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DERIVED DEFORMATIONS OF SCHEMES

J.P.PRIDHAM

Abstract. We introduce a new approach to constructing derived deformation
groupoids, by considering them as parameter spaces for strong homotopy bialgebras.
This allows them to be constructed for all classical deformation problems, such as defor-
mations of an arbitrary scheme, in any characteristic.

Introduction

In [Pri2], the theory of simplicial deformation complexes (SDCs) was expounded as a
means of governing deformation problems, giving an alternative to the theory of differential
graded Lie algebras (DGLAs). The main advantages of SDCs over DGLAs are that they
can be constructed canonically (and thus for a wider range of problems), and are valid in
all characteristics.

In [Man2], Manetti showed that given a DGLA, or even an SHLA, governing a deforma-
tion problem, it is possible to define an extended deformation functor. The approach in
this paper can almost be regarded as opposite to this — we try, for any deformation prob-
lem, to define an extended deformation functor with a geometric interpretation, meaning
that the functor still parametrises geometric objects. We then see how this functor can be
recovered from the SDC governing the problem.

Since almost all examples of SDCs come from monadic and comonadic adjunctions,
in Section 4 we look at how to extend deformation groupoids in these scenarios. For a
monad ⊤, the solution is to look at the strong homotopy ⊤-algebras, as defined by Lada
in [CLM]. The idea is that the monadic axioms are only satisfied up to homotopy, with
the homotopies satisfying further conditions up to homotopy, and so on. This approach
allows us to define a quasi-smooth extended deformation functor associated to any SDC,
with the same cohomology.

Using the constructions of §§3.2 and 3.3, we describe extended deformations of mor-
phisms and diagrams (giving new results even for the problems in [Pri2]). This defines
cohomology of a morphism in any such category, giving a variant of Van Osdol’s bico-
homology ([VO]). One consequence is that the space describing extended deformations
of the identity morphism on an object D is just the loop space of the space of extended
deformations of D.

The structure of the paper is as follows. Sections 1 and 2 are introductory, summarising
results from [Pri5] and properties of monads and comonads, respectively. Section 3 reprises
material from [Pri2] on SDCs, and includes new results constructing SDCs associated to
diagrams in §§3.2 and 3.3. The key motivating examples of deformations of a scheme are
described in Examples 3.8 and 3.19.

Section 4 then gives the construction of the derived deformation functor (Definition 4.4),
together with a simplified description of derived deformations of a morphism (Proposition
4.9), and the characterisation of derived deformations of an identity morphism as a loop
space (Proposition 4.10).

This work was supported by Trinity College, Cambridge; and by the Engineering and Physical Sciences
Research Council [grant number EP/F043570/1.

http://arxiv.org/abs/0908.1963v1
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In [Pri2], it was shown that SDCs are equivalent to N0-graded DGLAs in characteristic
0, in such a way that the associated deformation groupoids are equivalent. In Appendix
A, we show how that the associated extended deformation functors are also equivalent.
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1. Derived deformation functors

With the exception of §1.4, the definitions and results in this section can all be found
in [Pri5]. Fix a complete local Noetherian ring Λ, with maximal ideal µ and residue field
k.

1.1. Simplicial Artinian rings.

Definition 1.1. Let CΛ denote the category of local Artinian Λ-algebras with residue field
k. We define sCΛ to be the category of Artinian simplicial local Λ-algebras, with residue
field k.

Definition 1.2. Given a simplicial complex V•, recall that the normalised chain complex
N s(V )• is given by N s(V )n :=

⋂
i>0 ker(∂i : Vn → Vn−1), with differential ∂0. The sim-

plicial Dold-Kan correspondence says that N s gives an equivalence of categories between
simplicial complexes and non-negatively graded chain complexes in any abelian category.
Where no ambiguity results, we will denote N s by N .

Lemma 1.3. A simplicial complex A• of local Λ-algebras with residue field k and maximal
ideal m(A)• is Artinian if and only if:

(1) the normalisation N(cotA) of the cotangent space cotA := m(A)/(m(A)2+µm(A))
is finite-dimensional (i.e. concentrated in finitely many degrees, and finite-
dimensional in each degree).

(2) For some n > 0, m(A)n = 0.
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Proof. [Pri5] Lemma 1.16 �

As in [Gro], we say that a functor is left exact if it preserves all finite limits. This is
equivalent to saying that it preserves final objects and fibre products.

Definition 1.4. Define Sp to be the category of left-exact functors from CΛ to Set. Define
cSp to be the category of left-exact functors from sCΛ to Set.

Definition 1.5. Given a functor F : CΛ → Set, we write F : sCΛ → Set to mean
A 7→ F (A0) (corresponding to the inclusion Sp →֒ cSp).

1.2. Properties of morphisms.

Definition 1.6. As in [Man1], we say that a functor F : CΛ → Set is smooth if for all
surjections A→ B in CΛ, the map F (A) → F (B) is surjective.

Definition 1.7. We say that a map f : A→ B in sĈΛ is acyclic if πi(f) : πi(A) → πi(B)
is an isomorphism of pro-Artinian Λ-modules for all i. f is said to be surjective if each
fn : An → Bn is surjective.

Note that for any simplicial abelian group A, the homotopy groups can be calculated
by πiA ∼= Hi(NA), the homology groups of the normalised chain complex. These in turn
are isomorphic to the homology groups of the unnormalised chain complex associated to
A.

Definition 1.8. We define a small extension e : I → A → B in sCΛ to consist of a
surjection A→ B in sCΛ with kernel I, such that m(A) · I = 0. Note that this implies that
I is a simplicial complex of k-vector spaces.

Lemma 1.9. Every surjection in sCΛ can be factorised as a composition of small exten-
sions. Every acyclic surjection in sCΛ can be factorised as a composition of acyclic small
extensions.

Proof. [Pri5] Lemma 1.23. �

Definition 1.10. We say that a morphism α : F → G in cSp is smooth if for all small
extensions A ։ B in sCΛ, the map F (A) → F (B) ×G(B) G(A) is surjective.

Similarly, we call α quasi-smooth if for all acyclic small extensions A → B in sCΛ, the
map F (A) → F (B) ×G(B) G(A) is surjective.

Lemma 1.11. A morphism α : F → G in Sp is smooth if and only if the induced morphism
between the objects F,G ∈ cSp is quasi-smooth, if and only if it is smooth.

Proof. [Pri5] Lemma 1.31. �

1.3. Derived deformation functors.

Definition 1.12. Define the scSp to be the category of left-exact functors from sCΛ to
the category S of simplicial sets.

Definition 1.13. A morphism α : F → G in scSp is said to be smooth if

(S1) for every acyclic surjection A → B in sCΛ, the map F (A) → F (B) ×G(B) G(A) is
a trivial fibration in S;

(S2) for every surjection A → B in sCΛ, the map F (A) → F (B) ×G(B) G(A) is a
surjective fibration in S.

A morphism α : F → G in scSp is said to be quasi-smooth if it satisfies (S1) and

(Q2) for every surjection A→ B in sCΛ, the map F (A) → F (B)×G(B)G(A) is a fibration
in S.
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Definition 1.14. Given A ∈ sCΛ and a finite simplicial set K, define AK ∈ CΛ by

(AK)i := HomS(K × ∆i, A) ×HomSet(π0K,k) k.

Definition 1.15. Given F ∈ scSp, define F : sCΛ → S by

F (A)n := Fn(A∆n
).

For F ∈ cSp, we may regard F as an object of scSp (with the constant simplicial
structure), and then define F as above.

Lemma 1.16. A map α : F → G in cSp is smooth (resp. quasi-smooth) if and only if the
induced map of functors α : F → G is smooth (resp. quasi-smooth) in scSp.

Proof. [Pri5] Lemma 1.36. �

The following Lemma will provide many examples of functors which are quasi-smooth
but not smooth.

Lemma 1.17. If F → G is a quasi-smooth map of functors F,G : sCΛ → S, and K → L
is a cofibration in S, then

FL → FK ×GK GL

is quasi-smooth.

Proof. This is an immediate consequence of the fact that S is a simplicial model category,
following from axiom SM7, as given in [GJ] §II.3. �

The following lemma is a consequence of standard properties of fibrations and trivial
fibrations in S.

Lemma 1.18. If F → G is a quasi-smooth map of functors F,G : sCΛ → S, and H → G
is any map of functors, then F ×G H → H is quasi-smooth.

Definition 1.19. A map α : F → G of functors F,G : CΛ → S is said to be smooth (resp.
quasi-smooth, resp. trivially smooth) if for all surjections A ։ B in CΛ, the maps

F (A) → F (B) ×G(B) G(A)

are surjective fibrations (resp. fibrations, resp. trivial fibrations).

Proposition 1.20. A map α : F → G of left-exact functors F,G : CΛ → S is smooth if

and only if the maps Fn
αn−−→ Gn of functors Fn, Gn : CΛ → Set are all smooth.

Proof. [Pri5] Proposition 1.39. �

Proposition 1.21. If a morphism F
α
−→ G of left-exact functors F,G : sCΛ → S is such

that the maps

θ : F (A) → F (B) ×G(B) G(A)

are surjective fibrations for all acyclic small extensions A→ B, then α : F → G is quasi-
smooth (resp. smooth) if and only if θ is a fibration (resp. surjective fibration) for all
small extensions A→ B.

Proof. [Pri5] Proposition 1.63. �

Definition 1.22. We will say that a morphism α : F → G of quasi-smooth objects of scSp
is a weak equivalence if, for all A ∈ sCΛ, the maps πiF (A) → πiG(A) are isomorphisms
for all i.
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1.4. Quotient spaces.

Definition 1.23. Given functors X : sCΛ → S and G : sCΛ → sGp, together with a right
action of G on X, define the quotient space by

[X/G]n = (X ×G WG)n = Xn ×Gn−1 ×Gn−2 × . . . G0,

with operations as standard for universal bundles (see [GJ] Ch. V). Explicitly:

∂i(x, gn−1, gn−2, . . . , g0) =





(∂0x ∗ gn−1, gn−2, . . . , g0) i = 0;
(∂ix, ∂i−1gn−1, . . . , (∂0gn−i)gn−i−1, gn−i−2, . . . , g0) 0 < i < n;

(∂nx, ∂n−1gn−1, . . . , ∂1g1) i = n;

σi(x, gn−1, gn−2, . . . , g0) = (σix, σi−1gn−1, . . . , σ0gn−i, e, gn−i−1, gn−i−2, . . . , g0).

The space [•/G] is also denoted W̄G, and is a model for the classifying space BG of G.
Note replacing WG with any other fibrant cofibrant contractible G-space EG will give the
same properties.

Lemma 1.24. If G : sCΛ → sGp is smooth, then W̄G is smooth.

Proof. For any surjection A → B, we have G(A) → G(B) fibrant and surjective on π0,
which by [GJ] Corollary V.6.9 implies that W̄G(A) → W̄G(B) is a fibration. If A→ B is
also acyclic, then everything is trivial by properties of W̄ and G. �

Remark 1.25. Observe that this is our first example of a quasi-smooth functor which is not
a right Quillen functor for the simplicial model structure. The definitions of smoothness
and quasi-smoothness were designed with W̄G in mind.

Lemma 1.26. If X is quasi-smooth, then so is [X/G] → W̄G.

Proof. This follows from the observation that for any fibration (resp. trivial fibration)
Z → Y of G-spaces, [Z/G] → [Y/G] is a fibration (resp. trivial fibration). �

Corollary 1.27. If X is quasi-smooth and G smooth, then [X/G] is quasi-smooth.

Proof. Consider the fibration X → [X/G] → W̄G. �

1.5. Cohomology and obstructions. Given a quasi-smooth morphism α : F → G in
scSp, there exist k-vector spaces Hi(F/G) for all i ∈ Z.

By [Pri5] Corollary 1.46, these have the property that for any simplicial k-vector space
V with finite-dimensional normalisation,

πm(F (k ⊕ V ) ×G(k⊕V ) {0}) ∼= H−m(F/G ⊗ V ),

where V 2 = 0 and

H i(F/G⊗ V ) :=
⊕

n≥0

Hi+n(F/G) ⊗ πn(V ).

If G = • (the one-point set), we write Hj(F ) := Hj(F/•).
We now have the following characterisation of obstruction theory:

Theorem 1.28. If α : F → G in scSp is quasi-smooth, then for any small extension

e : I → A
f
−→ B in sCΛ, there is a sequence of sets

π0(FA)
f∗
−→ π0(FB ×GB GA)

oe−→ H1(F/G ⊗ I)

exact in the sense that the fibre of oe over 0 is the image of f∗. Moreover, there is a group
action of H0(F/G⊗ I) on π0(FA) whose orbits are precisely the fibres of f∗.
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For any y ∈ F0A, with x = f∗y, the fibre of FA → FB ×GB GA over x is isomorphic
to ker(α : FI → GI), and the sequence above extends to a long exact sequence

· · ·
f∗ // πn(FB ×GB GA,x)

oe // H1−n(F/G ⊗ I)
∂e // πn−1(FA, y)

f∗ // · · ·

· · ·
f∗ // π1(FB ×GB GA,x)

oe // H0(F/G⊗ I)
−∗y // π0(FA).

Proof. [Pri5] Theorem 1.45. �

Corollary 1.29. A map α : F → G of quasi-smooth F,G ∈ scSp is a weak equivalence if
and only if the maps Hj(α) : Hj(F ) → Hj(G) are all isomorphisms.

Corollary 1.30. If α : F → G is quasi-smooth in scSp, then α is smooth if and only if
Hi(F/G) = 0 for all i > 0.

Proposition 1.31. Let X,Y,Z : sCΛ → S be left-exact functors, with X
α
−→ Y and Y

β
−→ Z

quasi-smooth. There is then a long exact sequence

. . .
∂
−→ Hj(X/Y ) → Hj(X/Z) → Hj(Y/Z)

∂
−→ Hj+1(X/Y ) → Hj+1(X/Z) → . . .

Proof. [Pri5] Proposition 1.61. �

1.6. Model structures.

Theorem 1.32. There is a simplicial model structure on scSp, for which the fibrations
are quasi-smooth morphisms, and weak equivalences between quasi-smooth objects are those
given in Definition 1.22.

Proof. This is [Pri5] Theorem 2.14. �

Thus the homotopy category Ho(scSp) is equivalent to the category of quasi-smooth
objects in scSp, localised at the weak equivalences of Definition 1.22.

Definition 1.33. Given any morphism f : X → Z, we define Hn(X/Z) := Hn(X̂/Z), for

X
i
−→ X̂

p
−→ Z a factorisation of f with i a geometric trivial cofibration, and p a geometric

fibration.

1.6.1. Homotopy representability.

Definition 1.34. Define the category S to consist of functors F : sCΛ → S satisfying the
following conditions:

(A0) F (k) is contractible.
(A1) For all small extensions A ։ B in sCΛ, and maps C → B in sCΛ, the map

F (A×BC) → F (A)×h
F (B)F (C) is a weak equivalence, where ×h denotes homotopy

fibre product.
(A2) For all acyclic small extensions A ։ B in sCΛ, the map F (A) → F (B) is a weak

equivalence.

Say that a natural transformation η : F → G between such functors is a weak equiva-
lence if the maps F (A) → G(A) are weak equivalences for all A ∈ sCΛ, and let Ho(S) be
the category obtained by formally inverting all weak equivalences in S.

Remark 1.35. We may apply the long exact sequence of homotopy to describe the homo-
topy groups of homotopy fibre products. If f : X → Z, g : Y → Z in S and P = X ×h

Z Y ,
the map θ : π0(P ) → π0(X)×π0(Z) π0(Y ) is surjective. Moreover, π1(Z, ∗) acts transitively
on the fibres of θ over ∗ ∈ π0Z.

Take v ∈ π0(P ) over ∗. Then there is a connecting homomorphism ∂ : πn(Z, ∗) →
πn−1(P, v) for all n ≥ 1, giving a long exact sequence

. . .
∂
−→ πn(P, v) → πn(X, v) × πn(Y, v)

f ·g−1

−−−→ πn(Z, ∗)
∂
−→ πn−1(P, v) . . . .
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Theorem 1.36. There is a canonical equivalence between the geometric homotopy category
Ho(scSp) and the category Ho(S).

Proof. This is [Pri5] Theorem 2.30. �

1.6.2. Equivalent formulations. If k is a field of characteristic 0, then we may work with
dg algebras rather than simplicial algebras.

Definition 1.37. Define dgCΛ to be the category of Artinian local differential N0-graded
graded-commutative Λ-algebras with residue field k.

Definition 1.38. Define a map A→ B in dgCΛ to be a small extension if it is surjective
and the kernel I satisfies I · m(A) = 0.

Definition 1.39. Define sDGSp to be the category of left exact functors from dgCΛ to S.

Definition 1.40. Say a map X → Y in sDGSp is quasi-smooth if for all small extensions
f : A→ B in dgCΛ, the morphism

X(A) → Y (A) ×Y (B) X(B)

is a fibration in S, which is moreover a trivial fibration if f is acyclic.

Definition 1.41. We will say that a morphism α : F → G of quasi-smooth objects
of sDGSp is a weak equivalence if, for all A ∈ sCΛ, the maps πiF (A) → πiG(A) are
isomorphisms for all i.

Proposition 1.42. There is a model structure on sDGSp, for which the fibrations are
quasi-smooth morphisms, and weak equivalences between quasi-smooth objects are those
given in Definition 1.41.

Proof. This is [Pri5] Proposition 4.12. �

Most of the constructions from sCΛ carry over to dgCΛ. However, there is no straight-
forward analogue of Definition 1.15.

Definition 1.43. Define the normalisation functor N : sCΛ → dgCΛ by mapping A to its
associated normalised complex NA, equipped with the Eilenberg-Zilber shuffle product
(as in [Qui]).

Definition 1.44. Define SpfN∗ : sDGSp → scSp by mapping X : dgCΛ → S to the
composition X ◦N : sCΛ → S. Note that this is well-defined, since N is left exact.

Theorem 1.45. SpfN∗ : sDGSp → scSp is a right Quillen equivalence.

Proof. This is [Pri5] Theorem 4.18. �

In particular, this means that SpfN∗ maps quasi-smooth morphisms to quasi-smooth
morphisms, and induces an equivalence RSpf N∗ : Ho(sDGSp) → Ho(scSp).

Now assume that Λ = k.

Theorem 1.46. Ho(sDGSp) is equivalent to the category of L∞-algebras localised at tan-
gent quasi-isomorphisms (as considered in [Kon]). This is also equivalent to the category
of DGLAs (see §A.1) localised at quasi-isomorphisms.

Proof. Combine [Pri5] Proposition 4.42 and Corollary 4.57. �
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2. Monads and comonads

2.1. Algebras and coalgebras.

Definition 2.1. A monad (or triple) on a category B is a monoid in the category of
endofunctors of B (with the monoidal structure given by composition of functors). A
comonoid (or cotriple) is a comonoid in the category of endofunctors of B.

The following is standard:

Lemma 2.2. Take an adjunction

A
G

⊤
//
E

F
oo

with unit η : id → GF and co-unit ε : FG → id. Then ⊤ := GF is a monad with
unit η and multiplication µ := GεF , while ⊥ := FG is a comonad, with co-unit ε and
comultiplication ∆ := FηG.

Definition 2.3. Given a monad (⊤, µ, η) on a category E , define the category E⊤ of
⊤-algebras to have objects

⊤E
θ
−→ E,

such that θ ◦ ηE = id and θ ◦ ⊤θ = θ ◦ µE.
A morphism

g : (⊤E1
θ
−→ E1) → (⊤E2

φ
−→ E2)

of ⊤-algebras is a morphism g : E1 → E2 in E such that φ ◦ ⊤g = g ◦ θ.

We define the comparison functor K : A → E⊤ by

B 7→ (UFUB
UεB−−−→ UB)

on objects, and K(g) = U(g) on morphisms.

Definition 2.4. The adjunction

A
U

⊤
//
E

F
oo ,

is said to be monadic (or tripleable) if K : D → E⊤ is an equivalence.

Examples 2.5. Intuitively, monadic adjunctions correspond to algebraic theories, such as
the adjunction

Ring
U

⊤
//
Set,

Z[−]
oo

between rings and sets, U being the forgetful functor. Other examples are k-algebras over
k-vector spaces, or groups over sets.

Definition 2.6. Dually, given a comonad (⊥,∆, ε) on a category A, we define the category
A⊥ of ⊥-coalgebras by

(A⊥)opp := (Aopp)⊥
opp

,

noting that ⊥opp is a monad on the opposite category Aopp. The adjunction of Lemma
2.2 is said to be comonadic (or cotripleable) if the adjunction on opposite categories is
monadic.

Example 2.7. If X is a topological space (or any site with enough points) and X ′ is the set
of points of X, let u : X ′ → X be the associated morphism. Then the adjunction u−1 ⊣ u∗
on sheaves is comonadic, so the category of sheaves on X is equivalent u−1u∗-coalgebras
in the category of sheaves (or equivalently presheaves) on X ′

A more prosaic example is that for any ring A, the category of A-coalgebras is comonadic
over the category of A-modules.
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2.2. Bialgebras. As in [VO] §IV, take a category B equipped with both a monad (⊤, µ, η)
and a comonad (⊥,∆, γ), together with a distributivity transformation λ : ⊤⊥ =⇒ ⊥⊤
for which the following diagrams commute:

⊤⊥
λ +3

⊤∆
��

⊥⊤

∆⊤
��

⊤⊥2 λ⊥ +3 ⊥⊤⊥
⊥λ +3 ⊥2⊤

⊤⊥
λ +3 ⊥⊤

⊤2⊥

µ⊥

KS

⊤λ +3 ⊤⊥⊤
λ⊤ +3 ⊥⊤2

⊥µ

KS

⊤⊥
λ +3

⊤γ �%
CC

CC
CC

C

CC
CC

CC
C

⊥⊤

γ⊤y� {{
{{

{{
{

{{
{{

{{
{

⊤

⊤⊥
λ +3 ⊥⊤

⊥.
η⊥

]e DDDDDDD

DDDDDDD ⊥η

9A
zzzzzzz

zzzzzzz

Definition 2.8. Given a distributive monad-comonad pair (⊤,⊥) on a category B, define
the category B⊤

⊥ of bialgebras as follows. The objects of B⊤
⊥ are triples (α,B, β) with

(⊤B
α
−→ B) an object of B⊤ and B

β
−→ ⊥B an object of B⊥, such that the composition

(β ◦ α) : ⊤B → ⊥B agrees with the composition

⊤B
⊤β
−−→ ⊤⊥B

λ
−→ ⊥⊤B

⊥α
−−→ ⊥B.

A morphism f : (α,B, β) → (α′, B′, β′) is a morphism f : B → B′ in B such that
α′ ◦ ⊤f = f ◦ α and β′ ◦ f = ⊥f ◦ β.

To understand how the data (⊤,⊥, η, µ, γ,∆, λ) above occur naturally, note that by
[VO] §IV or [Pri2] §2, these data are equivalent to a diagram

D
U

⊤
//

V

��

E
F

oo

V

��
A

G⊣

OO

U

⊤
//
B,

F
oo

G⊣

OO

with F ⊣ U monadic, G ⊢ V comonadic and U, V commuting with everything (although G
and F need not commute). The associated monad is ⊤ = UF , and the comonad ⊥ = V G.
Distributivity ensures that D ≃ E⊤ ≃ (B⊥)⊤ and D ≃ A⊥ ≃ (B⊤)⊥. In other words,
D ≃ B⊤

⊥.

Example 2.9. If X is a topological space (or any site with enough points) and X ′ is the
set of points of X, let D be the category of sheaves of rings on X. If B is the category of
sheaves (or equivalently presheaves) of sets on X ′, then the description above characterises
D as a category of bialgebras over B, with the comonad being u−1u∗ for u : X ′ → X, and
the monad being the free polynomial functor.

3. Constructing SDCs

Recall the definition of an SDC:

Definition 3.1. A simplicial deformation complex E• consists of smooth left-exact func-
tors En : CΛ → Set for each n ≥ 0, together with maps

∂i : En → En+1 1 ≤ i ≤ n
σi : En → En−1 0 ≤ i < n,

an associative product ∗ : Em × En → Em+n, with identity 1 : • → E0, where • is the
constant functor •(A) = • (the one-point set) on CΛ, such that:
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(1) ∂j∂i = ∂i∂j−1 i < j.
(2) σjσi = σiσj+1 i ≤ j.

(3) σj∂i =




∂iσj−1 i < j

id i = j, i = j + 1
∂i−1σj i > j + 1

.

(4) ∂i(e) ∗ f = ∂i(e ∗ f).
(5) e ∗ ∂i(f) = ∂i+m(e ∗ f), for e ∈ Em.
(6) σi(e) ∗ f = σi(e ∗ f).
(7) e ∗ σi(f) = σi+m(e ∗ f), for e ∈ Em.

From the viewpoint of homotopical algebra, there is a more natural way of characterising
the smoothness criterion for E•. Analogously to [GJ] Lemma VII.4.9, we define matching
objects by M−1E := •, M0E := E0, and for n > 0

MnE = {(e0, e1, . . . , en) ∈ (En)n+1 |σiej = σj−1ei ∀i < j}.

Proposition 3.2. The canonical maps σ : En+1 → MnE, given by e 7→
(σ0e, σ1e, . . . , σne), are all smooth, for n ≥ 0.

Proof. Since En is smooth, by the Standard Smoothness Criterion (e.g. [Man1] Proposition
2.17) it suffices to show that this is surjective on tangent spaces. The tangent space of
MnE consists of (n + 1)-tuples γi ∈ Cn(E) satisfying σiγj = σj−1γi, for i < j. For any
cosimplicial complex C•, there is a decomposition of the associated cochain complex as
Cn = Nn

c (C)⊕Dn(C), whereNn
c (C) = ∩n−1

i=0 kerσi, and Dn(C) =
∑n

i=1 ∂
iCn−1. Moreover

σ : Dn →Mn−1C is an isomorphism, giving the required surjectivity. �

Definition 3.3. Given an SDC E, recall from [Pri2] that the Maurer-Cartan functor
MCE : CΛ → Set is defined by

MCE(A) = {ω ∈ E1(A) : ω ∗ ω = ∂1(ω)}.

The group E0(A) acts on this by conjugation, and we define DefE(A) to be the groupoid
with objects MCE(A) and morphisms given by E0(A) via this action. We say that an
SDC governs a deformation problem if DefE is equivalent to the associated deformation
functor.

Definition 3.4. Recall that C•(E) denotes the tangent space of E•, i.e. Cn(E) = En(k[ǫ])
for ǫ2 = 0. This has the natural structure of a cosimplicial complex, by [Pri2], and we set
Hi(E) := Hi(C•(E)).

3.1. SDCs from bialgebraic structures.

Definition 3.5. Recall from [Pri4] that ∆∗∗ is defined to be the subcategory of the ordinal
number category ∆ containing only those non-decreasing morphisms f : m → n with
f(0) = 0, f(m) = n. We define a monoidal structure on this category by setting m⊗ n =
m + n, with

(f ⊗ g)(i) =

{
f(i) i ≤ m

g(i −m) + n i ≥ m,

for f : m → n.

Definition 3.6. As in [Pri4], define monoidal structures on Set∆∗∗ and S∆∗∗ by setting

(X ⊗ Y )n :=
∐

a+b=n

Xa ⊗ Y b,
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with operations given by

∂i(x⊗ y) =

{
(∂ix) ⊗ y i ≤ a
x⊗ (∂i−ay) i > a;

σi(x⊗ y) =

{
(σix) ⊗ y i < a
x⊗ (∂i−ay) i ≥ a.

The identity I is given by I0 = 1 and In = ∅ for n > 0.

Note that an SDC over Λ is a smooth left-exact functor from CΛ to the category of
monoids in Set∆∗∗ .

Assume that we have a diagram

D
U

⊤
//

V

��

E
F

oo

V

��
A

G⊣

OO

U

⊤
//
B,

F
oo

G⊣

OO

of homogeneous (i.e. preserving fibre products, but not the final object) functors from CΛ

to Cat as in [Pri2] §2 (i.e. B has uniformly trivial deformation theory, with the diagram
satisfying the conditions of §2.2). Recall that we write ⊤h = UF , ⊥h = FU , ⊥v = V G,
and ⊤v = GV .

Proposition 3.7. For the diagram above and A ∈ CΛ, B(A) has the structure of category
enriched in Set∆∗∗, with

HomB(B,B′)n = HomB(⊤n
hB,⊥

n
vB

′).

Proof. [Pri4] Proposition 2.12. �

Examples 3.8. (1) If X is a topological space (or any site with enough points) and X ′

is the set of points of X, let D(A) be the category of sheaves of flat A-algebras on
X ′. If B is the category of sheaves (or equivalently presheaves) of flat A-modules

on X ′, then the description above characterises D as B⊤h

⊥v
, with ⊥v = u−1u∗ for u :

X ′ → X, and ⊤h being the free A-algebra functor for module. This example arises
when considering deformations of a scheme X in [Pri2] §3.2, since deformations of
X are equivalent to deformations of the sheaf OX of algebras.

(2) Another important example (considered in [Pri2] §3.1) is when D(A) is the category
of flat Hopf algebras over A, with A(A), E(A) and B(A) the categories of flat
algebras, coalgebras and modules, respectively.

(3) In order to make the first example functorial, we could let B be the category of
pairs ({Mx}x∈X ,X), for X a topological space and {Mx}x∈X a presheaf of flat
A-modules on X ′, with a morphism f ♯ : ({Ny}y∈Y , Y ) → ({Mx}x∈X ,X) given by

a map f : X → Y of topological spaces, together with maps f ♯
x : Nf(x) → Mx for

all x ∈ X.
We may define ⊥v and ⊤h as before, and then B⊤h

⊥v
will be the category of pairs

(OX ,X), where X is a topological space and OX a sheaf of flat A-algebras on X.

3.2. SDCs from diagrams.

Definition 3.9. Given a morphism f : D → D′ in D(k), choose lifts B,B′ ∈ B(Λ) of
UV D,UV D′ ∈ B(k) (which exist since the deformation theory of B is uniformly trivial).
Then define

En
D/B(f) := Homn(B,B′)UV (αn

D′◦f◦ε
n
D) : CΛ → Set,
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where α : 1 → ⊤v and ε : ⊥h → 1 are the unit and counit of the respective adjunctions.
Write E∗

D/B(D) := E∗
D/B(idD). Note that uniform triviality of B ensures that these

constructions are independent of the choices of lift, since any other choice is isomorphic.

Lemma 3.10. ED/B(f)(A) has the natural structure of a cosimplicial complex.
For every pair of composable morphisms f, g in D(k) between such objects, there is a

product
ED/B(f)(A) ⊗ ED/B(g)(A) → ED/B(f ◦ g)(A)

in Set∆∗∗, functorial in A.

Proof. It follows from Proposition 3.7 that ED/B(f)(A) ∈ Set∆∗∗ , with operations

∂i(x) = ⊥i−1
v V αG⊥n−i

v B ◦ x ◦ ⊤i−1
h UεF⊤n−i

h
B, 0 < i ≤ n

σi(x) = ⊥i
vγ⊥n−i−1

v B ◦ x ◦ ⊤i
hη⊤n−i−1

h
B, 0 ≤ i < n,

for η : 1 → ⊤h and γ : ⊥v → 1 the respective unit and co-unit. The multiplication also
follows from Proposition 3.7.

The canonical object of MC(ED/B(idD)(Λ)) corresponding to D gives an element ωD ∈

ED/B(idD)(Λ)1 and we then enhance the structure above to give a cosimplicial structure
by setting

∂0x := ωD′ ∗ x ∂n+1x = x ∗ ωD,

for x ∈ ED/B(f)(A)n. �

Definition 3.11. Given an SDC E, and a simplicial set X, define an SDC EX by

(EX)n = (En)Xn .

For x ∈ Xn+1, y ∈ Yn+1, z ∈ Xm+n, 1 ≤ i ≤ n, 0 ≤ j < n, e ∈ (EX)n and f ∈ (EX)m, we
define the operations by

∂i(e)(x) := ∂i(e(∂ix))

σj(e)(y) := σj(e(σiy)),

(f ∗ e)(z) := f((∂m+1)
nz) ∗ e((∂0)

mz).

Definition 3.12. Let C•
D/B(f) be the the tangent space of ED/B(f). This is a vector

space over k, and we define

Ext∗D/B(f) := H∗(C•
D/B(f));

this construction is closely related to Van Osdol’s bicohomology ([VO]).

Lemma 3.13. If X is a finite simplicial set, then

Hn(EX) ∼=
⊕

i+j=n

Hi(E) ⊗ Hj(X, k).

Proof. Since X is finite, C•(EX) ∼= C•(E) ⊗ kX , and the result now follows from the
Künneth formula. �

Definition 3.14. Given a small category I and an I-diagram D : I → D(k), define the
SDC E•

D/B(D) by

En
D/B(D) =

∏

i0
f1−→i1

f2−→...
fn−→in

in I

En(D(fn ◦ fn−1 ◦ . . . f0)) =
∏

x∈BIn

En(D(∂ n−1
1 x)),

where BI is the nerve of I (so BI0 = Ob (I), BI1 = Mor (I)), and ∂ −1
1 := σ0.

We define the operations by the formulae of Definition 3.11.
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Theorem 3.15. The SDC E•
D/B(D) governs deformations of the diagram D : I → D(k).

Proof. This follows immediately from [Pri4] Lemma 1.37, which characterises objects of
DefE as diagrams from I to a category equivalent to D(A). �

Lemma 3.16. Given a diagram D : I → D(k), the cohomology groups H∗(E•
D/B(D)) are

given by hypercohomology of the bicomplex
∏

i∈Ob I

C•
D/B(D(i))

f∗−f∗

−−−−→ . . .→
∏

i0
f1−→i1

f2−→...
fn−→in

in NnI

C•
D/B(D(fn ◦ fn−1 ◦ . . . f0))) → . . . ,

where NnI ⊂ BnI consists of non-degenerate simplices, or equivalently strings of non-
identity morphisms.

Proof. Since C•(E•
D/B(D)) is the diagonal of the bicosimplicial complex

[m,n] 7→
∏

i0
f1−→i1

f2−→...
fn−→in

in I

Cm
D/B(D(fn ◦ fn−1 ◦ . . . f0)),

the Eilenberg-Zilber theorem implies that it is homotopy equivalent to the total complex of
the associated binormalised complex. The vertical normalisation is just given by replacing
BnI with NnI. �

Example 3.17. If we define D and B as in Example 3.8.3, then the category of flat schemes
over A is a full subcategory of D(A), closed under deformations. Therefore Theorem 3.15
constructs an SDC governing deformations of a diagram of schemes.

For a morphism f : (X,OX) → (Y,OY ) in D(k)opp, the reasoning of [Pri2] §3.2 adapts
to show that

Ext∗D/B(f) = Ext∗OY
(L

Y/k
• ,Rf∗OX) = Ext∗OX

(f∗L
Y/k
• ,OX),

where L
Y/k
• is the cotangent complex of [Ill].

3.3. Constrained deformations. We now consider a generalisation of §3.2, by taking a
small diagram

D : I → D(k),

a subcategory J ⊂ I, and D̃|J : J → D(Λ) lifting D|J. We wish to describe deformations of

D which agree with D̃|J on J. Note that when I = (0 → 1) and J = {1}, this is the type
of problem considered in [FM] and [Ran].

Proposition 3.18. Given a I-diagram D : I → D(k), with D̃|J as above, the groupoid of

deformations of D fixing D̃|J is governed by the SDC

E•
D/B(D) ×E•

D/B
(D|J) •,

where • → E•
D/B(D|J) is defined by the object of MC(E•

D/B(D|J)) corresponding to D̃|J.

Proof. By Theorem 3.15, it suffices to show that Def(E•
D/B(D) ×E•

D/B
(D|J) •) is equivalent

to the 2-fibre product

Def(E•
D/B(D)) ×h

Def(E•(D|J))
({D̃|J}, id).

We know that the functor MC preserves inverse limits, so

MC(E•(D) ×E•(D|J) {D̃|J}) = MC(E•
D/B(D)) ×MC(E•(D|J)) {D̃|J}.
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Since E0(D)(A) → E0(D|J)(A) is also surjective (by smoothness), we see that

Def(E•(D) ×E•(D|J) {D̃|J}) ≃ Def(E•
D/B(D)) ×h

Def(E•(D|J))
({D̃|J}, id).

�

Example 3.19. Given a morphism f : X → Y of schemes over k, and a flat formal deforma-
tion Y of Y over Λ, we may consider deformations of X over Y, or equivalently deforma-
tions of this diagram fixing Y. Define the diagram D to be f ♯ : (OY , Y ) → (OX ,X) in the

category D(k) of example 3.8.3, and let D̃|J be the object (OY,Y) of D(Λ). Proposition
3.18 then gives an SDC

E := E•
D/B(D) ×E•

D/B
(D|J) •

governing this problem.
Lemma 3.16 implies that the tangent complex C•(E) is the mapping cone of

C•
D/B(OX ,X) → C•

D/B(f ♯), so by Example 3.17, the cohomology of this SDC is given

by

H∗(E) ∼= Ext∗OX
(cone(f∗L

Y/k
• → L

X/k
• ),OX) ∼= Ext∗OX

(L
X/Y
• ,OX).

Example 3.20. We could go further, and let E be a diagram Z
g
−→ X

f
−→ Y over k, with a

fixed formal deformation g̃f : Z → Y of fg over Λ. Governing this deformation problem,
we get another SDC

F := E•
D/B(Z

g
−→ X

f
−→ Y ) ×

E•

D/B
(Z

gf
−→Y )

{Z
fgf
−→ Y}.

Now, C•(F ) = ker(C•(ED/B(E)) → C•(ED/B(E|J))), and Lemma 3.16 implies that
C•(ED/B(E)) is homotopy equivalent to the total complex of

C•
D/B(Z) × C•

D/B(X) × C•
D/B(Y ) → C•

D/B(g) × C•
D/B(fg) × C•

D/B(f) → C•
D/B(fg),

while C•(ED/B(E|J)) is homotopy equivalent to the total complex of

C•
D/B(Z) × C•

D/B(Y ) → C•
D/B(fg),

so C•(F ) is homotopy equivalent to the total complex of

C•
D/B(X) → C•

D/B(g) × C•
D/B(f) → C•

D/B(fg).

By Example 3.17,

H∗ ker(C•
D/B(X) → C•

D/B(f)) ∼= Ext∗OX
(L

X/Y
• ,OX)

H∗ ker(C•
D/B(g) → C•

D/B(fg)) ∼= Ext∗OX
(L

X/Y
• ,Rg∗OZ),

and these isomorphisms combine to give

H∗(F ) ∼= Ext∗OX
(L

X/Y
• , cone(OX → Rg∗OZ)[−1]).

Note that this more accurately captures the higher structure than the SDC of [Pri2] §3.3,
whose cohomology had g∗OZ in place of Rg∗OZ above.

4. Extended deformation functors from SDCs

Given an SDC E, the aim of this section is to extend the classical deformation groupoid
DefE : CΛ → Grpd of [Pri2] from CΛ to the whole of sCΛ. Groupoids turn out to be
too restrictive for our purposes, so we will define a simplicial set-valued functor functor
DefE : sCΛ → S extending the classifying space BDefE of the deformation groupoid.

For a monad ⊤, the obvious extension of the functor describing deformations of a ⊤-
algebra is the functor of deformations of a strong homotopy ⊤-algebra. Strong homotopy



DERIVED DEFORMATIONS OF SCHEMES 15

algebras were defined by Lada in [CLM] to characterise the structures arising on defor-
mation retracts of ⊤-algebras in topological spaces, but the description works over any
simplicial category. This motivates the following definition:

Definition 4.1. Given an SDC E, define the Maurer-Cartan functor MCE : sCΛ → Set
by

MCE(A) ⊂
∏

n≥0

En+1(AIn
),

consisting of those ω satisfying:

ωm(s1, . . . , sm) ∗ ωn(t1, . . . , tn) = ωm+n+1(s1, . . . , sm, 0, t1, . . . , tn);

∂iωn(t1, . . . , tn) = ωn+1(t1, . . . , ti−1, 1, ti, . . . , tn);

σiωn(t1, . . . , tn) = ωn−1(t1, . . . , ti−1,min{ti, ti+1}, ti+2, . . . , tn);

σ0ωn(t1, . . . , tn) = ωn−1(t2, . . . , tn);

σn−1ωn(t1, . . . , tn) = ωn−1(t1, . . . , tn−1),

σ0ω0 = 1,

where I := ∆1.

Remarks 4.2. (1) One way to think of this construction is that, if we start with an
element ω ∈ E1 such that σ0ω = 1, then there are 2n elements generated by ω in
each En+1. To see this correspondence, take a vector in {0, 1}n, then substitute
“ω∗” for each 0, and “∂1” for each 1, adding a final ω. These elements will be at
the vertices of an n-cube, and ωn is then a homotopy between them.

(2) Lada’s definition of a strong homotopy algebra differs slightly in that it omits all
of the degeneracy conditions except σ0ω0 = 0. Our choices are made so that we
work with normalised, rather than unnormalised, cochain complexes associated to
a cosimplicial complex. Since these are homotopy equivalent, both constructions
will yield weakly equivalent deformation functors, even if we remove all degeneracy
conditions.

(3) In [Pri4] Proposition 3.9 it is shown that MC has a precise homotopy-theoretical
interpretation as the derived functor associated to the functor sending an SDC E
and A ∈ CΛ to the set MCE(A) from Definition 3.3. In the scenario of §3, it follows
from the results of [Pri4] that for A ∈ sCΛ, MCE(A) is the set of objects of the
Segal space of strong homotopy bialgebras over the object being deformed.

Proposition 4.3. MCE : sCΛ → Set is quasi-smooth. Moreover, if f : E → F is a
morphism of SDCs such that the maps fn : En → Fn are smooth for all n, then MCE →
MCF is quasi-smooth.

Proof. This follows immediately from [Pri4] Lemma 3.8. �

Definition 4.4. By [Pri1] Lemma 1.5, E0 is a group, which we denote by GE . Observe
that GE acts on MCE by (g, ω) 7→ g ∗ ω ∗ g−1. We now define the deformation functor
DefE : sCΛ → S by DefE := [MCE/GE ], for X as in Definition 1.15, and [−,−] the
homotopy quotient of §1.4.

Proposition 4.5. If A ∈ CΛ, then DefE(A) is just the classifying space BDefE(A) ∈ S of
the deformation groupoid DefE(A) from Definition 3.3.

Proof. Take ω ∈ MCE(A). Since A ∈ CΛ, AK = A for all connected simplicial sets K, so

En+1(AIn
) = En+1(A), and ωn = ω

∗(n+1)
0 , with the Maurer-Cartan relations reducing to

∂1ω0 = ω0 ∗ ω0 σ0ω0 = 1.
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These are precisely the conditions defining the Maurer-Cartan space MCE(A) of Definition
3.3 , and DefE(A) is the groupoid given by the action of E0(A) on MCE(A), as required.

�

Proposition 4.6. The functor DefE is quasi-smooth. More generally, if f : E → F is a
morphism of SDCs, such that fn : En → Fn is smooth for all n, then DefE → DefF is
quasi-smooth.

Proof. This follows immediately from Corollary 1.27. �

Proposition 4.7. The cohomology groups Hj(DefE) are isomorphic to the groups Hj+1(E)
from Definition 3.4.

Proof. This follows immediately from [Pri4] Corollary 4.9. �

4.1. Deformations of morphisms. The problem which we now wish to consider is that
of deforming a morphism with fixed endpoints. Assume that we have a category-valued
functor D : CΛ → Cat. Fix objects D,D′ in D(Λ), and a morphism f in D(k) from D to
D′. The deformation problem which we wish to consider is to describe, for each A ∈ CΛ,
the set of morphisms fA : D → D′ in D(A) deforming f . This amounts to taking the
special case I = (0 → 1) and J = {0, 1} in §3.3.

Now assume that we have a diagram of functors from CΛ to Cat as in §3, and consider
the cosimplicial complex F • in Sp given by F • := E•

D/B(f) from Lemma 3.10.

On sCΛ, we now define a deformation functor

DefF (A) ⊂
∏

n≥0

Fn(A)∆
n
,

associated to F , to consist of those θ satisfying:

∂iθn = ǫ∗n+1−iθn+1

σiθn = η∗n−1−iθn−1,

for face maps ǫi : ∆n → ∆n+1 and degeneracy maps ηi : ∆n → ∆n−1 defined as in [Wei]
Ch.8. N

Proposition 4.8. DefF is quasi-smooth, and Hi(DefF ) ∼= Hi(F ).

Proof. The first statement follows from [GJ] §VII.5, which shows that the total space func-
tor Tot from cosimplicial simplicial sets to simplicial sets is right Quillen. The description
of cohomology is straightforward. �

Proposition 4.9. If I is the category (0
m
−→ 1), let D : I → D(k) be the functor given by

D(0) = D,D(1) = D′ and D(m) = f , then there is a canonical weak equivalence

DefF ≃ Def(ED/B(D) ×ED/B(D)×ED/B(D′) •),

where • → ED/B(D) × ED/B(D′) is defined by the object (D,D′) ∈ MC(E•(D) ×
E•(D′))(Λ).

Thus DefF governs deformations of f which fix D,D′.

Proof. Let C := ED/B(D)×ED/B(D)×ED/B(D′) •. By [Pri4] Lemma 5.10, there are canonical

equivalences MC(C)(A) ≃ Def(F )(A), so we need only observe that C0 = 1, so Def(C) =
MC(C). The final statement then follows from Proposition 3.18. �
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4.1.1. Deforming identity morphisms. If we now consider deformations of the morphism
idD : D → D, write F for the cosimplicial complex E•

D/B(idD) governing deformations of

idD, and E for the SDC describing deformations of D, as defined in [Pri2] §2 (or just by
taking the special case I = • of Definition 3.14). Note that En = Fn, with the operations
agreeing whenever they are defined on both. If we write e := ∂01 ∈ F 1, note that we also
have ∂0f = e ∗ f and ∂n+1f = f ∗ e for f ∈ Fn.

This gives us an isomorphism C•(E) ∼= C•(F ), and hence Hn(DefE) = Hn+1(E) ∼=
Hn+1(DefF ).

Proposition 4.10. Under the scenario above, the simplicial set DefF (A) is weakly equiv-
alent to the loop space ΩDefE(A) of DefE(A) over the point ωD ∈ DefD(Λ). This equiva-
lence is functorial in A ∈ sCΛ

Proof. Define the SDC PE to be the fibre of ev0 : EI → E over the constants {en}. It
follows from Lemma 3.13 that the cohomology groups of PE are all 0. Now define the
SDC ΩE to be the fibre of ev1 : PE → E over {en}.

By Proposition 4.9, DefF is weakly equivalent to Def(ΩE). By Proposition 4.6,
DefPE → DefE is quasi-smooth, and the fibre is DefΩE. Since DefPE is contractible,
this means that DefΩE is homotopic to the loop space of DefE . �

Remark 4.11. Note that we can describe ΩE entirely in terms of the structure on F , since

(ΩE)n = (Fn)n,

with

∂i(f1, . . . , fn) = (∂if1, ∂
if2, . . . , ∂

ifi, ∂
ifi, . . . , ∂

ifn)

σi(f1, . . . , fn) = (σif1, σ
if2, . . . , σ

ifi, σ
ifi+2, . . . , σ

ifn)

(g1, . . . , gm) ∗ (f1, . . . fn) = (g1 ∗ e
n, . . . , gm ∗ en, em ∗ f1, . . . e

m ∗ fn).

Now, given any smooth object F ∈ cSp, we may regard F as a cosimplicial complex of
smooth objects in Sp (as in [Pri5] Definition 1.20), and then

F = Def(F ) ≃ Def(ΩE).

This means that we cannot expect derived deformation functors coming from SDCs to
have any more structure than arbitrary deformation functors.

Remark 4.12. In the case of Hochschild cohomology, the deformation functor of a morphism

R
f
−→ S of associative algebras can be defined over the category of Artinian associative

algebras, rather than just CΛ. This means that the Lie bracket H i(f)×Hj(f) → Hi+j+1(f)
defined in [Pri5] §5.2 extends to an associative cup product. If f = idR is an identity, then
we know that the Lie bracket vanishes (since Deff is a loop space, by Proposition 4.9),
which is why the cup product becomes commutative. Of course, we also have the bracket
H i(idR) × Hj(idR) → Hi+j(idR) associated to the deformation functor of the object R.

Appendix A. Comparison with [Pri2]

Now assume that Λ = k, a field of characteristic 0. In [Pri5], an equivalence was given
between the homotopy category of Z-graded DGLAs and Ho(scSp). Under the equivalences
of Theorems 1.46 and 1.36, this equivalence sends a DGLA to its associated deformation
functor in the sense of [Man2] (by [Pri5] Remark 4.46).

However, in [Pri2], a functor E was constructed from N0-graded DGLAs to SDCs, and
Definition 4.4 then gives us an associated object of scSp. The purpose of this appendix is
to show that the two constructions are consistent with each other.
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A.1. DGLAs.

Definition A.1. A differential graded Lie algebra (DGLA) is a graded vector space L =⊕
i L

i over k, equipped with operators [, ] : L × L → L bilinear and d : L → L linear,
satisfying:

(1) [Li, Lj] ⊂ Li+j.

(2) [a, b] + (−1)āb̄[b, a] = 0.

(3) (−1)c̄ā[a, [b, c]] + (−1)āb̄[b, [c, a]] + (−1)b̄c̄[c, [a, b]] = 0.
(4) d(Li) ⊂ Li+1.
(5) d ◦ d = 0.
(6) d[a, b] = [da, b] + (−1)ā[a, db]

Here ā denotes the degree of a, mod 2, for a homogeneous.
A DGLA is said to be nilpotent if the lower central series ΓnL (given by Γ1L = L,

Γn+1L = [L,ΓnL]) vanishes for n≫ 0.

Definition A.2. Given a nilpotent Lie algebra g, define Û(g) to be the pro-unipotent
completion of the universal enveloping algebra of g, regarded as a pro-object in the category
of algebras. As in [Qui] Appendix A, this is a pro-Hopf algebra, and we define exp(g) ⊂

Û(g) to consist of elements g with ε(g) = 1 and ∆(g) = g ⊗ g, for ε : Û(g) → k the

augmentation (sending g to 0), and ∆ : Û(g) → Û(g) ⊗ Û(g) the comultiplication.
Since k is assumed to have characteristic 0, exponentiation gives an isomorphism from

g to exp(g), so we may regard exp(g) as having the same elements as g, but with multi-
plication given by the Campbell–Baker–Hausdorff formula.

Definition A.3. Given a nilpotent DGLA L•, define the Maurer-Cartan set by

MC(L) := {ω ∈ L1 | dω +
1

2
[ω, ω] = 0 ∈

⊕

n

L2}

Define the gauge group Gg(L) by Gg(L) := exp(L0), which acts on MC(L) by the gauge
action

g(ω) = g · ω · g−1 − dg · g−1,

where · denotes multiplication in the universal enveloping algebra of L. That g(ω) ∈
MC(L) is a standard calculation (see [Kon] or [Man1]).

Definition A.4. A morphism f : L→M of DGLAs is said to be a quasi-isomorphism if
H∗(f) : H∗(L) → H∗(M) is an isomorphism.

Proposition A.5. There is a model structure on the category of Z-graded DGLAs, in
which weak equivalences are quasi-isomorphisms, and fibrations are surjections. This cat-
egory is Quillen-equivalent to the model category sDGSp of Definition 1.39.

Proof. [Pri5] Lemma 3.24 and Corollary 4.57. �

A.2. Cosimplicial groups.

Definition A.6. Given an N0-graded DGLA L, let DL be its denormalisation. This
becomes a cosimplicial Lie algebra via the Eilenberg-Zilber shuffle product. Explicitly:

DnL :=
⊕

m+s=n
1≤j1<...<js≤n

∂js . . . ∂j1Lm,

where we define the ∂j and σi using the simplicial identities, subject to the conditions that
σiL = 0 and ∂0v = dv −

∑n+1
i=1 (−1)i∂iv for all v ∈ Ln.
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We now have to define the Lie bracket J−,−K from DnL ⊗ DnL to DnL. Given a
finite set I of strictly positive integers, write ∂I = ∂is . . . ∂i1 , for I = {i1, . . . is}, with
1 ≤ i1 < . . . < is. The Lie bracket is then defined on the basis by

J∂Iv, ∂JwK :=

{
∂I∩J(−1)(J\I,I\J)[v,w] |v| = |J\I|, |v| = |I\J |,

0 otherwise,

where for disjoint sets S, T of integers, (−1)(S,T ) is the sign of the shuffle permutation of
S ⊔ T which sends the first |S| elements to S (in order), and the remaining |T | elements
to T (in order). Note that this description only works for 0 /∈ I ∪ J .

Definition A.7. Now recall from [Pri2] §4.2, that the functor E : DGLA → SDC from
N0-graded DGLAs to SDCs is defined by

E(L)n(A) = exp(Dn(L) ⊗ mA),

making E(L) into a cosimplicial complex of group-valued functors. To make it an SDC,
we must define a ∗ product. We do this as the Alexander-Whitney cup product

g ∗ h = (∂m+n . . . ∂m+2∂m+1g) · (∂0)mh,

for g ∈ E(L)m, h ∈ E(L)n.

Definition A.8. Given a cosimplicial simplicial group G, define MC(G) ∈ S by MC(G) ⊂∏
n≥0(G

n+1)∆
n
, satisfying the conditions of [Pri3] Lemma 3.3, i.e. the elements ωn ∈

(Gn+1)∆
n

satisfy

∂iωn =

{
∂i+1ωn−1 i > 0

(∂1ωn−1) · (∂
0ωn−1)

−1 i = 0,

σiωn = σi+1ωn+1,

σ0ωn = 1.

Define MC : scGp → Set by MC(G) = MC(G)0.
There is an adjoint action of G0 on MC(G), given by

(g ∗ ω)n = (∂0(∂
1)n+1(σ0)

n+1g) · ωn · (∂0(∂1)n(σ0)
ng−1),

as in [Pri3] Definition 3.8.
We then define Del(G) to be the homotopy quotient Del(G) = [MC(G)/G0] ∈ S.

Let exp denote exponentiation of a nilpotent Lie algebra (giving a unipotent group).

Corollary A.9. Given an N0-graded DGLA L, the deformation functor Def(E(L)) ∈ scSp
is weakly equivalent to the functor

A 7→ Del(exp(DL⊗ m(A))).

Proof. The SDC E(L) corresponds to A 7→ E(exp(DL ⊗ m(A)) in the notation of [Pri4]
§3.1, so the result is an immediate consequence of [Pri4] Proposition 6.11. �

Corollary A.10. For L as above, Def(E(L)) is weakly equivalent in the model category
scSp to the functor A 7→ [MC(exp(DL⊗ m(A)))/ exp(L0 ⊗ m(A0))].

Proof. [Pri5] Lemma 2.26 implies that MC(exp(DL ⊗ m(A))) → MC(exp(DL ⊗ m(A)))
defines a weak equivalence in scSp (although the former is not fibrant), and similarly for
L0 ⊗ m(A0) → L0 ⊗ m(A), so we get a weak equivalence on passing to the homotopy
quotient. �
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A.3. The final comparison.

Definition A.11. Given an N0-graded DGLA L, define Del(L) ∈ sDGSp to be the functor
Del(L) : dgCk → S given by the homotopy quotient

A 7→ [MC(Tot Π(L⊗Nm(A)))/ exp(L0 ⊗ m(A0)]

with respect to the gauge action of Definition A.3.

Corollary A.12. Given an N0-graded DGLA L, the deformation functor Def(E(L)) ∈
scSp is weakly equivalent to RSpf N∗Del(L), for RSpf N∗ as in Theorem 1.45.

Proof. By Corollary A.9, it suffices to show that the functors Del(L) and A 7→
Del(exp(DL ⊗ m(A))) are weakly equivalent in scSp. It follows from [Pri5] Lemma 2.26
that the latter is weakly equivalent to

A 7→ [MC(exp(DL⊗ m(A)))/ exp(L0 ⊗ m(A0))],

which is not fibrant in general. Now, [Pri4] Theorem 6.23 implies that this is isomorphic
to

A 7→ [MC(Tot Π(L⊗Nm(A)))/ exp(L0 ⊗ m(A0)],

which is just SpfN∗Del(L). [Pri5] Lemma 1.62 then implies that RSpfN∗F ∼= SpfN∗F
for all levelwise quasi-smooth functors F . �

Definition A.13. Define DGdgCk to be the category of Artinian local N0 × N0-graded
graded-commutative Λ-algebras A•

• with differential of bidegree (1,−1) and residue field
k. Let dgDGSp be the category of left-exact Set-valued functors on DGdgCk.

Proposition A.14. Under the equivalence of Proposition A.5, an N0-graded DGLA L
corresponds to the deformation functor Def(E(L)) ∈ scSp of Definition 4.4.

Proof. The equivalence of [Pri5] Corollary 4.57 is given by a functor RSpfD∗ :
Ho(sDGSp) → Ho(dgDGSp), together with a functor

Spf Tot ∗MC : DGZLA → dgDGSp,

on Z-graded DGLAs, given by

Spf Tot ∗MC(L)(A) = MC(TotL⊗ m(A)).

By Corollary A.12, it suffices to show that the objects RSpfD∗Del(L) and
Spf Tot ∗MC(L) are weakly equivalent in dgDGSp.

Taking A ∈ DGdgCk, it follows from the definitions that SpfD∗Del(L)(A) consists of

maps Spf (DA) → MC(L)×exp(L0)W (exp(L0)) in sDGSp, where DA ∈ (dgCk)∆ is defined
by cosimplicial denormalisation, and Spf (DA) ∈ sDGSp is the functor dgCk → S given in
level n by HomdgCk

(DnA,−).
Thus

SpfD∗Del(L)(A) ⊂ MC(TotL⊗A0) × MC(D(exp(L0 ⊗A•
0))

consists of pairs (ω, g) with g ∗ ∂0
DAω = ∂1

DAω, corresponding in level n to the map

(SpfDnA) → MC(L) × exp(L0)n

(ω, g) 7→ (ω, (∂2)n−1g, ∂0(∂2)n−2g, . . . , (∂0)n−1g).

By [Pri4] Theorem 6.23, we know that MC(D(exp(L0 ⊗ A•
0))

∼= MC(L0 ⊗ A•
0)), giving

us γ ∈ MC(L0 ⊗A•
0)). Note that g = exp(γ), so

g ∗ ∂0
DAω = ∂0

DAω + [γ, ω],

with all higher terms vanishing, since σ0γ = 0, so Jγ, Jγ, vKK = 0 for all v (and in particular
when v = ∂0

DAω).
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Thus we have

SpfD∗Del(L)(A) = {(ω, γ) : ω ∈ MC(TotL⊗A0), γ ∈ MC(L0 ⊗A•
0), [γ, ω] + dc,Aω = 0},

where dc,A is the cochain differential on A
Now look at γ + ω ∈ (Tot (L ⊗ A))1. The equations combine to show that α := γ + ω

lies in MC(Tot (L⊗A)), since

dα+ [α,α] = (dLω + ds
Aω + [ω, ω]) + (dAγ + [γ, γ]) + ([γ, ω] + dA,cω) = 0,

where ds
A is the chain differential on A.

Thus we have defined a map

ψ : SpfD∗Del(L) → Spf (Tot Π)∗MC(L).

In fact, we have shown that

SpfD∗Del(L)(A) ∼= MCTot ((L⊗A0) ×(L0⊗A0) (L0 ⊗A0)),

and [Pri5] Lemma 4.13 then implies that ψ is a weak equivalence (with similar reasoning
to [Pri5] Lemma 2.26).

Finally, note that this gives cohomology groups (as defined in Definition 1.33)
Hn(SpfD∗Del(L)(A)) ∼= Hn+1(L), and that

Hn(RSpfD∗Del(L)) ∼= Hn(Del(L)) ∼= Hn+1(L)

since the equivalence of [Pri5] Proposition 4.57 preserves cohomology groups. Therefore
the morphism SpfD∗Del(L) → RSpfD∗Del(L) is also a weak equivalence by Corollary
1.29, and this completes the proof. �
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