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ABSTRACT

This paper investigates some fourth-order accurate explicit finite
difference schemes for the 2-D wave equation obtained using 13-,
17-, 21-, and 25-point discrete Laplacians. Optimisation is con-
ducted in order to minimise numerical dispersion and computa-
tional costs. New schemes are presented that are more computa-
tionally efficient than nine-point explicit schemes at maintaining
less than one percent wave speed error up to some critical fre-
quency. Simulation results are presented.

1. INTRODUCTION

Finite difference (FD) schemes for the 2-D wave equation [1] have
long been used for seismic simulations [2], sound synthesis based
on physical models of membranes [3], and as a starting point for
modelling 3-D room acoustics [4]. Numerical dispersion in FD
approximations can cause audible artifacts such as a mistuning of
modes [5] and smearing of transients by a non-linear phase/group
delay [6]. Minimising this error in a computationally efficient
manner is one of the main concerns in using FD methods for audio
and acoustical applications [5].

There are generally two approaches to minimising the effect
of numerical dispersion up to some audible frequency of interest.
The first strategy is to choose a simple FD scheme and reduce
the grid spacing (oversample the grid) until the continuous fre-
quency of interest maps to some discrete frequency whose wave
speed error is negligible. However, as the grid spacing is reduced
in N -dimensional space computational costs scale to the (N+1)th
power and memory usage scales to the N th power, so this strat-
egy has limited use in practice. For example, the computation of
large-scale 3-D room acoustics can be accelerated through the use
of graphics processing units (GPUs) [7, 8], but reducing the grid
spacing quickly shrinks the available room volume due to finite
memory on the GPU cards.

When the practical limit of this strategy is reached, another
must be pursued, which is to improve the FD approximation by
employing more points from the grid [6, 9–14]. This leads to an-
other set of issues, such as optimising any free parameters, find-
ing stability conditions, and terminating the spatial domain with
suitable boundary conditions. The FD schemes that have seen
wide use in the context of musical and room acoustics have been
second-order accurate. Fourth-order accurate (in space and time)
FD schemes result in less numerical dispersion at low frequen-
cies than second-order schemes [9,12,13,15] and typically this re-
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duces the dispersion in higher frequencies to some extent. Fourth-
order schemes can be achieved using nine-point implicit formu-
lations on the square grid [12, 16], but implicit schemes are less
parallelisable than explicit schemes, so they are less attractive for
GPU implementations. Explicit fourth-order accurate schemes can
be achieved by employing more than nine points on the square
grid [9, 15]. Such schemes increase the difficulty in terminating
the grid, but boundary conditions beyond the fixed type (used for
membranes [17]) will be left out of this study.

This study focuses on a family of fourth-order accurate ex-
plicit 2-D schemes employing 13, 17, 21, or 25 spatial points [9,
15]. Many of these schemes have already been identified [9], but
certain special cases have not been investigated in previous stud-
ies [9, 15]. The interest here is to reduce numerical dispersion
over the range of audible frequencies, so optimisation will be con-
ducted in order to trade traditional accuracy (order of accuracy) for
a spectral-like accuracy [18]. This should lead to more perceptu-
ally accurate results, but perceptual tests are out of the scope of
this study. In contrast to [15], the optimisation conducted here will
take into account a measure of computational costs [13].

The paper is structured as follows: in Section 2, the parame-
terised 25-point FD scheme is presented along with stability con-
ditions, numerical dispersion, and computational density. In Sec-
tion 3, conditions for fourth-order accuracy are derived and some
optimal fourth-order accurate schemes are presented. In Section 4,
results of optimisation are presented and conclusions are given in
Section 5.

2. BACKGROUND

2.1. 2-D Wave Equation

Using the abbreviation ∂p
w = ∂p

∂wp for some variable w ∈ R and
p ∈ N+ (positive integers) , the 2-D wave equation can be written
as:

�u = 0 , � = ∂2
t − c2∆ , ∆ = ∂2

x + ∂2
y , (1)

where � is the d’Alembert operator (d’Alembertian), c is the wave
speed, ∆ is the 2-D Laplace operator (Laplacian), t is time, and
u = u(t,x) is the solution to be approximated for x ∈ R2, x =
(x, y). For acoustics, the variable u can represent pressure, a ve-
locity potential, or the displacement of a membrane [19].

2.2. Time Difference Operators

The standard three-step approximation to ∂2
t in explicit FD schemes

for the wave equation is the FD operator δtt:

δttû =
1

k2
(û(t+ k,x)− 2û(t,x) + û(t− k,x)) , (2)
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where k is the time-step, which can be set to 1/Fs, where Fs is
an audio sampling rate like 44.1 kHz. The variable û = û(t,x)
represents the FD approximation to u(t,x).

2.3. Finite difference approximations to the Laplacian

Let Ω ⊂ R2 be a finite set of equal-norm vectors and let |Ω| denote
its cardinality. Approximations to the Laplacian can be built using
the FD operator:

δ∆,Ωû =
κ

h2

|Ω|∑
i=1

(û(t,x+vih)−2û(t,x)+û(t,x−vih)) , (3)

where h is the spatial step, vi ∈ Ω, and κwill be chosen according
to consistency conditions. This will be called a (2|Ω| + 1)-point
discrete Laplacian or stencil. The following sets of vectors com-
ing from the first five shells of points on the Z2 lattice, as seen in
Fig. 1, will be investigated:

Ω1 = {êx, êy}, Ω2 = {êx + êy, êx − êy}, (4)
Ω3 = 2Ω1, Ω4 = {2êx ± êy, êx ± 2êy}, Ω5 = 2Ω2 .

For these choices of Ω the condition on κ for consistency is:

κ =
2

|Ω|‖v‖2 , (5)

where ‖v‖ denotes the Euclidean norm of any v ∈ Ω.

(a) j = 1 (b) j = 2 (c) j = 3 (d) j = 4 (e) j = 5

Figure 1: Vectors in −Ωj ∪ Ωj .

An approximation to the Laplacian can also be built as a linear
combination of these stencils:

δ∆,α,Υû =

5∑
j=1

αjδ∆,Ωj û , (6)

where Υ = {Ω1,Ω2,Ω3,Ω4,Ω5} is a set of sets and α ∈ R5.
The following condition on α is required for consistency:

5∑
j=1

αj = 1 . (7)

The discrete Laplacian δ∆,α,Υ employs either 5, 9, 13, 17, 21, or
25 points depending on the number of non-zero elements in α.

2.4. Finite Difference Scheme for the 2-D Wave Equation

Combining these operators gives a FD scheme for the 2-D wave
equation:

δ�û = 0 , δ� = δtt − c2δ∆,α,Υ , (8)

where δ� is the discrete d’Alembertian. The approximation is up-
dated in time with the explicit recursion:

û(t+ k,x) = (c2k2δ∆,α,Υ + 2)û(t,x)− û(t− k,x) (9)

given some initial conditions. The FD scheme will only be calcu-
lated at a set of points in space and time pertaining to some grid.
The grid for time will be the Z lattice, scaled by the time-step k,
and the spatial lattice (grid) will be the Z2 lattice, scaled by the
spatial step h.

2.5. Stability

Using von Neumann stability analysis [20] it is sufficient to con-
sider a plane wave of the form û(t,x) = ej(ωt+ξ·x), where ω is
the temporal frequency, ξ is the wave vector of spatial frequen-
cies, or wavenumbers, and (ω, ξ) ∈ R3. It is convenient to define
a normalised wavenumber ξh = ξh and normalised frequency
ωk = ωk [15]. Then, inserting the plane wave into (8) gives:

1

k2
Dtt(ωk)− c2

h2
D∆,α,Υ(ξh) = 0 , (10)

where
Dtt(ωk) = −4 sin2(ωk/2) , (11)

D∆,α,Υ(ξh) = −4

5∑
j=1

αjκj

|Ωj |∑
i=1

sin2(ξh · vj,i/2) , (12)

and where vj,i ∈ Ωj . The scheme is stable if no real wavenum-
bers produce growing solutions in time [20]. Along with a non-
positivity constraint onD∆,α,Υ that is generally satisfied, the con-
dition for stability becomes:

λ ≤ λmax,α =

√
4

maxξh |D∆,α,Υ(ξh)| , (13)

where λ = ck/h is the Courant number. In many of schemes that
will be featured, λmax,α can be found at ξh = (π, π) [9], but this
is not true in general for the whole parameter space of α. Apart
from simple cases, finding λmax,α as a function ofα ∈ R5 can be-
come quite involved, but it can be found numerically to sufficient
precision for practical applications when an analytic expression is
out of reach.

2.6. Numerical Dispersion

Unless the FD scheme provides an exact approximation to the so-
lution of the wave equation, which is only possible in 1-D [12],
the numerical wave speed in the approximation û(t,x) becomes
frequency- and direction-dependent. The relative phase velocity
(this will also be referred to as the numerical or relative wave
speed) is:

ν̂(ξh) =
ωk(ξh)

λ|ξh|
, ωk(ξh) = D−1

tt (λ2D∆,α,Υ(ξh)) (14)

for ωk ∈ (0, π] and ξh ∈ (0, π] × (0, π]. In the ideal case,
ν̂(ξh) = 1, corresponding to a phase velocity of c.

Using the dispersion relation the wave speed error as a func-
tion of wavenumbers can be reassigned to temporal frequencies ω
and angles of propagation θ [13]:

ν̂(ωk(|ξh|, θ), θ) =
ωk(|ξh|, θ)
λ|ξh|

, (15)

where ξh is written in polar form ξh = (|ξh|, θ) and θ ∈ [0, π/2].
This representation is useful for audio applications because it shows
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Figure 2: Relative wave speed error (|1 − ν̂|) as a function
of ξh (top row) and as a function of ωk and θ (bottom row).
Contours denote 1% deviations in the error. Any error beyond 5%
is coloured in black.

how the wave speed error maps to audible (temporal) frequencies,
and it demonstrates direction-dependent cutoff frequencies [13].
The absolute wave speed errors of the standard five-point scheme [1]
(λ =

√
1/2,α = (1,0)) and the nine-point isotropic scheme [6]

(λ =
√

3/4,α = (1/3, 2/3,0)) and the interpolated wideband
(IWB) scheme [13] (λ = 1,α = (1/2, 1/2,0)) are plotted in Fig. 2
with 1% contours. Beyond 5% error will not be considered, so it
is coloured black.

2.7. Computational Density

The computational density of a FD scheme is the number updates
per unit time and space. On the square grid this is (h2k)−1. Fixing
λ and c the computational density can be written as (c/λ)h−3. The
computational density of each scheme can then be normalised by
choosing the spatial step to be h = 3

√
1/λh′ for h′ fixed across all

schemes so that each scheme has the density ch′−3. Wave speed
errors across different schemes can then be compared as a func-
tion of ξh′ = ξh′. The computational density can also be written
as (λ2/c2)k−3 and this can be normalised to (1/c2)k′−3 by set-
ting k =

3
√
λ2k′ for some k′ fixed. Wave speed errors can then

be compared as a function of ωk′ = ωk′. The densities of specific
operations (additions, multiplications, memory reads) are obtained
by multiplying the computational density by the number of specific
operations carried out at each point-wise update. In most cases, for
an N -point stencil using M shells of points, the number of multi-
plies is M + 1, the number of additions is N , and the number of
memory reads isN+1, at each point-wise update. Specific opera-
tions will not be considered because computation times depend on
the specific computational hardware on which they are carried out.
The computational density gives a rough idea of how the schemes
should compare in practice, but exploring all the possible hardware
implementations and specific operations is out of the scope of this
study.

2.8. Simulation

A small simulation using the FD schemes in Fig. 2 is presented, as
a motivating example, to demonstrate the effect of numerical dis-
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Figure 3: Snapshots from simulation. û(t,x) at 0.03 ms, 1.5 ms,
3.5 ms, and 5 ms in five-point scheme (top), nine-point isotropic
scheme (middle), and nine-point IWB scheme (bottom).
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Figure 4: Snapshots of "exact" solution û(t,x) at 0.03 ms, 1.5 ms,
3.5 ms, and 5 ms.

persion on propagating waves in the FD schemes. These schemes
were used to simulate Eq. (1) on a 1.41 m×1.41 m domain with
c = 344 m/s. A spatial Gaussian with variance 0.007 was set as the
initial condition with zero velocity and fixed boundaries (phase-
inverting). The IWB scheme used Fs = 44.1 kHz. The grid spac-
ings in the other scheme were adjusted such that all three had the
same computational densities (each scheme has roughly 7.5×10 8

updates per square metre per second). Snapshots in time are shown
in Fig. 3. The “exact” solution is seen in Fig. 4, which was ob-
tained using a fourth-order accurate scheme (presented in the next
section) with the grid spacing reduced by a factor of four (64x in-
crease in computational density) so that numerical dispersion was
negligible. The effect of the direction- and frequency-dependent
wave speed error in Fig. 3 can be seen in the wakes of the propa-
gating wave fronts; the directions of propagation in which the wave
fronts stay sharp correspond to the directional dispersion seen in
Fig. 2.

3. FOURTH-ORDER SCHEMES

3.1. Fourth-order Accuracy

The d’Alembertian can be approximated to fourth-order accuracy
in space and time by employing the modified equation method [9,
15]. Begin with the Taylor expansion of δ�û in terms of h and k,
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subject to the consistency constraint (7):

δ�û = �û+
k2∂4

t

12
û− c2h2

60
((5α1 + 5α2 + 20α3 + 17α4

+ 20α5)(∂4
x + ∂4

y) + (30α2 + 48α4 + 120α5)∂2
x∂

2
y)û

+O(h4) +O(k4) . (16)

The truncation error is currently O(h2) + O(k2), and the scheme
is thus second-order accurate. The parameters in α are to be con-
strained such that the biharmonic operator ∆2 appears in the error.
This makes the error isotropic (directionally independent) up to
fourth-order terms. The condition for fourth-order isotropy is:

5α1 − 10α2 + 20α3 − 7α4 − 40α5 = 0 . (17)

Applying this condition results in the following:

δ�û = �û+
1

12
(k2∂4

t − c2h2F1(α)∆2)û+O(h4) +O(k4) ,

(18)
where F1(α) is an affine function of α subject to the two con-
straints (7) and (17). With c constant, the Courant number λ =
ck/h, λ > 0, is set to a constant such that:

F1(α) = λ2 , (19)

which gives:

δ�û = �û+
k2

12
(∂2

t − c2∆)(∂2
t + c2∆)û+O(k4) , (20)

δ�û = (1 +O(k2))�û+O(k4) . (21)

Using Eq. (8) results in a fourth-order accurate approximation to
the d’Alembertian:

δ�û = �û+O(k4) . (22)

Choices of λ and α satisfying (7), (17), and (19) result in a FD
scheme with a truncation error that is O(k4). According to the
Lax-Richtmyer theorem [21], the FD approximation û(t,x) will
converge to the solution u(t,x) with O(k4) as k → 0 for fixed λ
chosen such the scheme is numerically stable.

(a) 13-point #1 (b) 13-point #2 (c) 17-point #1

Figure 5: Points on square grid used for discrete Laplacians.

3.2. Fourth-order Accurate Anisotropic Schemes

Special cases of the 25-point family will now be investigated. Within
this family there eight possible ways to use the sets Ωj ∈ Υ to
choose a 13-point stencil, seven ways to choose a 17-point stencil,
and four ways to choose a 21-points stencil. Only certain stencils
are featured, specifically those that include the sets Ω1 and Ω2.
The stencils that do not have both Ω1 and Ω2 were found to have
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Figure 6: Optimal anisotropic fourth-order accurate schemes,
relative wave speed error (|1 − ν̂|) as a function of ξh (top row)
and as a function of ωk and θ (bottom row). Contours denote 1%
deviations in the error. Any error beyond 5% is coloured in black.

poor numerical dispersion not worth reporting, or they did not al-
low stable fourth-order schemes.

Two 13-point schemes, with α4 = α5 = 0 and α3 = α4 = 0
respectively, and a 17-point scheme with α3 = α5 = 0 [15] will
be investigated first. The spatial points used in these schemes are
shown in Figs. 5a-5c. These schemes have four free parameters (λ
and three inα), but have four constraints: consistency (7), isotropy
(17), accuracy (19), and stability (13). There is an upper bound on
λ for stability so there is still a free parameter, in a sense. However,
for audio purposes it is generally best to set λ = λmax,α to min-
imise numerical dispersion and maximise cutoff frequencies [13,
15]. This might be called the “audio constraint”. The fourth-order
scheme for each stencil that satisfies all of these constraints (if it
exists) will be called the “optimal scheme”. Since the leading error
term in these schemes is not isotropic, they will further be called
the “anisotropic” optimal fourth-order schemes. The parameters
of the optimal schemes are listed in Table 1 and their wave speed
errors are plotted in Figs. 6a-6c. In Table 1 only α1 is given for
brevity; the rest of αi 6= 0 can be determined from (7) and (17).

In general, the numerical dispersion around DC (|ξ| = 0 or
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Figure 7: Snapshots from simulation. û(t,x) at 0.03 ms, 1.5 ms,
3.5 ms, and 5 ms for 13-point #1 scheme (top) and 17-point #1
scheme (bottom).
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Table 1: Parameters for optimal fourth-order schemes
Scheme α1 λ2 λ (approx.)

13-point #1 1 1/2 0.707

13-point #2
√

1/3
√

3/2 0.930
17-point #1 11/16 3/4 0.866

17-point #2 (8 +
√

14)/15 3(8−
√

14)/20 0.799

21-point #1 (22 + 5
√

11)/60 3(6−
√

11)/10 0.897

21-point #2
√

181/20 3(16−
√

181)/10 0.874

ω = 0) is reduced in the fourth-order schemes, as seen in Figs. 6a-
6c. The relative wave speed along the worst-case direction for each
scheme is plotted in Fig. 10, after normalising for computational
densities. Fig. 10 shows that the fourth-order schemes maintain a
flatter wave speed error in lower frequencies than the second-order
schemes; this is a consequence of better agreement with the wave
equation.

The optimal 13-point #1 and the 17-point #1 schemes were
used to repeat the previous simulation (with 7.5×10 8 updates per
square metre per second). Snapshots in time can be seen in Fig. 7.
In general, the wave fronts in Fig. 7 are more sharp than the five-
point scheme and the nine-point isotropic scheme. The wave fronts
travelling in directions diagonal to the grid axes have less disper-
sion than the IWB scheme.

3.3. Fourth-order Accurate Isotropic Schemes

Three more schemes that use an extra shell of points and an ex-
tra free parameter are investigated next. These include a 17-point
scheme with α4 = 0 and two 21-point schemes with α5 = 0 and
α3 = 0 respectively. The stencils are shown in Figs. 8a-8c.

(a) 17-point #2 (b) 21-point #1 (c) 21-point #2 (d) 25-point

Figure 8: Points on square grid used for discrete Laplacians.

With the extra free parameter another constraint can be em-
ployed to achieve isotropy up to the sixth-order terms in the error.
Using a Taylor expansion, along with (7) and (23), this extra con-
dition is found to be:

α1 − 4α2 + 16α3 − 7α4 − 64α5 = 0 . (23)

Now with (17) the Taylor expansion gives:

δ�û = �û+
1

12
(k2∂4

t − c2h2F1(α)∆2)û

+
1

360
(k4∂6

t − c2h4F2(α)∆3)û+O(h6) +O(k6) (24)

where F2(α) is an affine function of α subject to the three con-
straints (7), (23), and (17).

An additional constraint, F2(α) = λ4, could be added to
achieve sixth-order accuracy [15], but it was found that none of the
sixth-order accurate schemes within the 25-point family is stable.
In fact, after employing the full 25-point stencil shown in Fig. 8d,
the constraint for sixth-order accuracy leads to λ = 1, but von
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Figure 9: Optimal isotropic fourth-order accurate schemes,
relative wave speed error (|1 − ν̂|) as a function of ξh (top row)
and as a function of ωk and θ (bottom row). Contours denote 1%
deviations in the error. Any error beyond 5% is coloured in black.

Neumann analysis revealed that λmax,α ≈ 0.99. A stable sixth-
order accurate scheme can be found by including the next (sixth)
shell of points on the square grid: Ω6 = {3êx, 3êy} [15, 22].

An extra constraint could also be employed for eighth-order
isotropy with the 25-point stencil, however it was found that the
25-point fourth-order accurate, eight-order isotropic scheme is not
stable, so fourth-order accuracy must be abandoned to include
eight-order isotropy, leaving only second-order accuracy. An “op-
timal” fourth-order 25-point scheme cannot be identified without
an extra constraint for the last free parameter, so 25-point schemes
will only be investigated in the next section with optimisation.

The optimal isotropic 17- and 21-point fourth-order accurate
schemes are then listed in Table 1 and their wave speed errors are
displayed in Fig. 9. In Fig. 10, the relative wave speed for the
worst-case direction in each scheme is plotted as a function of tem-
poral frequencies after normalising for computational densities.

4. OPTIMISED SCHEMES

Optimisation can be conducted on the 13- to 25-point schemes
in order to minimise wave speed error over a wider range of wavenum-
bers. In [15], a weighted mean square error was defined over a
range of wavenumbers and minimised using optimisation. Another
strategy is to maximise the “critical wavenumber” under which the
absolute wave speed error is less than some threshold in every di-
rection, after normalising for computational densities [13]. More
formally, for some wave speed error threshold 0 < ε < 1 the goal
is to findα such that the critical wavenumber, |ξ∗h′ |, is maximised:

arg max
α

|ξ∗h′ | : |1− ν̂(ξh′)| ≤ ε , ∀ξh′ : |ξh′ | ≤ |ξ∗h′ | . (25)

As in [13, 15], it is assumed that λ = λmax,α (determined numer-
ically). A one percent error criterion will be used (ε = 0.01), and
the value |ξ∗h′ | from (25) will be known as the “1% bandwidth”
(1% BW). The gain in the 1% BW obtained over the optimal coun-
terpart will be known as the “bandwidth extension” (BWE).

Optimisation was performed over the entire range of free pa-
rameters in α, but α was constrained for consistency (7) and such
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Figure 10: Relative wave speeds of optimal fourth-order schemes, and second-order schemes, as a function of normalised frequency ωk′

(also normalised for computational density), along respective worst-case directions.
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Figure 11: Relative wave speeds of optimised fourth-order schemes as a function of normalised frequency ωk′ (also normalised for
computational density), along respective worst-case directions.

thatD∆,α,Υ remained non-positive (checked numerically). A com-
bination of gradient descent and the Nelder-Mead simplex method
was used. As the search space is large and exhibits complex be-
haviour, mainly due to the non-linearity in λmax,α, the optimisa-
tion of each scheme began from its optimal parameters with some
small random perturbations. The schemes found through optimi-
sation will be referred to as “optimised schemes”, as opposed to
the “optimal schemes” given previously.

The parameters of the optimised schemes are provided in Ta-
ble 2, along with the five-point and nine-point schemes, for refer-
ence. The optimised parameters α were rounded to three decimal
places, then λ ≈ λmax,α was determined and truncated (round-
ing could violate (13)). Also found in Table 2 are the 1% BW,
the BWE, and ‖∆α‖, which represents the Euclidean norm of the
vector ∆α that takes the optimal scheme to the optimised scheme
in the α parameter space (R5). These values are rounded to three
decimal places. The second last column shows the relative com-
putational efficiency (RCE) [13], which represents the factor by
which the computational density can decrease in a scheme to meet
the 1% BW of some reference scheme (in this case, the five-point
scheme [13]). The RCEs were calculated before 1% BW values
were rounded. The last column in Table 2 shows the change in the
RCEs obtained over the optimal counterparts. Note that the RCE
for a given ε is independent of the frequency [13] The RCE has
been calculated via ν̂(ωk(|ξh|, θ), θ) [13], but it is equally (and
more easily) calculated using ν̂(ξh), since, ultimately, the mea-
sure is independent of the frequency.

It can be seen that in every optimised scheme there is a sig-
nificant BWE and change in the RCE (the ∆RCE) over the opti-
mal counterpart. It is interesting to note that often the optimised
scheme is relatively far from the optimal counterpart in the α pa-

rameter space, as seen by the values of ‖∆α‖. The wave speed
errors are plotted in Fig. 13. In Fig. 11, the relative wave speed
for the worst-case direction in each optimised scheme is plotted
as a function of temporal frequencies after normalising for com-
putational densities. An improvement over the optimal counter-
parts is clear from a comparison of Figs. 6 and 9 to Figs. 13,
and from a comparison of Fig. 10 to Fig. 11. The RCEs of the
optimised schemes are also significantly higher than nine-point
schemes. They are also higher than a fourth-order accurate im-
plicit nine-point scheme presented in [13], which had a RCE of
12.3, and some are higher than another optimised implicit nine-
point scheme, which had a RCE of 41.9 [13].

The simulations presented previously were repeated for some
of the optimised schemes, presented in Fig. 12. The approximated
solutions in Fig. 12 maintain coherent wave fronts, moreso than
the optimal fourth-order schemes. It is interesting to note that the
relative wave speed is greater than unity for mid-range frequencies
(also apparent from Fig. 11), so the wave fronts in the approxi-
mated solutions are a bit more advanced than in the exact solution.

A few details are worth noting about the optimised schemes.
First, from the data in Table 2 it seems that adding the set Ω5 does
not effectively increase the 1% BW over the first 17-point scheme
(to go to the second 21-point scheme), and likewise for the first
21-point scheme (to go to the 25-point scheme). In fact, the α pa-
rameters do not change significantly and α5 remains close to zero,
although the optimisation might not have found a better scheme, if
one exists. The schemes presented here are not guaranteed to per-
tain to global maxima, since the search space is not well studied
nor understood yet.

Second, the criterion that was used to disregard certain stencils
in Section 3 is by no means a general rule of thumb. See [15] for
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Table 2: Parameters for optimised schemes
Scheme α1 α2 α3 α4 α5 λ 1% BW BWE ‖∆α‖ RCE ∆RCE
5-point 1.000 - - - - 0.707 0.194π - - 1.00 -
9-point iso. 0.666̄ 0.333̄ - - - 0.866 0.288π - - 3.24 -
9-point IWB 0.500 0.500 - - - 1.000 0.309π - - 4.00 -

13-point #1 0.948 0.298 −0.246 - - 0.726 0.605π 0.199π 0.141 30.1 21.1
13-point #2 0.586 0.509 - - −0.095 0.923 0.659π 0.186π 0.043 38.8 24.5
17-point #1 0.660 0.494 - −0.154 - 0.891 0.756π 0.245π 0.082 58.9 40.6
17-point #2 0.493 0.492 0.102 - −0.087 1.005 0.707π 0.250π 0.380 48.1 35.1
21-point #1 0.591 0.532 0.077 −0.200 - 0.931 0.805π 0.258π 0.116 71.0 48.8
21-point #2 0.661 0.498 - −0.187 0.028 0.894 0.763π 0.243π 0.122 60.3 41.2
25-point 0.601 0.532 0.067 −0.209 −0.009 0.925 0.806π - - 71.2 -

some schemes with stencils that do not include Ω2 yet still have
good dispersion and achieve sixth-order accuracy. Optimisation
may reveal interesting schemes using the stencils that were left out.

Finally, and most importantly, the optimised schemes presented
here do not explicitly satisfy fourth-order accuracy conditions, so
they are only second-order accurate. Higher-order accuracy, in the
traditional sense, is not necessary to effectively minimise numeri-
cal dispersion over a wide range of wavenumbers. However, sten-
cils that lead to higher-order accuracy should also lead to interest-
ing schemes through optimisation (this was also found in [13] for
some nine-point implicit schemes). A spectral-like accuracy, such
as the one used here [13] and those used in other studies [15,23] is
probably more appropriate for audio applications.

5. CONCLUSIONS

Fourth-order accurate explicit FD schemes for the 2-D wave equa-
tion employing special cases of a 25-point stencil on a square grid
have been presented. Optimisation was performed in order to min-
imise wave speed error over a wide range of frequencies while tak-
ing into account computational densities. New FD schemes have
been identified that offer better computational efficiency than 9-
point schemes on the square lattice in terms of minimising one
percent wave speed error up to some critical frequency.

Future work will focus on conducting perceptual tests that es-
tablish critical perceptual thresholds for wave speed error, in or-
der to identify the most suitable FD scheme for audio applications
(some preliminary tests have been conducted [24]). Another major
area for future work will be to develop boundary conditions, be-
yond the simple fixed type, that can be coupled to these schemes
and similar 3-D schemes [23] so that they may be used for room
acoustics simulations.

6. REFERENCES

[1] R. Courant, K. Friedrichs, and H. Lewy, “Über die par-
tiellen differenzengleichungen der mathematischen physik,”
Mathematische Annalen, vol. 100, no. 1, pp. 32–74, 1928.

[2] R. M. Alford, K. R. Kelly, and D. M. Boore, “Accuracy of
finite-difference modeling of the acoustic wave equation,”
Geophysics, vol. 39, no. 6, pp. 834–842, 1974.

[3] S. A. van Duyne and J. O. Smith III, “Physical model-
ing with the 2-D digital waveguide mesh,” in Proc. Int.
Computer Music Conf. (ICMC), Tokyo, Japan, 1993.

[4] D. T. Murphy and D. M. Howard, “Digital waveguide mesh
topologies in room acoustics modelling,” in Proc. Digital
Audio Effects (DAFx), Verona, Italy, 2000.

0 0.5 1

0

0.2

0.4

0.6

0.8

1

 

 

−0.2

−0.1

0

0.1

0.2

Figure 12: Snapshots from simulation. û(t,x) at 0.03 ms, 1.5 ms,
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