
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Leaky Rigid Lid: New Dissipative Modes in the Troposphere

Citation for published version:
Chumakova, L, Rosales, R & Tabak, EG 2013, 'Leaky Rigid Lid: New Dissipative Modes in the Troposphere'
Journal of the Atmospheric Sciences, vol 70, no. 10, pp. 3119-3127. DOI: 10.1175/JAS-D-12-065.1

Digital Object Identifier (DOI):
10.1175/JAS-D-12-065.1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of the Atmospheric Sciences

Publisher Rights Statement:
© Copyright [October 2013] American Meteorological Society (AMS). Permission to use figures, tables, and brief
excerpts from this work in scientific and educational works is hereby granted provided that the source is
acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S.
Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S.
Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication,
systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other
uses of this material, except as exempted by the above statement, requires written permission or a license from
the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at
(http://www.ametsoc.org/) or from the AMS at 617-227-2425 or copyrights@ametsoc.org.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28972051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1175/JAS-D-12-065.1
http://www.research.ed.ac.uk/portal/en/publications/leaky-rigid-lid-new-dissipative-modes-in-the-troposphere(693a39c8-ff6a-4fd3-a96a-7027a543bafc).html


Leaky Rigid Lid: New Dissipative Modes in the Troposphere

LYUBOV G. CHUMAKOVA AND RODOLFO R. ROSALES

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts

ESTEBAN G. TABAK

Courant Institute of Mathematical Sciences, New York University, New York, New York

(Manuscript received 24 February 2012, in final form 25 November 2012)

ABSTRACT

An effective boundary condition is derived for the top of the troposphere, based on a wave radiation

condition at the tropopause. This boundary condition, which can be formulated as a pseudodifferential

equation, leads to new vertical dissipative modes. These modes can be computed explicitly in the classical

setup of a hydrostatic, nonrotating atmosphere with a piecewise constant Brunt–V€ais€al€a frequency.

In the limit of an infinitely strongly stratified stratosphere, these modes lose their dissipative nature and

become the regular baroclinic tropospheric modes under the rigid-lid approximation. For realistic values of

the stratification, the decay time scales of the first fewmodes formesoscale disturbances range from an hour to

a week, suggesting that the time scale for some atmospheric phenomena may be set up by the rate of energy

loss through upward-propagating waves.

1. Introduction

Much of our understanding of tropospheric dynamics

is based on the concept of discrete internal modes. In-

ternal gravity waves, such as those associated with con-

vective systems, propagate at definite speeds, typically

associated with the first to third baroclinic vertical

modes, depending on the nature of the disturbance.

Even though other effects such as nonlinearity, moist

convection, and mean wind shear alter significantly the

nature and speed of these waves, they remain nonethe-

less the dynamical backbone of the troposphere.

Yet discrete modes are the signature of systems of

finite extent: a semi-infinite stratified atmosphere yields

a continuum spectrum of modes, much as the Fourier

transform in the infinite line, as opposed to the discrete

Fourier series associated with finite intervals. This has

led to arguments by R. Lindzen that these discrete tro-

pospheric modes are just a fallacy of overly simplified

theoretical models, and that the atmosphere ‘‘is char-

acterized by a single isolated eigenmode and a continu-

ous spectrum’’ (Lindzen 2003, p. 3009). On the other

hand, the troposphere does seem to operate on distinct

discrete modes [see, e.g., Hayashi (1976) for an early

reference], and many phenomena, some of which we

mention below, have been modeled successfully on such

basis.

Replacing the tropopause by a rigid lid where the

vertical velocity must vanish is the simplest and most

conventional way to obtain a discrete set of tropospheric

modes with realistic values for their speed and vertical

structure. Two justifications are typically provided for

this approximation. One is that, for internal baroclinic

waves, the oscillations at the free surface of stratified

fluids have much smaller amplitude than those at in-

ternal isopycnals, as demonstrated in the famous ex-

periment of Franklin with water and oil and manifested

in the dead water phenomenon (Franklin 1905; Ekman

1904). This is indeed the basis for the rigid-lid approxi-

mation for the surface of the ocean, widely used for the

study of its internal dynamics. Yet the tropopause is not

the free surface between two fluids of very different

density: it is not the density but its vertical derivative that

has a strong gradient at the interface, typicallymodeled as

a discontinuity.

The second justification for a rigid lid, more appro-

priate in the atmospheric context, is that the strato-

sphere, being much more strongly stratified than the
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troposphere, inhibits vertical motion. Yet the ratio of

the stratification of the stratosphere to that of the tro-

posphere, as measured by their representative Brunt–

V€ais€al€a frequencies N, is not infinite; in fact, it is rather

close to 2. Can the rigid-lid approximation be justified

under these circumstances? Do new effects come into

play because of this finite ratio? These are the questions

addressed in this article. As we shall see, the answer is

affirmative to both, provided that the rigid-lid boundary

condition is suitably modified. The three main new ef-

fects of taking into account the finite ratio of the Brunt–

V€ais€al€a frequencies are 1) there is a discrete set of

modes, but they dissipate as they radiate a fraction of

their energy into the stratosphere; 2) a slight change

occurs in the speed and vertical structure of the modes;

and 3) a new tropospheric mode appears with some

barotropic characteristics and a mesoscale dissipation

time scale of 1 h.

The need to impose boundary conditions at a finite

height, such as the top of the troposphere or the upper

end of a finite computational domain, has led to a variety

of modeling approaches. The simplest boundary condi-

tion for a model of a finite atmosphere is a rigid lid,

which has the vertical velocity set to zero at some finite

height. Even though it is not completely justified on

sound physical grounds, this boundary condition gives

rise to one of the fundamental tools for understanding

atmospheric dynamics—the rigid-lid modes. These have

been used for a number of theoretical purposes, such as

to study resonant interaction among waves (Raupp et al.

2008), to identify wave activity in the observational

record (Haertel et al. 2008), and to study tropical–

extratropical teleconnections (Kasahara and da Silva

Dias 1986). The rigid lid is also an essential part of some

modeling strategies for introducing moist dynamics into

atmospheric models, projecting the dynamics onto the

first few baroclinic rigid-lid modes, to yield a simplified

vertical structure of the atmosphere with minimal ver-

tical resolution (Majda and Shefter 2001; Khouider and

Majda 2006). Prior attempts at improved boundary

conditions relied on some form of radiation condition

allowing all the internal gravity waves to leave the com-

putational domain (Bennett 1976; Klemp and Durran

1983; Garner 1986; Purser and Kar 2001). On the other

hand, some general circulation models, such as the Mas-

sachusetts Institute of Technology (MIT)’s, model the

atmosphere as infinite—for instance, though the use of

pressure coordinates.

In this paper we introduce two new results. First, we

derive an effective boundary condition at the tropo-

pause that permits modeling the troposphere in isolation

from the rest of the atmosphere. Second, we compute

‘‘leaky’’ lid modes using the effective boundary

condition for a simple explicit background stratification.

These modes have a novel feature: they decay with re-

alistic time scales.

To derive the first result we perform a local calcula-

tion at the interface between the troposphere and the

stratosphere, and obtain reflection and transmission

coefficients. These characterize how much wave energy

leaves the troposphere, and we use this information to

construct the effective boundary condition. The most

important assumption in our approach is that no waves

return back from the stratosphere to the troposphere—

though waves are allowed to reflect at the tropopause.

As long as this assumption holds, we can substitute the

stratosphere by the effective boundary condition. On-

going research shows that ourmodeling approach can be

extended to incorporate more complicated physics of

the troposphere, such as Earth’s rotation and possibly

convection and moisture. Yet in this article that in-

troduces the leaky lid, we have purposely concentrated

on the simplest scenario of dry irrotational linear waves

in a nonrotating environment.

When we compute the modes with the effective

boundary condition we obtain a qualitatively new

result—modes with realistic decay time scales. The

modes are computed in the special case in which the

buoyancy frequency is a constant N 5 N1 in the tro-

posphere, and has value N2 different from N1 at the

bottom of the stratosphere. The temporal frequencies

and speeds of the new modes are very close to those of

the rigid lid; however, they have realistic decay time

scales from 1 day to 1 week for the first two baroclinic

modes in the mesoscales. High baroclinic modes have

a slower decay, with a rate decreasing as approxi-

mately n22, where n is the vertical wavenumber. In

addition to that, we find a new ‘‘zero’’ baroclinic

mode, which is stationary and has the fastest decay

time scale of 1 h, representing the fast adjustment of

nonoscillatory disturbances. All but the n 5 0 modes

have tilted vertical profiles. Even though the new

decaying modes are computed for a finite troposphere

bounded above by a lid, they preserve the dissipative

features (through radiation) of models with an in-

finite atmosphere.

One of the remarkable features of the new model is

that it only involves one parameter a, which is a function

of the ratio of the Brunt–V€ais€al€a frequencies N1/N2,

roughly ½ on Earth. By allowing N1/N2 to change be-

tween 0 and 1, we obtain a one-parameter family of

models of the atmosphere. In particular, we show that

the rigid-lid approximation is correct when N1/N2 / 0.

In the limit N1/N2 / 1 the boundary between the do-

mains disappears and the effective boundary condition

reduces to a radiation condition.
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The paper is organized as follows. Section 2 intro-

duces the equations and themain assumptions. Section 3

computes the effective boundary condition. The new

modes are introduced in section 4, and their features are

discussed in section 5. Section 6 shows how to project

initial conditions onto the new modes.

2. Basic equations

We consider the following simple model of a semi-

infinite atmosphere through the linearized incompress-

ible fluid equations in hydrostatic balance:

r0ut 1px5 0,

pz1 gr5 0,

rt 1w
dr0
dz

5 0,

ux1wz5 0. (1)

Here, x and z are the zonal and vertical coordinates; u

andw are the horizontal and vertical components of the

velocity; p and r are the pressure and density pertur-

bations from p0(z) and r0(z), which are in hydrostatic

balance; and g is the gravity constant. Note that r0 need

not be independent of height in this approximation. For

simplicity we consider here a 2D case. The extension to

the nonrotating 3D case is shown in section 3.

Manipulating (1), one obtains an equation for the

vertical velocity w alone:

(r0wz)ztt
r0

1N2wxx 5 0, N252g
dr0/dz

r0
,

which, after the change of variables,

w5f/
ffiffiffiffiffi
r0

p

becomes

fzztt 1

�
2
N4

4g2
1

1

2g

dN2

dz

�
ftt 1N2fxx 5 0. (2)

We nondimensionalize the equations using a typical

depth of the troposphere ~H, a typical horizontal length

scale ~L, and a reference value for the buoyancy fre-

quency in the troposphere ~N. The typical scales for time

and the horizontal and vertical velocities (~u and ~w, re-

spectively) are as follows:

~t5
~L
~N ~H

, ~u5 ~N ~H, ~w5
~H
~L
~u . (3)

Then (2) becomes

fzztt 1

�
2«N41

ffiffiffi
«

p dN2

dz

�
ftt 1N2fxx 5 0, (4)

where «5 ( ~N
2 ~H/2g)2. Typical values in the tropical

troposphere are ~H5 16 km and ~N5 0:01 s21, so « ’
0.006 is small and we can replace (4) by

fzztt 1N2fxx5 0, (5)

except maybe at the tropopause, where dN2/dz is large.

We approximate this change in N over a small distance

by a discontinuity, and impose the following jump con-

ditions at the tropopause

[f]5 0, [›zf]52
ffiffiffi
«

p
[N2]f, at z5 1. (6)

Here, the square brackets denote the jump across the

interface, which in the linear approximation is flat and at

z 5 1. These equations represent continuity of the ver-

tical and horizontal velocities.

For realistic atmospheric values we have thatffiffiffi
«

p
[N2]’ 0:23, which could be treated as a small pa-

rameter or not. We keep this term in the calculations in

section 3 for the sake of generality, but neglect it in

section 4 for simplicity when we compute the leaky

modes in the special case of an atmosphere with piece-

wise constant buoyancy frequency.

3. The effective boundary condition

In this section we derive an effective boundary con-

dition at the tropopause, as follows.

(i) We look at a neighborhood of the interface, small

enough that we can replaceN by a constant on each

side, and expand the solution in Fourier modes on

each side of the interface.

(ii) We impose a radiation condition: there should be

no incoming waves from the stratosphere into the

troposphere. This means that near the interface

each mode consists of three components: an in-

coming wave from the troposphere, a reflected

wave back into the troposphere, and a transmitted

wave into the stratosphere. This scenario can be

characterized by reflection and transmission co-

efficients that we calculate.

(iii) We replace the stratosphere by an appropriate

boundary condition at the tropopause that gives rise

to the same reflection coefficient as computed in (ii).

By contrast, in the rigid-lid approximation, with f5 0 at

the tropopause, there is no transmitted wave and the

reflection coefficient equals 1.
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The first step in carrying out this program is to cal-

culate the reflection and transmission coefficients. Since

the problem is translation invariant, to simplify the no-

tation in this section we consider the tropopause to be at

z 5 0; in the rest of the paper we keep it at z 5 1.

At the interface, where the Brunt–V€ais€al€a frequency

changes fromN1 (z, 0) to N2 (z. 0), the incoming (I),

reflected (R), and transmitted (T) waves (Fig. 1)

fI 5 expfi(kIx1mIz2vI t)g,
fR5R expfi(kRx1mRz2vRt)g, and

fT 5T expfi(kTx1mTz2vTt)g

satisfy the dispersion relations

vI 52
N1jkI j
mI

, vR5
N1jkRj
mR

, vT 52
N2jkT j
mT

. (7)

Here, the signs take into account the fact that the group

velocity is positive for the incoming and transmitted

waves and negative for the reflected wave.

At the interface, continuity of frequency and hori-

zontal wavenumber imply

vI 5vR5vT 5v, kI 5 kR5 kT 5 k , (8)

where k and v denote the common values of the cor-

responding parameters. The jump conditions (6) yield

T2 (11R)5 0, (9)

imTT2 (imI 1 imRR)52
ffiffiffi
«

p
[N2](11R) , (10)

which can be solved for the reflection coefficient R

in terms of mI and [N2] using that mR 5 2mI and

mT 5 (N2/N1)mI from (7) and (8).

Next, we construct an effective boundary condition

that, when applied at the interface to upward-propagating

waves, causes the same fraction of them to reflect down-

ward, as if the stratosphere were there with N 5 N2. We

manipulate (10) into an expression involving only the

parameters of the incoming and reflected waves

N2f2i sign(k)gik(11R)2 (imI 1 imRR)ivI

52
ffiffiffi
«

p
[N2](11R)ivI ,

which, translated from Fourier variables to physical

space, becomes the effective boundary condition

N2H(fx)1ftz5
ffiffiffi
«

p
[N2]ft . (11)

Here,H is the Hilbert transform, which in Fourier space

is represented by multiplication by f2i sign(k)g. The
occurrence of the Hilbert transform here is not sur-

prising, since it is an operator naturally associated with

decay at infinity in elliptic problems and radiation

conditions for hyperbolic ones. The Benjamin–Ono

equation (Benjamin 1967; Ono 1975) is a classical ex-

ample of the Hilbert transform occurring in the context

of internal waves in stratified flows. Computing the

Hilbert transform term does not add any numerical

complications when using spectral methods for the

horizontal coordinate, since Ĥ(fx)5 jkjf̂, where the

hat represents the horizontal Fourier transform.

This effective boundary condition can be generalized

to the nonrotating 3D case, which includes the meridi-

onal direction y. Then it has the form

N2

ffiffiffiffiffiffiffiffi
2D

p
f1ftz5

ffiffiffi
«

p
[N2]ft . (12)

Here,
ffiffiffiffiffiffiffiffi
2D

p
is the pseudodifferential operator replac-

ing the H›x of the 2D case; in Fourier space,
ffiffiffiffiffiffiffiffi
2D

p
is

multiplication by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l 2

p
, where l is the meridional

wavenumber.

4. The leaky rigid-lid modes

Now we are ready to compute the leaky rigid-lid

modes in the troposphere. We do so in the simplest

scenario, neglecting the right-hand side of (11) and

modeling the buoyancy frequency in the troposphere as

a constant N1, which jumps to N2 . N1 at the tropo-

pause. The equations to solve are

fttzz52N2
1fxx,

ftz 52N2H(fx) at z5 1,

f5 0 at z5 0. (13)

FIG. 1. Incoming, reflected, and transmitted waves at the inter-

face between the troposphere (N5N1) and the stratosphere (N5
N2), whereN is the Brunt–V€ais€al€a frequency. The wave amplitudes

are I, R, and T and the vertical wavenumbers arem1,2m1, andm2,

respectively.
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We look for solutions of the form f(t, x, z)5 eikxeltf(z),

and find that

f (z)5 sinh

�
kN1

l
z

�
.

The effective boundary condition at z 5 1 yields

tanh

�
kN1

l

�
52

N1

N2

sign(k) .

Therefore,

l5 ln(k)52
jkjN1

tanh21(N1/N2)
5

jkjN1

2a1 ipn
, (14)

where a is the principal (real) value of tanh21(N1/N2)

and ipn, with n integer, arises from the periodicity of

tanh in the complex plane. For a realistic atmosphere

N1/N2 ’ 1/2, therefore a ’ 1/2. The decay rate and

frequency of the modes are given respectively by

Re(ln)52
jkjN1a

a2 1 (pn)2
; 2

jkjN1a

p2n2
as n/‘ , (15)

Im(ln)5
jkjN1pn

a21 (pn)2
;

jkjN1

pn
as n/‘ . (16)

The corresponding vertical structure for the leaky rigid-

lid modes is given by

fn(z)52sinh(az) cos(pnz)1 i cosh(az) sin(pnz) . (17)

In terms of this, eachmode of the solution takes the form

0
BBB@

un
wn

rn
pn

1
CCCA5

0
BBBBBBBBBBBB@

i

k

dfn(z)

dz

fn(z)

i

ln
fn(z)

dr0
dz

2
i

ln

ðz
fn(s) ds

1
CCCCCCCCCCCCA

eikxeln
(k)t . (18)

5. Features of the leaky rigid-lid modes

In this section we show that, for realistic choices of N1

and N2, and a horizontal length scale ~L 5 1000 km, the

first three leaky-lidmodes exhibit decay time scales of 1 h,

1.5 days, and about 1 week; for different horizontal scales,

the corresponding decay times scale proportionally. The

fastest decay corresponds to n5 0—amode that is absent

under the conventional rigid-lid approximation. All the

othermodes converge to the rigid-lidmodes in the limit of

N1/N2 / 0. Finally, all but the n 5 0 leaky modes have

tilted vertical profiles.

a. Decay time scales and slightly adjusted baroclinic
speeds

From the decay rate in (15), the nondimensional de-

cay time scales are given by

Tn 5
a2 1 (pn)2

ajkjN1

. (19)

For a realistic atmosphere with a 5 1/2, ~L5 1000 km,
~H5 16 km, and ~N5 0:01 s21 (so the corresponding

nondimensional N1 equals 1), this yields

T0 5 1 h, T15 1:5 days, T25 5:7 days, (20)

where we have used the factor ~L/( ~N ~H) to convert

from the nondimensional units. The only variable in

this factor that changes significantly from one atmo-

spheric phenomenon to another is ~L; the corre-

sponding time scales change linearly with ~L. With an

extratropical reference value ~H5 9 km for the height

of the tropopause, the time scales are 80% longer. The

speeds of the modes are independent of ~L and are, for
~H5 16 km,

y05 0m s21, y15 49m s21, y25 25m s21 . (21)

The first and second baroclinic values are very close to

the corresponding speeds of the rigid-lid modes, which

for the same values of the dimensional parameters are

51 and 25.4 m s21, respectively. From the temporal

frequency in (16), for any a, the leaky-lid frequencies

and speeds approach those of the rigid-lid modes as

n / ‘. For the actual atmosphere the leaky-lid and

rigid-lid frequencies and speeds are close for all n . 0,

because a’ 1/2 � p.

b. Leaky modes as a correction to the classic rigid-lid
modes and reappearance of the rigid lid in the limit
N1/N2 / 0

One part of the vertical structure of the leaky-lid so-

lution is the classic rigid-lid mode sin(pnz) modified

in amplitude by cosh(az), which lies between 1 and

1.2 for a 5 0.5. The new part of the mode is the term

sinh(az) cos(pnz), which is zero at the lower boundary

z 5 0, but always sinh(a) at the top boundary z 5 1.

These components and the full solution at time t5 0 and

kx 5 1 are presented in Fig. 2.
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A remarkable feature of the leaky-lid model is the

appearance of the parameter a 5 tanh21(N1/N2). The

classic rigid-lid approximation is only valid in the limit

a / 0, which corresponds to N1/N2 / 0. Indeed, the

vertical structure function in this limit becomes f(z) 5
sin(pnz), the decay time scales become infinite, and the

leaky mode n 5 0, described below, is no longer a non-

trivial solution in either 2D or 3D. The frequency of the

modes converges to the rigid-lid modes frequency v 5
jkjN1/pn, and the speed of themodes becomes the speed

of the baroclinic rigid-lid modes y 5 sign(k)N1/pn.

c. Disappearing boundary as N1/N2 / 1

In the singular limit N1/N2 / 1, which corresponds

to a / 1‘, the interface disappears and the leaky

modes cease to exist. For constant N 5 N1 5 N2 the

equation fttzz 5 2N2fxx factors, yielding two inde-

pendent wave solutions with upward and downward

group velocities, of which the effective boundary

condition selects only the upward-moving one:

(›tz2 jkjN)(›tz 1 jkjN)f5 0,

(›tz 1 jkjN)f5 0 at z5 1,

f5 0 at z5 0.

d. The new n 5 0 mode

We have discovered a new mode with n 5 0, which is

not present in the classical model. It has zero speed,

decays on a time scale of 1 h times the horizontal length

scale expressed in thousands of kilometers, and does not

have oscillations in the vertical. Its vertical structure for

any value of a is simply

f (z)5 sinh(az) .

In the rigid-lid limit a / 0, this mode disappears, as

expected.

This is a tropospheric mode with a barotropic vertical

structure, yet zero speed, which appears both in 2D with

(11) and 3D with (12). This mode represents the fast

adjustment of the troposphere to global (nonoscillatory)

perturbations in the vertical.

e. The leaky-lid solutions exhibit vertical tilts

In the case of only one horizontal direction, the flow

has a streamfunction c5Refifn(z)eikx1lt/kg in the (x, z)
plane, which we plot in Fig. 3 for n 5 2. We see the

vertical pattern of alternating local maxima and minima

for the rigid-lid case (Fig. 3a), which tilts as the leak

increases a . 0, and eventually becomes a sequence of

slanted ridges and troughs with slope 2H/Ln as a / ‘
(Fig. 3c). The only leaky mode with no tilt is the n 5 0

mode.

f. Interpretation

The decay time scales of the leaky modes computed

above are comparable to those associated with a broad

range of atmospheric phenomena. This suggests that

the leakage of wave energy from the troposphere to the

stratosphere could play a significant role in these phe-

nomena, both in the determination of their amplitude by

balancing the energy input that drives them, and in

setting their decay time once the forcing is gone.

This article is probably not the right venue for a

thorough discussion of the effect of wave leakage on

individual weather configurations, which at this point

would be highly speculative. Hence, we limit ourselves

to enumerate a few candidate phenomena.

The n 5 0 mode is nonoscillatory in the vertical, sug-

gestive of the patterns associated with deep convection

FIG. 2. Components of the leaky-lidmodes (n5 0, 1, 2, 3). (a) Component cosh(az)sin(pnz) is a slight modification

of the classic rigid-lid modes. (b) Component sinh(az)cos(pnz) appears because of the radiative losses and gives the

new n 5 0 mode not present in the rigid-lid case. (c) The full solution at t 5 0 and kx 5 1.
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events. A possible scenario is the decay of mesoscale

convective systems into convective vortices, for which

both the n 5 0 and the n 5 1 components are significant

[seeMapes (1998) for the appearance of discrete spectral

bands in convective systems and Pandya and Durran

(1996) and Nicholls et al. (1991) for a discussion of the

interaction between gravity waves and convection in

squall lines]. For typical horizontal scales of 500 km, the

model predicts realistic decay time scales of 26 min for

the n5 0 component and 17 h for the first baroclinic (n5
1) component of the system. Another scenario is that of

stratiform precipitation, more highly baroclinic and with

correspondingly longer time scales. Here, a horizontal

scale of 200 km and a second baroclinic (n 5 2) mode

yield a decay time about 1 day.

The tilted vertical profiles of the leaky modes also

suggest that wave radiation to the stratosphere has a sig-

nificant effect on equatorial wave dynamics. One candi-

date phenomenon is that of the convectively coupled

equatorial waves. Their observed vertical structures ex-

hibit both the vertical tilts and the localized maxima and

minima, where the former are important from the per-

spective of the upscale momentum fluxes [Kiladis et al.

(2009) and references therein]. While some models, like

Mapes (2000) and Khouider and Majda (2006), suggest

that the tilts result from the lower-tropospheric heating

leading the middle- and upper-tropospheric heating,

others, like Raymond and Fuchs (2007), argue that they

are due to a moving heating source driving a wave re-

sponse in addition to the upper boundary condition. We

isolate the effect of wave radiation in a simple model with

nomoisture or heating. If the upper boundary condition is

that of the leaky lid, the vertical structure simultaneously

has the tilts and local maxima and minima, while the two

standard choices of the rigid lid or the radiation boundary

condition capture only one feature each (Figs. 3a,c).

However, the tilts are stratospheric.

6. Projecting onto the leaky rigid-lid modes

To complete the presentation of the model, here we

show how to write the solution of the initial-value problem

as a linear combination of leaky modes. This also demon-

strates that the leaky modes form a complete set, and that

there are no ‘‘hidden’’ solutions that they do not capture.

This is a nontrivial task, since the eigenvalue problem

at hand is nonstandard, with the eigenvalue showing up

in the boundary condition, as shown below. Further-

more, the leaky modes are not orthogonal under the

standard inner product.

The approach that we have found the simplest is to

map the original variable f and its second derivative

with respect to t and z onto new variables A and B, for

which the projection reduces to a Fourier series de-

composition, and then map them back into f and ftz.

First, we separate the horizontal dependence of the

system in (13), and write f(x, z, t)5 eikxF(z, t). Then F
satisfies

Fttzz5N2
1k

2F, 0, z, 1,

Ftz 52mN1jkjF at z5 1,

F5 0 at z5 0,

where 1/m 5 N1/N2 5 tanh(a). Absorbing N1jkj into
a new time t, these equations simplify to

Fttzz 5F, 0, z, 1,

Ftz 52mF at z5 1,

F5 0 at z5 0. (22)

FIG. 3. Streamfunction for the n5 2 mode with k5 2p/L for (a) the rigid lid, a5 0; (b) the leaky lid, a5 0.5; and

(c) an approximation for infinite atmosphere (N1/N2 5 0.9993, a 5 4) with radiation boundary condition. The solid

contours correspond to positive values, the dashed contours correspond to negative values, and the dash–dotted

contours in (c) correspond to zero.
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Notice that if we separate the time dependence in these

equations through a factor elt, then the resulting prob-

lem in z has l in the boundary condition.

Motivated by the functional form of the leaky-lid

modes in (17), we introduce new variables A and B,

related to F by the following transformation

�
F

Fzt

�
5

�
2sinh(az) cosh(az)

cosh(az) 2sinh(az)

��
A

iB

�
. (23)

Under this transformation the system in (22) is equiva-

lent to

Azt 5 iB1 iaBt , Bzt 52iA2 iaAt ,

B5 0 at z5 0, 1: (24)

This last system is easily solvable using cosine Fourier

series for A and sine Fourier series for B, with the

standard formulas to compute the coefficients. Fur-

thermore, through the transformation from (A, B) to

F, the above Fourier series become the leaky modes

for F.

7. Conclusions

We offer a potential answer to the debate on whether

the atmosphere should be modeled as infinite or finite,

and whether there exist discrete modes at all: the tro-

posphere can be studied in isolation, but with an effec-

tive boundary condition at the top that allows a fraction

of the energy in the long waves to escape into the

stratosphere. This approach is valid under the assump-

tion that the waves that escape through the tropopause

do not return after being reflected at stratospheric in-

homogeneities. Our effective boundary condition gives

the same reflection coefficient at the tropopause as if

there were a stratosphere above, with a prescribed

buoyancy frequency. This self-contained model of the

troposphere has the dissipative properties associated

with the upward wave radiation of an infinite atmo-

sphere, even though it has a discrete spectrum in the

vertical. The new leaky rigid-lid modes, which we com-

pute assuming that the buoyancy frequency is piecewise

constant, have tilted vertical profiles, and decay with

time scales comparable to the observed relaxation times

of some atmospheric phenomena. This suggests that

upward wave radiation could be a key player in these

phenomena and provides a modeling framework to

study them.

In this article, we have concentrated on the new

physics and mathematical formulation of the leaky rigid

lid, for which we have adopted the simplest scenario of

linear and irrotational waves. Further work is required

to include the effects of both vorticity and Earth rotation.

This would constitute an important step in the study of

the interplay between wave radiation and eddies and

storms.
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