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A REMARK ON NORMAL FORMS AND

THE “UPSIDE-DOWN” I-METHOD FOR PERIODIC NLS:

GROWTH OF HIGHER SOBOLEV NORMS

JAMES COLLIANDER, SOONSIK KWON, AND TADAHIRO OH

Abstract. We study growth of higher Sobolev norms of solutions to the one-dimensional
periodic nonlinear Schrödinger equation (NLS). By a combination of the normal form
reduction and the upside-down I-method, we establish

‖u(t)‖Hs . (1 + |t|)α(s−1)+

with α = 1 for a general power nonlinearity. In the quintic case, we obtain the above
estimate with α = 1/2 via the space-time estimate due to Bourgain [4, 5]. In the cubic case,
we concretely compute the terms arising in the first few steps of the normal form reduction
and prove the above estimate with α = 4/9. These results improve the previously known
results (except for the quintic case.) In Appendix, we also show how Bourgain’s idea in [4]
on the normal form reduction for the quintic nonlinearity can be applied to other powers.
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1. Introduction

We consider the periodic defocusing nonlinear Schrödinger equation (NLS):
{
iut − uxx + |u|2pu = 0

u
∣∣
t=0

= u0 ∈ Hs(T),
(x, t) ∈ T×R (1.1)

where T = R/2πZ, p ∈ N, s > 1. NLS (1.1) is a Hamiltonian PDE with Hamiltonian:

H(u) =
1

2

ˆ

T

|ux|
2 +

1

2p+ 2

ˆ

T

|u|2p+2. (1.2)

Indeed, (1.1) can be written as

ut = i
∂H

∂ū
. (1.3)

Recall that (1.1) also conserves the L2-norm and the momentum P (u) = i
´

T
uux. Moreover,

the cubic NLS (p = 1) is known to be completely integrable [16] in the sense that it enjoys
the Lax pair structure and so infinitely many conservation laws. For p ≥ 2, the L2-norm,
the momentum, and the Hamiltonian are the only known conservation laws.

In [2], Bourgain proved local well-posedness of (1.1)

• in L2(T) for the cubic NLS (p = 1),
• in Hs(T), s > 0, for the quintic NLS (p = 2),
• in Hs(T), s > 1

2 −
1
p
, for p ≥ 3.

Hence, (1.1) is globally well-posed in H1(T) for any p ∈ N, since the conservation of the
L2-norm and the Hamiltonian yields an a priori global-in-time bound on the H1-norm of
solutions. However, except for the cubic case (p = 1), there is no a priori upperbound on
the Hs-norm for s > 1.

In this paper, we study growth of higher Sobolev norms ‖u(t)‖Hs , s > 1, of solutions to
(1.1). By iterating the local theory, we easily obtain an exponential bound

‖u(t)‖Hs ≤ C1e
C2|t|,

where C1 and C2 depend only on s, p, and u0. This exponential bound is not satisfactory
at all. Polynomial bounds were then obtained in Bourgain [3], Staffilani [14]. The basic
idea is to establish an improved iteration bound:

‖u(t+ τ)‖Hs ≤ ‖u(t)‖Hs +C‖u(t)‖1−δ
Hs

for all t ∈ R, with some δ = δ(s, p) ∈ (0, 1), where τ and C depend on s, p, and u0. This in
turn implies

‖u(t)‖Hs ≤ C(1 + |t|)
1
δ , (1.4)

where C = C(s, p, u0). Fourier multiplier method was used in [3], and careful multilinear
analysis was performed in [14]. (The only result in [3, 14] for the one-dimensional periodic
NLS is for the (nonhomogeneous) cubic NLS with δ−1 = (s− 1)+ in [14].) Then, Sohinger
[12] applied the upside-down I-method (see below) to study this problem and proved (1.4)
with δ−1 = 2s+ for p ≥ 2 and with δ−1 = 1

2s+ for p = 1.1

In the appendix of [4], Bourgain applied the normal form reduction to the quintic NLS
and obtained a growth bound; if u is a global solution to the quintic NLS (1.1) with p = 2,
then we have

‖u(t)‖Hs .s,p,u0 (1 + |t|)
1
2
(s−1)+ (1.5)

1 Note the presence of s in place of s− 1 unlike other results. See Remark 1.3.
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for s > 1.2 His idea can be applied to other powers, which yields

Theorem 1.1. Fix s > 1. Given u0 ∈ Hs(T), let u be the global solution to (1.1) with

initial condition u0.

(a) Let p = 1, 2. Then, the a priori bound (1.5) holds.
(b) Let p ≥ 3. Then, the following a priori bound holds:

‖u(t)‖Hs . (1 + |t|)2(s−1)+. (1.6)

Note that both (1.5) and (1.6) provide slightly better estimates than those in [12]. For
the cubic (p = 1) case, there are uniform bounds on Sobolev norms due to the complete
integrability. Our interest in this article is to establish an a priori bound without using
such a structure in an explicit manner.

Consider the Hamiltonian corresponding to (1.1) in the frequency space:3

H(q) = H(q, q̄) =
∑

n

n2|qn|
2 +

∑

n1−n2+···−n2p+2=0

qn1 q̄n2 · · · qn2p+1 q̄n2p+2 (1.7)

=: H0(q) +H1(q),

where qn = q̂(n). Normal form reduction is a sequence of phase space transformations,
transforming the nonlinear part H1(q) of the Hamiltonian into expressions involving only
“nearly-resonant” monomials for the form

qn1 q̄n2 · · · qn2r−1 q̄n2r , r ≥ p+ 1, (1.8)

where

n1 − n2 + · · · + n2r−1 − n2r = 0 (1.9)

and

|n2
1 − n2

2 + · · · + n2
2r−1 − n2

2r| < K (1.10)

for some large K > 0, (plus a non-resonant error, which needs to be estimated in a suitable
topology.) By choosing K = T−δ for some small δ > 0, Bourgain [4] applied the normal
form reduction with the L6-Strichartz estimate (see (3.23) and (3.24) below) and established
(1.5) for |t| ≤ T .4 In Appendix, we briefly discuss how his idea can be applied to other
powers.

In order to improve Theorem 1.1, we combine this normal form reduction with the upside-
down I-method. For s > 1, let D be the Fourier multiplier operator given by the multiplier
m : Z → R, where

m(n) =

{
1, |n| ≤ N( |n|
N

)s−1
, |n| > N.

(1.11)

The operator D is basically a differentiation operator of order s− 1. Moreover, it satisfies

‖Dq‖H1 ≤ ‖q‖Hs ≤ N s−1‖Dq‖H1 . (1.12)

The upside down I-method first appeared in [6] (in the low regularity setting.) The growth
of Sobolev norm is related to the low-to-high frequency cascade, and the (upside-down) I

2We use A . B to denote an estimate of the form A ≤ CB for some C > 0. Similarly, we use A ∼ B to
denote A . B and B . A. In (1.5), the expression .s,p,u0

shows that the implicit constant C depends on
s, p, and u0. In the following, we omit such subscripts when there is no confusion.

3In the following, we often drop constants, when they do not play an important role.
4In (1.5), the implicit constant is independent of T , and hence the bound (1.5) holds for all t ∈ R.
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method is a suitable tool to study such a phenomenon. As a result, we obtain the following
improvement.

Theorem 1.2. Fix s > 1. Given u0 ∈ Hs(T), let u be the global solution to (1.1) with

initial condition u0.

(a) Let p ≥ 3. Then, we have

‖u(t)‖Hs . (1 + |t|)(s−1)+. (1.13)

(b) Let p = 2. Then, the a priori bound (1.5) holds.
(c) Let p = 1. Then, the following a priori bound holds:

‖u(t)‖Hs . (1 + |t|)
4
9
(s−1)+. (1.14)

Remark 1.3. In [12], Sohinger defined D to be a differentiation of order s and proved an
estimate on ‖Du(t)‖L2 , i.e. his argument is based on almost conservation of the L2-norm.
However, it seems that by using D as in (1.11) with almost conservation of the Hamiltonian
(∼ H1-norm), one can obtain the results in [12], but with s− 1 in place of s.

Our argument is closely related to that by Bourgain in [5], where he combined the normal
form reduction and the I-method to study global well-posedness of the defocusing quintic
NLS on T. There are two main steps in the proof of Theorem 1.2. First, we apply the normal
form reduction to the Hamiltonian H in (1.7) and obtain a new Hamiltonian H = H ◦ Γ
with a certain symplectic transformation Γ so that the transformed Hamiltonian H is of
the form

H(q) = H0(q) +N (q),

whereN consists of nearly-resonant terms (plus “small” error.) Our choice of the symplectic
transformation Γ satisfies ‖Γq‖L2 = ‖q‖L2 and ‖Γq‖H1 ∼ ‖q‖H1 . Recall from [4] that
K = T−δ for Theorem 1.1. For Theorem 1.2, we choose K = N δ for some small δ > 0, and
then choose N in terms of T as in the usual (upside-down) I-method.

After performing the normal form reduction, we apply the upside-down I-method to the
transformed Hamiltonian H. Suppose that q(t) satisfies the Hamiltonian flow of H, i.e.

qt = i
∂H

∂q
.

Then, differentiating in time as in [5], we obtain

d

dt
H(Dq) =

∂H

∂q
(Dq) · Dqt +

∂H

∂q̄
(Dq) · Dqt

= i
∑

n

m(n)2n2

(
q̄n

∂N

∂q̄n
(q)− qn

∂N

∂qn
(q)

)
(1.15)

+ i
∑

n

m(n)n2

(
qn

∂N

∂qn
(Dq)− q̄n

∂N

∂q̄n
(Dq)

)
(1.16)

+ i
∑

n

m(n)

(
∂N

∂qn
(Dq)

∂N

∂q̄n
(q)−

∂N

∂qn
(q)

∂N

∂q̄n
(Dq)

)
. (1.17)

As noted in [5], we have (1.15) + (1.16) = 0 and (1.17) = 0 if supp q ⊂ [−N,N ]. Hence, we
assume that

max(|n1|, . . . , |n2r|) > N (1.18)
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for the monomials of the form (1.8). Then, we prove Theorem 1.2 (a) by estimating the
contributions from (1.15)–(1.17). When p ≤ 2, we obtain an improvement from the space-
time estimate by Bourgain [4, 5]. See (3.24) below. Finally, for the cubic nonlinearity
(p = 1), we concretely compute the terms arising in the first few steps of the normal
form reduction, and show that these terms (as well as the higher order terms) satisfy better
estimates. A further improvement may be achieved by computing more terms in the normal
form reduction. However, the actual computation becomes very cumbersome and we do not
pursue this direction any further in this article. See Grébert-Kappeler-Pöschel [10] for the
normal form theory of the defocusing cubic NLS, based on the integrability of the equation.

For the non-periodic cubic NLS, Sohinger [13] used the a priori bound on the Hk-norm,
k ∈ N, and obtained

‖u(t)‖Hs . (1 + |t|){s}+,

where {s} denotes the fractional part of s > 1. Note that such uniform bounds on the
Hk-norms are results of integrability of the equation. See [8, 15]. One could try to prove a
similar result in the periodic case. However, we do not pursue this direction in this article,
since our focus is to present an analytical method without using the complete integrability
in an explicit manner.

This paper is organized as follows. In Section 2, we briefly review the theory of the normal
form reduction, and apply it in the NLS context. In Section 3, we apply the upside-down
I-method to the transformed Hamiltonian and prove Theorem 1.2 (a) and (b). In Section
4, we focus on the cubic NLS. By explicitly computing the first few steps of the normal
form reduction, we establish improved estimates in applying the upside-down I-method,
and prove Theorem 1.2 (c). In Appendix, we discuss Theorem 1.1 and show how to apply
Bourgain’s idea [4] for general powers.

2. Normal Form Reduction

2.1. Introduction. The normal form reduction involves in eliminating non-resonant parts
of the Hamiltonians by introducing suitable symplectic transformations. Our goal is to
repeat this procedure so that the transformed Hamiltonian H consists of the quadratic
part H0, the resonant part N0, and the error Nr. In the following, we briefly review the
basic procedure of the normal form reduction. Also, see Kuksin-Pöschel [11], Bourgain
[4, 5], Grébert [9].

Let

H̃(q, q̄) =
∑

n1−n2+···−n2r=0

c(n̄)qn1 q̄n2 · · · qn2r−1 q̄n2r (2.1)

be (a part of) a Hamiltonian obtained at some stage of this process. Assume that c(n̄) :=
c(n1, · · · , n2r) ∈ R and that c(n̄) is invariant5 (modulo ± signs) under the permutation

n2k−1 ↔ n2k, k = 1, . . . , r. Divide H̃ into the resonant6 part H̃0 and non-resonant part H̃1,

i.e. H̃0 (and H̃1) is the restriction of H̃ on |D(n̄)| ≤ K (and |D(n̄)| > K, respectively),
where D(n̄) is defined by

D(n̄) := n2
1 − n2

2 + · · ·+ n2
2r−1 − n2

2r. (2.2)

5This is satisfied by the initial Hamiltonian (1.7), and thus is automatically satisfied by all the Hamilto-
nians appearing in the process.

6Strictly speaking, H̃0 is only “nearly resonant”. However, we refer to it as the “resonant” part for
simplicity.
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We now introduce a symplectic transformation Γ = ΓF , called the Lie transform, to elimi-

nate H̃1. Define a Hamiltonian F (= “D−1H̃1”) by

F (q, q̄) =
∑

n1−n2+···−n2r=0
|D(n̄)|>K

c(n̄)

D(n̄)
qn1 q̄n2 · · · qn2r−1 q̄n2r . (2.3)

Then, it is not difficult to see that F satisfies the following homological equation:

{H0, F} = −H̃1, (2.4)

where H0(q) =
∑

n n
2|qn|

2 as in (1.7) and the Poisson bracket {·, ·} is defined by

{H1,H2} = i
∑

n

[
∂H1

∂qn

∂H2

∂q̄n
−

∂H1

∂q̄n

∂H2

∂qn

]
. (2.5)

Consider a Hamiltonian flow associated to the Hamiltonian F :

qt = i
∂F

∂q̄
. (2.6)

Let Γt denote the flow map generated by F at time t. Then, we define the Lie transform

Γ(= ΓF ) to be the time-1 map Γ1.
7 As we see below, the non-resonant part H̃1 is eliminated

under Γ.
Recall the following lemma. See [9, Lemma 2.8].

Lemma 2.1. Let Γt be as above. Then, for a smooth function G, we have

d

dt
(G ◦ Γt) = {G,F} ◦ Γt.

Proof. By Chain Rule, we have

d

dt
(G ◦ Γt) =

∂G

∂q
(q(t)) · qt +

∂G

∂q̄
(q(t)) · q̄t

= i
∂G

∂q
·
∂F

∂q̄
− i

∂G

∂q̄
·
∂F

∂q
= {G(q(t)), F (q(t))}

since ∂F/∂q̄ = ∂F/∂q. �

By the Taylor series expansion of G ◦ Γt centered at t = 0, we obtain

G ◦ Γ =
∞∑

k=0

1

k!
{G,F}(k), (2.7)

where {G,F}(k) denotes the k-fold Poisson bracket of G with F , i.e.

{G,F}(k) := {· · · {G,F}, F}, · · · , F}︸ ︷︷ ︸
k times

and {G,F}(0) = G.

7Here, we simply assume that the flow exists up to time t = 1. See Subsection 2.3.
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Suppose that we start with a Hamiltonian H = H0 + H̃, where H0 is as in (1.7) and H̃
is as in (2.1). From (2.7) and (2.4), the transformed Hamiltonian H ′ = H ◦ Γ is given by

H ′ = H ◦ Γ = H0 ◦ Γ + H̃0 ◦ Γ + H̃1 ◦ Γ

= H0 + H̃0 + H̃1 + {H0, F}+ {H̃0, F}+ {H̃1, F}+ h.o.t.

= H0 + H̃0 + {H̃0, F}+ {H̃1, F}+ h.o.t.,

where “h.o.t.” stands for higher order terms. Hence, we have eliminated the non-resonant

part H̃1 by the Lie transform Γ. Then, we define the resonant part H̃ ′
0 and the non-resonant

part H̃ ′
1 of the new Hamiltonian H ′ by

H̃ ′
0 := H̃0 + resonant part of {H̃0, F}+ {H̃1, F}+ h.o.t.

H̃ ′
1 := non-resonant part of {H̃0, F} + {H̃1, F}+ h.o.t.

Note that at each step, the lowest degree among the monomials in the non-resonant part
increases at least by two since degF ≥ 4.

Lastly, we discuss the regularity of the Lie transform Γ. It follows from Sobolev embed-
ding that Γ acts boundedly on bounded subsets of Hs(T), s > 1

2 . See [11]. Indeed, for F
as in (2.3), by Hölder inequality and Sobolev embedding, we have

∥∥∥∥
∂F

∂q̄

∥∥∥∥
Hs

. sup
‖p‖

L2=1
K−1

∑

n1−n2+···+n2r−1−n=0

|c(n̄)||qn1 | · · · |qn2r−1 | · 〈n〉
s|pn|

. sup
‖p‖

L2=1
‖p‖L2‖q‖Hs‖q‖2r−2

H
1
2+

≤ ‖q‖2r−1
Hs ,

where we used the fact that 〈n〉 . max(〈n1〉, . . . , 〈n2r−1〉) in the second inequality. This is
sufficient for our purpose since we take the phase space to be H1(T) for Dq (and Hs(T),
s > 1, for our initial data q.) See [4, 5] for the boundedness of Γ in Hε(T), ε > 0, for the
quintic case.

2.2. Normal form reduction. In this subsection, we actually implement the normal form
reduction to the Hamiltonian H in (1.7) corresponding to NLS (1.1). Our goal is the
following; by a finite8 sequence of Lie transforms, we transform H into a Hamiltonian of
the form

H(q) = H0(q) +N0(q) +Nr(q), (2.8)

where H0 is the quadratic part, N0 is the resonant part N0, and Nr is “small” error. We
assume that q = {qn}n∈Z satisfies the following L2- and H1-bounds:

‖q‖L2 ≤ C1, (2.9)

‖q‖H1 ≤ C2. (2.10)

In Section 3, we use the result of this section with Dq ∈ H1 (for given q ∈ Hs, s > 1) as
the phase space element in place of q in (2.9) and (2.10).

First, we need to define the “norm” ‖ · ‖ to measure a size of a (homogeneous) Hamil-
tonian. Given a homogeneous multilinear expression

N (q, q̄) =
∑

n1−n2+···−n2r=0

c(n̄)qn1 q̄n2 · · · qn2r−1 q̄n2r , (2.11)

8We repeat the process only finitely many times. In particular, the degree 2r of monomials is finite.



8 JAMES COLLIANDER, SOONSIK KWON, AND TADAHIRO OH

define the “size” ‖N‖ of N by

‖N‖ = sup
∗

∑

n

|c(n̄)||q(1)n1
||q(2)n2

| · · · |q(2r)n2r
| (2.12)

where the supremum is taken over factors q(j), 1 ≤ j ≤ 2r such that

• all factors satisfy (2.9)
• all except at most two factors also satisfy (2.10).

i.e. the supremum is taken over all the factors, allowing two exceptional ones. See [5] for a
similar definition of a norm on homogeneous multilinear expressions. Like (3.6) in [5], we
obtain the following proposition on closure of the Poisson bracket under this norm.

Proposition 2.2. Let H1 and H2 be Hamiltonians of the form (2.11). Then, we have

‖{H1,H2}‖ . ‖H1‖‖H2‖. (2.13)

We need the following lemma to prove Proposition 2.2.

Lemma 2.3. Let H be a Hamiltonian of the form (2.11).
(a) If all the factors of ∂H/∂q̄ satisfy both (2.9) and (2.10), then we have

∥∥∥∥
∂H

∂q̄

∥∥∥∥
H1

≤ ‖H‖. (2.14)

(b) If all the factors of ∂H/∂q̄ satisfy (2.9) and all except at most one satisfy (2.10), then
we have ∥∥∥∥

∂H

∂q̄

∥∥∥∥
L2

≤ ‖H‖. (2.15)

Proof. (a) Without loss of generality, assume |n| . |n1| since n = n1−n2+ · · ·+n2r−1. By
duality, we have

LHS of (2.14) . sup
‖p‖

L2=1

∑

n1−···+n2r−1−n=0

|c(n̄)|
(
|n1||qn1 |

)
|q̄n2 | · · · |qn2r−1 ||p̄n|

≤ ‖H‖,

since
∥∥|n1|qn1

∥∥
l2
, ‖p̄n‖l2 . 1, i.e. all the factors satisfy (2.9) and all, except for |n1|qn1 and

p̄n, satisfy (2.10). Part (b) follows in a similar manner. �

Proof of Proposition 2.2. It suffices to prove
∥∥∥∥
∑

n

∂H1

∂qn

∂H2

∂q̄n

∥∥∥∥ . ‖H1‖‖H2‖. (2.16)

There are three cases, depending on the location of the two exceptional factors.
First, suppose that both appear in ∂H1/∂qn. By duality, we have
∥∥∥∥

1

〈n〉

∂H1

∂qn

∥∥∥∥
l2n

≤ sup
‖p‖

L2=1

∑

n1−···+n2r−1−n=0

|c1(n̄)||qn1 ||q̄n2 | · · · |qn2r−1 |
(
〈n〉−1|p̄n|

)
≤ ‖H1‖,

(where 〈n〉 := 1+ |n|), since 〈n〉−1p̄n with ‖p‖L2 = 1 satisfies both (2.9) and (2.10). Hence,
from Lemma 2.3 (a), we have

∣∣∣∣
∑

n

∂H1

∂qn

∂H2

∂q̄n

∣∣∣∣ ≤
∥∥∥∥

1

〈n〉

∂H1

∂qn

∥∥∥∥
l2n

∥∥∥∥
∂H2

∂q̄

∥∥∥∥
H1

≤ ‖H1‖‖H2‖.
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The same argument holds when both exceptional factors appear in ∂H2/∂q̄n. Finally,
suppose that exactly one exceptional factor appears in each of ∂H1/∂qn and ∂H2/∂q̄n.
Then, (2.16) follows from Cauchy-Schwarz inequality and Lemma 2.3 (b). �

Now, we inductively iterate the steps of the normal form reduction, assuming (2.9) and
(2.10). For fixed N (to be chosen in terms of T in the next section), we set K = N δ for
some small δ > 0. (Recall that we have K = T δ in [4].) Assume that at some stage of the
process, the Hamiltonian is of the form

H(q) =
∑

n

n2|qn|
2 +N0(q) +N1(q) +Nr(q), (2.17)

where the monomials in the resonant part N0 satisfy

|D(n̄)| ≤ N δ (2.18)

for some small δ > 0, (where D(n̄) is as in (2.2)), the monomials in the non-resonant part
N1 satisfy

|D(n̄)| > N δ, (2.19)

and the remainder part Nr satisfies

‖Nr‖ < N−C (2.20)

for some large C > 0. Moreover, we have

‖N0‖, ‖N1‖ . 1. (2.21)

Clearly, the initial Hamiltonian in (1.7) satisfies the above conditions. Note that there is
no remainder part at this stage, i.e. Nr = 0. By Sobolev embedding along with (2.9) and
(2.10), we have

|H1(q)| =

∣∣∣∣
∑

n1−n2+···−n2p+2=0

qn1 q̄n2 · · · qn2p+1 q̄n2p+2

∣∣∣∣

≤ ‖q‖2L2‖q‖
2p
L∞ ≤ ‖q‖2L2‖q‖

2p

H
1
2+

. 1.

i.e. ‖H1‖ . 1. Hence, the resonant and non-resonant parts of H1 satisfy (2.21).

Assume (2.17). Suppose that (the collection of monomials of the lowest degree in) the
non-resonant part N1 is given by

∑

n1−n2+···−n2r=0
|D(n̄)|>Nδ

c(n̄)qn1 q̄n2 · · · qn2r−1 q̄n2r .

As in the previous subsection, define F by

F (q, q̄) =
∑

n1−n2+···−n2r=0
|D(n̄)|>Nδ

c(n̄)

D(n̄)
qn1 q̄n2 · · · qn2r−1 q̄n2r (2.22)

so that we have

{F,H0} = N1. (2.23)
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Let Γ be the Lie transform associated to F . Then, by (2.7), we have

H′ = H ◦ Γ = H0 +N0 +N1

+ {H0, F}+ {N0, F}+ {N1, F}+ h.o.t.

+Nr ◦ Γ

= H0 +N0 + {N0, F}+ {N1, F}+ h.o.t. +Nr ◦ Γ.

From (2.19) and (2.21), we have

‖F‖ ≤ N−δ‖N1‖ . N−δ. (2.24)

From Proposition 2.2, (2.20), (2.24), and (2.7), we see that Nr ◦ Γ satisfies (2.20). It also
follows that the higher order terms with sufficiently high degrees satisfy (2.20).

Let N denote the sum of {N0, F}, {N1, F}, and the remaining part of the higher order
terms, i.e.

N =

M∑

k=1

1

k!
{N0, F}(k) +

M∑

k=1

1

k!
{N1, F}(k) +

M∑

k=2

1

k!
{H0, F}(k)

for some M ∈ N. From Proposition 2.2, (2.22), and (2.21), we have

‖{N0, F}‖ . N−δ‖N0‖‖N1‖ . N−δ‖N1‖.

Similarly, we have ‖{N0, F}(k)‖ . N−kδ‖N1‖. Then, from (2.24) and (2.23), we have

‖N‖ . ‖N1‖

{ M∑

k=1

1

k!
N−kδ +

M∑

k=2

1

k!
N−(k−1)δ

}
. N−δ‖N1‖.

Now, according to (2.18) and (2.19), divideN into its resonant part N0 and its non-resonant
part N1. Hence, we can write the new Hamiltonian H′ as

H′ = H0 +N ′
0 +N ′

1 +N ′
r

where N ′
0 := N0 +N0 satisfies (2.21), N ′

1 := N1 satisfies

‖N ′
1‖ . N−δ‖N1‖, (2.25)

and N ′
r satisfies (2.20). In view of (2.25), we can hide the non-resonant part into the

remainder part, by iterating the process sufficiently many times.
Therefore, by a finite sequence of Lie transforms, we have obtained a new Hamiltonian

H of the form

H(q) =
∑

n

n2|qn|
2 +N0(q) +Nr(q), (2.26)

where ‖N0‖ . 1 and ‖Nr‖ . N−C .

2.3. L2- and H1-bounds under the Lie transform. Before proceeding with the upside-
down I-method, let us discuss how the conditions (2.9) and (2.10) are affected under the
Lie transform.

Given F as in (2.22), we define the Lie transform Γ to be the time-1 map of (2.6).
Denoting by Γt the flow map of (2.6) at time t, we have

Γtq = q(t) = q(0) + i

ˆ t

0

∂F

∂q̄
(q(t′))dt′, (2.27)



NORMAL FORMS AND UPSIDE-DOWN I-METHOD 11

where q = q(0) and Γtq = q(t). Let M(q) = ‖q‖2
L2 =

∑
n |qn|

2. Then, by Lemma 2.1, we
have

d

dt
M(q(t)) = {M(q(t)), F (q(t))} = 0.

Hence, we have ‖Γtq‖L2 = ‖q‖L2 . In particular, we obtain

‖Γq‖L2 = ‖q‖L2 . (2.28)

Now, take the H1-norm in (2.27). From Lemma 2.3 (a), (2.12), and (2.19), we have

‖Γtq‖H1 ≤ ‖q‖H1 + t sup
t′∈[0,t]

∥∥∥∥
∂F

∂q̄
(q(t′))

∥∥∥∥
H1

≤ ‖q‖H1 + Ct sup
t′∈[0,t]

‖F (q(t′))‖

≤ ‖q‖H1 + C ′tN−δ sup
t′∈[0,t]

‖q(t′)‖2L2‖q(t
′)‖2r−2

L∞ .

By taking the supremum over t ∈ [0, 1] and by Sobolev embedding along with interpolation
on the L2- and H1-norms, we have

sup
t∈[0,1]

‖Γtq‖H1 ≤ ‖q‖H1 + C ′N−δ sup
t∈[0,1]

‖Γtq‖
r−1+
H1

Now, choose N = N(γ) large enough such that if Xt ≤ 4γ, then

Xt ≤ γ + C ′′N−δXr−1+
t implies Xt ≤ 2γ. (2.29)

For our purpose, let γ = ‖q‖H1 . By the local theory of (2.6), there exists a time [0, ε0] such
that Xt := ‖Γtq‖H1 ≤ 2γ for t ∈ [0, ε0]. In particular, we have ‖Γε0q‖H1 ≤ 2γ. By the local
theory again, there exists ε > 0 such that Xt := ‖Γtq‖H1 ≤ 4γ for t ∈ [0, ε0 + ε]. By (2.29),
we have ‖Γtq‖H1 ≤ 4γ for t ∈ [0, ε0 + ε]. By iterating the argument with a fixed size of ε,
we obtain ‖Γtq‖H1 ≤ 2‖q‖H1 for t ∈ [0, 1]. By inverting the time, we obtain

‖Γq‖H1 ∼ ‖q‖H1 ∼ ‖Γ−1q‖H1 . (2.30)

From (2.28) and (2.30), we see that the conditions (2.9) and (2.10) are preserved under
the Lie transform.

3. Upside-down I-method

In this section, we estimate the terms (1.15), (1.16), and (1.17) appearing in d
dt
H(Dq),

where H is the Hamiltonian of the form (2.26) obtained in the previous section. The
analysis is very similar to that in [5]. We estimate | d

dt
H(Dq)| in terms of a negative power

of N and then prove Theorem 1.2.

3.1. Estimates on (1.15), (1.16), and (1.17). In the following, we assume that N is of
the form (2.11). Then, we can rewrite (1.15) and (1.16) as follows.

(1.15) = −
∑

n1−n2+···−n2r=0

c(n̄)R(n̄)qn1 q̄n2 · · · q̄n2r (3.1)

(1.16) =
∑

n1−n2+···−n2r=0

c(n̄)D(n̄)Dqn1Dqn2
· · · Dqn2r

, (3.2)

where D(n̄) is as in (2.2) and R(n̄) is defined by

R(n̄) = m(n1)
2n2

1 −m(n2)
2n2

2 + · · · −m(n2r)
2n2

2r. (3.3)

Recall that we assume (1.18):

n∗
1 := max(|n1|, . . . , |n2r|) > N.
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We use n∗
j to denote the j-th largest frequency in the absolute value. Then, we have n∗

2 & N
since n1 − n2 + · · · − n2r = 0.

In the following, we assume that Dq satisfies both (2.9) and (2.10). Let P≥N be the
Dirichlet projection onto the frequencies {|n| ≥ N}. Then, we have

‖P≥NDq‖L2 . N−1‖Dq‖H1 . N−1 (3.4)

• Estimate on (1.17): Let N and Ñ be of the form (2.11) with frequencies {nj}
2r
j=1 and

{ñj}
2r̃
j=1. In the following, we estimate

∑

n

m(n)

(
∂N

∂qn
(Dq)

∂Ñ

∂q̄n
(q)−

∂N

∂qn
(q)

∂Ñ

∂q̄n
(Dq)

)
, (3.5)

where

n = n2 − n3 + · · · + n2r = ñ1 − ñ2 + · · ·+ ñ2r̃−1. (3.6)

If max(n∗
1, ñ

∗
1) ≤ N , then we have (3.5) = 0.9 Hence, without loss of generality, assume

n∗
1 > N . We consider only the first term in (3.5) since the second term can be estimated

in a similar manner. Now, we consider two cases: (a) |n| & N , (b) |n| ≪ N .

◦ Case (a): Suppose |n| & N . This implies ñ∗
1 & |n| & N . By Cauchy-Schwarz inequality,

we have
∣∣∣∣
∑

n

m(n)
∂N

∂qn
(Dq)

∂Ñ

∂q̄n
(q)

∣∣∣∣ ≤
∥∥∥∥
∂N

∂qn
(Dq)

∥∥∥∥
l2n

∥∥∥∥m(n)
∂Ñ

∂q̄n
(q)

∥∥∥∥
l2n

. (3.7)

First, let us consider the first factor. By (3.4), we have

‖Nm(n∗
1)qn∗

1
‖l2n . 1.

By duality, we have
∥∥∥∥
∂N

∂qn
(Dq)

∥∥∥∥
l2n

= sup
‖p‖

L2=1

∑

n−n2+···−n2r=0

c(n̄) · pn · Dqn2
· · · Dqn2r

. N−1‖N‖, (3.8)

where pn and NDqn∗

1
are the exceptional factors.

Next, consider the second factor in (3.7). By the monotonicity of m(·) and (3.4), we have

‖Nm(n)qñ∗

1
‖l2

ñ∗

1

. ‖Nm(ñ∗
1)qñ∗

1
‖l2

ñ∗

1

. 1.

By duality, we have
∥∥∥∥m(n)

∂Ñ

∂q̄n
(q)

∥∥∥∥
l2n

= sup
‖p‖

L2=1

∑

ñ1−ñ2+···+ñ2r̃−1−n=0

c(n̄) · pn ·m(n)qñ1
qñ2

· · · qñ2r̃−1

. N−1‖Ñ ‖, (3.9)

where pn and Nm(n)qñ∗

1
are the exceptional factors.

◦ Case (b): Suppose |n| ≪ N . From (3.6), we have n∗
2 & N . Thus, we have

‖Nm(n∗
1)qn∗

1
‖l2 , ‖Nm(n∗

2)qn∗

2
‖l2 . 1.

9Here, we abuse notation and set n∗

1 = max(|n2|, |n3|, . . . , |n2r |) and ñ∗

1 = max(|ñ1|, |ñ2|, . . . , |ñ2r̃−1|).
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By Cauchy-Schwarz inequality, we have
∣∣∣∣
∑

n

m(n)
∂N

∂qn
(Dq)

∂Ñ

∂q̄n
(q)

∣∣∣∣ ≤
∥∥∥∥

1

〈n〉

∂N

∂qn
(Dq)

∥∥∥∥
l2n

∥∥∥∥〈n〉m(n)
∂Ñ

∂q̄n
(q)

∥∥∥∥
l2n

. (3.10)

By duality, we have
∥∥∥∥

1

〈n〉

∂N

∂qn
(Dq)

∥∥∥∥
l2n

= sup
‖p‖

L2=1

∑

n−n2+···−n2r=0

c(n̄) · 〈n〉−1pn · Dqn2
· · · Dqn2r

. N−2‖N‖, (3.11)

where NDqn∗

1
and NDqn∗

2
are the exceptional factors. By Lemma 2.3 (a) and the mono-

tonicity of m(·), the second factor in (3.10) is bounded by ‖Ñ ‖.

From (3.7)–(3.11), we obtain

|(1.17)| . N−2‖N‖2. (3.12)

Lastly, by writing N = N0 +Nr and Ñ = Ñ0 + Ñr, if Nr or Ñr appears in either the first
or the second factor, then we have |(1.17)| . N−C .

• Estimate on (3.1): Let η(n2) = m(n)2n2. i.e. we have

η(u) =

{
u, u ≤ N2

N2(1−s)us, u ≥ N2.

In particular, we have η′(u) . η(u)/u.

◦ N0-contribution: Assume n∗
1 = |n1|. Then, without loss of generality, we can assume

n∗
2 ∼ |n2| since |D(n̄)| ≤ N δ < (n∗

1)
δ for small δ > 0. Thus, we have

n2
1 = n2

2 +O((n∗
3)

2 +N δ).

By Mean Value Theorem, we have

|η(n2
1)− η(n2

2)| . m(n1)
2O((n∗

3)
2 +N δ).

Thus, we have

|R(n̄)| . m(n1)
2O((n∗

3)
2 +N δ) +m(n∗

3)
2(n∗

3)
2

. m(n1)
2O((n∗

3)
2 +N δ),

where R(n̄) is defined in (3.3). Now, we consider two cases, depending on the size of n∗
3:

(a) n∗
3 . N

δ
2 , (b) n∗

3 ≫ N
δ
2 .

◦ Case (a): Suppose n∗
3 . N

δ
2 . In this case, we have |R(n̄)| . m(n1)m(n2)N

δ. Hence, from
(3.4), we have

|(3.1)| . N δ
∑

n1−n2+···−n2r=0

|c(n̄)| ·m(n1)qn1 ·m(n2)q̄n2 · qn3 · · · q̄n2r

. N−2+δ‖N0‖. (3.13)

◦ Case (b): Suppose n∗
3 ≫ N

δ
2 . In this case, we have n∗

4 ∼ n∗
3 since |D(n̄)| ≪ (n∗

3)
2.

Otherwise, if n∗
4 ≪ n∗

3, then we would have

(1 + o(1))(n∗
3)

2 = |(n1 − n2)(n1 + n2)| = (1 + o(1))n∗
3(n

∗
1 + n∗

2) (3.14)
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since n1 and n2 have the same sign in view of |n1 − n2| = (1 + o(1))n∗
3. Then, it follows

from (3.14) that n∗
3 = 0, which in turn implies n1 = n2 and n∗

3 = · · · = n∗
2r = 0. In this

case, we have (3.1) = 0 since R(n̄) = 0.
Thus, we have |R(n̄)| . m(n1)m(n2)n

∗
3n

∗
4. By Hölder inequality and Sobolev embedding

on the physical side, we have

|(3.1)| .
∑

n1−n2+···−n2r=0

|c(n̄)| ·m(n1)qn1 ·m(n2)q̄n2 · n
∗
3 n

∗
4 qn3 · · · q̄n2r

. ‖P&NDq‖2
H

1
2+

∥∥|∂x| q
∥∥2
L2‖q‖

2r−4

H
1
2+

. N−1+‖Dq‖2rH1 (3.15)

since ‖P&NDq‖
H

1
2+ . N− 1

2
+‖Dq‖H1 .

From (3.13) and (3.15), we obtain

|(3.1)| . N−1+. (3.16)

◦ Nr-contribution: In this case, we use |R(n̄)| . m(n∗
1)

2(n∗
1)

2. Then, proceeding with
‖Dq‖H1 . 1, we have

|(3.1)| . ‖Nr‖ < N−C . (3.17)

• Estimate on (3.2):

◦ N0-contribution: By proceeding with |D(n̄)| ≤ N δ and (3.4) as before, we obtain

|(3.2)| . N−2+δ‖N0‖. (3.18)

◦ Nr-contribution: In this case, we have |D(n̄)| . (n∗
1)

2. Hence, we obtain (3.17).

3.2. Proof of Theorem 1.2 (a). Now, we are ready to put all the estimates together and
prove Theorem 1.2 (a). Given u0 ∈ Hs with s > 1, let

Dq0 = Γ−1Du0.

Then, from (1.12) and (2.30), we have

‖Dq0‖H1 ∼ ‖Du0‖H1 ≤ ‖u0‖Hs ∼s,u0 1.

From (3.12), (3.16), and (3.18), we have
∣∣∣∣
d

dt
H(Dq)(t)

∣∣∣∣ . N−1+ (3.19)

assuming

‖Dq(t)‖H1 . 1. (3.20)

Now, fix T > 0. Suppose that (3.20) holds true for |t| ≤ T . Then, from (3.19), we have

‖Dq(t)‖2H1 ∼ H(Dq(t)) ≤ H(Dq(0)) + CTN−1+, |t| ≤ T. (3.21)

By choosing N ∼ T 1+, we indeed have

‖Dq(t)‖H1 . 1, |t| ≤ T. (3.22)

Note that we performed the upside-down I-method on the transformed coordinates. By
(1.12), (2.30), and (3.22), we obtain

‖u(t)‖Hs . N s−1‖Du(t)‖H1 ∼ N s−1‖Dq(t)‖H1 . T (s−1)+, |t| ≤ T.
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Therefore, we conclude that

‖u(t)‖Hs . (1 + |t|)(s−1)+.

This completes the proof of Theorem 1.2 (a).

3.3. Improvement for p ≤ 2: Theorem 1.2 (b). In this subsection, we briefly discuss
how to improve the result when p = 1, 2. The basic idea is to use the estimate due to
Bourgain. In [4, 5], Bourgain studied the quintic NLS, where he used space-time estimates
to obtain purely spatial estimates. For this purpose, the L6-Strichartz estimate [2]:

‖e−it∆φ‖L6(T2) . CN‖φ‖L2 , supp φ̂ ⊂ [−N,N ] (3.23)

plays a crucial role, where CN = exp
(
C logN

log logN

)
≪ N0+. Then, one inductively proves

estimates for Hamiltonians with higher order nonlinearity, which appear in the process of
the normal form reduction. In the end, one obtains [5, (5.13)]:10

max
a∈Z

∣∣∣∣
∑

n1−n2+···−n2r=0
D(n̄)=a

|c(n̄)||q(1)n1
||q(2)n2

| · · · |q(2r)n2r
|

∣∣∣∣ . (n∗
1)

0+
2r∏

j=1

‖q(j)nj
‖L2 . (3.24)

For the cubic case (p = 1), one can basically repeat the same computation to establish
(1.5), thanks to the L4-Strichartz estimate [17]:

‖e−it∆φ‖L4(T2) . ‖φ‖L2 . (3.25)

Unlike (3.23), there is no derivative loss in (3.25). However, one has a small derivative loss
in the inductive steps, causing the + sign in (1.5). See (A.22) in [4]. As a conclusion, the
estimate (3.24) holds when p = 1, 2.

Theorem 1.2 (b) follows once we show
∣∣∣∣
d

dt
H(Dq)(t)

∣∣∣∣ . N−2+. (3.26)

In view of (3.12), (3.13), and (3.18) with δ = 0+, we only need to improve Case (b) in
Estimate on (3.1). By applying (3.24) and (3.4) in (3.15) (in place of Hölder inequality and
Sobolev embedding), we have

|(3.1)| . N δ max
|a|≤Nδ

∑

n1−n2+···−n2r=0
D(n̄)=a

|c(n̄)| ·m(n1)qn1 ·m(n2)q̄n2 · n
∗
3 n

∗
4 qn3 · · · q̄n2r

. N δ‖P&NDq‖2H0+

∥∥|∂x| q
∥∥2
L2‖q‖

2r−4
L2

. N−2+δ+‖Dq‖2rH1 .

Hence, (3.26) follows and this proves Theorem 1.2 (b).

4. Cubic Case: Theorem 1.2 (c)

In this section, we consider the cubic case (p = 1) and prove Theorem 1.2 (c). First, we
explicitly compute first few terms appearing in the normal form reduction in Subsection 4.1.
See also Erdoğan-Zharnitsky [7]. Then, we establish improved estimates on those terms
and prove Theorem 1.2 (c) in Subsection 4.2.

10One can indeed obtain this estimate with (n∗

3)
0+ in place of (n∗

1)
0+, but it is not useful for our purpose.



16 JAMES COLLIANDER, SOONSIK KWON, AND TADAHIRO OH

4.1. Normal form reduction: cubic NLS. Let H be as in (1.7) with p = 1. i.e. we
have

H(q) =
∑

n

n2|qn|
2 +

∑

n1−n2+n3−n4=0

qn1 q̄n2qn3 q̄n4 =: H0(q) +H1(q).

Now, divide H1 into the resonant part R and the non-resonant part N , depending on
D1(n̄) = 0 or 6= 0, where D1(n̄) is defined by

D1(n̄) := n2
1 − n2

2 + n2
3 − n2

4 = −2(n1 − n2)(n3 − n2).

We further split R into two parts:

R =
∑

n1−n2+n3−n4=0
D1(n̄)=0

qn1 q̄n2qn3 q̄n4 = 2
∑

n1

∑

n3

|qn1 |
2|qn3 |

2 −
∑

n

|qn|
4 =: R1 +R2. (4.1)

By the conservation of the L2-norm, we have

R1 = 2µ
∑

n

|qn|
2,

where µ = (2π)−1
´

|u|2dx. By a direct computation, one easily sees that {R1, F} = 0 for
smooth F of the form (2.3).

As the first step of the normal form reduction, define F1 such that {H0, F1} = −N . i.e.

F1 =
∑

n1−n2+n3−n4=0
n2 6=n1,n3

qn1 q̄n2qn3 q̄n4

−2(n1 − n2)(n3 − n2)
. (4.2)

Let Γ1 be the Lie transform associated with F1. Then, we have

H ′ := H ◦ Γ1 = H0 +R1 +R2 + {R2, F1}+
1
2{N , F1}+ h.o.t. (4.3)

Here, we used the fact that {R1, F1} = 0 and {N , F}+ 1
2{{H0, F1}, F1} = 1

2{N , F}. From
(4.1) and (4.2), we have

{R2, F1} = 2i(I0 − I0), (4.4)

where I0 is given by

I0 =
∑

n1−n2+n3−n4=0
n2 6=n1,n3

qn1 q̄n2qn3 |qn4 |
2q̄n4

(n1 − n2)(n3 − n2)

=
∑

n1−n2+n3−n4+n5−n6=0
n2 6=n1,n3
n4=n5=n6

qn1 q̄n2qn3 q̄n4qn5 q̄n6

(n1 − n2)(n3 − n2)
. (4.5)

Next, we introduce two more transformations to eliminate the “non-resonant” parts of
{R2, F1} and 1

2{N , F1}. First, we divide them into the resonant parts (with (r)) and the
non-resonant parts (with (nr)),

{R2, F1} = {R2, F1}
(r) + {R2, F1}

(nr)

{N , F1} = {N , F1}
(r) + {N , F1}

(nr),

depending on

|D2(n̄)| ≤ Nβ or |D2(n̄)| > Nβ (4.6)
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for some β > 0 (to be chosen later), where D2(n̄) is defined by

D2(n̄) := n2
1 − n2

2 + n2
3 − n2

4 + n2
5 − n2

6.

Now, define F2 and F3 such that

{H0, F2} = 1
2{N , F1}

(nr)

{H0, F3} = {R2, F1}
(nr)

i.e. we have

F2 ∼ “D−1
2 {N , F1}

(nr) ” and F3 ∼ “D−1
2 {R2, F1}

(nr) ”. (4.7)

Let Γ2 and Γ3 be the Lie transforms associated with F2 and F3. Then, from (4.3), we have

H ′′ := H ◦ Γ1 ◦ Γ2 ◦ Γ3 = H0 +R1 +R2 + {R2, F1}
(r) + 1

2{N , F1}
(r) + h.o.t. (4.8)

From (4.4) and (4.2), we have

{R2, F1}
(r) = 2i(I1 − I1), (4.9)

1
2{N , F1}

(r) = 2i(I2 − I2), (4.10)

where I1 is the resonant part (i.e. |D2(n̄)| ≤ Nβ) of I0 defined in (4.5) and I2 is given by

I2 =
∑

n1−n2+n3−n4+n5−n6=0
n2 6=n1,n3
n5 6=n4,n6

|D2(n̄)|≤Nβ

qn1 q̄n2qn3 q̄n4qn5 q̄n6

(n1 − n2)(n3 − n2)
. (4.11)

In the next subsection, we estimate the terms R1, R2, {R2, F1}
(r), and 1

2{N , F1}
(r)

appearing in (4.8). Also, note that all the higher order terms in (4.8) are Poisson-bracketed
with F2 or F3 at least once. i.e. they have an extra decay of |D2|

−1 < N−β from (4.6) and
(4.7).

After this point, we perform the (usual) normal form reductions (as in Section 2) on
the higher order terms in (4.8). In particular, we use (2.18) and (2.19) with δ = 0+ to
distinguish the resonant and non-resonant terms. In the process, we construct Hamiltonians
F of the form (2.22) to eliminate the non-resonant parts of the higher order terms in (4.8).
For such F , it follows from the observation in the previous paragraph that c(n̄) in (2.22) is
small, i.e. |c(n̄)| < N−β. After a finite number of iterations, (4.8) is reduced to

H = H̃0 +R2 + {R2, F1}
(r) + 1

2{N , F1}
(r) +N0 +Nr︸ ︷︷ ︸

= h.o.t.

=: H̃0 + Ñ , (4.12)

where H̃0 is the new quadratic part defined by

H̃0 := H0 +R1 =
∑

n

(n2 + 2µ)|qn|
2

and the higher order terms have an extra factor of N−β. (Compare this with (2.26).)
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4.2. Improved estimates. In this subsection, we prove Theorem 1.2 (c) by establishing
improved estimates for all the terms in (4.12). Differentiating (4.12) in time, we obtain

d

dt
H(Dq) =

∂H

∂q
(Dq) · Dqt +

∂H

∂q̄
(Dq) · Dqt

= i
∑

n

m(n)2(n2 + 2µ)

(
q̄n

∂Ñ

∂q̄n
(q)− qn

∂Ñ

∂qn
(q)

)
(4.13)

+ i
∑

n

m(n)(n2 + 2µ)

(
qn

∂Ñ

∂qn
(Dq)− q̄n

∂Ñ

∂q̄n
(Dq)

)
(4.14)

+ i
∑

n

m(n)

(
∂Ñ

∂qn
(Dq)

∂Ñ

∂q̄n
(q)−

∂Ñ

∂qn
(q)

∂Ñ

∂q̄n
(Dq)

)
. (4.15)

In the following, we simply use 〈n〉 for 〈n〉µ := (n2+2µ)
1
2 since µ is a fixed constant thanks

to the L2-conservation.
First, note that Theorem 1.2 (c) follows once we prove

∣∣∣∣
d

dt
H(Dq)(t)

∣∣∣∣ ≤ |(4.13)|+ |(4.14)|+ |(4.15)| . N− 9
4
+. (4.16)

Also, note that the terms (4.13)–(4.15) are basically the same as (1.15)–(1.17). Thus, by

comparing (3.26) and (4.16), it suffices to show that there is an additional decay of N− 1
4
+

in this case.
As mentioned at the end of the last subsection, all the higher order terms in (4.12) have

an extra decay of |D2|
−1 < N−β. Hence, by repeating the argument in Subsection 3.3 with

this extra decay of N−β, we have

|(4.13)|+ |(4.14)|+ |(4.15)| . N−2−β+. (4.17)

Moreover, if either of N or Ñ in (3.5), say N , is one of the higher order terms, then, we
also gain an extra decay of N−β from N , and thus (4.17) holds.

Therefore, we only consider the contributions from R2, I1 for {R2, F1}
(r), and I2 for

1
2{N , F1}

(r) in the following. Recall that the main idea in Subsections 3.1 and 3.3 is to
identify large frequencies and apply (3.4) to gain a negative power of N . In particular, it
follows from (3.24) and (3.4) that for each large frequency & N , we basically gain a power
of N−1.

First, let us use (3.24) to establish preliminary estimates on R2, I1, and I2, assuming
(1.18):

n∗
1 := max(|n1|, . . . , |n2r|) > N.

• (i) On R2: By writing R2 in the form (2.11), we have

R2(q) = −
∑

n

|qn|
4 = −

∑

n1−n2+n3−n4=0
n1=n2=n3=n4

qn1 q̄n2qn3 q̄n4 . (4.18)

By (1.18), we have |nj| > N , j = 1, · · · , 4. Then, from (3.24) and (3.4), we have

|R2(q)| . ‖P≥Nq‖4H0+ ≤ N−4+‖q‖4H1 . (4.19)
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• (ii) On I1: From (4.5), we have

I1(q) =
∑

n1−n2+n3−n4+n5−n6=0
n2 6=n1,n3
n4=n5=n6

|D2(n̄)|≤Nβ

qn1 q̄n2qn3 q̄n4qn5 q̄n6

(n1 − n2)(n3 − n2)
. (4.20)

If |n4| & N , then we have at least three large frequencies ( & N .) Thus, from (3.24) and
(3.4), we have

|I1(q)| . Nβ
( 3∏

j=1

‖qnj
‖l2

)
‖P≥Nq‖3H0+ ≤ N−3+β+‖q‖6H1 . (4.21)

If |n4| ≪ N , then there are at least two frequencies among n1, n2, n3 of size & N .
If min(|n1|, |n2|, |n3|) & N , then we have |I1(q)| ≤ N−3+β+‖qn‖

6
H1 as in (4.21). If

min(|n1|, |n2|, |n3|) ≪ N , then we have

|(n1 − n2)(n3 − n2)| & N.

Hence, we have

|I1(q)| . N−1+β‖P&Nq‖2H0+‖qn‖
4
l2 ≤ N−3+β+‖q‖6H1 . (4.22)

• (iii) On I2: We have n∗
1 ≥ n∗

2 & N . If n∗
3 & N , then we have

|I2(q)| . Nβ‖P&Nq‖3H0+‖qn‖
3
l2 ≤ N−3+β+‖q‖6H1 . (4.23)

Hence, suppose n∗
3 ≪ N in the following.

◦ Case (iii.1): Suppose max(|n1|, |n2|, |n3|) & N . Then we have |(n1 − n2)(n3 − n2)| & N .
Hence, |I2(q)| . N−3+β+‖q‖6

H1 as before.

◦ Case (iii.2): Suppose max(|n1|, |n2|, |n3|) ≪ N . Let β < 1. Then, |D2(n̄)| ≤ Nβ implies
|n5| ≥ n∗

2. Otherwise, i.e., if |n5| ≤ n∗
3 ≪ N , then we would have |n4|, |n6| & N , and thus

−n2
4 − n2

6 = D(n̄) + o(N2) = o(N2).

This is clearly a contradiction. Hence, we have |n5| ≥ n∗
2. Without loss of generality assume

|n4| ≥ |n6|. i.e. {|n4|, |n5|} = {n∗
1, n

∗
2}.

⋄ Subcase (iii.2.a): Suppose n∗
3 . N

1
2
−. Then, write n4 as n4 = n5 + m, where m =

O(N
1
2
−) and m 6= 0. (Recall n4 6= n5.) Then, we have

|D2(n̄)| = |n2
4 − n2

5 +O(N1−)| = |2mn5 +O(N1−)| & |mn5| & N.

This contradicts with |D2(n̄)| ≤ Nβ ≪ N .

⋄ Subcase (iii.2.b): Suppose n∗
3 ≫ N

1
2
−. Then, we have |D2(n̄)| ≤ Nβ ≤ N1− ≪ (n∗

3)
2.

This in turn implies n∗
4 ∼ n∗

3 as in Case (b) of Estimate on (1.15) in Subsection 3.1. Thus,
we have

|I2(q)| . Nβ‖P&Nq‖2H0+‖P
&N

1
2−

q‖2L2‖q‖
2
L2 ≤ N−3+β+‖q‖6H1 . (4.24)

Therefore, we have |I2(q)| . N−3+β+‖q‖6
H1 as long as β < 1.

In the following, we estimate the contributions from R2, I1, and I2 for (4.13), (4.14),
and (4.15), assuming β < 1.
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• Estimate on (4.14): Since
∑2r

j=1(−1)j+1(n2
j + 2µ) = D(n̄), we can rewrite (4.14) in

the form (3.2). First, note that there is no contribution from R2 since D1(n̄) = 0. From
(4.19)–(4.24), we have

|I1|, |I2| . NβN−3+β+ = N−3+2β+.

Therefore, we have

|(4.14)| . N−3+2β+. (4.25)

• Estimate on (4.13): First, we rewrite (4.13) as before.

(4.13) = −
∑

n1−n2+···−n2r=0

c(n̄)R̃(n̄)qn1 q̄n2 · · · q̄n2r

where R̃(n̄) is defined by

R̃(n̄) = m(n1)
2〈n1〉

2 −m(n2)
2〈n2〉

2 + · · · −m(n2r)
2〈n2r〉

2. (4.26)

Once again, there is no contribution from R2 since R̃(n̄) = 0 when n1 = · · · = n4.
In the following, we estimate the contribution from I1 and I2 on (4.13). By repeating

the computation in Estimate on (1.15) in Subsection 3.1, we have

|R̃(n̄)| . m(n∗
1)

2O((n∗
3)

2 +Nβ).

◦ Case (a): Suppose n∗
3 . N

β
2 . In this case, we have |R̃(n̄)| . m(n∗

1)m(n∗
2)N

β. Hence, from
(4.19)–(4.24), the contribution from I1 and I2 can be estimated as

|(4.13)| . N−3+2β+. (4.27)

◦ Case (b): Suppose n∗
3 ≫ N

β
2 . In this case, we have n∗

4 ∼ n∗
3 as in Subsection 3.1. Hence,

we have |R̃(n̄)| . m(n∗
1)m(n∗

2)n
∗
3n

∗
4.

First, we estimate the contribution from I1.

⋄ Subcase (b.1): Suppose |n4| & N . This implies that max(n1, n2, n3) ≥ n∗
4 ∼ n∗

3 & N .
If n∗

5 ≪ N , then we have med(n1, n2, n3) = n∗
5 ≪ N and thus |(n1 − n2)(n3 − n2)| & N .

Hence, we have

|(4.13)| . N−1+β‖P&NDq‖2H0+

( 4∏

j=3

‖n∗
jqn∗

j
‖l2

)
‖q‖2L2 ≤ N−3+β+‖Dq‖6H1

. N−3+β+. (4.28)

Otherwise, i.e. if n∗
5 & N , then we have

|(4.13)| . Nβ‖P≥NDq‖2H0+

( 4∏

j=3

‖n∗
jqn∗

j
‖l2

)
‖P≥Nq‖H0+‖q‖L2 . N−3+β+. (4.29)

⋄ Subcase (b.2): Suppose |n4| ≪ N . This implies n∗
3 ∼ n∗

4 ≪ N . Hence, we have
|(n1 − n2)(n3 − n2)| & N and (4.28) holds in this case.

Next, we estimate the contribution from I2.

⋄ Subcase (b.3): Suppose n∗
3 & N . We have n∗

4 & N since n∗
4 ∼ n∗

3. Then, as in Subcase
(b.1), we obtain (4.28) or (4.29), depending on the size of n∗

5.
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⋄ Subcase (b.4): Suppose n∗
3 ≪ N . If max(n1, n2, n3) & N , then we have |(n1−n2)(n3−

n2)| & N . Hence, |(4.13)| . N−3+β+ as in (4.28).
Now, suppose n∗

3 ≪ N and max(n1, n2, n3) ≪ N . Then, as in Subcase (iii.2.a) for the

preliminary estimate on I2, the case n∗
3 . N

1
2
− can not occur. Hence, we have n∗

3 ≫ N
1
2
−.

⋄ Subsubcase (b.4.i): Suppose n∗
5 ≪ n∗

3. It follows from max(n1, n2, n3) ≪ N . n∗
2 that

either (a) two frequencies of |n1|, |n2|, |n3| are O(n∗
3), and the other one is o(n∗

3), or (b) one
frequency of |n1|, |n2|, |n3| is O(n∗

3), and the other two are o(n∗
3). In either case, we have

|(n1 − n2)(n3 − n2)| & O(n∗
3) ≫ N

1
2
−.

Hence, we have

|(4.13)| . N− 1
2
+β+‖P&NDq‖2H0+

( 4∏

j=3

‖n∗
jqn∗

j
‖l2

)
‖q‖2L2 . N− 5

2
+β+. (4.30)

⋄ Subsubcase (b.4.ii): Suppose n∗
5 ∼ n∗

3. In this case, we have

|(4.13)| . Nβ‖P≥NDq‖2H0+

( 4∏

j=3

‖n∗
jqn∗

j
‖l2

)
‖P

≥N
1
2−

q‖H0+‖q‖L2 . N− 5
2
+β+. (4.31)

From (4.27)–(4.31), we conclude

|(4.13)| . N− 5
2
+β+. (4.32)

• Estimate on (4.15): We follow the argument in Estimate on (1.17) in Subsection 3.1.

It suffices to estimate
∑

nm(n)∂N1
∂qn

(Dq)∂N2
∂q̄n

(q). where N1 and N2 are either R2, I1, or I2

with frequencies {nj}
2r
j=1 and {ñj}

2r̃
j=1.

◦ Case (a): Suppose |n| & N. In this case, we have ñ∗
1 & |n| & N .

If R2 appears in one of the factors, say N1 = R2, then, by duality with (3.24) (note
D1(n̄) = 0), we have

∥∥∥∥
∂R2

∂qn
(Dq)

∥∥∥∥
l2n

= sup
‖p‖

L2=1

∑

n−n2+n3−n4=0
n2=n3=n4=n

pn · Dqn2
Dqn3Dqn4

. ‖P≥Nq‖3H0+ . N−3+.

By Cauchy-Schwarz inequality with (3.9), we have
∣∣∣∣
∑

n

m(n)
∂R2

∂qn
(Dq)

∂N2

∂q̄n
(q)

∣∣∣∣ ≤
∥∥∥∥
∂R2

∂qn
(Dq)

∥∥∥∥
l2n

∥∥∥∥m(n)
∂N2

∂q̄n
(q)

∥∥∥∥
l2n

. N−3+N−1‖N2‖ . N−4+. (4.33)

Hence, we assume that both N1 and N2 are either I1 or I2. Then, by applying Cauchy-
Schwarz inequality, duality, and the preliminary estimates on I1 or I2 in (ii)–(iii) on each
factor, we obtain

|(4.15)| . N−2+β+N−2+β+ = N−4+2β+. (4.34)

Note that we gain only N−2+β+ from each factor, instead of N−3+β+ as in (ii)–(iii). This
is due to the fact that a duality variable p is only in L2 and thus we can not gain an extra
power of N through (3.4).
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◦ Case (b): Suppose |n| ≪ N. Then, we have either n∗
1, n

∗
2 & N or ñ∗

1, ñ
∗
2 & N .11 Suppose

n∗
1, n

∗
2 & N . Then, we can use the preliminary estimates on R2, I1, or I2 in (i)–(iii) for the

first factor (after duality) and use Lemma 2.3 (a) for the second factor:

|(4.15)| .

∥∥∥∥
1

〈n〉

∂N1

∂qn
(Dq)

∥∥∥∥
l2n

∥∥∥∥〈n〉m(n)
∂N2

∂q̄n
(q)

∥∥∥∥
l2n

. N−3+β+. (4.35)

From (4.34) and (4.35), we conclude

|(4.15)| . max(N−4+2β+, N−3+β+) = N−3+β+. (4.36)

for β < 1.

Putting together all the estimates from (4.17), (4.25),(4.32), and (4.36), we have

|(4.13)|+ |(4.14)|+ |(4.15)| . max(N−2−β+, N−3+2β+, N− 5
2
+β+)

By choosing β = 1
4 , (4.16) follows. This completes the proof of Theorem 1.2 (c).

Appendix A. On Theorem 1.1

In [4], Bourgain presented details for the quintic nonlinearity (p = 2.) After the normal
form reduction, (3.24) was enough to conclude the result. For the cubic case (p = 1),
Theorem 1.1 (a) follows once we note that (3.24) still holds in this case, as discussed in
subsection 3.3.

For p ≥ 3, there is no Strichartz estimate available in the periodic setting, and thus we
need to rely on Sobolev inequality. However, we can still perform the normal form reduction
as in Section 2 (with K = T δ) since both (2.9) and (2.10) are satisfied for all t ∈ R thanks
to the L2-conservation and the conservation of the defocusing Hamiltonian. Hence, we can
proceed as in [4].

Let Is(q) = ‖q‖2Hs =
∑

n |n|
2s|qn|

2. Then, after the normal form reduction, we have (see
(A.29) in [4])

∂tIs .

∣∣∣∣
∑

n1−n2+···−n2r=0
|D(n̄)|<K

c(n̄)Ds(n̄)qn1 q̄n2 · · · qn2r−1 q̄n2r

∣∣∣∣ (A.1)

where Ds(n̄) :=
∑

j(−1)j |nj|
2s. By Lemma on p.1355 in [4], we have

|Ds(n̄)| . (n∗
1)

2(s−1)(n∗
3n

∗
4 +K).

(Note a typo in the statement (A.32) in [4].) Assume that n∗
j = |nj|, j = 1, . . . , 4. Moreover,

assume K ≤ |n3||n4|. Then, we have

|(A.1)| .
∑

n1−n2+···−n2r=0
|D(n̄)|<K

|c(n̄)|

( 2∏

j=1

|nj|
(s−1)|qnj

|

)( 4∏

j=3

|nj ||qnj
|

)( 2r∏

j=5

|qnj
|

)
. (A.2)

For the quintic case in [4], it is at this point (see (A.37)–(A.38) in [4]) that the space-time
estimate [4, (A.18)] was used. As mentioned above, (A.18) in [4] follows from from the L6-
Strichartz estimate (3.23). For p ≥ 3, we do not have such an estimate. Thus, we simply
proceed by Hölder inequality and Sobolev embedding on the physical side, and obtain

|(A.2)| . ‖q‖2
Hs− 1

2+
‖q‖2H1‖q‖

2r−4

H
1
2+

. I1−θ
s ‖q‖2r−2+2θ

H1 , (A.3)

11Recall a slight abuse of notation for n∗

j and ñ∗

j . See Estimate on (1.17) in Subsection 3.1.
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where in the last step we used interpolation: ‖q‖
H

s− 1
2+ ≤ ‖q‖1−θ

Hs ‖q‖θ
H1 with

θ =
1

2(s − 1)+
. (A.4)

If |n3||n4| ≤ K = T δ, then we obtain (A.3) with an extra factor of K = T δ. In view of the
uniform bound on the H1-norm on solutions, we obtain

∂tIs . T δI1−θ
s =⇒ ∂t(I

θ
s ) . T δ.

Hence, we obtain Is(t) . T
1+δ
θ = T 2(s−1)+ for |t| ≤ T (with δ = 0+.) This proves Theorem

1.1 (b).

Acknowledgment: J.C. and T.O. would like to thank Alessandro Selvitella for a lecture
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