equation
using scalar coefficients and neighbouring points. This
Memory (B) | Flop/s greatly reduces the amount of memory access required,
Tube, length 1 m 3.11x 102 2.86x 10; which is one of the main concerns for the GPU imple-
rsefgir;gs’ i}?g'_';e:qgttznls?;n 100N 1.66x10 1.53x10 mentation. FDTD schemes generally suffer from a low
Plaie steel area T 346100 108107 compute-to-memory access ratio, and so efficiency is al-
thickness 510~* m ways limited by data transfer rather than peak comput-
Small enclosure (L ) 1.00<107 167<10™" ing performance. For even the simplest scheme there are
Large room (0% nP) 1.00< 10" 167<107 still many possible approaches to thread design and various

other optimisations, and therefore a certain amount of ex-
_ ) _ ~ perimentation is usually required to find the most efficient
Table 1. Memory requirements, in B, and floating point cypA solution.
operations per second output for several typical systems, The second case, where the update matrices are not uni-
for standard FDTD schemes operating/at= 44.1 kHz,  form put the scheme is still explicit (such as, e.g., the case
and using double precision arithmetic. of schemes for Webster’s equati@h)( requires either some
storage system for holding the coefficients, or operating di
rectly with sparse matrix objects. A suitable code library i
5. IMPLEMENTATION ON GPU required to handle sparse matrices in C code and perform
. . ) . basiclinear algebra operations. These operations theh nee
In this section, the focus is on the use of GPGPUS, using, pe performed, and hopefully accelerated, on the GPU.
Nvidia’s CUDA architecture. , , Whilst some libraries are available for this purpose, such
The starting point for the implementation of the time step- 55 Nvidia’s cuSparsep], custom-designed functions may
ping schemes described above is generally a prototype codg,q provide a more efficient solution.
in a high level language such as MATLAB that is espe- 1o maiority of the matrices involved are of multi-banded,
cially useful for dealing with the matrix structures and op- o ¢k handed form. Of the various sparse matrix formats

ergtlonsr:hat arise. In orderlto move to_a GF;U |mpleme_n|- available, the DIA (or diagonal) format is particularly sui
tation, the prototype models are rewritten first as serial 5,0 “Each band is set as a column in a table, with a small

C code, and then the time critical elements are threadedinteger array to indicate the distance of each column away

to run in parallel using the CUDA language (see Figure ., 'the centre diagonal, as shown in FigBird his format
4). Threads perform a kernel operation in a SIMD man-

ner (Single Instruction Multiple Data) on the GPU device.

These threads are grouped into blocks of up to 1024 threads, [ 20 1]
and then multiple blocks form the thread grid. r2z . . . .12
_ LT 8 L .7 8

Host Device 1m . 13 14 .| — |11 13 14

GPU Thread Grid .17 . 19 20 17 19 20

Setup code SR
(0,0)] | Block(1,0)|
w20 L 22002 . .23 . 25 23 25
Block(0,1)] [Block(1,1), . . . .
m‘ze 22222 Figure5. Sparse matrix representation in DIA format.

GPU Thread Grid provides an efficient representation, and a library of lin-

ear algebra functions is being developed that are optimised
ook0.1)]. [Biockit ) specifically for the systems that arise. Some elements, such
as the interpolation between 2D and 3D systems, result in
matrices that are not banded in structure. In this case a
more general format, such as CSR, is still required.

The third and fourth categories of code are implicit, and
éhus require a solution to a system of linear equations at
each time step of the simulation. This may use either a
persistent, unchanging matrix, or may require the construc
tion of a matrix system at each iteration. In prototyping it
is simple enough to use MATLAB's backslash operator in
this situation. Accelerating this in C code and on the GPU
- Implicit schemes, with constant update matrices.  requires more complex libraries such as PETEE, [or the
. Implicit schemes, with update matrices constructed development of custom functions based on iterative meth-

at each time step. ods B1].

Time Loop {
kernel1<<< >>>( )

kermnel2<<< >>>( ) \
-—

}

Copy sound to host

Figure4. Code design for host and device

Following from the discussion in Sectidh2, from an
implementation perspective, the systems can be groupe
into four categories:

. Uniform explicit schemes.
. Non-uniform, but explicit, schemes.

A W N P



6. SYSTEMSAND SIMULATIONS

In this section, simulation results using FDTD methods are

presented for several families of systems. Accompanying

sound examples and video demonstrations appear on the
NESS project websitemw. ness- musi c. eu

Freq (Hz)

2 time (s)

Figure 6. Spectrogram of sound output for a rectangu-
6.1 Brass|nstruments lar plate under linear conditions (left) and nonlinear dend
tions (right).
As mentioned in SectioB, a starting point for brass instru- ~ Linear

ment synthesis is a 1D model such as Webster’'s equatior
4. In the lossless case, simple, provably stable numeri-
cal methods are availabl&f)]; for good quality synthesis,

however, various refinements are necessary. Chief amongon-linear

these is the modeling of viscothermal boundary layer losses -

in the tube, which is typically described in terms of input
time—

impedance 32, 33]; when translated to the time domain,
fractional time derivative terms appear, which in FDTD re-
quires recursions of order higher than two, and thus the
memory requirement/operation count is increased. A sec-

ond feature of interest involves user-controlled time vari tion of the displacement of a thin square plate, under sim-

ation (through, e.g., slides or valves); such time varfatio ., snnorted boundary conditions. In both cases, the ini-
is handled locally within an FDTD scheme, requiring no ) condition is set to the lowest linear mode of vibration.
additional precomputation (in contrast with, e.g., modal

methods, which would require a recalculation of modal .
shapes and frequencies for every valve configuration). Fi-6.3 Modular Environments

nal_ly, if_ nonlinea_r effects (due to shock formation in long  gne of the main goals of many physical modeling sound
cylindrical bore instruments such as the trombo8d))l gy nthesis paradigms (including the CORDIS environment
are to be introduced, variants of Webster's equation are[37], MOSAIC/Modalys B8], and BlockCompiler 89] is
no longer suitable, and it is best to revert to a first order 4 1ar construction of new virtual instruments. The goal
system, as is common in the maintream finite volume lit- j5 g gitferent in the present case of FDTD methods, where
erature §J; numerical stability is difficult to maintain un- - pere the canonical elements are distributed, possibly non
der such conditions, without introducing artificial viseos  |inear objects such as bars, plates, strings, membranes and
ity, which can impact negatively on sound quality. acoustic tubes, all represented over distinct grids, and co
pled through a variety of connection types.

. ) ) ) In Figure8, at left, a plate based percussion instrument is

6.2 Percussion: Nonlinear Plateand Shell Vibration shown, with connections (of mass/spring/damper type, as

. . I S in CORDIS) indicated by blue lines. In Figu8 at right,
The high amplitude vibration of thin rigid structures such a modular instrument constructed from a set of acoustic

as plates and shells features strongly in many percussioqubes is shown—nhere. as discussed in Sedidrthe con-

mstrgments, including cymbals, gongs and tamtams, andfiguration is time varying, allowing for half-valve effects
also impacts to a lesser extent on the sound of drums. In[40]

general, for such instruments, under a striking excitation
there is a migration of energy from low frequencies to high,
giving rise to crash like effects in cymbals, and slow swells
in gongs—see Figuré, showing a spectrogram of sound
output for a typical nonlinear flat plate model. Linear mod-
els, such as that of, e.g., Kirchhoff Lov@q do not capture
such effects, and thus nonlinear models are necessary—
that of von Karméan 36| is probably the simplest to ade-
quately render such effects. In the modal setting, the non-Figure 8. Left: Modular percussion instrument made up
linearity leads to the transfer of energy between modes—of a collection of thin plates, with connections indicated
see Figurd. by blue lines. Right: Modular brass instrument made up of

Figure7. Linear (top) and nonlinear (bottom) time evolu-

From an implementation perspective, the main difficulty & collection of acoustic tubes.
is in performing linear system solutions in the time recur-
sion; though sparse, due to the nonlinearity, the linear sys .
tem to be solved must be constructed anew at each time6'4 3D Acoustic Spaces
step, as described in Secti8r?, and thus linear system so- Modeling of 3D acoustic spaces using FDTD, for room
lution techniques can become computationally quite heavy.acoustics modeling and artificial reverberation applarai



is a well-researched topid], 42, 43]. Acceleration using = %:8oMS p=1.26ms

GPGPUs is of great importance in this case, given the com- ¥

putational scale of the problem. Ny S 'y ,
Table2 shows benchmark times for the standard rectilin- " v v " \. \a' 0

ear 3D FDTD scheme at various grid sizes; the simulation ., ;. o

was computed for 44,100 samples at 44.1kHz. Serial C
code was tested on an Intel Xeon E5-2620 with -O3 com-
piler optimisation, whilst the CUDA code was tested on oy el 4 -
an Nvidia Tesla K20. Both double (DP) and single (SP) ‘ A ™ L e "’ ', '73’: N

precision floating-point arithmetic tests were performed.

Figure 10. Snaphots of the time evolution of the acoustic

Isf; DP gggaelcc Intel SC.L;ZQCTESW fg_e;dUp field surrounding a set of four struck timpani drums.
1m?® SP 55 sec 7.2 sec X7.3

- . d
50’n3 DP | 52.7 min 3.3 min x16.0 real-world physical models, and ultimately in 3D. Such
50m° SP 51.6 min 2.0 min x25.8 o .
5007,° DP | 531.3 min 31.9 min <16.6 methods, which mvolye local or negreg,t neighbour updates,
5001.° SP | 528.7 min 18.9 min %28.0 are a good match to implementation in parallel hardware.

As one might expect, when a state space representation is
employed, such methods reduce to large sparse matrix op-
erations performed in a time loop—and in particular mul-

. ) tiplications, and inversions (or linear system solutioms)
Beyond the question of raw acceleration, numerous Othergeneral, it is the latter which poses the most problems in

features in room acoustics required a detailed examination, parallel implementation, though due to matrix sparsity,
from a ngmerlcal perspecnve._ One |s_a|rV|scosny,_Iead|ng specialized methods are available. For very large prob-
to damping of wave propagation at high frequenc®&,[  |ems when a linear system solution is unnecessary (as is
and which is especially important to avoid unnatural ring- he case for large 3D simulations), an implementation on
ing in computed solutions in large spaces. Another is that 5py |eads to great accelerations in computation time.

of stable boundary termination, especially over irregular rrom an algorithm design point of view, time stepping
geometries, and when realistic wall impedance conditions ethqds represent, in some respects, a last resort—for suf-
are taken into account. Finally, care must be taken whengicienty complex systems, involving distributed nonlinea
choosing the grid to be used in 3D space—see Fi§tioe ities, and nontrivial couplings among disparate compasient
two such choices. There are great variations in the effects incjyding the acoustic field itself), there does not appear
of numerlcal dlsperspn depending on the grid—and also , pe any other avenue of approach. One great strength
on GPU implementation. of such an approach not mentioned in the Introduction is
that, ultimately, in 3D simulations, one has complete ac-
cess to the acoustic field surrounding such as instrument—
and thus complete control over spatialization of the result
ing sound output. The difficulties, however, are many—
great care must be taken at the design stage, compared
with other methodologies, to ensure that numerical arti-
facts (such as, e.g., bandwidth limitation and numerical
dispersion) do not impact negatively on sound output.

One issue which has not been broached here in any de-
tail (and which is premature, given current compute times)
is, as is usual in physical modeling synthesis, user cantrol
] . Particularly in the setting of modular instrument construc
6.5 Embeddings of Instrumentsin 3D tions, which may be quite a bit more complex than real
The ultimate goa| of physica' mode”ng iS, perhapS, the world acoustic instruments, f|nd|ng a meaningful and par-
full emulation of musical instruments in a 3D enclosure. Simonious means of both designing and playing such in-
New issues emerge here regarding the coupling betweertruments presents a daunting challenge.
the acoustic field (described by a variant of the 3D wave
equation?, as detailed above) and the object at hand.

See Figurd 0, illustrating the time evolution of the acous-  Thjs work was supported by the European Research Coun-
tic field surrounding a set of timpani drums, within a 3D ¢j, under grant StG-2011-279068-NESS.
enclosure.

Table 2. Benchmarks for serial C code vs CUDA.

Figure 9. Computational grids in 3D: Left, body-centred
cubic, and right, face-centred cubic.
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