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In psycholinguistic studies using error rates as a response measure, response times (RT) are most often ana-
lyzed independently of the error rate, although it is widely recognized that they are related. In this paper we
present a mixed effects logistic regression model for the error rate that uses RT as a trial-level fixed- and
random-effect regression input. Production data from a translation–recall experiment are analyzed as an ex-
ample. Several model comparisons reveal that RT improves the fit of the regression model for the error rate.
Two simulation studies then show how the mixed effects regression model can identify individual partici-
pants for whom (a) faster responses are more accurate, (b) faster responses are less accurate, or (c) there
is no relation between speed and accuracy. These results show that this type of model can serve as a useful
adjunct to traditional techniques, allowing psycholinguistic researchers to examine more closely the relation-
ship between RT and accuracy in individual subjects and better account for the variability which may be pres-
ent, as well as a preliminary step to more advanced RT–accuracy modeling.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Response time and accuracy are both common dependentmeasures
in experimental psycholinguistics and cognitive psychology. Most
often these two variables are analyzed separately, with the implicit
(and untested) assumption that they represent two independent re-
sponse measures, though they issue from the same underlying process
or processes. However, the existing literature shows that they are often
not statistically independent of each other, and moreover the relation-
ship is sometimes complex, and subject to individual differences. Since
RT and accuracy are variables derived from the same decision process
with an unknown and dynamic criterion, it seems conceptually difficult
to regard them as independent variables, and ideally, statistical models
of RT and accuracy should reflect this (Fitts, 1966; Pachella & Fisher,
1969; Pachella & Pew, 1968; Pew, 1969; Ratcliff, 1985; Ratcliff &
Hacker, 1981; Ratcliff & Rouder, 1998; Wickelgren, 1977). Many re-
searchers consider qualitatively whether a tradeoff between RT and ac-
curacy is present in their data, at least at the level of group or condition
averages. Indeed, this represents an additional “researcher degree of
freedom” in the analysis of many data sets (Simmons, Nelson, &
Simonsohn, 2011), because researchers can choose whether to empha-
size either the results of the RT or the error analysis in support of their
claims, when in fact, the two are often not independent sources of ev-
idence. However, even when a tradeoff is not present, an accurate

model of the relationship between RT and accuracy may improve the
statistical analysis of a given data set. Recent work in psychometrics
by Loeys, Rosseel, and Baten (2011), building on earlier work by Van
der Linden (2007), has shown how to construct a joint linear mixed ef-
fects model for the RT–accuracy relation using a Bayesian approach.
The present paper provides a simplified mixed effects model that can
be used as a building block for these more elaborate analyses. We
argue that classifying individual subjects' relationship between error
rate and RT, as well as the group-level pattern, is an important first
step in data analysis that can offer critical insights for common psycho-
linguistic paradigms.

Broadly speaking, there may be one of three (simple) relationships
between the time it takes for participants to respond, and the probabil-
ity that they make an error on a given trial. First, it can be that themore
accurate subjects are, the earlier they respond (or, equivalently, with
decreasing accuracy they respond later). In this situation lower error
rates and earlier RTs both indicate better performance in some sense.
This means that participants are not trading response time for accuracy.

A second type of relationship is for subjects to become more accu-
rate at the expense of response time. That is, the more accurate sub-
jects are, the slower they respond. This is more commonly known
as a speed–accuracy tradeoff, and this pattern is particularly problem-
atic when two or more experimental conditions are to be compared. If
participants are more accurate but also later in one condition com-
pared to another, one must entertain the possible explanation that
there is not a simple effect of condition on accuracy or RT, but rather
a more complex effect of condition on the RT–accuracy relation. This
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does not invalidate RT or accuracy as response measures, but
depending on the magnitude and direction of the tradeoff, it can be
difficult to draw conclusions about a dataset.

Finally, there might be no systematic relationship between RT and
accuracy. In this case, a curve relating accuracy to RT will be essentially
flat. Although there are important exceptions, this relationship appears
to be the most commonly-assumed scenario for psycholinguistics,
cognitive psychology and cognitive neuroscience researchers, at least
implicitly, because it is currently the most commonly accepted practice
for the analysis of RTs and errors to be presented as if the effects are
independent of each other. However, it is still relatively rare for re-
searchers to formally test whether this is the case.

In all three of these scenarios, the relationship between accuracy
and RT can be defined at either the subject level or the trial level of
analysis. At the level of subject averages, some subjects may be faster
as well as more accurate, while others may be faster only when they
are less accurate, or there may be no systematic relationship between
average RT and average accuracy. At the trial level the relation is de-
fined between the probability of responding correctly on an individu-
al trial and the individual trial RT, rather than the average accuracy
versus average RT. These two levels of analysis need not have the
same relation. Even if it is the case that (on average) fast subjects
are not any more likely to be more accurate, it can be the case that
each subject shows a systematic relation between RT and accuracy
around their individual subject-level averages. This important dis-
tinction between these two levels of analysis is discussed in more de-
tail in Appendix B.

Besides the three possibilities described above, another reason the
relationship between RT and accuracy is complex is that it is not al-
ways a linear relationship, in the sense of a straight line. When partic-
ipants are making relatively many errors or relatively few errors, they
may still take a short or a long amount of time to respond. That is,
large differences in response time may correspond to relatively
small changes in proportion correct (and vice versa). The probability
of responding correctly or incorrectly is constrained between 0 and
1, but the time taken to respond in a task is typically constrained
only by instructions or a response deadline, if at all. The result of
this is that often the RT–accuracy relation has the form of a
curve, and it is not well modeled using ordinary linear regression,
without transforming the variables in some way. This RT–accuracy
curve can, however, be modeled with logistic regression as we will
outline below.

In sum, the relationship between accuracy and RT, when present,
is sometimes not a simple linear function, and there are multiple
levels to the relation. Most studies treat accuracy and RT as indepen-
dent response measures, or arrange the experimental situation so
that participants have a relatively high accuracy rate. However, in
cases where participants have relatively low or relatively high accura-
cy, small changes in accuracy can correspond to large differences in
response time.

1.1. RT–accuracy tradeoff functions

The notion that people can trade response time for accuracy in any
task has been well-documented (Fitts, 1966; Garret, 1922; Hick,
1952; Ollman, 1966; Pachella & Pew, 1968; Pew, 1969; Schouten &
Bekker, 1967; Wickelgren, 1977; Woodworth, 1899). At the heart of
the problem is the fact that individual participants respond per an un-
known internal criterion that is likely to be dynamic over time. Thus,
participants can trade the speed of response for accuracy of response
based on unobservable changes or differences in internal criterion. In
order to study the timecourse of information processing, it is there-
fore more informative to obtain a full RT–accuracy function for an in-
dividual performing a given task, of which an RT would yield only one
point in time. Wickelgren (1977) outlines various experimental proce-
dures to derive the function (payoffs, deadlines, instructions, response

binning or partitioning, and lastly the application of response signals)
and argues that the only way to prevent speed–accuracy tradeoff is to
use the specialized response-signal interruption paradigm (Reed,
1973, 1976; Schouten & Bekker, 1967). Unfortunately, the specialized
design and the procedure needed to implement such a paradigm are
not always feasible, nor desirable to many researchers. Furthermore,
the analysis strategies are specialized — requiring special designs or
statistical estimation techniques. For example, there are limitations
as to the interpretation of partitioned responses, and often problems
with sparse data in early bins of short reaction times— seeWickelgren
(1975),Wickelgren (1977) and Schouten and Bekker (1967). Here, we
advocate a simpler approach to diagnosingwhether there is a tradeoff,
or not, between RT and accuracy in a given dataset, without the appli-
cation of specialized designs or procedures. Our aim is to give the user
a straightforward and simple method for assessing the statistical rela-
tionship between RT and accuracy in a dataset — our approach is ag-
nostic regarding the model of the underlying decision process that
leads to performance and to the particular relationship between the
two variables. However, we note that our analysis approach shares
the same core assumptions seen in the extensive literature on compu-
tational and theoretical models of two-alternative forced-choice deci-
sion processes (e.g., Ratcliff, 1978; Ratcliff, Gomez, & McKoon, 2004;
Ratcliff & McKoon, 2008) — namely that response time and perfor-
mance are inextricably linked, that the relationship between the two
must be included in any statistical model of the data, and that the for-
mer and the latter points are crucial for interpretation of the data. Note
that the existence of any computational and/or statistical relationship
(in our case, only the latter) between RT and accuracy in no way im-
plies that changes in RT cause changes in accuracy, or vice versa, if
RT is modeled as a function of accuracy.

An important observation to make is that both response time and
accuracy can be modeled as random effects in the sense that a typical
sample of response times or response choices will have a statistical
distribution. This distribution can depend strongly on the particular
subject who has been sampled. If this is the case, then at the level of
individual trials of an experiment, there should be a strong relation-
ship between the response time and the response choice because
the same subject variability is affecting both, but is independent
of other subjects. That is, RTs should be informative about ac-
curacy at the trial level because both dependent measures will reflect
individual variation in participants. At the same time, there may also
be a systematic relation between RT and accuracy at the group level.
The next section describes our approach to modeling RT as a regres-
sion input at these multiple levels.

1.2. Linear and generalized linear mixed effects models

In this paper we will model the proportion response as a function
of RT, where the RT enters the model as either a fixed and/or a ran-
dom effect. This is analogous to the situation in many datasets
where the performance outcome variable y is binary. Examples in-
clude correct/error response, present/absent decisions about a stimu-
lus, recalled/not-recalled in a memory experiment, or fluent/disfluent
in a production experiment. All of these examples share the essential
characteristic that the response y takes on one of two values. This sit-
uation is different from a response measure like RT, because the bina-
ry response is not accurately modeled as a Gaussian distribution at
the trial level (e.g., in cases where the response is actually distributed
as a binomial). In logistic regression (see Jaeger, 2008 for an introduc-
tion, also Jaeger, Graff, Croft, & Pontillo, 2011; Quené & van den Bergh,
2008), we instead model the probability that response = 1 for some
regression input x in terms of the inverse logit: Pr(y = 1|x) =
exp(βx)/(1 + exp(βx)) where x is parameterized with the coeffi-
cients β to represent the effect of experimental variables, as well as
variables like RT. Here, we use the inverse logit because usually one
wants to go from a calculated coefficient in our model to proportions,
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and this is easier to define in terms of the inverse logit. Rather than a
straight-line relationship between the regression input and the out-
come, with the inverse logit we have a curve. The curvature towards
0 and 1 with increasing (decreasing) values of x is necessary to keep
the probability estimate bounded between 0 and 1, and in our case, to
model the RT–accuracy curve. Logistic regression can be performed
using generalized linear regression models (GLMs), or as in the pres-
ent paper, mixed effects GLMs.

Mixed effects linear models are one type of model appropriate for
data from repeated measures experiments because the data from
these experiments is grouped by subject (and/or other factors like
item). See Baayen, Davidson, and Bates (2008), as well as Quené
and van den Bergh (2004, 2008) for introductions, and also Kliegl,
Masson, and Richter (2010a) and Kliegl, Wei, Dambacher, Yan, and
Zhou (2010b) for some recent applications. Data from the same sub-
ject will tend to be correlated because there are subject characteris-
tics (e.g., response criterion, response bias) which differ between
subjects but are the same for a given subject. Ordinary linear models
do not model these grouping characteristics and as a result underes-
timate the variation in the data. The mixed effects logistic regression
is an extension of the linear mixed effects approach for logistic re-
gression (see Bates, 2010 and Jaeger, 2008 for an introduction).

Mixed effects GLMs can be used to model multiple grouping vari-
ables, and in addition, correlations present in the random effect vari-
ation. In the present paper, this is used to model subject-specific
deviations from the fixed effect estimates of the response, with re-
spect to RT. That is, RT can be modeled both as a fixed effect (a rela-
tionship estimated over all participants), and as a subject-specific
deviation from the fixed effect estimate. For example, if the response
variable is a measure of whether a participant correctly recalled an
item on a given trial, the trial-specific RT can be used to account for
this response both as a fixed effect (a general effect of RT, modeled
as the slope of a regression of RT on the probability of recall) and a
random effect (a subject-specific deviation in the slope of the
recall–RT function).

A recent approach to this problem by Loeys et al. (2011) uses a
joint modeling approach which models both RT and accuracy with
shared covariance between the random effects for RT or accuracy
for either subjects or items. In this approach, there are correlation pa-
rameters that link the covariance of the subject- or item-random ef-
fects, and these correlations can be used to assess the relationship
between RT and accuracy. Although it was not presented in Loeys et
al. (2011), it would be relatively straightforward to extend their ap-
proach to assess interactions between random effect deviations
from a condition effect in the correlation between RT and accuracy,
to address some of the analysis goals outlined in the present paper.
However, as the authors themselves emphasize, their approach is rel-
atively labor intensive with respect to modeling, as it requires setting
up a Bayesian model for the joint relation and simulation modeling of
the response. While there are many reasons to prefer this approach, it
can also be useful to adopt a simpler mixed effects approach in the
initial stages of an analysis, before constructing a full Bayesian
model (see, e.g., Gelman & Hill, 2007, p. 345). Second, as we will
show below, the approach of Loeys et al. (2011) is a model of random
effect variation over subjects (or items). This corresponds, roughly
speaking, to a relationship between mean RT and mean accuracy, cal-
culated over subjects (or items). However, as is well known, it is also
possible that accuracy and RT are related over trials within an individ-
ual subject (or item). The classical literature on speed–accuracy
tradeoff, for example, has emphasized the accuracy–RT relation with-
in individual subjects, for example. The goal of this paper, therefore, is
to present a simplified approach to modeling accuracy based on using
RT as both a fixed and a random effect regression input that will allow
researchers to characterize the accuracy–RT relation at both subject
(or item) and trial levels. Note that one could also model RT as a func-
tion of accuracy (e.g., Rabbitt, 1967) — here we concentrate on

accuracy as a function of RT to simplify the presentation, and because
(informally) it appears that the generalized linear (mixed) model is
not yet widely considered for single-trial accuracy data. Our approach
has the added benefit that it may also appeal to researchers in a
given field who do not wish to make detailed cognitive assumptions
in their choice of procedure or analysis technique (see earlier discus-
sion of the SAT approach). This would apply particularly for research
topics where detailed knowledge about cognitive states or processes
is not available, but nevertheless a technique that can assess how
RT and accuracy are related to each other is required.

2. Example data analysis 1

The example data set that we use to illustrate the technique advo-
cated in this paper is a memory recall task using spoken words.
Spanish-native (L1) speakers learned to translate Spanish nouns
into Basque (L2) in a translation learning task in which both accuracy
and response time were measured. The central result was an effect of
translation direction such that memory performance was greater
with L2-cued responses, compared to L1-cued responses. That is, sub-
jects could translate more accurately when they translated from the
newly-learned Basque into their native Spanish, compared to transla-
tion from Spanish into Basque. This effect has been demonstrated
previously (e.g., Kroll & Stewart, 1994), but in most cases the RT
and accuracy have been analyzed independently of each other,
following the usual conventions for analyzing this type of data. The
purpose of the analysis presented here is to investigate at the trial
level how each participant's response time was related to the rate of
recall in order to illustrate how our proposed analysis would work
with an actual data set. Simulations of other scenarios with simple
RT–accuracy relations are presented in the sections following the
example data set.

2.1. Method

2.1.1. Participants
Twenty-two native speakers of Spanish with no or very little

(self-reported) knowledge of Basque took part in the experiment.
All participants reported learning Spanish from their parents and
reported that they did not know Basque, and that they had not
taken courses to learn Basque. All participants were right-handed
and had no previous history of hearing or neurophysiological impair-
ment. Participants were given monetary compensation for the exper-
iment. As part of the informed consent procedure, all participants
were informed about the instructions and task in the experiment
and signed a consent form before taking part. The experiment was
conducted in Spanish and all of the task instructions and administra-
tive materials were in Spanish.

2.1.2. Materials and design
The materials consisted of recordings of spoken Spanish nouns

and spoken Basque nouns. The recordings were made using two flu-
ent female Basque–Spanish bilingual speakers in their mid-20s,
using a high quality microphone directly digitized to disk at a sam-
pling rate of 44 kHz via software (‘Praat’, see Boersma & Weenink,
2005).

The spoken word pairs were arranged in six pairs per list. Partici-
pants first heard each pair in an encoding phase, and then were pro-
vided with one member of the pair (either Basque, or Spanish) as a
probe in a retrieval phase. The encoding and retrieval practice repeat-
ed three more times each list, so that participants had four attempts
at recall total for each pair. In all there were eight lists for a total of
48 pairs.

The nouns were chosen so that the length and phonological com-
plexity of each pair would be comparable. Several databases were
used to find the word pairs. The ‘apertium’ translation database
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(Tyers, Sánchez-Martínez, Ortiz-Rojas, & Forcada, 2010) was used to
define an initial set of Basque–Spanish noun translations. Next,
using the citation-form phonological transcription in lexical data-
bases for Spanish (‘B-Pal’, Davis & Perea, 2005) and Basque (‘E-Hitz’,
Perea et al., 2006), pairs of nouns were chosen such that: the mem-
bers of each pair had the same number of syllables but distinct initial
phonemes, the Levenshtein distance between the CV transcriptions of
each pair was less than three, the Levenshtein distance between the
phonological transcriptions was greater than three (to avoid cog-
nates), the absolute difference in log10 frequency was less than 2,
both the Spanish and Basque frequencies-per-million were greater
than 5, both the Spanish and the Basque words had a noun
part-of-speech tag, and that the absolute difference in the number
of phonemes was not greater than 1. Note that the lexical databases
for Spanish and Basque are compiled from written sources. From
this set of 250 pairs, the candidate words were reviewed and selected
by a Basque–Spanish bilingual to be included in the final experimen-
tal lists.

During the stimulus recordings, the Spanish nouns were produced
with a preceding definite article (e.g., ‘la casa’, the house), appropriate
for the noun, in order to be comparable to the Basque nouns, which
require a following article (e.g., ‘etxea’, the house). Note that Spanish
has nominal gender agreement, so that the article agrees in gender
with the noun, while Basque does not have nominal gender agree-
ment. Basque nouns ending in ‘-a’ (so-called organic ‘-a’) were not
used in the stimulus lists so that the length of the Spanish and Basque
terms would be comparable after addition of the article.

2.1.3. Procedure
The experiment was carried out as part of an MEG (magnetoen-

cephalography) recording, and for this reason a cued-response task
was used. Muscle artifact generated during speech can disrupt MEG
recordings, and therefore subjects were asked to provide their trans-
lations in the retrieval phase in response to a visual and auditory cue
(a question mark ‘?’ and a brief tone) presented 1 s after the offset of
the retrieval probe.

Participants first heard the six pairs of words in an encoding phase
in which each word was presented successively (1 s ISI between the
offset of one word and the start of the next within a pair; 3 s ISI be-
tween the offset of one word pair, and the onset of the next pair).
Then there was a brief interval in which participants were asked to
blink their eyes 10 times in a row (this was done to reduce artifact
in the MEG recordings, and to provide a counting task between
encoding and retrieval). After the blink period, a retrieval phase
started in which participants heard the retrieval cues and provided
their (spoken) responses. They first heard a brief (0.1 s) warning
tone and saw a fixation cross (‘+’) for 1 s, followed by the presenta-
tion of a recall cue word. For 1 s after the onset of the recall cue, the
fixation remained on screen, and then was replaced by a question
mark (‘?’) which remained on screen for 5 s or until the experimenter
coded the response. When the experimenter coded the response, a
green square flashed on the screen for 0.25 s to indicate a correct re-
sponse, or a red square (also for 0.25 s) for an incorrect response. The
next retrieval cue trial followed immediately after the feedback.
There were six retrieval trials, corresponding to the word pairs
heard during encoding. The retrieval trials alternated between either
Spanish or Basque within each retrieval test. That is, for a given set of
six retrieval probes in a retrieval test, all of the probes were Spanish
or they were all Basque. The retrieval trials were arranged so that
two of the tests were in Spanish, and two were in Basque for each
list. The position of the Spanish- or Basque-cue for retrieval in a
given list was assigned to each participant via a Latin square so that
the Spanish and Basque cued trials occurred an equal number of
times across lists and participants at each of the four retrieval practice
positions per list. The order of the word pairs during encoding, and
the order of the retrieval cues during retrieval was randomized

individually for each participant with the constraint that words that
ended the encoding phase would not be immediately tested in the re-
trieval phase (to avoid a recency effect). There were different random
orders for each encoding and retrieval phase.

There was no special emphasis to provide a speeded response in
the task. Subjects were told to try to produce the correct translation
after the response cue appeared, or to produce ‘supongo’ (don't
know) if they could not recall the translation. Participants were
asked to produce the full form of the nouns, including the articles,
in the same form that they heard them during encoding. The response
interval was 5 s, and the response time was measured from the pre-
sentation of the cue.

2.2. Results

Fig. 1 shows the average proportion correct recall for each partic-
ipant as a function of (quantiles of) log response time to produce the
translations. This corresponds (approximately) to the trial-level rela-
tionship between recall and RT in each participant. In nearly all par-
ticipants, recall performance was higher for the Basque-cued trials
compared to the Spanish-cued trials. Also, in nearly all participants
(in both conditions), recall performance was higher when response
times were faster. That is, the trend of response accuracy with in-
creasing log RT is generally negative. Below, several models of this re-
lation are evaluated.

First, however, we show the relationship at the level of subjects.
Fig. 2 shows the average proportion recall as a function of log response
time over subjects, for the two translation directions. This differs from
Fig. 1 because each participant contributes only two points corre-
sponding to their average level of performance (one for Basque-
cued, and another for Spanish-cued trials). At this level of analysis,
in contrast to Fig. 1, there is a relatively weak relationship between re-
call accuracy and RT, if any. For the data shown in Fig. 2, for the
Basque-cued trials the Pearson product–moment correlation was
r = −0.190, and the 95% CI −0.566, 0.252 included zero. For the
Spanish-cued trials, the correlation was slightly higher, r = −0.366,
but the 95% CI−0.682, 0.066 also included zero. There was also no ev-
idence of a difference between these correlations (t = −0.17). Thus,
therewas no strong evidence of a relationship between recall accuracy
and RT at the level of subject averages.

At the level of trials within a subject, Fig. 1 suggests that response
time is statistically related to recall performance. However, the pro-
portions shown in Fig. 1 are aggregated over trials that are grouped
into RT-quantiles. To estimate the effects of translation direction
and RT using single trial data, a mixed effects logistic regression
model of the response was constructed for these factors using partic-
ipant and item as random effects. The models were fit using a
Laplacian approximation to the log-likelihood. Four different models
were compared, all with the same fixed effects specification (simple
effects for translation direction and RT, and the interaction of transla-
tion direction and RT, using “treatment coding” in R). Table 1 shows
the different random effects specifications. The models only differed
with respect to the random effects formulation for log response time.

The first model m0 included simple random effects for item and
subject, as well as a translation–direction random effect for subjects
and a correlation parameter for the intercept and the condition ran-
dom effects. There was no random effects model term for log RT.
This model was intended to capture individual variation in the effect
of translation direction, as well as any correlation between the
(subject-specific deviation in the) overall level of recall and the size
of (subject-specific deviation in) the translation–direction effect.

The second model m1 included all of the random effects of model
m0, and in addition, included a subject random effect slope for (cen-
tered) log RT, uncorrelated with the other random effects in the
model. This model was intended to capture individual variation in
the recall–RT relation beyond the population-level effect of RT on
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recall, but it does not model whether the individual variability in
the RT–recall relation is related to the individual variability of the
translation–direction effect.

The third model m2 was like model m1, but in addition included a
correlation parameter between the (centered) log RT (slope) random
effect and the other subject random effects in the model (Pinheiro &
Bates, 2000; and Section 3.2 of Bates, 2010). This model is intended to
model relationships like m1, but in addition capture correlations in
the subject-level variability. Here, the different random effects in the
model, like the subject-specific deviation from the group-level estimate
of proportion correct, or the subject-specific variation in the slope of the
RT–recall function, are modeled with a correlation coefficient between
the random effects. Correlation coefficients like this could, for example,
diagnose whether subjects who have higher level of performance also
have a stronger relation between RT and recall.

The final modelm3was like modelm2, but also included an inter-
action term between translation direction and (centered) log RT in
the subject random effects specification. This model was intended to
capture individual differences in the slope of the RT–accuracy func-
tion that are modulated by the direction of recall (i.e., condition-
specific recall–RT slopes in each subject).

Table 2 shows the fixed effect parameter estimates (logit probabil-
ity) for the four models. All of the fixed effect contrasts in the models
were statistically significant (all z values for greater than 5), and as
Table 2 shows, the four models gave similar effect estimates: there
were main effects of both translation direction and log RT, as well
as an interaction between the two, consistent with Fig. 1. Taking the
inverse logit for model m2, for example, at the mid-point of log RT
(log 1 s), there was almost 40% improvement in recall when

translating in the easier condition (L2 to L1; 0.900) compared to the
more difficult condition (L1 to L2; 0.504). However, this effect was
strongly related to RT: for a one-unit increase (approximately 2.7 s)
from the mid-point in log RT, recall declined substantially in both
the easier condition (L2 to L1; 0.552) and even more so in the harder
condition (L2 to L1; 0.254). Thus, subjects found it easier to translate
from Basque to Spanish, and they were more successful when doing
so if their answers were relatively fast compared to when their an-
swers were slow. This is not consistent with speed–accuracy tradeoff,
for example, because the parameter estimates indicate that partici-
pants were less accurate when they were slower.

A comparison of the four different models also indicated that there
was substantial individual variation in the relationship between RT
and the response, as suggested by Fig. 1. Table 3 shows the sequential
model comparison statistics comparing the three models that includ-
ed log RT in the random effects specification as well as the null model
(m0) without log RT as a random effect. The comparison among these
models indicates strong support for the choice of either model m1 or
m2 over the null model, indicating that the slope of the recall–RT
function differs between subjects.

Model m1 included a simple additive slope of RT, while model m2
also included correlations between the random effect deviations. Be-
cause the fixed effect parameter estimates are largely similar for these
twomodels, it seems more parsimonious to choose modelm1 as a rep-
resentation of the data. The value ofmodelm2 is showing that the effect
estimates nevertheless remain similar to the simpler model when
modeling the correlations between individual differences.

The last model (m3) does not show a better fit than either m1 or
m2, suggesting that there was not a great deal of individual variation
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Fig. 1. Proportion recall as a function of (log) response time for each participant in the translation–recall experiment. Dotted lines (+) correspond to translation from Basque to
Spanish, and solid lines (○) correspond to translation from Spanish to Basque. The proportion recall for each participant was calculated at quantiles of the (log) RT over participants.
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in the recall–RT slope depending on translation direction. Recall that
the fixed effect parameter estimates showed an interaction for partic-
ipants as a whole. The comparatively small improvement in fit for the
last model indicates that there was not a great deal of subject-specific
variation for this interaction.

2.3. Discussion

The results showed that translation from L2 to L1wasmore success-
ful than translation from L1 to L2 in these early adult Spanish learners of
Basque. Second, there was a substantial (negative) relationship be-
tween the recall response time and the probability of recall: the faster
subjects responded, the more likely they produced the correct transla-
tion. Finally, models of the data that included individual variation of
this recall–RT relationship better fit the data than a model that did not
include the individual variation. Also, the individual variation in the

modulation of the recall–RT curve by translation direction was not
substantial.

The general effect of translation direction is consistent with previ-
ous studies of already-established bilingual participants (Kroll &
Stewart, 1994). The results suggest a similar asymmetry in Spanish
learners of Basque who are just beginning to learn Basque. The anal-
ysis presented here also shows that this asymmetry in recall rate
holds when (statistically) controlling for the effects of response
time in each subject. In previous studies of this effect, response time
and accuracy have been treated as independent variables in the anal-
ysis, as is commonly done for this type of data.

With respect to the analysis technique we are advocating in this
paper, the analyses presented here showed that response time was
negatively related to the rate of recall for participants as a whole.
This negative relationship could be observed in most all individual
participants (e.g., see Fig. 1). The statistical models of the recall showed
that the parameter estimates for the effect of translation direction
remained largely similar when controlling for individual variation in
the recall–RT relation at the trial level. The combination of the graphical
display of the recall–RT relation along with the statistical model(s) for
the relationship was effective in ruling out the possibility that the recall
asymmetry in translation direction could be explained by either
group-level or individual-level variance in recall response times. The
graphical display indicated the approximate trend of the recall–RT rela-
tion in individual subjects, and the statisticalmodels provided estimates
of the slope of the recall–RT function, as well as a statistical assessment
of the individual variance of this relationship.
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Fig. 2. Average proportion recall as a function of average (log) response time for each participant in the translation–recall experiment. Crosses correspond to translation from
Basque to Spanish, and circles correspond to translation from Spanish to Basque.

Table 1
Model formulas for the four different random effects specifications. Translation direc-
tion (dir) and log RT (rt) are used as regression inputs for the response (rsp), using
subject (sbj) and item (itm) labels as random effects.

Model Formula

m0 rsp ~ dir*rt + (1 + dir|sbj) + (1|itm)

m1 rsp ~ dir*rt + (1 + dir|sbj) + (0 + rt|sbj) + (1|itm)

m2 rsp ~ dir*rt + (1 + dir + rt|sbj) + (1|itm)

m3 rsp ~ dir*rt + (1 + dir*rt|sbj) + (1|itm)
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There is one caveat with respect to the languages used in this exper-
iment that should be emphasized. An additional difference between the
L1 → L2 and the L2 → L1 translation directions is that the Spanish
nouns required retrieval of a gender-appropriate determiner, to be pro-
duced before the (Spanish) noun. The Basque nouns required a deter-
miner to be produced after the (Basque) noun, but no gender
agreement. Thus the L2 → L1 translation direction required both formu-
lating agreement and the initial production of the determiner, while the
L1 → L2 translation direction required only the production of the article
following the noun. Thus, it cannot be excluded that the difference in re-
call rates between the translation directions is due to this difference in
requirement for the agreement and order of the article, and not the re-
trieval difficulty for the phonological form that participants experienced
with the newly-learned Basque term, or that both factors play a role. The
L1 → L2 translation direction is predicted to be more challenging for
participants by the retrieval difficulty account, but the agreement and
order account predicts that the L2 → L1 translation direction should be
more difficult. Note, however, for the purposes of the present paper, it
is not necessary to decide between the retrieval-difficulty and article-
order and agreement explanations. The purpose of the analysis pre-
sented herewasmainly to showhow response time is related to retrieval
success. To illustrate how this modeling approach might reveal the un-
derlying statistical relationship (if any) between RT and accuracy on
the individual and group levels, we turn to several simulated data sets,
as well as a comparison of the joint modeling strategy described by
Loeys et al. and the present approach.

3. Simulation 1

In the data analysis presented in Section 2, including RT as a regres-
sion input did not change the fundamental formof the translation direc-
tion effect. Individual subjects showed a negative relationship between
accuracy and RT. In the case of an empirical data set as above, the pa-
rameters are estimated from the data to infer features of the underlying
distributions, but the true model remains unknown. Another useful ap-
proach to understanding the behavior of the analysis technique that we
advocate is simulation (see Appendix 1). The value of the simulation is
in demonstrating how the logistic regression identifies patterns that are
previously set up. In this section, we simulate data to model a more dif-
ficult case in which there is a tradeoff between accuracy and speed. The
simulation here will try to show whether this method will identify
when a tradeoff is present in the data of individual subjects.

The RT data for each subject, RT, is simulated from N(0,1), a normal
distribution with a mean of zero and standard deviation of 1. This rep-
resents a range of (standardized and log-transformed) RTs. A subject-
specific intercept term (b0) for the accuracy–speed curve is drawn

from N(2,1). This represents the subject-specific accuracy at when
the (standardized) average RT is 0, or the midpoint of the
accuracy-speed curve. To model a negative relationship between the
distribution of the RTs and the accuracy, a subject-specific slope for
the speed–accuracy curve, b1, is drawn from N(−b0,1). Note that
the mean of this distribution is the intercept term multiplied by −1.
Thus, when b0 is positive, therewill be a tradeoff relationship between
accuracy and RT (the more accurate subjects are, the slower they are).
When b0 is negative, a positive relationship between accuracy and RT
will be present. The responses, a vector including 0 s and 1 s, are gen-
erated using the inverse logit function with b0 + b1 ∗ RT

Three generalized linear mixed models are fit to the data. The first
(m0) includes a population-level regression input RT for the accuracy
(Rsp), but no individual RT parameter for each participant. Models m1
and m2 include individual parameters for each participant. The first
model, m1 includes independent parameters for intercept and slope,
whilemodelm2 includes correlated parameters for intercept and slope.

As Table 5 shows, the fixed-effect parameter estimates for the inter-
cept and slope, and the correlation between the fixed-effect parameter
estimates (r = −0.659), of the best-fittingmodel are closer to the values
specified for the simulation than either the model with no RT-slope
random-effect (r = −0.177), or the model with independent slope
and intercept terms for each subject (r = −0.091), see also Table 4.
Note in particular the (population-level) correlation between the fixed
effect slope and average RT is estimated to be r = −0659 for the best
fitting model, but was close to zero in the other two models. This is a
better account of the simulated data because the simulation was set up
precisely to induce a negative correlation at the population level.

Fig. 3 below shows the fit of the best-fitting model for each simulat-
ed subject. For each simulated participant, the RTs were binned into
four quantiles and the average proportion correct was calculated.
These averages are plotted as small circles, superimposed on the
population-level estimate (blue line, the same in the plot of each sub-
ject), and the estimated subject-level accuracy–speed curve from the
best-fitting model (red-line, different for each participant). The green
reference line is the average accuracy of each simulated participant at
RT = 0. The plot shows, as was specified in the simulation, most of
the speed–accuracy curves are negative, such that slower RTs are asso-
ciatedwith lower proportion correct responses (most of the lines have a
negative slope, with one of the simulated subjects (s15) having a posi-
tive relationship).Moreover, participantswith a higher level of accuracy
tend to have a stronger (negative) relationship with speed.

This simulation has shown that the generalized linear mixed effects
model can capture negative and positive relationships between accuracy
and speed, at both population and individual subject levels. The model can
estimate this relation ineachparticipant to identifyparticipantswhopresent
a different pattern from the population-level average.

Table 3
Model comparison of four models for the example dataset. The AIC is smallest for
model m2, and the BIC is smallest for m1.

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m0 8 3684.13 3734.48 −1834.06
m1 9 3667.29 3723.94 −1824.65 18.83 1 0.0000
m2 11 3663.64 3732.88 −1820.82 7.65 2 0.0218
m3 15 3667.76 3762.17 −1818.88 3.88 4 0.4225

Table 4
Model comparison of the three models for the first simulation. The deviance scores
(AIC ) is smaller for model m2.

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m0 3 1336.11 1352.25 −665.06
m1 4 1130.33 1151.84 −561.16 207.78 1 0.0000
m2 5 1125.78 1152.67 −557.89 6.55 1 0.0105

Table 2
Fixed effect parameter estimates (standard errors in parentheses) for the four models for the example data set. β0 corresponds to the logit probability of correctly translating from
L1 to L2 (at the mid-point of log RT). β1 is the simple effect of translating from L2 to L1 (i.e., the difference from β0). β2 is the relationship of recall probability with log RT for the
translation from L1 to L2. The interaction term β1β2 models the change in the slope (from β2) of the recall–RT function when translating from L2 to L1.

Model β0 β1 β2 β1β2

m0 0.0862 (0.2180) 2.1814 (0.1358) −1.8260 (0.1270) −1.3344 (0.2072)
m1 0.1409 (0.2264) 2.1768 (0.1326) −1.9824 (0.1976) −1.2702 (0.2063)
m2 0.1565 (0.2336) 2.1862 (0.1323) −1.9919 (0.2074) −1.2895 (0.2065)
m3 0.1519 (0.2274) 2.2209 (0.1217) −2.0094 (0.2099) −1.3488 (0.2539)
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4. Simulation 2

The first simulation attempted to capture the general relation
between speed and accuracy for a situation where there was no com-
parison between two conditions. The next simulation (see Appendix
C) adds a comparison between conditions.

The simulation is set up similar to the first, except that there are
additional variables, x2 and b2. The variable x2 is the condition iden-
tifier for each subject, taking on values 0 and 1 according to a binomi-
al distribution with mean of 0.5. The variable b2 models the subject-
specific condition effect. In this simulation, we have set up b2 to be
identified with b1, so that in the model, there is no condition “effect”
by itself except for random deviations drawn from a distribution N(−
b1,1). This distribution has a mean that takes on the value of the RT–
accuracy slope in each subject. That is, b2 is a random variable that is
directly correlated with the subjects' RT–accuracy tradeoff.

Fig. 4 below shows the fit of the best-fitting model for each simu-
lated subject. As in the first simulation, for each simulated participant,
the RTs were binned into four quantiles and the average proportion
correct was calculated. These averages are plotted as either small

circles or crosses for two different conditions, superimposed on the
population-level estimate (thin lines, the same in the plot of each
subject), and the estimated subject-level accuracy–RT curve from
the best-fitting model (thick lines, different for each participant).
The plot shows that most of the RT–accuracy curves are negative,
such that slower RTs are associated with lower proportion correct re-
sponses. In some simulated subjects however, there is relatively little
relationship between RT and accuracy. There is also a condition differ-
ence which varies in magnitude between subjects. Please note that
we have also conducted a similar simulation including both item
and subject random effects in the model, similar to the approach of
Loeys et al. (2011), but the conclusions are not substantially different
than the present simulation so we omit it here to conserve space.

In the simplestmodel (m0),with a subject randomeffect but no ran-
dom slope for RT, the main effects of Condition and RT are estimated to
be approximately −2, as specified in the simulation. The fixed effect
correlation between Condition and RT parameters was estimated to
be r = 0.120. For the model with independent random effects (m1),
the fixed effect correlation was estimated to be r = 0.060. However,
the more complex model (m2) which accounted for the correlation of
Condition and RT (r = 0.791) proved to be a better model of the data
than the models that do not have the correlation (Table 7).

For models 1 and 2 (m1, m2), the effect of Condition and RT is of a
similarmagnitude, and near the value of−2 specified in the simulation
(Table 6).

Themodel comparison shows that themodel with the correlated ran-
dom effects of Condition and RT has lower deviance than the other
models: either the baseline model with no random effect for RT (m0) or
the model with independent random effects for Condition and RT (m1).

Table 5
Parameter estimates for the three models in the first simulation. The values in paren-
theses indicate standard errors.

Model β0 β1

m0 1.7131 (0.2488) −1.3531 (0.0887)
m1 2.2960 (0.3293) −2.0808 (0.4074)
m2 2.3914 (0.3650) −2.1943 (0.4419)

Fig. 3. Data (NSubject = 16,NTrial = 100) from the first simulation. For each (simulated) participant, the horizontal green line indicates the intercept (the response at RT = 0), the blue
line is the estimated fixed effect (logistic) regression line for the response on the standardized RT, and the red line is the estimated deviation from the fixed effect response. Note
that the fixed effect estimate is the same for each participant. The simulated participants are ordered by the intercept estimated by a simple glm. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this article.)
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5. Discussion and conclusions

In this paper, we have modeled the proportion correct response as a
function of fixed- and random-effect RT in an attempt to improve the
estimate of the response probability by accounting for trial-to-trial co-
variation between the probability of a response and the RT. The exam-
ple data set showed that including RT as a regression input resulted in
a model that better fits the data. In addition, models that incorporated
random-effect variability in the response–RT function better captured
the data than those that did not. Two simulations were then presented
to show specific cases of how the mixed effects GLM framework can be
used to identify the general pattern of the response–RT function over
subjects (simulation 1) and the effect of an experimental manipulation
on the response–RT function (simulation 2).

Existing work within psychometrics has shown how a more general
approach to jointlymodeling RT and accuracy may be effective in model-
ing the random effects relation between RT and accuracy (Loeys et al.,
2011; Van der Linden, 2007). The goal of the present paper is to make it
easier to adopt this approach, by presenting a simplified (generalized)
linear mixed effects model for the RT–accuracy relation as a building
block for more elaborate models. For the relationship between the two
approaches, please see the comparisons in Table 3 of Loeys et al.
(2011). As Gelman and Hill (2007) suggest, it can be useful to first con-
struct simplified models as a preliminary to fully Bayesian approaches
to linear mixed effects problems. The reason for this is that currently
Bayesian models, despite their numerous advantages, require more
set-up and evaluation than non-Bayesian approaches. Similarly, if

concerns are raised about potential RT–accuracy trade-offs in a given
data set, the approach advocated here may serve to quickly identify
whether evidence of such a relationship exists, and if so, determine its
form. This can be supplemented by a graphical approach of binning re-
sponses by quantiles of RT in each participant, as described for example
byWickelgren (1977). These analyses can be used to decide whether a
more complex modeling effort is warranted. For example, if a given
dataset does not show a fixed effect estimate consistent with a tradeoff,
and there is little random-effect variability relating the experimental
condition effects to RT, then there would be few reasons to expect
that a more elaborate model of the relationwould reveal a tradeoff, un-
less more elaborate assumptions are adopted.

One difference between the models we have presented here, and
that of Loeys et al., is that we specified both a fixed effect for RT on the
probability of a response, as well as random-effect deviations from this
fixed effect. The advantage of this fixed effect parameterization is that
the population-level slope relating RT to accuracy can be examined di-
rectly. When there is an interaction between condition effects and the
RT regression input, as in the example data analysis presented above,
the relative magnitude of the interaction with respect to the general
RT–accuracy relation can be assessed. This is in contrast to the
random-effects only model specification, which furnishes the correla-
tion of the random effect deviations (for either subjects or items), but
it does not provide a slope parameter. In future work, it should be possi-
ble to extend the approach advocated by Loeys et al. to include both
fixed and random effect RT–accuracy relations.

Fig. 4. Data (NSubject = 16,NTrial = 100) from the second simulation. See the main text for further description.

Table 6
Parameter estimates for the three models in the second simulation. The values in
parentheses indicate standard errors.

Model β0 β1 β2

m0 −0.0816 (0.2454) −1.6260 (0.3812) −1.5295 (0.0909)
m1 −0.0679 (0.2655) −2.1299 (0.5189) −2.0749 (0.3593)
m2 −0.0593 (0.2762) −2.2753 (0.5839) −2.1520 (0.4006)

Table 7
Model comparison of the three models for the second simulation. The deviance scores
(AIC and BIC) are smallest for model m2.

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m0 5 1408.53 1435.42 −699.27
m1 6 1265.95 1298.22 −626.98 144.58 1 0.0000
m2 7 1255.23 1292.87 −620.62 12.72 1 0.0004

91D.J. Davidson, A.E. Martin / Acta Psychologica 144 (2013) 83–96

image of Fig.�4


Based on the results presented here, we argue that it would be
helpful in future studies using a binomial response to consider includ-
ing response time as a fixed- and a random-effect input in a mixed ef-
fects regression model. Doing so can help uncover whether there are
systematic relationships between reaction time and accuracy in a given
dataset, both on the individual and group level, and whether this re-
lationship plays a role in explaining differences between experimen-
tal conditions. Note also that to explore this relationship further, one
may also model RT as a function of accuracy, or take a joint modeling
approach as suggested by Loeys et al. (2011).

Appendix A. Code for simulation 1

First the data-generating function is parameterized to generate a
random distribution of subjects. The size of the data set is set up,
and the RTs and responses are sampled and assigned to a data
frame. Also subject identifiers are assigned. Note that in this simula-
tion, there is no experimental condition — it is simply attempting to
simulate a negative relationship between accuracy and speed.

In the modeling part of the simulation, three mixed model GLMs are
set up.

Appendix B. Relationship between the lmer and JAGS models

Although the glmer model that we propose (which wewill term here
an “individual”model) and themodel proposed by Loeys et al. (2011) are

both mixed effects models, there are a number of important differences.
The Loeys et al. model is fit within a Bayesian inference scheme using
BUGS or JAGS. Most importantly, there is a joint model for both the RT
and the response outcome, with a shared covariance matrix. The off-
diagonal elements of the covariance matrix capture the correlation be-
tween the random effect intercepts of the RT with the random effect in-
tercepts of the response. In the model they proposed, this correlation
holds over participants (or items), and not within participants.

In contrast, the glmermodel for the response outcomewe propose is
estimated not with simulation of distributions of the parameters, but
rather point estimates of the statistics. Instead of a joint model with a
shared covariancematrix,we include RT as a regression input for the re-
sponse. Importantly, the trial-level RT regression input captures the cor-
relation between the response and the RT within a given subject (or
within a given item). It does not capture the correlation of intercepts
over participants.

The last point is significant for evaluating whether one or the other
model is appropriate for a given dataset, so it is perhaps worth outlining
further. Fig. 5 shows a schematic illustration of twodifferent types of cor-
relations between accuracy and RT. Fig. 5A shows five participants with
the same average accuracy, but a range of different average RTs, from
low to high (note that the RTs are centered at zero). Within each partic-
ipant, however, the slope of the curve relating accuracy to RT is positive.
This illustrates how each participant can have a correlation between ac-
curacy and RT, but at the same time across the participants there is no
systematic relationship between average accuracy and average RT.

In contrast, Fig. 5B shows five participants with increasing average
accuracy (the intercept of each line runs from low to high accuracy)
as a function of average RT. Within each participant, however, there
is no systematic relationship between accuracy and RT at the level
of individual trials — the slope of each line is zero. Fig. 5B shows
that it is possible to have a relationship between accuracy and RT at
the level of averages, even if there is no relationship within each subject
at the level of the trials. The relationships shown in Fig. 5A and B illus-
trate two different situations both well suited for mixed effects models
because of the ability of these models to capture hierarchies. Note that
this figure is an idealization, as hierarchical relationships like this can

A B

Fig. 5. Schematic illustration of (A) a correlation between accuracy and RT within par-
ticipants (over trials), but no correlation over participants, and (B) a correlation be-
tween average accuracy and average RT over participants but no correlation within
participants over trials.
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hold for items aswell as subjects, and there can be considerable hetero-
geneity among subjects (or items) in a dataset from an experiment.

We set up a simulation corresponding to the scenarios shown in
Fig. 5 to illustrate the relationship between the mixed effects model
we are proposing in this paper to the model proposed by Loeys et
al. (2011). The section following shows the R code for generating the
two samples, a JAGS model like the Loeys et al. (2011) approach for
the joint distribution of the response and the RT, and finally example
glmer mixed effects models for the two cases. In these two simula-
tions, we concentrate on the comparison of trial-level versus
subject-level accuracy–RT relations with respect to intercepts. Unlike
simulation 1 described above, we do not simulate a correlation be-
tween the intercept and slope, mainly to simplify the simulations.

This simulation was arranged using a multivariate normal distribu-
tion,more in linewith thework of Loeys et al. (2011), but similar in struc-
ture to the simulation 1 in the previous section. As in simulation 1, we are
attempting to simulate a relationship between accuracy and RT for a sam-
ple of subjects, but without any contrast between experimental condi-
tions or other variables. It is convenient to use the multivariate normal
distribution here to illustrate two situations. In the first (genData1), the
twomeans characterizing the bivariate normal are themselves not corre-
latedwith eachother— they are twodraws fromN(0,1). However, the co-
variance matrix is parameterized so that there is a high positive
correlation between the two distributions. The correlation parameters
sigma[11,2] and sigma[2,1] are set to 0.9.

In the second situation genData2, the two means are arranged to be
dependent on each other. Themeanof the second variable of the bivariate
normal distribution is drawn from a normal distribution with the mean
set to be the same as the draw from thefirst normal distribution. The var-
iance of the second variable is set to be half that of the first (i.e.,
rnorm(1,mn[1],0.5) in order to simulate a relatively high (positive) cor-
relation. To arrange a negative correlation, the second mean could be
defined as rnorm(1,mn[1],0.5), for example.

Given these two data-generating functions, two simulated data-
sets are arranged. The first has a high correlation between accuracy
and RT within participants at the level of trials, but a low correla-
tion of the average accuracy and average RT across participants.
The second has the opposite structure: a low correlation within
participants at trial level, but a high correlation across participants.

The Loeys–JAGS model is set up as a joint model for the simulated
RT and response outcomes. The syntax of the JAGS model is similar to
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that of R, but in fact, the JAGS code is run via a program external to R,
using the package rjags.

Within R, after loading the package “rjags”, the simulation is ini-
tialized and run via jags.model and coda.samples. The model that was
defined above has been saved to a text file named “model.txt”. The
summary of the output of tcoda.samples will show quantiles of the
posterior distribution of the parameters listed in “variable.names”.

Below, the samples are drawn for the model using the data from
the first simulated dataset (d1). The samples can be obtained similar-
ly for the second simulated dataset (d2).

The glmer models for the response are set up as in the previous
Appendix Section A. To simplify matters, we restrict our attention to
models with (m1) and without (m0) RT as a random effect regression
input.
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For the comparison to the Loeys–JAGS model, a model with aver-
age RT as the regression input can be formulated as follows:

Appendix B.1. Results

For the dataset representing the situation shown in Fig. 5A, the
glmer model with the random effect RT regression input (m1) was
clearly better than the model without this regression input (m0):

For the dataset corresponding to Fig. 5B, there was no strong evi-
dence for one glmer model over the other:

Note we cannot formulate exactly the model that Loeys et al. use
with glmer because it is not set up to estimate a shared covariance ma-
trix between jointly estimated equations. This is one advantage of the
JAGS (or BUGS) language that flexible models like this can be formulat-
ed. However, we can approximate the relationship they model by in-
cluding mean RT as a regression input for the binary response. The
sign of the coefficient for this regression inputwill provide some indica-
tion of the type of correlation to be expected in the Loeys–JAGS model.
We used this approach for the two simulation datasets. Please see Loeys
et al. (2011) for a more complete comparison.

For the example dataset 1, with the correlation within but not over
subjects, the glmer-estimated coefficient for the average RT was
0.020, SE = 0.191, z = 0.104, and p = 0.917. The magnitude of this
coefficient is small relative to its standard error, indicating that
there is little systematic relationship between the average RT and
the response. We already know from the results presented above
that in this dataset the single trial RT was an effective regression
input of the single-trial response. This suggests that this dataset

would be better modeled with the glmer approach we advocate
here, in order to explore the relationship between accuracy and RT
within individual subjects, rather than across subjects.

The joint Loeys–JAGS model for this dataset was estimated using
four chains of 20 K samples following a burn-in of 5 K samples.
Fig. 6A shows a plot of the mean random effects across the four
chains. As expected from the simulation parameters, the estimated
correlation of the random effects of subject for the RT and the re-
sponse was near zero for this dataset: ρ = 0.0214, and the confidence
interval included zero: 95% CI = −0.483, 0.521. The chains for all pa-
rameters appeared to have mixed well based on plots of the samples
and other diagnostic plots, and all the parameter densities were
unimodal with relatively symmetric distributions.

For the example dataset 2, with the simulated positive relationship
over averages (but not within participants), the glmer-estimated coeffi-
cient for average RT corresponded to 0.775, SE = 0.080, z = 9.659, and
p b 2e − 16. The positive value of the coefficient, along with its rela-
tively large magnitude compared to its standard error, provides an im-
portant clue that in this dataset there is a positive relationship between
average RT and the response. This is the type of relation that the JAGS
joint approach is set up to model.

The same JAGSmodel as the first dataset was estimated with similar
simulation parameters. Fig. 6B shows the mean random effects across
the four chains. As the plot shows, there was a strong positive correla-
tion of the random effect subject intercepts for the RT and the response
for this dataset, as expected from the simulation: ρ = 0.957, and the
confidence interval excluded zero 95% CI = 0.801, 0.996. As with the
previous JAGS model, the chains appeared to have mixed well, and
most all parameter estimates had symmetric, unimodal distributions.
Notably, however, the parameter estimate for ρwas somewhat skewed
because its estimate is near a boundary, but nevertheless all chains
converged to a similar value.

The two simulations in this appendix, along with the associated
different statistical models, have shown the relative effectiveness of
the joint modeling approach and the individual modeling approaches.
In a situation where the accuracy–RT relation holds mainly over aver-
ages across participants (or items), the joint approachmay be a better

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m0 3 2187.02 2203.15 −1090.51
m1 4 2010.89 2032.40 −1001.44 178.13 1 0.0000

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

m0 3 2206.10 2222.23 −1100.05
m1 4 2205.27 2226.78 −1098.63 2.83 1 0.0923

A B

Fig. 6. Plots of (A) the relationship between accuracy and RT for thefirst simulateddataset,
(with no correlation over participants), and (B) the second simulated dataset, with a
strong positive correlation between average accuracy and average RT over participants
but no correlation within participants over trials. The individual points in both plots are
the estimated random effects taken from the same JAGS model.
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approach, due to the flexibility of the JAGS modeling language. In a
situation where the relation holds mainly within and not across par-
ticipants (or items), the individual approach may be better suited for
exploring variability within a dataset. Note that it is currently not
possible to combine the joint and individual approaches within
JAGS by including RT itself as a regression input for the response
(and vice versa, use the response as a regression input for RT), as
JAGS prohibits simultaneous equations parameterized this way.
Please note that there are other potential approaches to this modeling
problem. Future work could explore other analysis approaches, in-
cluding (as suggested to us by an anonymous reviewer), approaches
that allow a multivariate response (MCMCglmm; see Hadfield, 2010).
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