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Abstract
Calculation of the exact prediction error variance covariance matrix is often computationally too
demanding, which limits its application in REML algorithms, the calculation of accuracies of
estimated breeding values and the control of variance of response to selection. Alternatively Monte
Carlo sampling can be used to calculate approximations of the prediction error variance, which
converge to the true values if enough samples are used. However, in practical situations the
number of samples, which are computationally feasible, is limited. The objective of this study was
to compare the convergence rate of different formulations of the prediction error variance
calculated using Monte Carlo sampling. Four of these formulations were published, four were
corresponding alternative versions, and two were derived as part of this study. The different
formulations had different convergence rates and these were shown to depend on the number of
samples and on the level of prediction error variance. Four formulations were competitive and
these made use of information on either the variance of the estimated breeding value and on the
variance of the true breeding value minus the estimated breeding value or on the covariance
between the true and estimated breeding values.

Introduction
In quantitative genetics the prediction error variance-cov-
ariance matrix is central to the calculation of accuracies of

estimated breeding values ( ) [e.g. [1]], to REML algo-
rithms for the estimation of variance components [2], to
methods which restrict the variance of response to selec-

tion [3], and can be used to explore trends in Mendelian
sampling deviations over time [4]. The mixed model
equations (MME) for most national genetic evaluations
range from 100,000 to 20,000,000 equations and inver-
sion of systems of equations of this size is generally not
possible because of their magnitude or because of loss of
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numerical precision [5]. Methods that approximate the
prediction error variances (PEV) and calculate the accu-

racy of  provide biased estimates in some circumstances
by ignoring certain information [e.g. [6]]. Variance com-
ponents upon which genetic evaluations of large popula-
tions are based are generally estimated using reduced data
sets. The use of reduced data sets may create bias in the
estimates as REML only provides unbiased estimates of
variance components when all the data on which selec-
tion has taken place is included in the analysis [7]. Vari-
ance of response to selection is generally not controlled in
breeding programs although it might be a risk to them [3].

Approximations of the PEV without needing to invert the
coefficient matrix or to delete data, can be obtained by
comparing Monte Carlo samples of the data and succes-
sive solutions of the mixed model equations of this data.

However different formulations have been presented to
approximate the PEV in this way [8-11]. Approximations
of the PEV using these formulations converge to the exact
PEV (PEVexact) as the number of Monte Carlo samples

increases, but the number of samples is generally limited
by computational requirements in practice [e.g. [12]].
Also, differences in the rates of convergence have been
shown to depend on the level of PEVexact for a given

genetic variance ( ) [10]. Consequently, when finding

the optimal number of iterations required, both the differ-
ent formulations, and the level of PEVexact need to be taken

into account. Some of the formulations are weighted aver-
ages of other formulations, with the weighting depending
on the sampling variances of these. Garcia-Cortes et al.
[10] use asymptotic approximations of these sampling
variances. Alternative weighting strategies could use
empirically approximated sampling variances based on
independent replicates of samples or using leave-one-out
Jackknife procedures [13,14].

The objective of this study was to compare the conver-
gence to PEVexact of ten different formulations of the PEV,
using simulations based on data and pedigree from a
commercial population containing animals with different
levels of PEV and using different numbers of samples (n =
50, 100, ..., 950, 1000). Four of the formulations were pre-
viously published, four were alternative versions of these,
and two were derived as part of this study.

Methods
Monte Carlo sampling procedure for calculating PEV
The Monte Carlo sampling procedure for calculating the
sampled PEV has been described extensively elsewhere for
single breed [8-10] and multiple breed scenarios [12].
Assuming a simple additive genetic animal model without
genetic groups y = Xb + Zu + e, where the distribution of
random variables is y ~ N(Xb, ZGZ' + R), u ~ N(0, G), and
e ~ N(0, R), the three steps involved in calculating the
sampled PEV are as follows: 1. Simulate n samples of y
and u using the pedigree and the distributions of the orig-
inal data, modified to account for the fact that the expec-
tation of Xb does not affect the distribution of random
variables [15,16] thus the samples of y can be simulated
using random normal deviates from N(0, ZGZ' + R)
instead of N(Xb, ZGZ' + R). 2. Set up and solve the mixed
model equations for the data set using the n simulated
samples of y instead of the true y. This accounts for the
fixed effects structure of the real data. 3. Calculate the
sampled PEV for some formulation.

Formulations of PEV

Ten formulations of the sampled PEV are shown in Table
1. The first three formulations (PEVGC1, PEVGC2, and

PEVGC3) were outlined by Garcia-Cortes et al. [10] and the

fourth formulation (PEVFL) was outlined by Fouilloux

and Laloë [8]. PEVAF1, PEVAF2, PEVAF3, and PEVAF4 are

alternative versions of these formulations, which rescale

the formulations from the Var (u) and to the  in order

to account for the effects of sampling on the Var(u). Two
new formulations of the sampled PEV (PEVNF1, and

PEVNF2) are also given in Table 1. The ten formulations

differ from each other in the way in which they compare

information relating to the Var(u), the Var( ), the Var (u

- ), or the Cov(u, ).

Approximation of sampling variance of PEV
Formulae, based on Taylor series approximations, to pre-
dict the asymptotic sampling variances for each of the ten
formulations of sampled PEV at different levels of PEVexact
are given in Table 1. The sampling variance can also be
approximated stochastically using a number (e.g. 100) of
independent replicates of the n samples or by applying a
leave-one-out Jackknife [13,14] to the n samples.

Application to test data set
Data and model

A data set containing 32,128 purebred Limousin animals
with records for a trait (height) and a corresponding ped-
igree of 50,435 animals was extracted from the Irish Cattle
Breeding Federation database. In the simulations the trait
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û û
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Table 1: Previously published, alternative, and new formulations of the prediction error variance for a random effect u with , the 

assumptions pertinent to each formulation, the information used in each formulation, and the asymptotic sampling variances of each 
formulation

Formulation Assumptions Uses information on Asymptotic sampling variance

1PEVGC1 =  - Var( ) Cov(u, ) = Var( )

Var(u) = 

2r4 /n

2PEVGC2 = Var(u - ) 11Cov(u, ) ≠/= Var( )

Var(u) = 

u - 2(1-r2)2 /n

3 

Cov(u - , ) = 0

Var(u) = 

, u - {[2r4(1-r2)2]/[(1-r2)2 + r4]} /n

4PEVFL =  - Cov(u, ) Cov(u, ) = Var( )

Var(u) = 

Cov(u, ) r2(1+r2) /n

5PEVAF1 =  - [Var( )/Var(u)] Cov(u, ) = Var( )

Var(u) ≠ 

, u 4r4(1-r2) /n

6PEVAF2 = [Var(u - )/Var(u)] 11Cov(u, ) ≠/= Var( )

Var(u) ≠ 

u - , u 4r2(1-r2)2 /n

7 

Cov(u - , ) = 0

Var(u) ≠ 

, u - , u 4r4 (1 - r2)2 /n

8PEVAF4 =  - [Cov(u, )/Var(u)] Cov(u, ) = Var( )

Var(u) ≠ 

Cov(u, ), u r2(1-r2) /n

9PEVNF1 = [1 - Cov(u, )2/(Var(u) × Var( ))] 4r2(1-r2)2 /n

10PEVNF2 = {Var(u - )/[Var( ) + Var(u - ]} Cov(u - , ) = 0  and u - 4r4(1-r2)2 /n

1Garcia-Cortes et al. (1995) formulation 1
2Garcia-Cortes et al. (1995) formulation 2
3Garcia-Cortes et al. (1995) formulation 3
4Fouilloux and Laloë (2001) formulation

5Corrects PEVGC1 for Var(u) ≠  and corresponds to Lidauer et al. (2007)

6Corrects PEVGC2 for Var(u) ≠ 

7Corrects PEVGC3 for Var(u) ≠ 

8Corrects PEVFL for Var(u) ≠ 
9Based on the classical formulation of the accuracy of an EBV

10Implicitly weighs information on Var ( ) and Var(u, ) and corrects for Var(u) ≠ 

11No assumption made about the relationship between Var( )and Cov(u, )
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û û

σ g
2
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û û û σ g
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was assumed to have a  of 1.0 and residual variance

 of 3.0. Fixed effects were contemporary group, techni-

cian who scored the animal, parity of dam, age of animal
at scoring and sex.

Calculation of exact PEV
The PEVexact were calculated for the extracted data set by
setting up and solving the MME, with fixed effects of con-
temporary group, technician who scored the animal, par-
ity of dam, and a second order polynomial of age of
animal at scoring nested within sex, and random animal
and residual effects, using the BLUP option in ASReml
[17] which fully inverts the left hand side of the MME.

Sampled PEV

Following the Monte Carlo sampling procedure described
above, 100,000 samples of the extracted data set were sim-

ulated assuming a  of 1.0 and  of 3.0. For each of

the simulated data sets MME, using the same design
matrix (X) as used when estimating the PEVexact, were set

up and solved using MiX99 [18]. The sampled PEV of the

 for each animal in the pedigree was approximated
using the formulations of the sampled PEV described in
Table 1 using n samples (n = 50, 100, ..., 950, 1000).

Stochastic approximations of the sampling variance of the
sampled PEV were calculated using 100 independent rep-
licates of the n samples, and using the leave-one-out Jack-
knife on n samples, for the different formulations, with
the exception of PEVGC3 and PEVAF3. To calculate the sam-
pling variance for PEVGC3 and PEVAF3 using n independent
replicates would have required more than 100,000 sam-
ples (due to the need to generate sampling variances of
component formulations) generated for this study so
therefore these were not considered. Asymptotic sampling
variances for all ten formulations were calculated using
the formulae in Table 1.

Alternative weighting strategies
Of the formulations presented in Table 1, PEVGC3 and
PEVAF3 are weighted averages of PEVGC1 and PEVGC2 and of
PEVAF1 and PEVAF2 respectively with the weighting
dependent on the sampling variances of the component
formulations. Garcia-Cortes et al. [10] suggest weighting
by asymptotic approximations of the sampling variances.
The sampling variances could also be approximated
empirically using independent replicates of n samples or
by leave-one-out Jackknife procedures [13,14]. These
alternative weighting strategies were compared by calcu-
lating sampling variances using 100 independent repli-
cates of the n samples, using the n samples and a leave-
one-out Jackknife procedure [14], and using the asymp-

totic sampling variances outlined in Table 1 as part of an
iterative procedure, which involved two iterations. In the
first iterations the asymptotic sampling variances were cal-
culated using the PEVGC1 and PEVGC2 of the component
formulations, in the second they used the PEVGC3 approx-
imated in the first iteration.

Calculation of required variances and covariances
It was not possible to store each of the 100,000 simulated
values for each of the 50,435 animals in the main memory
of the computer simultaneously meaning that textbook
formulae to calculate the different variances and covari-
ances required for the different formulations was not pos-
sible. Textbook updating algorithms to calculate the
variance can be numerically unreliable [19]. Instead the
required variances were calculated using a one pass updat-
ing algorithm based on Chan et al. [19] which updates the
estimated sum of squares with a new record as it reads
through the data and takes the form:

where n are the number samples at any stage in the updat-
ing procedure and T and S are the sum and sum of squares
of the data points 1 through n. It was modified to calculate
the covariances between X and Y by changing

 to

. Both of these

algorithms were tested using one replication of 100,000
samples and found to be stable.

Results

As the  was taken to be 1.0, the PEV ranged between

0.00 and 1.0. For the purpose of categorizing the results
PEV with values between 0.00 and 0.33 were regarded as
low, values between 0.34 and 0.66 were regarded as
medium, and values between 0.67 and 1.00 were regarded
as high.

Henderson [20] showed that it is much easier to form A-1

than A, where A is the numerator relationship matrix
among animals. This follows from the fact that, if the indi-
viduals are listed with ancestors above descendants, A can
be written as TMT' where M is a diagonal matrix and T is
a lower triangular matrix with non-zero diagonal ele-
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ments and i, j th elements that are non-zero if the j th indi-
vidual is an ancestor of the i th [21]. The matrix T has a
simple inverse with both the diagonal elements and i, j th
elements being non-zero if the j th individual is a parent
of the i th individual. Hence A has a simple inverse. It is
interesting to note that an animal effect can be written as
an accumulation of independent terms from its ancestors

, where usi and udi are the additive

genetic effects of the sire and dam of animal i and mi is the

Mendelian sampling effect with variance

, where Fi is the average inbreeding of the

parents of animal i. Hence there is a simple recursive pro-
cedure for generation of the additive effects ui by generat-

ing independent Mendelian sampling terms mi with

diagonal variance matrix .

General trends of sampled PEV
While all different formulations of the sampled PEV con-
verged to the PEVexact and the sampling variance of the
PEV reduced as the number of samples (n) increased, con-
vergence rates differed between the formulations. For

example, PEVGC2 converged at a slower rate than all other
formulations when the convergence rate was measured by
the correlation between PEVexact and sampled PEV (Fig. 1).
PEVGC1, PEVAF3, PEVAF4, and PEVNF2, all converged at a
very similar rates and had the best convergence across all
formulations.

As well as depending on the numbers of samples, the con-
vergence rate also depended on the level of the PEVexact.
The sampled PEV calculated using different formulations
had different sampling variances and within each formu-
lation the sampling variances differed depending on the
level of the PEVexact (Fig. 2). Of the previously published
formulations PEVGC1 and PEVFL had low sampling vari-
ance at high PEVexact, with PEVGC1 being better than PEVFL.
PEVGC2 had low sampling variance at low PEVexact.
Accounting for the effects of sampling on the Var(u)
reduced the sampling variance in regions where the previ-
ously published formulations had high sampling vari-
ances but had little (or even slightly negative) effect where
these formulations had low sampling variances. PEVAF4,
which is the alternative version of PEVFL gave major
improvements in terms of sampling variance low and
intermediate PEVexact. Its performance was almost identi-
cal to PEVNF2, PEVAF3, and PEVGC3, which had low sam-

u mi i
usi udi= ++( )

2

Am gi

Fi= −( )1
2

2σ

A mi

Correlations between exact prediction error variance and different formulations of sampled prediction error variance1 using n samples (n = 50, 100, ..., 950, 1000), for 18,855 non-inbred animalsFigure 1
Correlations between exact prediction error variance and different formulations of sampled prediction error 
variance1 using n samples (n = 50, 100, ..., 950, 1000), for 18,855 non-inbred animals. 1PEVNF2, PEVAF3, PEVAF4 are 
not shown as they have trends, which match PEVGC3
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pling variance at both high and low PEV. No formulation
had relatively low sampling variance for intermediate
PEV.

Comparison of formulations
Different formulations were compared in greater detail
using n = 300 samples (Table 2), which is a practical
number of samples. PEVGC3, PEVAF3, PEVAF4, and PEVNF2
were the best formulations across all of the ten formula-
tions. The slopes and R2 of their regressions were always
among the best where PEVexact was low, intermediate, or
high (Table 2). These formulations gave good approxima-
tions at both high and low PEVexact their performance was
less good at intermediate PEV, measured by each of the
summary statistics (Table 2).

PEVGC1 and PEVFL gave good approximations for high
PEVexact and poor approximations for low PEVexact. PEVGC2

gave good approximations for low PEVexact and poor
approximations for high PEVexact. Improving the pub-
lished formulations by correcting for the effects of sam-
pling resulted in better approximations in areas where the
published formulations were weak. Slight (dis)improve-
ments were observed where the previously published for-
mulations were strong. Of the new formulations PEVNF1
gave poor approximations and PEVNF2 gave good approx-
imations.

Using the three alternative weighting strategies to com-
bine the component formulations for PEVGC3 and PEVAF3
gave almost identical results (Table 3).

Required number of samples
The formulations PEVGC3, PEVAF3, PEVAF4, and PEVNF2
gave similar approximations and had the lowest sampling
variance. Even when a few samples (n = 50) were used,

Sampling variances of sampled prediction error variance approximated asymptotically (As) and empirically1 (Em) using different formulations of the prediction error variance using 300 samples for different levels of exact prediction error varianceFigure 2
Sampling variances of sampled prediction error variance approximated asymptotically (As) and empirically1 

(Em) using different formulations of the prediction error variance using 300 samples for different levels of 
exact prediction error variance. (A) Sampling variances for PEVGC1 and PEVGC2. (B) Sampling variances for PEVAF1 and 
PEVAF2. (C) Sampling variances for PEVFL and PEVAF4. (D) Sampling variances for PEVNF1 and PEVNF2

2. 1Empirical sampling vari-
ances were approximated using 100 independent replicates and presented as averages within windows of 0.001 of the exact 
prediction error variance. 2PEVGC3, and PEVAF3 were similar to PEVNF2.
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low and high PEV were well approximated and intermedi-
ate PEVexact were poorly approximated. Correlations
between PEVNF2 and PEVexact were 0.88 for low, 0.96 for
high PEVexact and 0.51 for intermediate PEVexact. To
increase the correlation for intermediate PEVexact to at least
0.90 at least 550 samples was needed. At this number of
samples the correlations for low and high PEVexact were ≥
0.99. To obtain a satisfactory level of convergence 300
samples were sufficient.

Discussion
Differences between formulations

Ten different formulations of the PEV approximated using
sampling were compared and these were each shown to
converge to the PEVexact at different rates. Within each of

these formulations differences in convergence were
observed at different levels of PEVexact. PEVGC1 and its cor-

responding alternative formulation PEVAF1 make use of

information on the Var( ). PEVGC2 and its corresponding

alternative formulation PEVAF2 makes use of information

on the Var(u - ). The sampling variance of the Var( ) is
lower at high PEVexact than it is at low PEVexact (Fig. 3),

therefore the formulations using information on the

Var( ) are more suited to approximating high PEVexact

than to low PEVexact. The opposite is the case for formula-

tions which use information on the Var(u - ), they per-
form better at low PEVexact. Formulations PEVGC3, PEVAF3,

and PEVNF2 use information on both the Var( )and the

Var (u - ) and result in curves for their sampling vari-
ance which are symmetric about the mean PEVexact. They

either explicitly or implicitly weight this information by
the inverse of its sampling variance. PEVFL and PEVAF4

make use of information on the Cov(u, ).

With infinite samples the Var(u) is equal to the , but

due to sampling error resulting from using a limited
number of samples this not likely to be true in practice.
Therefore each of the alternative formulations makes use
of information on the Var(u) in addition to making use of

information on either/or/both of the Var( ) and the

Var(u - ) or the Cov(u, ). The Var( ) = Cov(u, )

when the Cov((u - ), ) = 0. The Var( ) ≠ Cov(u, )

when the Cov((u - ), ) ≠ 0.

Competitive formulations
Of the ten different approaches four competitive formula-
tions, PEVGC3, PEVAF3, PEVAF4, and PEVNF2, were identi-

û

û û

û

û

û

û

û
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û
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Table 2: Intercept, slope, R2, and root mean squared error (RMSE) of regressions of exact prediction error variance on sampled 
prediction error variance approximated using one of 10 different formulations of the prediction error variance using 300 samples, for 
18,855 non-inbred animals

PEVexact PEVGC1 PEVGC2 PEVGC3 PEVFL PEVAF1 PEVAF2 PEVAF3 PEVAF4 PEVNF1 PEVNF2

Intercept 0.00–0.33 0.09 0.01 0.01 0.09 0.05 0.02 0.01 0.02 0.01 0.01
0.34–0.66 0.26 0.32 0.17 0.31 0.27 0.30 0.18 0.18 0.29 0.17
0.67–1.00 0.09 0.29 0.06 0.05 0.09 0.06 0.02 0.02 0.04 0.04

Slope
0.00–0.33 0.62 0.90 0.93 0.62 0.77 0.89 0.93 0.93 0.91 0.95
0.34–0.66 0.57 0.43 0.71 0.47 0.54 0.48 0.68 0.69 0.49 0.71
0.67–1.00 0.91 0.67 0.94 0.95 0.91 0.93 0.98 0.97 0.96 0.96

R2 0.00–0.33 0.65 0.94 0.95 0.65 0.76 0.91 0.95 0.94 0.93 0.95
0.34–0.66 0.59 0.43 0.68 0.49 0.54 0.48 0.67 0.69 0.49 0.70
0.67–1.00 0.96 0.64 0.97 0.97 0.95 0.90 0.98 0.98 0.92 0.98

RMSE 0.00–0.33 0.05 0.02 0.02 0.05 0.04 0.03 0.02 0.02 0.02 0.02
0.34–0.66 0.03 0.03 0.02 0.03 0.03 0.03 0.02 0.02 0.03 0.02
0.67–1.00 0.02 0.06 0.02 0.02 0.02 0.03 0.01 0.02 0.03 0.01

Table 3: Coefficients of regressions of PEVGC3and PEVAF3 

(sampling variances calculated empirically) on PEVGC3 and 
PEVAF3 (sampling variances calculated using Jackknife) and on 
PEVGC3 and PEVAF3 (sampling variances calculated 
asymptotically and weighting done iteratively)

Jackknife Asymptotic
PEVGC3 PEVAF3 PEVGC3 PEVAF3

Intercept 0.00 0.00 0.00 0.01
Slope 1.00 1.00 1.00 1.00
R2 1.00 1.00 1.00 1.00
RMSE 0.01 0.00 0.00 0.01
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fied. These gave similar approximations. Of the four, two,
PEVGC3 and PEVAF3, were weighted averages of component
formulations. The weighting was based on the sampling
variances of their component formulations. These sam-
pling variances can be calculated using a number of inde-
pendent replicates, using Jackknife procedures, or
asymptotically. Each of these approaches gave almost
identical results but the Jackknife and asymptotic
approaches were far less computationally demanding.

Computational time
A single BLUP evaluation for the routine Irish multiple
breed beef genetic cattle evaluation (January 2007) which
included a pedigree of 1,500,000 and 493,092 animals
with performance records on at least one of the 15 traits
could be run using MiX99 [18] in 366 min on a 64 bit PC,
with a 2.40 GHz AMD Opteron dual-core processor and 8
gigabytes of RAM [12]. Using n = 300 samples and PEVNF2
the accuracy of the estimated breeding values could be
estimated in 1,830 hours on a single processor. Several
samples can be solved simultaneously on multiple proc-
essors thereby reducing computer time. Nowadays PC's
are available that contain two quad core 64 bit processors
(i.e. 8 CPU's) and cost approximately 5,000 euro. Using
six of these PC's the accuracy of estimated breeding values
for the Irish data set could be estimated in less than 38.1
h.

Application
The Monte Carlo sampling approach using one of these
four competitive formulations can be used to improve
many tasks in animal breeding. Stochastic REML algo-
rithms [e.g. [9]] can be improved in terms of speed of cal-
culation using these formulations, therefore allowing
variance components to be estimated using REML in large
data sets. These REML formulations are usually written in
terms of additive genetic effects u'A-1u and trace [A-1PEV],

where PEV is the prediction error covariance matrix for
the estimated breeding values. The results of Henderson
[22] show how the REML formulations can be equiva-
lently written as in terms of Mendelian sampling effects m
m'A-1m and trace [Am

-1PEVm], where PEVm is the predic-
tion error covariance matrix for the Mendelian sampling
effects. As Am is diagonal we see that we only need to com-
pute the sampling variances of the Mendelian sampling
terms. When the sampling was carried out in this study
we, in error, did not correct the Mendelian sampling terms
for inbreeding. We therefore have only reported results for
non-inbred animals and think that the incorrect genera-
tion will have a minimal effect on the sampling variances,
which are presented as an empirical check on the formu-
lae. There may be circumstances where a Stochastic REML
approach may be faster than Gibbs sampling and have
less bias than Method R [23]. Calculating variance com-
ponents using more complete data sets would facilitate a
reduction in the bias of estimated variance components
caused by the ignoring of data on which selection has
taken place in the population [12], due to computational
limitations. Calculation of unbiased accuracy of within
breed [8] and across breed [12] estimated breeding values
can be improved by reducing the computational time
required of calculation or reducing the sampling error for
a given computational time. Application of an algorithm
controlling the variance of response to selection [24] to
large data sets can be speeded up. The variance of response
to selection is a risk to breeding programs [3], which is
generally not explicitly controlled using the approach out-
lined by Meuwissen [24] due to the inability to generate a
prediction error (co)variance matrix for large data sets.

Computational power is a major limitation of stochastic
methods, particularly when large data sets are involved,
however this is dissipating rapidly with the improvement
in processor speed, parallelization, and the adoption of
64-bit technology, however in the meantime determinis-
tic methods will continue to be used for large scale BLUP
analysis.

Conclusion
PEV approximations using Monte Carlo estimation were
affected by the formulation used to calculate the PEV. The
difference between the formulations was small when the
number of samples increased, but differed depending on
the level of the exact PEV and the number of samples. Res-

caling from the scale of Var(u) to the scale of 

improved the approximation of the PEV and four of the
10 formulations gave the best approximations of PEVexact

thereby improving the efficiency of the Monte Carlo sam-
pling procedure for calculating the PEV. The fewer sam-

σ g
2

X-Y plot of the exact prediction error variance and the Var( ) and Var(u - )Figure 3
X-Y plot of the exact prediction error variance and 
the Var( ) and Var(u - ).
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ples that are required the less the computational time will
be.
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