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ABSTRACT

In this paper, we investigate finite difference schemes for
the 3-D wave equation using 27-point stencils on the cubic
lattice, a 13-point stencil on the face-centered cubic (FCC)
lattice, and a 9-point stencil on the body-centered cubic
(BCC) lattice. The tiling of the wavenumber space for non-
Cartesian grids is considered in order to analyse numerical
dispersion. Schemes are compared for computational effi-
ciency in terms of minimising numerical wave speed error.
It is shown that the 13-point scheme on the FCC lattice is
more computationally efficient than 27-point schemes on
the cubic lattice when less than 8% error in the wave speed
is desired.

1. INTRODUCTION

Finite difference (FD) schemes have long been used to ap-
proximate solutions to the wave equation [1, 2]. The wave
equation can be used to model 3-D sound propagation in
terms of pressure or velocity potential [3] and FD schemes
provide an approximation to such acoustic fields. This has
been used for 3-D room acoustics modelling [4], for the
cavities of percussion instruments [5–7], and for artificial
reverberation purposes [8,9]. Certain FD schemes are also
known by an equivalent wave-scattering formulation called
the digital waveguide mesh (DWM) [10], which has seen
much use in the acoustics and audio signal processing com-
munity [8] due to its simplicity and passive construction.

Such FD approximations are carried out on temporal and
spatial grids. The spatial grid is usually the Cartesian grid
(the integer or cubic lattice [11]), but non-Cartesian grids
(lattices) can also be used in 3-D [11], such as the body-
centered cubic (BCC) grid [12], the face-centered cubic
(FCC) grid [6, 7], and the “diamond lattice” (not a lattice
in the strict sense [11, 13]), which is used in the “tetrahe-
dral DWM” [14] . Furthermore, there are many approxi-
mations to the 3-D Laplacian operator that pertain to each
grid [12, 15]. Numerical dispersion in a FD scheme can
give rise to audible artifacts [16, 17] and this largely de-
pends on the choice of the spatial grid and approximation
to the Laplacian. Mitigating these effects in an efficient
manner is critical for large-scale 3-D room acoustics sim-
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ulations since these simulations can be prohibitively ex-
pensive in terms of memory and computation time, even
with the use of graphical processing units (GPUs) [18,19].
Making sense of all these choices has been the subject of
many studies [12, 20–23], however, the treatment of non-
Cartesian grids has been lacking important details, as will
be seen in this paper.

It has recently been shown that one must consider the cell
that tiles the wavenumber space, also known as the Bril-
louin zone of the lattice in crystallography [13], to properly
analyse numerical dispersion and computational efficiency
of FD schemes on the 2-D hexagonal grid [24]. While the
Brillouin zone has long been considered in multidimen-
sional sampling on non-Cartesian grids [25], it has yet to
be considered in the context of FD schemes for the 3-D
wave equation. The computational efficiencies of special
cases of a 27-point stencil (approximation to the Lapla-
cian) on a cubic lattice have been studied previously [23],
and while this encompassed 13-point and 9-point special
cases related to the FCC and BCC lattices respectively, it
will be seen that it is necessary to consider both the stencil
and the lattice on which it operates.

The main contributions of this paper are to consider the
wavenumber cells on non-Cartesian grids to show how it
relates to stability conditions and the analysis of numerical
dispersion, and to compare computational efficiencies of
FD schemes in terms minimising numerical dispersion for
audio and acoustics applications.

The paper is organised as follows. In Section 2, we in-
troduce the finite difference schemes and in Section 3, we
discuss the discretisation of time and space. In Section 4,
we consider the tiling of the wavenumber space for non-
Cartesian grids and in Section 5, stability conditions are
discussed with respect to the wavenumber tilings. Numer-
ical dispersion and computational efficiency are analysed
in Sections 6 and 7 respectively. Conclusions are given in
Section 8.

1.1 3-D Wave Equation

Modelling 3-D room acoustics usually begins with the 3-D
wave equation:(

∂2

∂t2
− c2∆

)
u = 0 , ∆ =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(1)

where c is the wave speed, ∆ is the 3-D Laplacian opera-
tor, t is time, and u = u(t,x) is the solution to be approx-
imated for x ∈ R3 (x = (x, y, z)). The variable u can
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represent pressure or a velocity potential [3,20]. A room is
not complete without walls but this study is only concerned
with the interior (the bulk of the computation) so boundary
conditions will not be considered here. At this point it is
worth mentioning that the FD schemes considered in this
paper are those that can be coupled to existing boundary
conditions that model frequency-dependent walls [23, 26].

2. FINITE DIFFERENCE SCHEMES

2.1 Time Difference Operator

In FD schemes, the variable u is replaced by an approxi-
mation to u, û = û(t,x), and partial differential operators
are replaced by finite difference operators. A standard FD
approximation to ∂2

∂t2 is the following:

δtt,kû =
1

k2
(û(t+ k,x)− 2û(t,x) + û(t− k,x)) , (2)

where k is the time-step, which could be chosen to be k =
1/Fs where Fs is an audio sampling rate like 44.1 kHz.

2.2 Finite Difference Approximations to the Laplacian

Approximations to the 3-D Laplacian can be built using the
following FD operator:

δ∆,Ω,hû =
κ

h2

|Ω|∑
i=1

(û(t,x+vih)−2û(t,x)+û(t,x−vih)) ,

(3)
where Ω ⊂ R3 is a set of equal-norm vectors vi ∈ Ω, and
|Ω| denotes the cardinality of that set. The constant h is
the spatial step, which will be chosen based on the time-
step and stability constraints of the FD scheme. The FD
operator in (3) becomes a (2|Ω| + 1)-point second-order
accurate approximation to the Laplacian (we also call this
a discrete Laplacian or a stencil) for particular choices of
Ω and κ. The standard 7-point stencil uses the standard
unit vectors ΩC = {êx, êy, êz}. We also consider a 13-
point stencil that uses the following six vectors from the
FCC lattice: ΩF = {êx ± êy, êx ± êz, êy ± êz}/

√
2, and

a 9-point stencil that uses the following four vectors from
the BCC lattice: ΩB = {êx ± êy ± êz, êx ∓ êy ± êz}/

√
3.

These stencils are shown in Fig. 1. For these choices of Ω
we get the following condition for consistency:

κ =
3

|Ω|‖v‖2
, (4)

where ‖v‖ denotes the Euclidean norm of any v ∈ Ω.
We can also build a consistent approximation to the Lapla-

cian as a weighted combination of these stencils:

δ∆,α,Υ,hû =

|Υ|∑
j=1

αjδ∆,Ωj ,hû ,

|Υ|∑
j=1

αj = 1 , (5)

where Υ is a set of sets and α = (α1, . . . , α|Υ|). In
this study, we consider ΥF = {ΩF }, ΥB = {ΩB}, and
a 27-point stencil with ΥC = {ΩC ,

√
2ΩF ,

√
3ΩB}.

(a) Cubic (b) FCC (c) BCC

Figure 1: Some spatial points in the cubic lattice and
scaled FCC and BCC lattices. Lines from center point de-
note vectors of associated stencils. The 27-point stencil
δ∆,α,ΥC ,h uses all the points in (a), whereas the 7-point
stencil δ∆,ΩC ,h uses the black points and the center point.

2.3 Finite Difference Scheme for Wave Equation

Combining these operators we have a FD scheme for the
3-D wave equation:(

δtt − c2δ∆,α,Υ,h

)
û = 0 , (6)

which is updated in time with the explicit recursion:

û(t+ k,x) = (c2k2δ∆,α,Υ,h + 2)û(t,x)− û(t− k,x) ,
(7)

given some initial conditions.

3. DISCRETISING TIME AND SPACE

In practice, the FD approximation is calculated at a count-
able set of points in space and time, denoted by a lattice
(a grid of points). The temporal grid is simply the integer
lattice Z scaled by the time-step k:

T k = {tn = nk, n ∈ Z} . (8)

A spatial lattice in 3-D is defined by:

Gh = {xm,h = mTV h ∈ R3 ,m ∈ Z3} , (9)

where V is a generator matrix [11] made up of any three
column vectors chosen from ΩC , ΩF , and ΩB for the cu-
bic, FCC, and BCC lattices respectively. The approxi-
mated solution will have a certain bandwidth (spatial and
temporal) given some time-step k, grid spacing h (spatial
step), and discrete Laplacian δ∆,α,Υ,h. Given the band-
width in the approximation, there will be a temporal and
spatial lattice on which values of û(t,x) will have to be
calculated so that the continuous approximation û(t,x)
can be completely reconstructed [25]. For this reason, we
only need to compute û(t,x) on a spatial and temporal
grid, i.e., we calculate the set: {û(t,x) : t ∈ T k,x ∈ Gh},
where T k and Gh are the appropriate grids for our FD
scheme.

Choosing the appropriate grid for a given stencil is not
always obvious and one must be careful so that only neces-
sary values of û(t,x) are computed. For example, consider
the FD scheme (6) with the 27-point stencil (Υ = Υc).
Two special cases, among others, were analysed in a study
on the computational efficiency of this scheme when em-
ployed on the cubic lattice: the close-cubic packed (CCP)
scheme (α = (0, 1, 0)), and the octahedral scheme (α =



(a) FCC (b) BCC

Figure 2: Wavenumber cells, wavenumber tilings, and dual lattices (black dots) of FCC and BCC lattices.

(0, 0, 1)) [23]. As can be deduced from Fig. 1, the cubic
lattice can be constructed with two scaled 1 and interleaved
FCC lattices [11]. Note that the red points in Fig. 1(a) are
part of one FCC lattice, and the blue and black points are
part of another, shifted FCC lattice. As a consequence, the
FD scheme withα = (0, 1, 0) operates on two disjoint sets
of points, each pertaining to one FCC lattice; this results in
two decoupled schemes on FCC subgrids. 2 When such a
scheme is employed on the cubic lattice, the FD approxi-
mation on half of the spatial points provides no additional
information (bandwidth) that cannot be reconstructed from
the values of û(t,x) on one FCC lattice. As such, the ap-
propriate lattice for the CCP scheme is the FCC lattice.
Similarly, the cubic lattice can be constructed from four
scaled and interleaved BCC lattices [11], so, for the same
reasons, the appropriate lattice for the octahedral scheme is
a single BCC lattice. These features were not considered
in [23], so we can improve on the reported computational
efficiency, which depends on density of the spatial lattice,
if we choose the appropriate lattices, as will be seen later.

4. TILING THE WAVENUMBER SPACE

It is well known that the Fourier transform of a discrete sig-
nal is periodic with period 2π/k, where k is the sampling
period, or time-step. The same applies to discrete multidi-
mensional signals on spatial lattices, but the periodicity of
the spatial frequencies, or wavenumbers ξ = (ξx, ξy, ξz) ∈
R3, is more subtle. In general, the periodicity represents a
regular tiling of the continuous frequency space which is
given by the Voronoi tessellation of the dual lattice. The
dual lattice has the generator matrix (V −1)T when V is
the generator matrix of the direct lattice and consists of
unit-norm vectors [11]. The dual lattice is further scaled
by 2π and the inverse of the time or spatial period [13].
This leads to the well-known sampling theorem in 1-D and
this was extended to sampling in multiple dimensions [25].
The cell that makes up the tiling of the wavenumber space
is known as the Brillouin zone of the direct lattice in crys-
tallography [13] and the wavenumber cell of the lattice in
the context of multidimensional sampling [25]. The cu-
bic lattice is self-dual [11], so the wavenumber tiling is
composed of cubic wavenumber cells with sides of length
2π/h. Previous studies have assumed a cubic wavenumber
cell for FD schemes for the 3-D wave equation on the FCC

1 We use the term “scaled” when a lattice generated with unit-norm
vectors is multiplied by something other than the grid spacing h.

2 The same observation has been made in the context of lattice Boltz-
mann simulations [27].

and BCC lattices, but this is not the case. The FCC and
BCC lattices form a dual pair [11] and their wavenumber
cells are the truncated octahedron and the rhombic dodec-
ahedron respectively [11, 13]. These cells and their tilings
are shown in Fig. 2.

We can determine how well a set of values on a spatial lat-
tice can reconstruct an isotropic spatial signal (bandwidth
cuts off at the same |ξ| in all directions) from the dual
lattice and its associated wavenumber tiling [25]; this is
called the sampling efficiency of the lattice. Some studies
have chosen specific lattices for FD schemes solely based
on sampling efficiency [28–30], but this can be mislead-
ing. Sampling efficiency is not a suitable metric in choos-
ing a grid for a FD scheme because, aside from at the initial
conditions, sampling is not part of the FD approximation.
The solution u(t,x) is unknown so it cannot be sampled
(aside from the special case in 1-D [16]); it must be ap-
proximated by û(t,x) at points on a grid and the rest of
û(t,x) can be reconstructed using multidimensional sinc
interpolation. The efficiency in computing an accurate FD
approximation depends on other factors besides the lattice
on which it is employed, such as the stencil used, the com-
bined density of the spatial and temporal grid set according
to stability constraints, the number of arithmetic operations
at each update, and most importantly, the particular metric
used to measure efficiency, which could be in terms of or-
der of accuracy given by a Taylor expansion or accuracy in
the numerical wave speed.

We argue that the key to choosing a lattice is its rota-
tional symmetry, which is related to the kissing number
problem (how many non-overlapping spheres can touch or
kiss a central sphere of the same size) [11]. We are essen-
tially using points on the spatial lattice to approximate an
isotropic (directionally-independent) operator, the Lapla-
cian, so symmetry in the lattice plays a large role in emu-
lating this isotropy. For example, two shells of points are
required for an isotropic stencil (to the fourth-order error
term) on the 2-D square lattice [31], but the lattice with
the highest kissing number in 2-D, the hexagonal lattice,
provides an isotropic stencil using only the first shell of
points [31].

The lattice in 3-D with the highest kissing number and
the most symmetry is the FCC lattice [11]. The 13-point
stencil from the FCC lattice is not quite isotropic, but it
has been observed that it is nearly isotropic [22, 23]. This
can be seen in Fig. 3, where isosurfaces (surface of equal
error, as a function of ξ) of the second-order error terms
in approximations to the Laplacian are shown. Among the



(a) 7-point stencil (b) 13-point stencil (c) 9-point stencil

Figure 3: Equal isosurfaces of first error-term in Taylor
expansions of Fourier symbols of approximations to Lapla-
cian. Isotropic error gives a sphere.

three isosurfaces displayed in Fig. 3 the isosurface pertain-
ing to the 13-point FCC stencil is the closest to a sphere
(isotropic). We also observe that they loosely conform
to the wavenumber cells of their associated lattices. A
rounder wavenumber cell is more amenable to an isotropic
error since the full error must ultimately conform to the
tiling of the wavenumber space.

Considering that the Fourier symbol of the Laplacian de-
scribes concentric spherical shells (isosurfaces of scalar
values), we can take another point of view: in essence, we
are trying to fit a sphere into the wavenumber cell. Thus,
we require the roundest wavenumber cell. This problem
could be formulated as finding the lattice whose wavenum-
ber cell has a ratio of inradius (largest radius for a sphere
contained by the cell) to circumradius (the smallest radius
for a sphere that contains the cell) closest to unity (this ra-
tio for a sphere). This is a combination of the kissing prob-
lem (maximise inradius) and the covering problem (what
is the least dense arrangement of overlapping spheres that
covers space; minimise circumradius) [11]. These ratios
are approximately 1.29, 1.41, and 1.73 for the FCC, BCC,
and cubic lattices respectively. This is similar, but different
from finding the optimal sampling lattice for an isotropic
signal, which is essentially the sphere packing problem in
the wavenumber space [25], and for lattices, the kissing
number problem [11]. The 2-D hexagonal lattice is self-
dual, and solves both the kissing number problem and the
covering problem, so sampling arguments [28], while un-
founded, arrive at the same conclusion. This line of reason-
ing has also been used in 3-D to select the BCC lattice [29],
which is optimal for sampling because its dual, the FCC
lattice, is the lattice with the highest kissing number and
sphere packing density [25]. However, it will be seen that
the BCC lattice is not ideal in the context of FD schemes
for the 3-D wave equation. It is interesting to note that a
recent study also followed sampling arguments [30], but
arrived at the FCC lattice by conflating the optimal sam-
pling lattice with its dual.

5. STABILITY

Using von Neumann’s method for determining stability con-
ditions in FD schemes [32], it is sufficient to consider a
plane wave of the form: û(t,x) = ej(ωt+ξ·x), where ω is
the temporal frequency and (ω, ξ) ∈ R4. It helps to de-
fine a normalised wavenumber ξh = ξh and normalised
frequency ωk = ωk. Inserting the plane wave into the FD

(a) FCC (b) BCC

Figure 4: Scaled FCC and BCC wavenumber cells in-
scribed in cubic wavenumber cell. Arguments of the max-
ima in |D∆,

√
2ΩF ,h| and |D∆,

√
3ΩB ,h| denoted by black

spheres.

scheme then gives a dispersion relation of the form:

Dtt(ωk) = λ2D∆,α,Υ(ξh) , (10)

where λ = ck/h is the Courant number and

Dtt(ωk) = −4 sin2(ωk/2) , (11)

D∆,α,Υ(ξh) = −4

|Υ|∑
j=1

αjκj

|Ωj |∑
i=1

sin2(ξh · vj,i/2) (12)

for vj,i ∈ Ωj . The scheme is stable if we can ensure that
no real wavenumbers produce growing solutions in time.
This requires finding a maximum for |D∆,α,Υ(ξh)| and
we get the following stability condition:

λ ≤ λmax,α =

√
4

maxξh |D∆,α,Υ(ξh)|
(13)

In deriving this condition we have not specified a grid,
but D∆,α,Υ(ξh) is periodic according to the wavenum-
ber tiling of the appropriate grid for the stencil. It is then
sufficient to consider just one wavenumber cell of the ap-
propriate lattice. So in the CCP and octahedral schemes
on cubic lattices, the stability condition is found within
the wavenumber cell of scaled FCC and BCC lattices re-
spectively, but an exhaustive search over a larger domain
will also locate the maximum. For the schemes considered
here, |D∆,α,Υ,h(ξ)| is multilinear in cos(ξxh), cos(ξyh),
and cos(ξzh) variables, and it can be shown that the max-
imum occurs at either the faces, center of edges, or ver-
tices of a cubic wavenumber cell [12]. As we can see
in Fig. 4, the wavenumber cells of the scaled FCC and
BCC lattices are neatly inscribed in a cube with sides of
2π/h. The points where the maximum of |D∆,

√
2ΩF ,h|

occurs line up with the square faces of the truncated oc-
tahedron wavenumber cell for the CCP scheme. Similarly,
the points where the maximum of |D∆,

√
3ΩB ,h| occurs line

up with vertices of the rhombic dodecahedron wavenum-
ber cell for the octahedral scheme (the corners of the cube
pertain to vertices of replicated dodecahedral cells).

It has been shown that the stability conditions for the 27-
point stencil scheme are [12]:

− 2α1 ≤ α2 ≤ 2α1 + 1 , (14)



λ ≤ λmax,α = min

(
1,

1√
2α1 + α2

,
1√

2α1 − α2 + 1

)
,

(15)
and from (15) we can get the stability conditions for the
13-point and 9-point FD schemes after we rescale the grid
spacings. For the 13-point (Υ = ΥF ) and 9-point (Υ =
ΥB) schemes we have the respective stability conditions:

λ ≤
√

1/2 , λ ≤
√

1/3 . (16)

Note that the condition for the 13-point scheme is differ-
ent from the Courant number used in the “dodecahedral
DWM” [6], which means this case was not covered in a
study comparing DWM topologies [22]. It was observed
that the dodecahedral DWM had good numerical disper-
sion properties [22] and since numerical dispersion is min-
imised when the Courant number is set to λmax,α [16] the
FD scheme on the FCC lattice will provide less disper-
sion. 3

6. NUMERICAL DISPERSION

Inserting the plane wave u(t,x) = ej(ωt+ξ·x) into the
wave equation we get the dispersion relation ω2 = c2|ξ|2,
which tells us that the phase velocity (ω(ξ)/|ξ|) of each
plane wave is the wave speed c. However, in the FD scheme
the relationship is not linear and we get a frequency- and
direction-dependent wave speed in the approximation û(t,x).
The relative phase velocity (we will just call this the nu-
merical wave speed) is:

ν̂(ξh) =
ωk(ξh)

λ|ξh|
, ωk(ξh) = D−1

tt (λ2D∆,α,Υ(ξh))

(17)
for ωk ∈ (0, π] and ξh ∈ B, where B is the wavenum-
ber cell of the grid. The wave speed error, defined as
|1 − ν̂(ξh)|, is the main concern in audio and acoustics
applications of FD schemes. Higher frequencies tend to
travel slower and this causes transients to be smeared over
space and time. It is therefore of interest to analyse numer-
ical dispersion in such schemes, but a proper analysis of
the wave speed error requires the correct wavenumber cell
on non-Cartesian grids.

With 2-D schemes one can plot the wave speed error over
the entire domain using a single contour plot [12, 24], but
this is not possible for 3-D. Some possibilities to visualise
the wave speed error include fixing two angles and plot-
ting the error as a function of |ξh| [23]; fixing |ξh| and
plotting the error as a function of two angles as a map-
ping of colours on a spherical shell [12, 22] or where the
error denotes a polar radius [33]; plotting contours of two-
dimensional slices of B [12, 23]; or fixing some error and
plotting this as a three-dimensional isosurface of wavenum-
bers. In each of these representations one can encounter
aliased wavenumbers if one does not consider the correct
domain B. If one assumes a cubic wavenumber cell for the
13- and 9-point schemes, as has been done in the past, the
cell will contain aliased wavenumbers, as can be deduced

3 The dodecahedral DWM is left out for brevity, but a similar compar-
ison can be found for 7-point FD scheme on the 2-D hexagonal grid and
the “triangular DWM” [24].

from Fig. 4, or missing wavenumbers. 4 This can result in
an incorrect numerical wave speed if the denominator in
(17) is not adjusted accordingly to reflect the tiling of the
wavenumber space.

Table 1 lists the parameters of the schemes analysed here,
along with some acronyms sometimes employed in the lit-
erature [22, 23]. These acronyms stand for the standard
leapfrog (SLF), interpolated wideband (IWB), interpolated
isotropic (IISO2), 5 close-cubic packed (CCP), and octa-
hedral (OCTA) schemes. The 27-point IWB and IISO2
schemes are analysed because they were identified as be-
ing the most effective 27-point schemes at reducing wave
speed error [23]. Note that the CCP and OCTA schemes
are analysed here on their native lattices for the reasons
stated in Section 2.3, so we will refer to these as the “FCC
scheme” and the “BCC scheme”.

The density of a spatial grid is µ/h3, where µ is the den-
sity of the unscaled lattice (unit grid spacing). The com-
putational density (updates per unit time and space) of a
scheme is then µ(h3k)−1. Fixing the Courant number at
the stability limit, we can write the computational density
as (cµ/λ)h−4. Thus, to put schemes on an equal footing
we use the spatial step h = 4

√
µ/λh′ so that each scheme

has the density ch′−4. Similarly, we can write the com-
putational density as (µλ3/c2)k−4, so we can equalise the
schemes by choosing the time-step as k = 4

√
µλ3k′. The

parameter µ and the values µ/λ and µλ3 for each scheme
are listed in Table 1. We can now compare schemes on dif-
ferent grids and with different Courant numbers in terms
of normalised wavenumbers ξh′ = ξh′ or normalised fre-
quencies ωk′ = ωk′ by keeping h′ or k′ constant across all
schemes.

The computational density is a metric for efficiency that
has been used in previous comparisons [23] and is mostly a
starting point to compare computational costs. It does not
take into account specific operations like multiplications,
additions, and memory reads, although these are simply an
extra scaling factor. Ideally, such comparisons should be
conducted in practice on specific computational hardware
(see [34]).

In Fig. 5, we show isosurfaces of the 10% wave speed
error, as a function of ξh′ . The surface displayed repre-
sents wavenumbers with 10% wave speed error, and since
the wave speed error is monotonic in these schemes, any
wavenumber inside the surface results in less than 10% er-
ror. These plots are normalised for computational density,
but it is difficult to compare them since the wavenumber
cells differ. However, it can be observed that the FCC
scheme’s isosurface (Fig. 5(d)) fills its wavenumber cell
better than the other schemes fill their respective cells.

In Fig. 6, we show error surfaces where |ξh′ | is fixed at
π/10. We note that the relative comparison of Fig. 5(a) to
Fig. 5(d) is more favourable to the FCC scheme than what
is found in [30]. This is because we have also normalised
for computations per unit time, but also because there is
a mistake in the spatial density of the FCC lattice in [30].

4 The wavenumber cells extend beyond the cube in Fig. 4 when the
FCC and BCC lattices are not scaled.

5 The second of three isotropic schemes that were examined in [23].



Table 1: Parameters for various schemes

Subfigure lattice # of points Υ α µ λ µ/λ µλ3 Acronyms from [23]

(a) cubic 7 ΥC (1, 0, 0) 1
√

1/3 1.73 0.19 SLF
(b) cubic 27 ΥC (1/4, 1/2, 1/4) 1 1 1.00 1.00 IWB
(c) cubic 27 ΥC (5/12, 1/2, 1/12) 1

√
3/4 1.15 0.65 IISO2

(d) FCC 13 ΥF 1
√

2
√

1/2 2.00 0.50 CCP∗

(e) BCC 9 ΥB 1 3
√

3/4
√

1/3 2.25 0.25 OCTA∗

∗These schemes are employed on the cubic lattice in [23] so µ and λ would change to µ = 1 and λ = 1.
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Figure 5: 10% wave speed error isosurfaces.

From these plots we see that the FCC scheme has the low-
est amount of error (for |ξh′ | = π/10).

In Fig. 7, we display volumetric slices of the wave speed
error for specific planes. In these plots we can see that most
of the error in the FCC scheme is less than 15%. The cubic
schemes have large error near the face centers or corners
of the cubic wavenumber cell. On the other hand, these
wavenumbers are not represented on the scaled FCC lat-
tice. The BCC scheme also has pronounced error near the
diagonal vertices (those with a vertex figure consisting of
three rhombi). The FCC scheme exhibits no numerical dis-
persion along the x,y, and z directions, similar to the IWB
scheme; this is a useful feature for simulating axial room
modes [23].

In Fig. 8, we have taken the same slices and reassigned
the wave speed error to temporal frequencies ωk and a
fixed angle of propagation (polar angle) using the function
ωk(ξh) in (10) [35]. We only show quadrants since these
plots have four-fold symmetry. We have not normalised
densities in Fig. 8 to show directionally dependent cutoff
frequencies, of interest for audio applications. To generate
Figs. 8(d) and 8(e) it is necessary to consider the correct
wavenumber cell.

Finally in Fig. 9, we plot the wave speed error along
the worst-case direction for each scheme as a function of
normalised wavenumber |ξh′ | and as a function of nor-
malised frequency ωk′ . Notice that the FCC scheme has
slightly less dispersion than the IISO2 and IWB schemes
until about 8% error. This gap will become more pro-
nounced once we compare computational efficiencies.

7. COMPUTATIONAL EFFICIENCY

We use the relative efficiency measure introduced in [35]
and employed in [23] to compare 3-D schemes for their
computational efficiency in terms of minimising numeri-

cal dispersion. The basic idea is to determine how much
one must increase the computational density (by reducing
h or k; density scales to the fourth power) in a reference
scheme (in this case, the SLF scheme) to maintain the wave
speed error below some threshold in every direction. This
is completely determined by the parameters in Table 1 and
(17) if we increase the computational density by reducing
h. 6 We plot these relative efficiencies in Fig. 10. It can
be seen that if less than 8% wave speed error is desired up
to some critical frequency, the FCC scheme has the best
computational efficiency (using this particular metric), fol-
lowed by the IISO2 and IWB schemes. If greater than 8%
wave speed error is acceptable, the IWB scheme will have
a smaller computational density. The data in Fig. 10 agree
with the numbers reported in [23] after adjusting for the
grid densities of the CCP and OCTA schemes. As such,
the reported efficiencies for the CCP and OCTA schemes
have been improved by a factors of two and four respec-
tively. Nonetheless, the efficiency of the FD scheme on the
BCC lattice is poor, which confirms our discussion about
choosing a lattice based on sampling efficiency.

We have not taken into account the number of specific
operations for each scheme and, as mentioned previously,
we have left this out for brevity. However, we should point
out that the FCC scheme employs less than half the neigh-
bouring points of the 27-point stencil, so if one considers
additions and memory bandwidth the FCC scheme is the
most efficient scheme in a wider range of errors. Further-
more, the gap in Fig. 10 between the FCC scheme and 27-
point schemes for less than 8% wave speed error increases
by a factor of two. These implementation-specific details
are further investigated in another study [34].

6 This has previously been done by solving for ξh(ωk) using (10)
and increasing the computational density by reducing k [23, 35], but the
choice is immaterial because the measure is ultimately independent of h
and k, which is apparent from the axes in Fig. 10.
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Figure 6: Wave speed error surface for |ξh′ | = π/10. Colour mapping is relative to each plot to show detail.
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Figure 7: Volumetric slices of wave speed error along three planes. 2% error contours.

8. CONCLUSIONS

In this paper, we have considered the wavenumber cell
of non-Cartesian grids in order to compare 27-point FD
schemes on the cubic lattice with a 13-point scheme on
the FCC lattice and a 9-point scheme on the BCC lattice.
These FD schemes have been compared in terms of numer-
ical dispersion and using a metric of computational effi-
ciency for minimising wave speed error. It has been shown
that the 13-point scheme on the FCC lattice is the most
computationally efficient scheme when less than 8% wave
speed error in the approximated solution is desired up to
some critical frequency. The demonstrated inefficiency of
the BCC scheme confirms that sampling-based arguments
are not suitable for FD schemes.

In future work, perceptual tests will be conducted to de-
termine critical thresholds of wave speed error for the pur-
poses of large-scale 3-D room acoustics simulations and
artificial reverberation (some preliminary work can be found
in [17]).
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