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FUNDAMENTAL LIMITATIONS OF POLYNOMIAL CHAOS FOR
UNCERTAINTY QUANTIFICATION IN SYSTEMS WITH

INTERMITTENT INSTABILITIES.

M. BRANICKI AND A.J. MAJDA

DEPARTMENT OF MATHEMATICS AND CENTER FOR ATMOSPHERE OCEAN
SCIENCE,

COURANT INSTITUTE OF MATHEMATICAL SCIENCES

NEW YORK UNIVERSITY, NEW YORK, USA

Abstract. Here, we examine the suitability of truncated Polynomial Chaos Ex-
pansions (PCE) and truncated Gram-Charlier Expansions (GrChE) as possible meth-
ods for uncertainty quantification (UQ) in nonlinear systems with intermittency and
positive Lyapunov exponents. These two methods rely on truncated Galerkin projec-
tions of either the system variables in a fixed polynomial basis spanning the ‘uncer-
tain’ subspace (PCE) or a suitable eigenfunction expansion of the joint probability
distribution associated with the uncertain evolution of the system (GrChE). Based
on a simple, statistically exactly solvable non-linear and non-Gaussian test model,
we show in detail that methods exploiting truncated spectral expansions, be it PCE
or GrChE, have significant limitations for uncertainty quantification in systems with
intermittent instabilities or parametric uncertainties in the damping. Intermittency
and fat-tailed probability densities are hallmark features of the inertial and dissipa-
tion ranges of turbulence and we show that in such important dynamical regimes PCE
performs, at best, similarly to the vastly simpler Gaussian moment closure technique
utilized earlier by the authors in a different context for UQ within a framework of
Empirical Information Theory. Moreover, we show that the non-realizability of the
GrChE approximations is linked to the onset of intermittency in the dynamics and it
is frequently accompanied by an erroneous blow-up of the second-order statistics at
short times. These limitations of the two types of truncated spectral expansions arise
from the following: (i) Non-uniform convergence in time of PCE and GrChE resulting
in a rapidly increasing number of terms necessary for a good approximation of the
random process as time evolves, (ii) Fundamental problems with capturing the con-
stant flux of randomness due to white Gaussian noise forcing via finite truncations of
the spectral representation of the associated Wiener process, (iii) Slow decay of PCE
and GrChE coefficients in the presence of intermittency, hampering implementation
of sparse truncation methods which have been widely used in nearly elliptic problems
or in low Reynolds number flows. Rigorous justification of these limitations is richly
illustrated by straightforward tests exploiting a simple nonlinear and non-Gaussian
but statistically exactly solvable test model which is proposed here as a challenging
benchmark for algorithms for UQ in systems with intermittency.

Keywords: Polynomial Chaos, uncertainty quantification, intermittency, white
noise, parametric uncertainty.
AMS classification no.: 60H10, 60H30, 35C20.

1. Introduction
The theory of homogeneous chaos of Wiener [38], proposed initially for use in the

statistical theory of turbulence [39] and widely discarded some thirty years later (e.g.
[34, 5, 6]), has recently regained its popularity as a method for quantifying propaga-
tion of uncertainty in nonlinear dynamical systems. Uncertainty Quantification (UQ)
is undoubtedly an important issue in many physics, engineering and geoscience ap-
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2 Fundamental Limitations of Polynomial Chaos for Uncertainty Quantification

plications where complex nonlinear interactions of resolved and unresolved processes
and/or parametric uncertainty need to be properly treated in order to estimate the un-
certain evolution of the usually high-dimensional system. Practical implementations
of the Wiener Chaos framework for UQ, commonly referred to as Polynomial Chaos
Expansions (PCE), rely on a truncated spectral expansion of the system variables via
a (truncated) Galerkin-type projection onto a space spanned by a fixed orthonormal
polynomial basis in random variables (see, e.g., [11, 40, 41, 42, 43, 13, 24] for but a few
examples). In most applications such UQ techniques are restricted to estimating the
second-order statistics of the resolved variables, i.e., means and variances. The PCE
framework has many attractive features which are potentially well suited for numer-
ical computations with often a substantially smaller computational effort compared
to Monte Carlo sampling. These include a desirable separation of the random and
deterministic components of the dynamics and ‘realizability’ of the resulting approx-
imations, i.e., the fact that the expected values of various dynamical quantities can
be realized as averages with respect to a nonnegative probability density. The real-
izability property is particularly useful since it is well known that truncated moment
expansions of the associated probability densities, i.e., the Gram-Charlier expansions
(GrChE), can lead to non-realizability and negative energy spectra [32, 34, 5].

However, despite the well documented success stories which are predominantly
confined to UQ at short times in systems with parametric uncertainty or UQ in el-
liptic or low Reynolds number problems in fluid dynamics (e.g., [13, 35, 24, 8]), there
are many well known remaining limitations of the PCE approach. These include UQ
in deterministic systems with parametric uncertainty and nontrivial attractors (i.e.,
limit cycles, strange attractors, etc. [29]), or long time integration of systems driven
by white noise (e.g., [12, 19, 20]). The latter limitations are particularly important
for UQ in high-dimensional nonlinear turbulent systems where small scale unresolved
processes modeled as idealized white Gaussian noise interact nontrivially with the
resolved processes. Similarly, many of the small scale effects and various uncertain-
ties in other applications and areas, including physics, material science, chemistry
biology, etc., can be naturally modeled by a white noise process with the resolved
processes/fields satisfying appropriate Stochastic Differential Equations (SDEs, e.g.,
[33]) or Stochastic Partial Differential Equations (SPDEs, e.g., [30]).

In this paper we utilize a simple unambiguous test model consisting of two coupled
SDEs introduced below and show that methods exploiting truncated spectral expan-
sions, be it PCE or GrChE, have additional severe limitations for UQ in systems with
intermittency or parametric uncertainty in the damping and fat-tailed probability
densities, even in the absence of explicit time dependence, or nontrivial attractors.
Intermittency and fat-tailed probability densities are abundant in the inertial and
dissipation range of stochastic turbulence models (e.g., [7]) and we show that in such
important dynamical regimes PCE performs, at best, similarly to the simple Gaus-
sian moment closure technique utilized earlier in a different context for UQ within
a framework of Empirical Information Theory [3]. Moreover, we show that the non-
realizability of the GrChE approximations is linked to the onset of intermittency in
the dynamics and it is frequently accompanied by an erroneous blow-up of the second-
order statistics at short times. These limitations presented here in an unambiguous
test model are similar to those encountered in heuristic applications to turbulence
theory and stem mainly from the following:

• The finite truncation of the spectral expansions of either the solution process
(PCE), or of the probability density (GrChE).
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• Non-uniform convergence in time of PCE which leads to a rapidly increasing
number of terms that are necessary to get a good approximate representation
of the random process as time evolves.

• Constant flux of randomness due to white noise forcing and fundamental
problems with capturing this flux via finite truncations of the spectral repre-
sentation of the associated Wiener process.

• Slow decay of the PCE and GrChE coefficients in the presence of intermit-
tency which hampers implementation of existing sparse truncation meth-
ods widely used in elliptic problems or in low Reynolds number flows (e.g.,
[13, 35, 24, 8]).

Applications of the PCE framework to stochastic PDEs considered in the litera-
ture are predominantly concerned with UQ in systems with a finite (and usually small)
number of random variables with known distributions (see, e.g., [31, 11, 40, 41, 42,
43, 44, 45, 36]. Over the past decade the efforts to improve the PCE approximation
of stochastic dynamics with such ‘low-dimensional’ parametric uncertainty have led
to the development of various techniques aimed at mitigating the shortcomings asso-
ciated with the finite truncations of the spectral expansions in the presence of explicit
time dependence and nontrivial attractors. A common problem in such cases, which
also occurs in the case of white noise forcing discussed below, is that the number of
terms required for maintaining the desired accuracy of the solution grows rapidly with
the integration time. In this context a number of techniques based either on expansion
over piecewise (local) polynomial bases [15, 16, 36, 37], or multi-resolution schemes
[17, 28] were developed. However, while often useful, these techniques merely reduce
the computational overhead by dynamically adapting the PCE basis in an effort to
maintain a small number of expansion coefficients, which nevertheless continues to
grow and eventually becomes very large [23]; such techniques also quickly lose effi-
ciency with increasing number of uncertain parameters [36]. Other methods, relying
on the so-called asynchronous time integration [21, 1] introduce suitable transforma-
tions of the model variables in such a way that a low-order truncated PCE basis
remains suitable for arbitrarily large times. However, these techniques seem inher-
ently designed for UQ in systems with parametric uncertainty and require existence of
a reference deterministic system with a structurally stable attractor with no positive
Lyapunov exponents so that the trajectories on the attractors of surrogate systems
with different realizations of the uncertain parameters remain ‘close’ to the reference
trajectories.

UQ based on Polynomial Chaos Expansions in systems with white noise forcing
is known to be substantially more complicated [19, 12, 20] since, in addition to the
aforementioned problems, one has to deal in such cases with, effectively, an infinite
number of random variables necessary for representing the white noise process. Nev-
ertheless, accurate PCE approximations of uncertain dynamics can be achieved at
short times in nearly Gaussian systems [19, 12, 20] where sparse truncation meth-
ods can be employed in order to ‘concentrate’ the truncated random basis on the
low-order coefficients of the spectral expansion. However, as we argue below based
on simple examples, implementation of the existing sparse truncation methods (e.g.,
[13, 35, 24, 8]) in systems with white noise driven intermittency is hampered by a
slow decay of the amplitudes of the expansion coefficients. Consequently, the number
of terms in the PCE approximation quickly grows in time beyond computationally
acceptable limits. Incidentally, similar conclusions were made in the past [6] in the
context of truncated expansions of Burgers equation where it was argued that PCE
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Fig. 1.1. Schematic illustration of path-wise dynamics (left) and time-periodic statistics on the
attractor (right) in two intermittent regimes of system (1.1); the intermittent regimes are discussed
in §3.

approximations cannot reproduce the energy cascade due to insufficiently rapid en-
ergy decay at Re�1 and high order PCE terms are needed even for nearly Gaussian
turbulent fields.

In order to address and illustrate the issues mentioned above in an unambiguous
fashion, we consider here the simplest test model with white noise driven intermit-
tency and quadratic nonlinearity allowing for a straightforward comparison of different
techniques for uncertainty quantification. To this end, we study the following two-
dimensional and conditionally Gaussian (see, e.g., [18]) system of coupled Ito SDE’s
given by

a) du(t) =
(
−(γ̂+auγ(t))u(t)+f(t)

)
dt+σudWu(t),

b) dγ(t) =−
(
dγ +aγu(t)

)
γ(t)dt+σγdWγ(t),

(1.1)

where u,γ are the two real variables, γ̂,dγ>0 are the damping parameters, σu,σγ>0
are the noise amplitudes, and Wu,Wγ are two independent scalar Wiener processes.
Based on the previous analysis (see [2, 9, 10, 3] and §3.1) it is known that even the
simplified system (1.1) with aγ = 0 possesses various interesting dynamical regimes
with very intermittent transient instabilities as long as au 6= 0 which lead to fat-tailed
PDFs with only a small number of finite moments; such configurations are typical
in realistic turbulent signals in the energy transfer or energy dissipation regimes (see
figure 1.1).

The test model (1.1) which is proposed as a challenging, yet mathematically
tractable, benchmark for testing UQ techniques in the important class of systems
with intermittency, has a number of attractive properties:

• Very rich dynamical behavior, including a variety of intermittent regimes with
a positive Lyapunov exponent, which allows for testing various methods in a
wide range of realistic complex dynamics.
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• Exact statistical solvability for aγ = 0 in (1.1) with exact analytical formulas
for the second-order statistics derived in [9].

• The time-dependent PDFs for u in (1.1) can be obtained with high preci-
sion by simple numerics and in the white noise limit of rapidly decorrelating
damping fluctuations γ the exact equilibrium PDF is known [2].

We argue that, due to the combination of analytical tractability and very rich dynam-
ical behavior with intermittency and a positive Lyapunov exponent, the system (1.1)
represents a very attractive test model for analyzing the performance of various tech-
niques for uncertainty quantification in turbulent dynamical systems. Consequently,
we analyze below the performance of the following two approaches to approximating
the statistical solutions of the system (1.1):

• Truncated Polynomial Chaos Expansions (PCE) of u,γ in (1.1).
• Truncated eigenfunction expansion of the joint probability density p(u,γ,t)

satisfying the Fokker-Planck equation associated with (1.1), i.e. the Gram-
Charlier Expansions (GrChE).

Various unambiguous tests are presented in the following sections, all of which point
to the severe limitations of PCE and GrChE in systems with white noise driven
intermittency.

This paper is structured as follows. First, in Section 2 we outline two techniques
which are commonly used in various incarnations for uncertainty quantification in non-
linear dynamical systems. Both these methods rely on finite truncations of infinite
functional expansions of either the solution process itself or the associated probability
density function. In Section 3 we discuss the exactly solvable test model with inter-
mittent dynamics in more detail and introduce three particular configurations in §3.1
which are used afterwards to analyze the performance of the PCE and GrChE meth-
ods in various dynamical configurations. The limitations of the PCE and GrChE
techniques for uncertainty quantification in systems with white noise driven inter-
mittency are discussed in Sections 4 and 5 based on various examples of increasing
complexity; more detailed explanation of the limitations of these two methods and
rigorous derivations are given in extensive Appendices referenced throughout the pa-
per. Finally, we present some concluding remarks and outline challenges for further
research in this area in Section 6.

2. Polynomial Chaos Expansions (PCE), Gram-Charlier Expansions
(GrChE) and their finite truncations Here, we briefly recapitulate basic prop-
erties of two different methods for uncertainty quantification in systems evolving sub-
ject to nonlinear interactions with unresolved processes and parametric uncertainty.
The first technique, the Polynomial Chaos Expansion (PCE), relies on approximating
the uncertain state of the system satisfying the appropriate Stochastic Differential
Equation (SDE; e.g., [33]). The second approach, outlined in §2.2, is based on the
Gram-Charlier expansions of the associated probability density function which sat-
isfies the appropriate Fokker-Planck equation. More details concerning these two
techniques for UQ are discussed in Appendices A and B.

As already mentioned in the Introduction, we are mainly concerned here with
uncertainty quantification in turbulent nonlinear systems with intermittency and pos-
itive Lyapunov exponents where nontrivial interactions with unresolved processes are
important for the mean dynamics. Below we show that representation of these un-
resolved processes as idealized white noise drastically complicates the problem of
uncertainty quantification in such systems via the PC or GrCh expansions, since the
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finite truncations of these expansions struggle with capturing the constant influx of
new randomness and its ‘redistribution’ through the nonlinear interactions. Limita-
tions of these techniques for UQ in systems with intermittency are discussed in §4
and §5.

2.1. Finite truncation of a Polynomial Chaos Expansion of a stochastic
process

Polynomial Chaos Expansion (PCE) is unique among the existing approaches to
uncertainty quantification as it deals directly with the random process/field repre-
senting the uncertain evolution of the system in question rather than with moments
of the associated probability density function. The PCE of a solution of an SDE (e.g.,
[33]) or SPDE (e.g., [30]) separates the deterministic effects from the randomness aris-
ing due to the nonlinear interactions with unresolved processes. An expansion of the
system variables is made via a Galerkin-type projection of the model variables onto
the space spanned by the fixed orthonormal polynomial basis in random variables.
In the case of the so-called Wiener-Hermite expansion, the first non-constant term
in the expansion is Gaussian. It is well known (see [4] and Appendix A) that the
exact infinite expansion converges but it involves an infinite number of coefficients;
the convergence is, however, not uniform in time and the expansion coefficients are
related by an infinite-dimensional set of ODEs in an infinite number of unknowns.
The need for finite truncations of these expansions required in applications leads to
important limitations for UQ in systems with intermittency, as discussed in §4.

The main properties of the PCE framework are as follows: Denote the set of
multi-indices with finite number of nonzero components as

J =
{
α= (αi, i>1 |αi∈{0,1,2,. ..}, |α|=

∞∑
i=1

αi<∞)
}
. (2.1)

For an index α= (α1,α2,. ..)∈J a multivariate Hermite polynomial in an infinite
number of i.i.d. Gaussian random variables ξξξ= (ξ1,ξ2,. ..), 〈ξi〉= 0, 〈ξiξj〉= δij , is

Tα(ξξξ) =

∞∏
i=1

Hαi(ξi), (2.2)

where Hn(x) is the normalized n-th order Hermite polynomial. For α∈J , the product
in the right hand side of (2.2) has a finite number of factors and it is well defined.
The random functions Tα are called Wick polynomials and they form a complete
orthonormal basis in L2 on the probability space with respect to the Gaussian measure
generated by ξξξ so that

〈TαTβ〉= δαβ , 〈T0〉= 1, 〈Tα〉= 0 when α 6={0,0,. ..}. (2.3)

The order of the Wick polynomial Tα is defined as |α|=∑αi and α=β when αi=βi
for all i.

According to the Cameron-Martin theorem [4], any process such that
〈|u(t,ξξξ)|2〉<∞ has the following expansion in terms of the orthonormal Wick poly-
nomials Tα (see Appendix A for more details),

u(t,ξξξ) =
∑
α∈J

uα(t)Tα(ξξξ), uα(t) =
〈
u(t,ξξξ)Tα(ξξξ)

〉
. (2.4)
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Furthermore, the first two statistical moments of u(x,s,ξξξ) are given by:〈
u(t,ξξξ)

〉
=u0(t),

〈
u2(t,ξξξ)

〉
=
∑
α∈J
|uα(t)|2. (2.5)

The expansion (2.4) is often called the Polynomial Chaos Expansion (PCE) or Wiener-
Hermite Chaos Expansion when the Hermite polynomials are used in (2.2); a more
general form of the expansion (2.4) for a random field u(x,t,ξξξ) is given in Appendix
A.

The doubly infinite expansion (2.4) is useless in applications unless a suitable
truncation is employed. The simplest such truncation is obtained by defining the
truncated index set

JK,N =
{
α= (αi, i>1 |αi∈{0,1,2,. ..,K}, |α|=

K∑
i=1

αi6N)
}
, (2.6)

accounting for only the first K random Gaussian variables ξi and the Wick polyno-
mials up to order N . Then, the truncated PCE of u(t,ξξξ) has the form

uK,N (t,ξξξ) =
∑

α∈JK,N

uα(t)Tα(ξξξ) =
∑
|α|6N

uα(t)

K∏
i=1

Hαi(ξi), (2.7)

so that the resulting approximation has altogether
∑N
n=0

(
K+n−1

n

)
terms; clearly

the number of coefficients in the truncated expansion grows rapidly with increasing K
and/or N . In order to reduce the number of expansion coefficients and the computa-
tional overhead, Luo [19, 20] and Hou et al. [12] proposed a sparse truncation method
which relied on (i) the use of lower order polynomials for ξi with higher subscripts
and (ii) decoupling the random variables with higher subscripts from the random
variables with lower subscripts (the threshold between ‘lower’ and ‘higher’ subscripts
depended on applications). Similar sparse truncation methods were proposed for el-
liptic problems in [35, 8]. We will show in §4 that truncation methods of this type
are not adequate for turbulent systems with energy transfer on the attractor and/or
intermittency due to a slow decay of amplitudes of the expansion coefficients. In such
systems neglecting higher order terms in the expansions of nonlinear terms has par-
ticularly severe consequences for the accuracy of the truncated approximations even
without the sparse truncation.

2.1.1. Truncated equations for the PCE coefficients of the test model
with intermittency The test model (1.1) has no spatial dependence which simpli-
fies the expansion (2.4) and its finite truncation (2.7) for the system variables u and
γ. However, since we are concerned here with uncertainty quantification in systems
driven in part by Brownian motion due to nonlinear interactions with unresolved pro-
cesses, it is necessary to incorporate into the PCE framework the effects of constant
flux of new randomness due to the white noise forcing. We follow here the approach
of [19, 20] and [12] and consider an orthonormal basis {mi(s),i= 1,2,. ..} in L2([0,T ])
with T >0, e.g., trigonometric functions (see Appendix A), to construct a spectral
representation of the Wiener process W (t) in the following way:

Given the infinite set of i.i.d. Gaussian random variables ξξξ={ξi}i=1,2,...,∞,
ξi∼N (0,1), where

ξi=

∫ T

0

mi(s)dW (s), (2.8)
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the Wiener process can be represented in the Fourier-Hermite series as

W (s) =

∞∑
i=1

ξi

∫ s

0

mi(τ)dW (τ). (2.9)

We assume here without a proof that solutions of (1.1) are second-order stable
(methods similar to those used in [2] could be used to prove the second-order stability
of (1.1) when aγ = 0; otherwise, careful Monte Carlo estimates are sufficient for our
purposes). By the Cameron-Martin theorem (see [4] and Appendix A) these solu-
tions admit the PCE expansion (2.4) so that the truncated equations for the PCE
coefficients with α∈JK,N of the system (1.1) are

a) u̇α =−γ̂uα−au
∑

p∈JK,N

∑
06β6α

C(α,β,p)uα−β+pγβ+p+f(t)δα0 +σu
∑
i∈Ku

I{αj=δij}mi(t),

b) γ̇α =−dγγα−aγ
∑

p∈JK,N

∑
06β6α

C(α,β,p)uα−β+pγβ+p+σγ
∑
i∈Kγ

I{αj=δij}mi(t),

(2.10)

where Ku, Kγ are two sets of integers which are disjoint if the white noises Ẇu, Ẇγ

are independent, the Kronecker delta δα0 6= 0 only if α= (0,0,. ..), and the indicator
function, Iαj=δij , equals 1 if αj = δij and equals zero otherwise. In deriving (2.10),
which is discussed in more detail in Appendix A.3, we utilized the orthonormality
of the Wick polynomials Tα together with the important identity which allows for
expressing the nonlinear terms in (1.1) via infinite expansions in the Wick polynomials
(see [27, 19, 12, 20] and Theorem 2 of Appendix A)

uγ=
∑
α∈J

(∑
p∈J

∑
06β6α

C(α,β,p)uα−β+pγβ+p

)
Tα. (2.11)

The white-noise forcing in the above truncated deterministic system of ODEs for the
coefficients uα,γα is represented by the K basis functions mi(t). Note that the white
noise forcing does not affect directly the evolution of the mean, which is given by u0(t)
by the Cameron-Martin theorem (Appendix A), but the presence of nonlinearities in
(2.10) results in the backscatter of the stochastic noise into the mean dynamics. Note
that truncating (2.11) results in neglecting, at least partially, the effects of small scale
fluxes on the ‘resolved’ dynamics u(t) which is particularly important in the presence
of intermittency and non-vanishing energy transfer between Fourier modes of u at
equilibrium.

Limitations of the truncated PCE method for solving white noise driven dynamics
were noted in [12] where reliable integration of the uncertain dynamics required an
unreasonably large dimension of the random vector ξξξ, except for sufficiently short
times. We will show in §4 that the performance of this method is diminished further
for UQ in systems with intermittency driven by unresolved (white noise) processes,
or even in systems with parametric uncertainty associated with fat-tailed probability
densities, where finite truncations of (2.9) combined with neglecting higher order
terms in the expansion (2.11) of nonlinearities in (1.1) have severe consequences on
the estimated statistics of the solutions.

2.2. Gram-Charlier Expansions (GrChE) of the probability density
We outline here another method for estimating the uncertain evolution of a system
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modelled as a diffusion process (i.e., satisfying an Ito SDE) by expanding the associ-
ated probability density in orthonormal eigenfunctions of the Fokker-Planck equation.
We illustrate the necessary steps of this procedure for UQ on the test system (1.1)
where the appropriate eigenfunction set turns out to be the parabolic cylinder func-
tions and the second-order statistics depend only on three low order coefficients in
the infinite expansion of the probability density; details of the derivations below are
presented in Appendix B.

Some limitations of the Gram-Charlier expansion have already been known from
applications in turbulence theory [32, 5]. While practical implementation of this
method does not require any finite spectral truncation of the the Wiener process as
in the PCE method (cf §2.1.1), we will show in §5 that it too possesses a number of
important limitations for UQ in systems with intermittency such as nonrealizability
of the PDFs and even erroneous blow-up of low order statistics at short times.

The main steps of the GrChE method are as follows. Consider the Fokker-Planck
equation associated with (1.1) which is given by

∂tp(u,γ,t) =Du∂2up+ γ̂ ∂u[up]+Dγ ∂2γ p+dγ ∂γ [γp]+∂u[(auγu−f)p]+aγu∂γ [γp],
(2.12)

where Du=σ2
u/2,Dγ =σ2

γ/2. The above equation (2.12) can be written as

∂tp(u,γ,t) =LuFP p+LγFP p+∂u[(auγu−f)p]+aγu∂γ [γp], (2.13)

where the first two terms

LuFP p=Du∂2up+ γ̂ ∂u[up], LγFP p=Dγ ∂2γ p+dγ ∂γ [γp]. (2.14)

are the Fokker-Planck operators associated with uncoupled OU processes involving
either u or γ, and the last two terms in (2.13) represent the quadratic coupling between
the two processes. In the approximation procedure we first consider the Fokker-Planck
equation without the quadratic coupling terms, i.e.,

∂tp(u,γ,t) =LuFP p+LγFP p, (2.15)

and observe (see the Appendix B) that (2.15) is solved exactly by

p(u,γ,t) =

∞∑
k,β=0

Ck,lφk(u)φl(γ), (2.16)

where the orthonormal basis functions φk(u)φβ(γ) are a product of eigenfunctions
of the operators LuFP and LγFP respectively, and the time-dependent coefficients Ck,l
satisfy an infinite-dimensional system of ODEs.

Any practical application of the expansion (2.16) requires a finite-dimensional
truncation which leads to

pMMM (u,γ,t) =
∑

06k6K,

06l6L

CMMMk,lφk(u)φl(γ), MMM = (K,L), (2.17)

where the coefficients, CMMMk,l, in the truncated expansion (2.17) satisfy a system of
linearly coupled ODEs (see Appendix B and eq. (2.36) for details)

dCMMMCMMMCMMM

dt
=AMMM (t)CMMMCMMMCMMM , (2.18)
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where truncated vector of coefficients is CCCMMM = (C1,(1,...,L), C2,(1,...,L),...,CK,(1,...,L))
T ;

the structure of the resulting matrix is shown in figure B.2.

We note two important properties of the system of (2.36) which are discussed in
more detail in Appendix B:

(i) For aγ = 0 in (1.1) the evolution of the coefficient Ck,l in (2.18) involves only
terms with k′6k, i.e.,

d

dt
Ck,l∝

∑
k′6k,l′

Ck′,l′ . (2.19)

We refer to this special structure as the ‘closedness’ property which arises
due to the properties of Hermite polynomials and orthonormality of the basis
functions φk, φl (see Appendix B and figure B.2). This degeneracy has impor-
tant consequences on the evolution of the second order statistics as discussed
in the next section.

(ii) The truncation directly affects the entries multiplying CMMMk−2,L+1 and CMMMk,L+1,
k= 0,...,K, and the removed coefficients grow with L.

2.2.1. Second-order statistics from the truncated system Given the
approximate density pMMM (u,γ,t) in (2.17), it is possible to compute the approximate
moments of its distribution. In particular, the second-order statistics of u satisfying
(1.1), which is of main interest here,

ūMMM (t) =

∫ ∫
upMMM (u,γ,t)dudγ, V ar(uMMM (t)) =

∫ ∫
(u− ū)2pMMM (u,γ,t)dudγ,

(2.20)
can be evaluated as

ūMMM (t) =a1C1,0(t), V ar(uMMM (t)) =a2C0,0(t)+a3C2,0(t)−a21C 2
1,0(t), (2.21)

where the details of the above derivations and the explicit expressions for the coef-
ficients a1,a2,a3 in terms of the system parameters are relegated to the Appendix
B.

We make the following important observations which will have important conse-
quences on the subsequent analysis (see Appendix B for a detailed discussion):

(i) The second-order statistics is determined by only three coefficients
C0,0,C1,0,C2,0.

(ii) For aγ = 0 in (1.1) and due to the closedness property (2.19) the evolu-
tion of the second-order statistics depends only on terms C0,l,C1,l,C2,l with
l= 0,. ..,L (see figure B.2).

We will show in §5 that the above properties will lead to a surprising and mis-
leading good performance of the GrCh expansion of solutions to (1.1) when aγ = 0
and a spectacular failure of this methods for any aγ 6= 0, even when aγ is very small.

3. Exactly solvable test model with white-noise driven intermittency

The two-dimensional non-Gaussian system with quadratic nonlinearity (1.1) is ar-
guably the simplest nontrivial exactly solvable model with intermittency and positive
Lyapunov exponent where the turbulent flux due to unresolved small scale processes
has important effects on the mean dynamics. Therefore, the system (1.1) serves as
an ideal testbed for analyzing UQ techniques based on finitely truncated Polynomial
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Chaos and Gram-Charlier expansions. Bearing in mind the analogy to a turbulent
high-dimensional systems, it is instructive to consider u(t) in (1.1) as the ‘resolved’
variable which is nontrivially coupled to the unresolved process γ(t). It is known
from the previous analysis [2, 3] that even the simplified system (1.1) with aγ = 0
exhibits a wide range of turbulent dynamical regimes with very intermittent transient
instabilities leading to fat-tailed equilibrium PDFs with only a small number of finite
moments (see figure 1.1 for an illustration). Such dynamics is characteristic of the
highly non-Gaussian inertial and dissipative ranges in realistic turbulent signals and
we focus the subsequent analysis on various cases representing this important class of
dynamical configurations.

3.1. Analytical structure of instructive configurations of the test model
We describe here four particular classes of dynamical regimes of increasing complexity
which are generated by the system (1.1). These configurations are used in the following
sections to analyze the performance of the PCE and GrChE as tools for uncertainty
quantification in systems with white-noise driven intermittency.

Case 1: Parametric Uncertainty with time-independent Gaussian damping
fluctuations
In this simple case with parametric uncertainty leading to fat-tailed proba-
bility densities the damping fluctuations γ are given by a Gaussian random
variable, i.e.,

γ=σγξ, ξ∼N (0,1), (3.1)

and the mean damping, γ̂(t), is a known function of time so that

u̇(t) =−
(
γ̂(t)+σγξ

)
u(t)+f(t). (3.2)

This is a configuration with non-mixing dynamics where the autocorrelation
of the fluctuations is constant and equal to σ2

γ . Systems in this class always
have unbounded mean and variance (see Appendix E).

Case 2: Fully decoupled, exactly solvable Gaussian dynamics (au=aγ = 0au=aγ = 0au=aγ = 0).
In this case the true dynamics of (1.1) reduces to

a) du(t) =
[
− γ̂u(t)+f(t)

]
dt+σudWu(t),

b) dγ(t) =−dγγ(t)dt+σγdWγ(t),
(3.3)

and the solutions u(t),γ(t) are given by two independent Ornstein-Uhlenbeck
processes.

Case 3: Exactly solvable non-Gaussian dynamics (au= 1,aγ = 0au= 1,aγ = 0au= 1,aγ = 0) with inter-
mittency
In this case the dynamics of (1.1) reduces to

a) du(t) =
[
−
(
γ̂+γ(t)

)
u(t)+f(t)

]
dt+σudWu(t),

b) dγ(t) =−dγγ(t)dt+σγdWγ(t),
(3.4)

is conditionally linear and exactly solvable with exact formulas for the second-
order statistics given in [9] and invariant measure with fat algebraic tails can
be derived analytically in the white noise limit of γ(t). The dynamics of γ(t) is
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Gaussian and decoupled from that of u, yet the resulting dynamics of u(t) can
be highly non-Gaussian and intermittent due to the quadratic nonlinearity
in (3.4a). We will show in §4 that even inaccurate representation of the
OU process γ(t) in (3.4) will have severe consequences on the approximation
of the intermittent dynamics of u(t). Following [2], regimes of mean-stable
dynamics of the system (3.4) are (see figure 1.1 for an illustration):

(I) σγ ,dγ�1 , σγ/dγ∼O(1) and γ̂ >0 sufficiently large so that

χ1≡−γ̂+ 1
2σ

2
γ/d

2
γ<0.

This is a regime of rapidly decorrelating γ(t). The dynamics of u(t) is
dominated by frequent, short-lasting transient instabilities. Decorrela-
tion time of u(t) is approximately 1/γ̂ and can vary widely. This type
of dynamics is characteristic of the turbulent energy transfer range.

(II) σγ ,dγ∼O(1) small, σγ/dγ∼O(1) and γ̂ >0 sufficiently large so that
χ1<0.
In this regime the decorrelation time of γ(t) is long. The dynamics of
u(t) is characterized by intermittent bursts of large-amplitude, transient
instabilities followed by quiescent phases. This regime is characteris-
tic of the turbulent modes in the dissipative range. Similarly to (I),
decorrelation time of u(t) can vary widely in this regime.

(III) σ2
γ/2d

2
γ�1, σγ∼O(1) and γ̂�1 sufficiently large so that χ1<0. This

regime is characteristic of the laminar modes in the turbulent spectrum.

Case 4: Fully coupled non-Gaussian intermittent dynamics (au= 1,aγ 6= 0)
In this case the general test model reduces to

a) du(t) =
(
−(γ̂+γ(t))u(t)+f(t)

)
dt+σudWu(t),

b) dγ(t) =−
(
dγ +aγu(t)

)
γ(t)dt+σγdWγ(t),

(3.5)

Equilibrium PDFs of (3.5) can be approximated numerically and they are
shown in [22] to be very close to the PDFs of the system in the white noise
limit. This class of dynamics will be used to illustrate the blow-up of the
second order dynamics estimated from the Gram-Charlier expansions of the
probability density in §5.

The above three configurations are used in the next two sections to study the
suitability of the PCE approximations (§2.1) and the GrChE approximations (§2.2)
as techniques for uncertainty quantification in systems with white noise driven inter-
mittency. The two approaches based on the truncated spectral expansions of either
the system variables or the associated joint probability density are compared with
a simple Gaussian moment closure approximation (see Appendix C). Clearly, the
Gaussian closure approximation is barely adequate in highly intermittent regimes but
its simplicity and potential for optimization [3] make it an obvious choice for a null
hypothesis. In the tests discussed in §4, 5 we will use the unoptimized Gaussian clo-
sure approximation for the second-order statistics of the system (1.1) as the bottom
line benchmark for the performance of the PCE and GrChE methods.

4. Limitations of truncated Polynomial Chaos Expansions for systems
with intermittency Following the general derivations of §2.1, here we discuss a
number of cases of increasing complexity which are aimed at elucidating the proper-
ties and limitations of the PCE method for UQ in systems with white noise driven
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intermittency. The equations for the PCE coefficients for the test system were de-
rived in §2.1.1 and the considered examples were outlined earlier in §3.1. The bottom
line benchmark in the tests is given by the simple Gaussian closure approximation
(Appendix C). Based on the examples presented below we point out the following
important limitations of the PCE method in the present context:

• For the test system (1.1) with various intermittent regimes truncated PCE
performs similarly to the Gaussian closure approximation, at best (figures 4.3,
4.4). It struggles with properly representing the second-order dynamics even
in the absence of limit cycles in the dynamics (which is a common limitation
in ODEs with uncertain parameters and a subject of ongoing research [29,
21, 1, 36, 37]).

• The pathologies in truncated PCE for intermittent dynamics stem from both
the truncated Fourier-Hermite representation of white noise (see §2.1 and
Appendix A) and from neglecting higher order coefficients in the nonlinear
terms in (1.1) which become important with the onset of intermittency.

• Truncated PCE struggles with representing correctly a simple OU process
(figure 4.2).

• Implementation of sparse truncation methods is hampered by a slow decay
of coefficients in the PC expansions (figure 4.5).

As already mentioned earlier, these limitations are much more pronounced in systems
with white-noise driven intermittency than in the context of UQ in deterministic
systems with a small number of uncertain parameters when the performance of PCE
tends to be much more satisfactory (e.g., [31, 11, 40, 41, 42, 43, 44, 45, 36]).

PCE approximation of dynamics with uncertain dampingPCE approximation of dynamics with uncertain dampingPCE approximation of dynamics with uncertain damping
(Case 1 of §3.1)(Case 1 of §3.1)(Case 1 of §3.1)

This simple configuration is frequently used for testing PCE techniques for sys-
tems with simple parametric uncertainty in the damping fluctuations γ of (1.1a) (e.g.,
[41]) which leads to fat-tailed PDFs (see figure 4.1). Contrary to the cases discussed
below, the statistically exactly solvable dynamics in this configuration is non-mixing
and the autocorrelation of the damping fluctuations is constant and equal to σ2

γ .

The equations for the PCE coefficients reduce in this case to

u̇α=−γ̂(t)uα−
∑

p∈JK,N

∑
06β6α

β+p=α1

C(α,β,p)uα−β+pγβ+p +f(t)δα0, (4.1)

where α1 = (1,0,0,. ..) and the PCE coefficients for the time-independent damping
fluctuations are given by, γα1 =σγ and γα= 0 for α 6=α1. Here, we additionally require
that 〈

u(t0)
〉

= 1, V ar
(
u(t0)

)
= 0,

〈
u(t0)γ

〉
= 0, (4.2)

which leads to the following initial conditions in (4.1)

uα0(t0) = 1, and uα(t0) = 0 for α 6=α0, (4.3)

where α0 = (0,0,. ..).

We stress the following shortcomings of PCE in this simple configuration with para-
metric uncertainty:
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Fig. 4.1. PCE for parametric uncertainty in damping fluctuations. Truncated PCE
approximation of the second-order statistics for dynamics of u in (3.2) with parametric uncertainty.
Here, the damping fluctuations are represented by a Gaussian random variable ξ∼N (0,1). The
bottom-line benchmark is given by the Gaussian moment closure (GC). Note that both GC and
the Monte Carlo simulations (with 50000 runs) fail to detect the onset of unbounded growth of the
variance (see also Appendix E).
System parameters: γ̂= 10,σγ = 2γ̂= 10,σγ = 2γ̂= 10,σγ = 2, Initial conditions:

〈
u(0)

〉
= 1,V ar

(
u(0)

)
= 0, Forcing: f(t) =1.

• Despite a good performance of truncated PCE approximations for sufficiently
short times, even very high-order truncations fail to reproduce the inevitable
unbounded growth of the statistics at later times (see Appendix E); see fig-
ure 4.1.

• The unbounded growth of the statistics of the statistics remains essentially
undetected below certain truncation order which is parameter dependent but
often high (in figure 4.1 the threshold is approx. N = 9); this shortcoming is
also associated with the Gaussian Closure or Monte Carlo simulations.

PCE approximation of a (Gaussian) Ornstein-Uhlenbeck processPCE approximation of a (Gaussian) Ornstein-Uhlenbeck processPCE approximation of a (Gaussian) Ornstein-Uhlenbeck process
(Case 2 of §3.1)(Case 2 of §3.1)(Case 2 of §3.1)

This is the Case 2 described earlier in §3.1 which, despite the Gaussianity of the
corresponding dynamics, is important for understanding the issues arising in PCE
approximations of the non-Gaussian cases with intermittency discussed later. The
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equations for the PCE coefficients (2.10) with α∈JK,N reduce in this case to

a) u̇α =−γ̂uα+f(t)δα0 +σu
∑
i∈Ku

I{αj=δij}mi(t),

b) γ̇α =−dγγα+σγ
∑
i∈Kγ

I{αj=δij}mi(t).
(4.4)

Here, we consider only the Gaussian dynamics of u in (4.4a) with constant forcing
f(t) = 1 and we require that

〈u(t0)〉= 0, V ar(u(t0)) =
1

2
V areq(u), 〈u(t0)Ẇ (t0)〉= 0, (4.5)

where V areq(u) =σ2
u/2γ̂ is the variance of u at equilibrium. The conditions (4.5) lead

to the following initial conditions in (4.4)

uα0(t0) = 0, uα1(t0) =
√
σ2
u/4γ̂, uα= 0 for α 6=α0,α1, (4.6)

where α0 = (0,0,. ..), α1 = (1,0,. ..) and the truncated representation of the Wiener
process

W (t) =

K∑
i=2

ξi

∫ t

t0

mi(τ)dτ. (4.7)

In figure 4.2 we illustrate various truncated PCE approximations with different di-
mension of the random vector ξξξ and over time intervals of different length; first order
Wick polynomials are used in all cases since the process is Gaussian.

The following properties are worth highlighting for this simple configuration:
• For sufficiently short times even low-order PCE approximations perform well

for this Gaussian process.
• However, even for this Gaussian process the dimension of the random vector
ξξξ required for the desired accuracy increases very quickly with the length T
of the time interval over which the process is approximated. These limita-
tions were reported earlier in [12, 19, 20] in the context of UQ via truncated
PCE approximation of the Burgers and Navier-Stokes equations driven by
the white noise.

PCE approximation of intermittent non-Gaussian dynamicsPCE approximation of intermittent non-Gaussian dynamicsPCE approximation of intermittent non-Gaussian dynamics
(Case 3 of §3.1)(Case 3 of §3.1)(Case 3 of §3.1)

In this case (see Case 3 in §3.1) both u and γ are driven by the white noise but
only u is non-Gaussian due to the quadratic nonlinearity coupling with the damping
fluctuations γ. The truncated equations (2.10) for the PCE coefficients with α∈JK,N
reduce in this case to

a) u̇α =−γ̂uα−
∑

p∈JK,N

∑
06β6α

C(α,β,p)uα−β+pγβ+p+f(t)δα0 +σu
∑
i∈Ku

I{αj=δij}mi(t),

b) γ̇α =−dγγα+σγ
∑
i∈Kγ

I{αj=δij}mi(t),

(4.8)
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Fig. 4.2. Problematic performance of PCE approximations for a Gaussian (Ornstein-
Uhlenbeck) process (Case 2 of §3.1).) Examples of PCE approximation of the second-order statistics
of the Gaussian system (3.3) which is exactly solvable by an OU process. The truncated PCE approx-
imation of various orders (see legend) is illustrated for two different values of the mean damping,
γ̂, and three different time intervals [0, T ].

where we require that

〈u(t0)〉= 0, V ar(u(t0)) = 1
2V areq(u), V ar(γ0) = 1

2V areq(γ), 〈u0γ0〉= 0. (4.9)

Moreover, we require that the white noises, Ẇu, Ẇγ , driving u and γ are uncorrelated
with each other and with the initial conditions, i.e.,

〈ẆuẆγ〉= 0, 〈u(t0)Ẇu,γ(t0)〉= 0, 〈γ(t0)Ẇu,γ(t0)〉= 0. (4.10)

The constraints (4.9)-(4.10) lead to the following initial conditions in (4.8)

uα0 = 0, uα1 =
√
σ2
u/4γ̂, uα2 =

√
σ2
γ/4dγ , uα= 0 for α 6=α0,α1,α2, (4.11)

where α0 = (0,0,. ..), α1 = (1,0,. ..), α2 = (0,1,. ..), and the truncated spectral expan-
sions of the two independent Wiener processes (see §2.1 and Appendix A) are

Wu(t) =
∑
i∈Ku

ξi

∫ t

t0

mi(τ)dτ, Wγ(t) =
∑
i∈Kγ

ξi

∫ t

t0

mi(τ)dτ, (4.12)

where Ku and Kγ are two disjoint sets of integers such that Ku∪Kγ ={3,4,. ..,K}.
Note that, compared to the previous case, roughly twice as many random variables
ξi are needed here to represent the Wiener processes to the same order of accuracy.
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Fig. 4.3. PCE approximation of the second-order statistics in regime of intermittent large
amplitude unstable bursts in (1.1), i.e., regime II of Case 3 in §3.1. The second-order statistics
in this case can be obtained analytically (black lines) as derived in [9]. The PC approximation is
illustrated for different truncations indicated in the legends; the bottom line benchmark is given by
a simple Gaussian moment closure (see Appendix C).
System parameters: au= 1,aγ = 0au= 1,aγ = 0au= 1,aγ = 0, γ̂= 1.2,σγ =dγ = 0.5,σu= 0.5.
Forcing: f(t) =0
Initial condition: p0(u,γ) =N

(
u|0, 1

2
σueq

)
N

(
γ|0, 1

2
σγeq

)
where σueq =σ2

u/2γ̂, σγeq =σ2
γ/2dγ are the

equilibrium variances of the uncoupled OU processes for u and γ.

In figures 4.3, 4.4 we show examples characteristic of dynamical configuration
which show serious limitations of the truncated PCE approximations for UQ in such
systems. The dynamical configuration illustrated in figure 4.3 corresponds to the
regime with large amplitude intermittent instabilities in u(t) (i.e., regime II in §3.1)
and constant deterministic forcing; different time interval lengths and different order
truncations are shown. Figure 4.4 shows a typical situation from regime of abundant
short lasting instabilities (i.e., regime I in §3.1) with time-dependent deterministic
forcing.

We make the following points based on the examples illustrated in figures:

• For systems with white-noise driven intermittent regimes, truncated PCE
performs, at best, similarly to the Gaussian closure approximation (figures
4.3, 4.4). It struggles with properly representing the second-order dynamics
even in the absence of limit cycles in the dynamics (which is a common
limitation in ODEs with uncertain parameters.)

• In intermittent regimes both high-order of approximation (large N) and good
resolution of the white noise forcing (large K) are required and PCE performs
poorly, except when short time integration is carried out (see also [12]). Mod-
erate order truncations have to compromise between the order of approxima-
tion and the resolution of the white noise forcing, resulting in either improved
short or long time accuracy; in both cases PCE approximation is comparable
with the simple Gaussian closure technique.

• The pathologies in truncated PCE for intermittent dynamics stem from both
the finite truncation of the spectral representation of the white noise and ne-
glecting higher order coefficients in the nonlinear terms in (1.1) which become
important with the onset of intermittency.

• In the simple examples shown here when the intermittency was due to damp-
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Fig. 4.4. PCE approximation of the second-order statistics in regime of frequent,
short-lasting bursts of instability in (1.1); case 3 of §3.1. The second-order statistics in this
case can be obtained analytically (black lines) as derived in [9]. The PC approximation is illustrated
for different truncations indicated in the legends; the bottom line benchmark is given by a simple
Gaussian moment closure (see Appendix C).
System parameters: au= 1,aγ = 0au= 1,aγ = 0au= 1,aγ = 0, γ̂= 1.4,σγ =dγ = 10,σu= 0.1.
Forcing: f(t) =A0 +A1 cos(ω1t+φ1)+A2 cos(ω2t+φ2) with

A0 = 1,A1 = 1.1,A2 = 0.5,ω1 = 2,ω2 = 4,φ1 = 1,φ2 = 0.
Initial condition: p0(u,γ) =N

(
u|0, 1

2
σueq

)
N

(
γ|0, 1

2
σγeq

)
.

ing fluctuations represented by an OU process. The rapidly increasing di-
mension of the random vector necessary for accurate approximation of this
Gaussian process leads to severe difficulties in appropriately capturing the in-
termittency due to the white noise driven damping fluctuations even at short
times.

• Contrary to nearly Gaussian dynamics, implementation of existing sparse
truncation methods (e.g., [13, 35, 24, 8, 12]) is hampered in systems with
white noise driven intermittency by a slow decay of expansion coefficients
(figure 4.5); the sparseness is still present in the distribution of the non-



Branicki & Majda 19

0 20 40 60 80
0

0.05

0.1

0.15

u
α

 

 

0 20 40 60 80
0

0.05

0.1

0.15

0.2

0.25

PCE with N=1, K=6 (7 coefs)
PCE with N=2,K=6 (28 coefs)
PCE with N=3, K=6 (84 coefs)

t = 0.1 t = 4

Fig. 4.5. Slow decay of PCE coefficients in the presence of white noise driven intermit-
tency and errors due to finite truncations. The two insets show amplitudes of the PCE coeffi-
cients at two different stages of evolution of system (1.1) in configuration (I) of Case 3 in §3.1
with γ̂=1.2,σu=0.5,σγ=dγ = 10: nearly Gaussian dynamics (left) and highly intermittent dynamics
(right) with only two finite moments. Note the non-negligible amplitudes of third order polynomials
(black squares with indices >28) in the intermittent phase (right) which are absent in the lower order
truncations; the sparseness is clearly still present in the distribution of the non-negligible coefficients
which is not, however, as localized as in the nearly Gaussian case.

negligible coefficients but this distribution is not as localized as in the nearly
Gaussian case.

5. Limitations of truncated Gram-Charlier Expansions for systems
with intermittency

Given the truncated expansion (2.17) of the joint probability density associated
with the uncertain evolution of the system (1.1), here we analyze the performance
of the Gram-Charlier technique for UQ outlined in §2.2 Appendix B for a number of
dynamical configurations of the system (1.1) described in §3.1 and characterized by
intermittent dynamics driven by the white noise. We examine here both the approx-
imate densities produced by the GrChE method and the fidelity of the approximate
second-order statistics which is compared with the true statistics and estimates ob-
tained from the simple Gaussian closure approximation outlined in Appendix C. We
show the following important consequences of finite truncation of the Gram-Charlier
expansions:

• The finitely truncated eigenfunction expansions lead to nonrealizability of
the solutions as PDFs with the onset of nonrealizability directly linked to the
onset of intermittency.

• The finite truncation leads to erroneous instabilities in the system for the
coefficients in the expansion which are directly linked to nonrealizability. The
erroneous instabilities lead to a blow-up of second order statistics when the
true system has intermittent dynamics and aγ 6= 0.

• There exists a degenerate case with aγ = 0 (see Case 3 of §3.1 ) when the
truncated system possesses a special ‘closedness property’ which prevents the
instabilities due to the finite truncation from down-propagating to the low-
order coefficients which determine the second order statistics.

We structure this section by discussing a number of examples illustrating various
limitations of the GrChE technique for UQ in systems with intermittent instabilities
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Fig. 5.1. Failure of approximations of a Gaussian density by truncated expansions in the
eigenfunctions φk(u) of the Fokker-Planck operator associated with the system (1.1); see §2.2. (a)
Approximation of a Gaussian density with a smaller variance than φ0 (dashed black); the true
density is marked by the solid black line and the approximations are colored. (b) Approximation of
a PDF with a larger variance than that of φ0. See §5 and Appendix B for more details.

driven by white noise.

Truncated expansion of a probability density with large varianceTruncated expansion of a probability density with large varianceTruncated expansion of a probability density with large variance

The first symptom of limitations of the GrChE methods becomes apparent when
approximating a probability density with a variance exceeding the equilibrium den-
sity of the decoupled system. In figure 5.1 we show examples of various truncated
approximations of Gaussian densities with different variances. The first example illus-
trates the truncated approximations when the variance of the true density is smaller
than that of the first eigenfunction φ0 (see Appendix B) in the GrCh expansion. In
this case the low-order approximations are weakly nonrealizable but the accuracy of
approximation quickly improves with the order of truncation. When the variance
of the true distribution exceeds that of the first eigenfunction φ0, the finite order
approximation results in spurious oscillations and nonrealizability which deteriorates
with time due to erroneous exponential instabilities in the truncated system for the
expansion coefficients (see Appendix B and figure B.3).

Nonrealizability of truncated GrCh expansionsNonrealizability of truncated GrCh expansionsNonrealizability of truncated GrCh expansions
and blow-up of second-order statistics due to intermittencyand blow-up of second-order statistics due to intermittencyand blow-up of second-order statistics due to intermittency

We now discuss two examples of application of the GrChE method to estimate the
second-order statistics and the marginal PDFs, p(u,t), in the non-Gaussian system
with intermittency (1.1) outlined earlier in Cases 3 and 4 of §3.1. Here, we examine
both the truncated GrChE approximations for the marginal density p(u,t), as well
as approximations for the first two moments ū, V ar[u] which are computed from
(2.21) regardless of the possible non-realizability of the truncated approximations.
Similar to the analysis of the previous section, these approximations are compared
with the true marginal second-order statistics computed from formulas derived in [9]
(aγ = 0) or from Monte Carlo sampling (aγ 6= 0), as well as with estimates based on a
simple Gaussian moment closure approximation outlined in Appendix C used as the
null hypothesis. As we show below and discuss in detail in Appendix B, the exactly
solvable case with aγ = 0 falls into a special class of degenerate systems for which the



Branicki & Majda 21

GrChE method produces surprisingly good estimates of the second-order statistics
for the intermittent system (1.1) despite generating nonrealizable solutions for the
approximate PDFs with spurious unbounded oscillatory terms. The sources of these
artifacts are a direct consequence of the finite truncation and intermittency and are
explained in detail in Appendix B.

Example 1. Energy dissipation regime of system (1.1) with symmetric
true equilibrium PDF with fat algebraic tails (regime II of Case 3 in §3.1)
In this regime there are very intermittent, large amplitude transient instabilities in
the dynamics of u which are induced by the damping fluctuations γ with relatively
broad negative minima (see also [2]). We illustrate the GrChE approximations of the
system statistics in this configurations in figures 5.2-5.4 for constant non-zero forcing;
these examples were chosen to highlight various artifacts arising due to the finite
truncations of the GrCh expansions and are illustrated in the following figures:

Figure 5.2: For this special degenerate case with aγ = 0 in (1.1) correspond-
ing to the exactly solvable Case 3 of §3.1 the truncated expansions (2.17 )
are nonrealizable as PDFs with spurious oscillations growing unboundedly in
time at an exponential rate; the onset of nonrealizability coincides with on-
set of intermittency in the true time-dependent marginal PDFs for u(t). The
second-order statistics remains surprisingly accurate well beyond the blow-up
of the higher moments; this is due to a particular closedness property of the
system for the expansion coefficients (2.36) when aγ = 0 which prevents the
instabilities due to the finite truncation of the GrCh expansion from down-
propagating to the low order moments (see Appendix B and figures B.2, B.3
for details).
Figure 5.3 : Fully coupled intermittent dynamics of u and γ in (1.1), corre-
sponding to Case 4 of §3.1, with a very weak coupling in the damping fluc-
tuations, aγ = 0.01. In this case the nonrealizability of the truncated GrCh
expansions (2.17) is accompanied by a blow-up of the mean and variance of
u. Here and in the subsequent cases with aγ 6= 0, a word of caution is in place
since the due to the lack of analytical solutions when aγ 6= 0, the true statistics
is approximated via Monte Carlo simulations with sample sizes between 80000
and 100000. Given the failure of MC at detecting the unbounded growth of
the second order statistics in the exactly solvable case with parametric un-
certainty (figure 4.1), the possibility of the MC missing the important rare
events we cannot fully excluded. In any case this does not affect the issue of
the nonrealizability of the GrChE approximations.
Figure 5.4: Fully coupled intermittent dynamics of u and γ in (1.1), as in Fig-
ure 5.4, but for a very low-order GrCh expansion. In this case the truncated
expansions lead to realizable PDFs and produce good second-order statis-
tics but the intermittency apparent in the dynamics of the true system is
completely missed in the GrChE approximations.

Example 2. Energy transfer regime, true time-dependent PDF on at-
tractor skewed with fat algebraic tails. In this regime (regime I of §3.1) there
are very frequent transient instabilities in the dynamics of u which are induced by
the damping fluctuations γ with abundant relatively narrow negative minima (see
also [2]). The GrChE approximations for the marginal density p(u,t) and the first
two moments are shown in figures 5.5-5.7 for time-periodic forcing; all these examples
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show a very quick onset of nonrealizability and a blow-up of the second-order statis-
tics except in the special case aγ = 0 when the damping fluctuations γ(t) are fully
decoupled from u(t). Three figures illustrating these erroneous effects are:

Figure 5.5: Similarly to the Example 1, in this special configuration of (1.1)
with aγ = 0 (exactly solvable Case 3 of §3.1) the truncated expansions (2.17 )
are nonrealizable as PDFs with spurious oscillations growing unboundedly in
time at an exponential rate; the onset of nonrealizability coincides with onset
of intermittency in the true time-dependent marginal PDFs for u(t). The
second-order statistics remains surprisingly accurate well beyond the blow up
of the higher moments; this is due to a particular closedness property of the
system for the expansion coefficients (2.36) which prevents the instabilities
due to truncation from down-propagating to the low order moments (see
Appendix B fro details).
Figure 5.6: Low-order truncation of GrCh expansion (2.17) of fully coupled
intermittent dynamics of u and γ in (1.1), corresponding to Case 4 of §3.1,
with a very weak coupling in the damping fluctuations, aγ = 0.01. Contrary
to the similar case discussed in Example 1, low-order statistics diverges here
even for low order truncations; the truncated expansions are non-realizable
and completely miss the skewness of the true time-dependent PDF.
Figure 5.7: Higher-order truncation of GrCh expansion (2.17) of fully coupled
intermittent dynamics of u and γ in (1.1) with a very weak coupling in the
damping fluctuations, aγ = 0.01. Here, the mean and variance blow up at
short times and are accompanied by non-realizability with intermittency of
the true system completely missed.

Given the examples shown in figures 5.2-5.7, we reiterate below the main points
concerning the limitations of the GrChE method for UQ in systems with white noise
driven intermittency:

• Fully coupled non-Gaussian intermittent dynamicsFully coupled non-Gaussian intermittent dynamicsFully coupled non-Gaussian intermittent dynamics (au,aγ 6= 0 in
(1.1) corresponding to Case 4 of §3.1; figures 5.3, 5.4,5.6, 5.7)

– Nonrealizability of the marginal PDFs for u and a blow-up of the sec-
ond order-statistics even for aγ�1 in (1.1). Exception: very low
order truncation, K,L.3 when good second-order statistics is usually
achieved but intermittency is completely missed.

– The nonrealizability of the marginal PDFs for u coincides with the onset
of intermittency.

– Erroneous exponential instabilities in the truncated system (2.36) for the
expansion coefficients which grow with increasing truncation order and
increasing intermittency (figure B.3). The finite Galerkin truncation of
the system for the expansion coefficients CMMMk,l of the probability density
p(u,γ) induces a loss negative semi-definiteness of the system matrix
for sufficiently small mean damping γ̂ and sufficiently large truncation
order.

– Spectacular failure of truncated eigenfunction expansions for time-
periodic forcing (figures 5.6, 5.7).

– False equilibrium solutions. The solutions of the truncated system (1.1)
with intermittency lead to erroneous, often non-realizable, approxima-
tions for the probability densities even in the absence of the finite-
truncation instability. The nonrealizability of the approximations ob-
tained from the truncated eigenfunction expansions of p(u,γ,t) occurs
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for:
- breaking the symmetry by introducing non-zero forcing in (1.1),
- sufficiently small mean damping γ̂ which is associated with onset of

intermittency,
- sufficiently small noise amplitude σu,
- sufficiently large noise amplitude σγ and damping dγ in γ(t),
- sufficiently high order truncation (usually K,L>5 is sufficient).

• Exactly solvable non-Gaussian intermittent dynamicsExactly solvable non-Gaussian intermittent dynamicsExactly solvable non-Gaussian intermittent dynamics
(au 6= 0, aγ = 0 in (1.1) corresponding to Case 3 of §3.1; figures 5.2,
5.5)

– Nonrealizability of the truncated approximations for the densities and
erroneous exponential instabilities as in the general case above.

– Unexpectedly good approximation of the marginal second-order statistics,
ū, V ar(u), for the system (1.1) from truncated eigenfunction expansions
regardless of truncation order (figures 5.2, 5.5). The instabilities due to
finite truncation do not down-propagate to the lower order modes be-
cause of the ‘lower triangular’ structure of the truncated system matrix
(see figure B.2b) resulting in closed equations for approximate marginal
mean and variance.
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Fig. 5.2. Non-realizability of the truncated GrChE approximations (see §2.2 and Appendix B)
for the evolution of system (1.1) with white noise driven intermittency and no deterministic forcing
(regime II of Case 3 in §3.1). In this special case with aγ = 0aγ = 0aγ = 0 in (1.1) the second-order statistics
from PCE approximations is misleadingly good (see figures 5.3 and 5.4 for evolution with very weak
perturbation of this configuration).
Truncation: K= 15,L= 15Truncation: K= 15,L= 15Truncation: K= 15,L= 15.
λmax= 22.12 (truncated system unstable)λmax= 22.12 (truncated system unstable)λmax= 22.12 (truncated system unstable)
System parameters: a= 0a= 0a= 0, γ̂= 1.2,σγ =dγ = 0.5,σu= 0.5.
Forcing: f(t) =0
Initial condition: p0(u,γ) =N

(
u|0, 1

2
σueq

)
N

(
γ|0, 1

2
σγeq

)
where σueq =σ2

u/2γ̂, σγeq =σ2
γ/2dγ are the

equilibrium variances of the uncoupled OU processes for u and γ.
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perturbation of regime II from Case 3 shown in figure 5.2). The Gaussian moment closure (GC)
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.
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Truncation: K= 15,L= 5Truncation: K= 15,L= 5Truncation: K= 15,L= 5.
System parameters: a= 0a= 0a= 0, γ̂= 1.4,σγ =dγ = 10,σu= 0.1.
Forcing: f(t) =A0 +A1 cos(ω1t+φ1)+A2 cos(ω2t+φ2) with

A0 = 1,A1 = 1.1,A2 = 0.5,ω1 = 2,ω2 = 4,φ1 = 1,φ2 = 0.
Initial condition: p0(u,γ) =N
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)
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Fig. 5.6. Failure of low-order truncated GrChE approximation for the marginal
density p(u). Non-realizability of the truncated GrChE approximations (see §2.2 and Appendix B)
and blow-up of variance for the evolution of system (1.1) with white noise driven intermittency and
time periodic forcing (Case 4 in §3.1 with au= 1au= 1au= 1,aγ = 0.01aγ = 0.01aγ = 0.01 corresponding to perturbation of regime
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in Appendix C.
Truncation: K= 3,L= 3Truncation: K= 3,L= 3Truncation: K= 3,L= 3.
System parameters: a= 0.01a= 0.01a= 0.01, γ̂= 1.4,σγ =dγ = 10,σu= 0.1.
Forcing: f(t) =A0 +A1 cos(ω1t+φ1)+A2 cos(ω2t+φ2) with
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6. Conclusions

Here, in Section 3, we introduced a simple unambiguous test problem for UQ in
systems with transient intermittent instability, and for UQ in systems with paramet-
ric uncertainty in the damping leading to fat-tailed probability densities. We then
examined the suitability of truncated Polynomial Chaos Expansions (PCE) and trun-
cated Gram-Charlier Expansions (GrChE) as possible methods for uncertainty quan-
tification in nonlinear systems with positive Lyapunov exponents due to either the
intermittency or damping uncertainties; such systems are commonly encountered in
Atmosphere and Ocean Science applications dealing with turbulent signals from high-
dimensional systems. The two methods examined here rely on truncated Galerkin
projections of either the system variables in a fixed random polynomial basis (PCE)
or a suitable eigenfunction expansion of the joint probability distribution associated
with the uncertain evolution of the system (GrChE). Based on the simple, unam-
biguous and statistically exactly solvable non-linear and non-Gaussian test model, we
showed that methods exploiting truncated spectral expansions, be it PCE or GrChE,
have significant limitations for uncertainty quantification in systems with intermittent
instabilities or parametric uncertainties in the damping even in the absence of explicit
time dependence, or nontrivial attractors in the deterministic part of dynamics; these
are known problems for UQ based on PCE in simpler systems with a finite number
of uncertain parameters. Intermittency and fat-tailed PDFs are hallmark features
of the inertial and dissipation ranges of turbulence and we show that in such im-
portant dynamical regimes PCE performs, at best, similarly to the simple Gaussian
moment closure technique utilized earlier by the authors for UQ within a framework
of Empirical Information Theory [3]. Moreover, we show that the non-realizability
of the GrChE approximations for probability densities is linked to the onset of inter-
mittency in the dynamics and it is frequently accompanied by an erroneous blow-up
of the second-order statistics at short times. The limitations discussed here in an
unambiguous simple test model are similar to those encountered in earlier heuristic
applications to turbulence theory and stem from the following:

• Non-uniform convergence in time of PCE and GrChE resulting in a rapidly
increasing number of terms necessary for a good approximation of the random
process as time evolves.

• Fundamental problems with capturing the constant flux of randomness due to
the white noise forcing via finite truncations of the Fourier-Hermite expansion
of the associated Wiener process.

• Slow decay of PCE and GrChE coefficients in the presence of intermittency
which substantially complicates development of sparse truncation methods
which have been widely used in nearly elliptic problems or in low Reynolds
number flows.

Rigorous derivations were richly illustrated throughout the paper by various straight-
forward tests exploiting the simple two-dimensional, nonlinear, and non-Gaussian
model with intermittency and a positive Lyapunov exponent. The combination of an-
alytical tractability and a very rich dynamical behavior of the test model (1.1) used in
this study represents a very attractive testbed for analyzing the performance of various
techniques for uncertainty quantification in turbulent dynamical systems. We there-
fore propose this model as a challenging, yet mathematically tractable benchmark, for
testing future methods for UQ in the important class of systems with intermittency.

The results presented in this paper point to a number of fundamental limitations
of both the PCE and GrChE approaches to UQ in systems with intermittency, or
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systems with fat-tailed PDFs due to parametric uncertainties, which are summarized
below.

Limitations of PCE approximations of systems with parametric uncertainty in the
damping:

• Despite the good performance of truncated PCE approximations for UQ in
such systems for sufficiently short times, even very high-order truncations
often fail to reproduce the unbounded growth of the statistics at later times
(figure 4.1).

Limitations of PCE approximations of uncertain dynamics with intermittency:
• For the test model (1.1) with various realistic intermittent regimes, the trun-

cated PCE performs, at best, similarly to the Gaussian closure approximation
(figures 4.3, 4.4). It struggles with properly representing the statistics of un-
certain dynamics with intermittency even in the absence of limit cycles which
is a common limitation in ODEs with uncertain parameters.

• The pathologies in truncated PCE for intermittent dynamics stem from both
the finite spectral truncation of the white noise expansion in Fourier-Hermite
series and from neglecting higher order coefficients in the nonlinear terms in
(1.1) which become important with the onset of intermittency (figure 4.5).

• Truncated PCE struggles with representing correctly a simple Gaussian (OU)
process (figure 4.2), except at short times or for small amplitudes of the white
noise forcing (see also [12] for additional discussion and error bounds).

• Implementation of existing sparse truncation methods (e.g., [13, 35, 24, 8]) is
hampered by a slow decay of the expansion coefficients (e.g., figure 4.5).

Limitations of the GrChE approximations of the joint probability density in systems
with intermittency:

• The finitely truncated eigenfunction expansions of probability densities lead
to nonrealizability of the approximations with the onset of nonrealizability
directly linked to the onset of intermittency (figures 5.2-5.7).

• The finite truncation of GrCh expansions leads to erroneous instabilities in
the system for the expansion coefficients which are directly linked to non-
realizability (see figure B.3 and Appendix B). The erroneous instabilities
frequently lead to a blow-up of the second-order statistics in regimes of inter-
mittent dynamics (see figures 5.3, 5.6, 5.7).

The above shortcomings of the two methods clearly indicate that further work is
in order for a reliable UQ in turbulent systems with white noise driven intermittency.
However, given the history of the subject, new approaches are likely to improve the
performance of truncated spectral expansions in such dynamical configurations. Re-
gardless of the future developments, the improved PCE techniques would necessarily
have to maintain a reasonably small number of the random basis polynomials while
adequately capturing the effects of the white noise forcing. In this context some hy-
brid methods [12] combining solutions from a sufficiently fine partition of the time
interval of interest might offer a possible direction for improvements but the issue
seems far from resolved. The truncated Gram-Charlier expansions of probability den-
sities which do not suffer from artifacts due to misrepresentation of the white noise
forcing are, in general, severely affected by the onset of intermittency associated with
fat-tailed densities with few finite moments; here, appropriate techniques for reorder-
ing the expansion terms (e.g., [14]) might prove useful. However, any developments
in this area are yet to be tested.
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Appendix A. Polynomial Chaos Expansion of the test system with
intermittency. Below we complement the presentation of §2.1 with a few more
technical details and relevant theorems which lie foundations for the Polynomial Chaos
Expansion technique and build on on the original of Homogeneous Chaos of Wiener
[38].

Recall that the Wick polynomials were defined in §2.1 as

Tα(ξξξ) =

∞∏
i=1

Hαi(ξi), (1.1)

where Hn is the normalized n-th order Hermite polynomial and αi below to a set of
multiindices with a finite number of nonzero components

J =
{
α= (αi, i>1 |αi∈{0,1,2,. ..}, |α|=

∞∑
i=1

αi<∞)
}
, (1.2)

so that the product in the right hand side of (1.1) has a finite number of factors and
it is well defined. Wick polynomials are defined over a in infinite dimensional space
with variables ξξξ= (ξ1,ξ2,. ..), where 〈ξi〉= 0, 〈ξiξj〉= δij , and they form a complete
orthonormal basis in L2 on the probability space with respect to the Gaussian measure
generated by ξξξ. In particular

〈TαTβ〉= δαβ , 〈T0〉= 1, 〈Tα〉= 0 when α 6= 0. (1.3)

The order of the Wick polynomial Tα is defined as |α|=∑αi.
The following result, often referred to as the Cameron-Martin theorem, forms the

foundation of Wiener Chaos theory

Theorem 1 (Cameron-Martin [4]) Assume that for fixed x and s6 t, u(x,s) is a
functional of the Wiener process W on the interval [0, s] with 〈|u(x,s)|2〉<∞, then
u(x,s) has the following Fourier-Hermite expansion:

u(x,s) =
∑
α∈J

uα(x,s)Tα, uα(x,s) = 〈u(x,s)Tα〉, (1.4)

where Tα are the Wick polynomials defined by (1.1). Furthermore, the first two
statistical moments of u(x,s) are given by:

〈u(x,s)〉=u0(x,s), (1.5)

and

〈u2(x,s)〉=
∑
α∈J
|uα(x,s)|2. (1.6)

The following theorem due to [27] is very useful for our analysis since it allows
for exact treatment of nonlinearities

Theorem 2. Suppose u,γ have Wiener Chaos expansions

u=
∑
α∈J

uαTα(ξ), γ=
∑
β∈J

γαTβ(ξ). (1.7)
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If 〈|uv|2〉<∞, then the product uv has the Wiener Chaos expansion

uv=
∑
θ∈J

∑
p∈J

∑
06β6θ

C(θ,β,p)uθ−β+pγβ+p

Tθ(ξ), (1.8)

where

C(θ,β,p) =

[(
θ
β

)(
β+p
p

)(
θ−β+p

p

)] 1
2

. (1.9)

The operations on multi-indices are defined as

α=β ⇔ αi=βi ∀ i, (1.10)

α6β ⇔ αi6βi ∀ i, (1.11)

and

α! =
∏
i

αi! (1.12)

A.1. Finite truncation of the Wiener Chaos expansion and associated
problems We note that (2.4) is a double infinite expansion; this becomes clear
expressing the Wick polynomials in the expansion through the Hermite polynomials

u(x,t,ξ) =
∑
α∈J

uα(x,t)Tα(ξ) =
∑
α∈J

uα(x,t)

∞∏
i=1

Hαi(ξi) (1.13)

Therefore in applications a ‘double’ truncation is performed [12]. Suppose we want
to keep only K random Gaussian variables ξi and the Wick polynomials up to order
N in the approximation. Define the truncated index set

JK,N =
{
α= (αi, i>1 |αi∈{0,1,2,. ..,K}, |α|=

K∑
i=1

αi6N)
}

(1.14)

Then, the truncated PCE has the form

uK,N (x,t,ξ) =
∑

α∈JK,N

uα(x,t)Tα=
∑
|α|6N

uα(x,t)

K∏
i=1

Hαi(ξi) (1.15)

The resulting approximation has altogether
∑N
n=0

(
K+n−1

n

)
terms.

A.2. Spectral representation of the white noise Since we are considering
SDE’s here we need a representation of the white noise that is compatible with the
PC framework. We follow here the approach of [19, 20] and [12].

Consider any T >0 and orthonormal basis {mi(s),i= 1,2,. ..} in L2([0,T ]), for
example trigonometric functions

m1(s) =
1√
T
, and mi(s) =

√
2

T
cos

(i−1)πs

T
, for i= 2,3,. .. (1.16)
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It is easy to see that the random variables defined by

ξi=

∫ T

0

mi(s)dW (s), i= 1,2,. .. (1.17)

are i.i.d. standard Gaussian random variables, ξi∼N (0,1), so that the Wiener process
can be represented by the following Fourier-Hermite expansion [12, 19, 20]

W (s) =

∞∑
i=1

ξi

∫ s

0

mi(τ)dW (τ). (1.18)

The expansion (1.18) converges in the mean-square sense〈[
W (s)−

N∑
i=1

ξi

∫ s

0

mi(τ)dW (τ)

]2〉
→

N→∞
0. (1.19)

A.3. Truncated equations for the PCE coefficients of the test model
We assume here without a proof that solutions of (1.1) are second-order stable

(methods similar to those used in [2] could be used to prove the second order stability
of (1.1) when aγ ; otherwise careful Monte Carlo estimates are sufficient for our pur-
poses). By the Cameron-Martin theorem (see [4] and Appendix A) these solutions
admit the PCE expansion (2.4). Substitution of (1.15) into (1.1) and utilizing the
orthonormality of the Wick polynomials Tα together with the identity

uγ=
∑
α∈J

(∑
p∈J

∑
06β6α

C(α,β,p)uα−β+pγβ+p

)
Tα, (1.20)

due to Theorem 2 above (see also [27, 19, 12, 20]), the truncated equations with
α∈JK,N for the PCE coefficients of (1.1) are given by

a) u̇α =−γ̂uα−au
∑

p∈JK,N

∑
06β6α

C(α,β,p)uα−β+pγβ+p+f(t)δα0 +σu
∑
i=1

I{αi=δij}mi(t),

b) γ̇α =−dγγα−aγ
∑

p∈JK,N

∑
06β6α

C(α,β,p)uα−β+pγβ+p+σγ
∑
i=1

I{αi=δij}mi(t),

(1.21)

where, additionally, uα= 0 for α /∈JK,N .

Appendix B. Solutions of the Fokker-Planck equation for the test sys-
tem (1.1) with intermittency via eigenfunction expansions.

Below we complement the presentation of §2.2 with some technical details and
derivations. Discussion of mathematical reasons for the limitations of the truncated
Gram-Charlier expansions for UQ in systems with intermittency is presented in §B.3
and §B.5.

Consider first two Fokker-Planck equations associated with uncoupled scalar
Ornstein-Uhlenbeck processes

∂tp(u,t) = γ̂ ∂u[up(u,t)]+ 1
2σ

2
u∂

2
up(u,t), (2.1)
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∂tq(γ,t) =dγ ∂γ [γq(γ,t)]+ 1
2σ

2
γ ∂

2
γ q(γ,t), (2.2)

which are obtained by neglecting the quadratic coupling term in (1.1). The stationary
solutions of (2.1) and (2.2) are the eigenfunctions of the Fokker-Planck operator with
the eigenvalue λ0 = 0; these solutions satisfy

γ̂ ∂u[upeq(u)]+ 1
2σ

2
u∂

2
upeq(u) = 0, dγ ∂γ [γqeq(γ)]+ 1

2σ
2
γ ∂

2
γ qeq(γ) = 0, (2.3)

and are given by

peq(u) =

(
γ̂

πσ2
u

)1/2

exp

(
− γ̂

σ2
u

u2
)
, (2.4)

qeq(γ) =

(
dγ
πσ2

γ

)1/2

exp

(
−dγ
σ2
γ

γ2
)
. (2.5)

We now rescale the variables u and γ using

u=U−1ξ, U =

√
γ̂

σ2
u

and γ=G−1ξ, G=

√
dγ
σ2
γ

, (2.6)

which transforms (2.1) and (2.2) to

∂tp(ξ,t) = γ̂
(
∂ξ[ξp(ξ,t)]+

1
2∂

2
ξ p(ξ,t)

)
≡ γ̂LFP p(ξ,t), (2.7)

∂tq(ξ,t) =dγ
(
∂ξ[ξq(ξ,t)]+

1
2∂

2
ξ q(ξ,t)

)
≡dγLFP q(ξ,t), (2.8)

where the Fokker-Planck operator, LFP , in the rescaled variables in the same in
both cases. Furthermore, based on and (2.4)-(2.6), the eigenfunction of (2.7), (2.8)
corresponding to λ0 = 0 can be written in both cases as

ϕ0(ξ) =N0e
−ξ2 , LFP ϕ0 = 0, (2.9)

with N0 6= 0 is a normalizing constant to be specified later.

Next, introduce an operator

L̃g(ξ)≡eξ2/2LFP
(
e−ξ

2/2g(ξ)
)
, (2.10)

where g∈C2 which can be easily evaluated as

L̃g≡ 1
2

(
∂2ξ g+(1−ξ2)g

)
. (2.11)

Two properties of L̃ are important for our considerations:
(i) L̃ is self-adjoint,
(ii) L̃ and LFP have the same eigenvalues λn. Furthermore, if ϕn is an eigen-

function of LFP , then

ψn(ξ) =eξ
2/2ϕn(ξ), ψ0(ξ) =N0e

−ξ2/2, (2.12)

is an eigenfunction of L̃, i.e.,

L̃ψn=−λnψn ⇔ LFP ϕn=−λnϕn. (2.13)



Branicki & Majda 37

The proofs of (i) and (ii) are straightforward

Proof of (i): The operator L̃ is a sum of two symmetric operators with respect to the
canonical inner product in the Hilbert space. Thus, L̃ is symmetric, i.e.,∫

gL̃h=

∫
hL̃g. (2.14)

Hence, it is self-adjoint. In detail, for any g,h∈C2 and vanishing at infinity∫
gL̃h=

∫
g
(
∂2ξ h+(1−ξ2)h

)
dξ=

∫ (
g∂2ξ h+(1−ξ2)gh

)
dξ

=

∫ (
−∂ξg∂ξh+(1−ξ2)gh

)
dξ=

∫ (
h∂2ξ g+(1−ξ2)gh

)
dξ=

∫
hL̃g. (2.15)

Proof of (ii): This property follows immediately by a direct application of L̃ to

ψn=eξ
2/2ϕn; namely

L̃ψn=eξ
2/2LFP (e−ξ

2/2ψn) =eξ
2/2LFP (ϕn) =−λneξ

2/2ϕn=−λnψn. (2.16)

B.1. Ladder operators associated with L̃ We introduce here the ladder
operators associated with L̃:

• the raising operator b+

b+ =
1√
2

(−∂ξ+ξ) , (2.17)

• and the lowering operator b−

b−=
1√
2

(∂ξ+ξ), (2.18)

with the following properties:

[L̃,b+] =−b+, [L̃,b−] = b−, [b−,b+] = 1 (2.19)

where the commutator of two operators [X,Y ] is defined in the standard way as
[X,Y ] =XY −Y X.

Notice first that the eigenvalues of L̃ and LFP are given by λn=n. Next, consider
an eigenfunction ψn of L̃. It is straightforward to see that the action of the raising
operator on the eigenfunction ψn yields the eigenfunction ψn+1; namely

L̃b+ψn=
(
b+L̃+[L̃,b+]

)
ψn=

(
b+L̃−2b+

)
ψn=−(n+1)b+ψn (2.20)

Analogously, the lowering operator b− acts to produce eigenfunction ψn−1 from ψn

L̃b−ψn=
(
b−L̃+[L̃,b−]

)
ψn=

(
b−L̃+2b−

)
ψn=−(n−1)b−ψn. (2.21)
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Fig. B.1. Illustration of the eigenfunctions of the Fokker-Planck operators LuFP and LγFP
defined in (2.7) and (2.8).

Note, in particular, that

b−ψ0 =
N0√

2
(∂ξ+ξ)e−ξ

2/2 = 0. (2.22)

We summarize the properties of the ladder operators as

b+ψn=ψn+1, b−ψn=
√

2nψn−1, b−ψ0 = 0. (2.23)

B.2. Eigenfunctions of L̃ and LFP We can easily obtain the eigenfunctions
of L̃ and LFP with the help of the raising operator b+ and the property (ii).

The orthonormal basis of L̃ is given by

ψ0 =
1

π1/4
e−ξ

2/2, (2.24)

ψn=
(b+)n√

2nn!
ψ0 =

1

π1/4
√

2nn!
Hn(ξ)e−ξ

2/2, (2.25)

∫ ∞
−∞

ψn(ξ)ψm(ξ)dξ= δn,m, (2.26)

where Hn is the n-th Hermite polynomial satisfying

H ′′n−2ξH ′n+2nHn= 0. (2.27)

The action of the ladder operators on the orthonormal set yields

b+ψn= (n+1)1/2ψn+1, b−ψn=n1/2ψn−1, b−ψ0 = 0 (2.28)

Using the fact that ψn=eξ
2/2ϕn (cf. Property (ii)) the orthonormal set for LFP with
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weight function ω(ξ) =eξ
2

is

ϕ0 =
1

π1/4
e−ξ

2

, (2.29)

ϕn=
(b+)n√

2nn!
ψ0 =

1

π1/4
√

2nn!
Hn(ξ)e−ξ

2

, (2.30)

∫ ∞
−∞

ϕn(ξ)ϕm(ξ)ω(ξ)dξ= δn,m, (2.31)

In the original variables the eigenvalues of LuFP and LγFP are, respectively,
λuk =−γ̂ k and λul =−dγ l with the eigenfunctions

φk(u) =U1/2ϕk(U u), U =

√
γ̂

σ2
u

, (2.32)

φl(γ) =G1/2ϕl(Gγ), G=

√
dγ
σ2
γ

. (2.33)

That is

φk(u) =

(
γ̂

πσ2
u

)1/4
1√
2kk!

Hk

(√
γ̂

σ2
u

u

)
e−u

2γ̂/σ2
u . (2.34)

and

φl(γ) =

(
dγ
πσ2

γ

)1/4
1√
2ll!

Hl

(√
dγ
σ2
γ

γ

)
e−γ

2dγ/σ
2
γ . (2.35)

B.3. Equations for the coefficients in the Gram-Charlier expansion
Below we derive a linear system of equations for the coefficients Ck,l in the eigen-

function expansion (??); the finitely truncated system for such coefficients is shown
here to be

dCMMMk,l
dt

=−λk,lCMMMk,l (2.36)

−αk
(

(l+1)1/2CMMMk,l+1 + l1/2CMMMk,l−1

)
−βk

(
(l+1)1/2CMMMk−2,l+1 + l1/2CMMMk−2,l−1

)

− α̃l
(

(k+1)1/2CMMMk+1,l+k1/2CMMMk−1,l

)
− β̃l

(
(k+1)1/2CMMMk+1,l−2 +k1/2CMMMk−1,l−2

)
+κkf(t)CMMMk−1,l, for k∈ [0,1,...,K], l∈ [0,1,...,L],

and

CMMMk,l= 0, for k /∈ [0,1,...,K], l /∈ [0,1,...,L].
(2.37)
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Detailed derivation of the above systems is as follows:

The Fokker-Planck for the system (1.1) can be written as

∂tp(u,γ,t) =LuFP p+LγFP p+∂u[(auγu−f(t))p]+aγu∂γ [γp], (2.38)

where the two operators LuFP and LγFP associated with the decoupled system (i.e.,
when au=aγ = 0) were defined in (2.7) and (2.8). Assume now the following expansion
of the joint density p(u,γ,t)

p(u,γ,t) =

∞∑
k,l=1

Ck,l(t)φk(u)φl(γ), (2.39)

in eigenfunctions of the self-adjoint operator LuFP +LγFP .

Substitution of (2.39) into (2.38) leads to

∑
k,l

dCk,l(t)

dt
φk(u)φl(γ) =−

∑
k,l

λk,lCk,l(t)φk(u)φl(γ)

+au
∑
k,l

Ck,l(t)γφl(γ)φk(u)+aγ
∑
k,l

Ck,l(t)φl(γ)uφk(u)

+au
∑
k,l

Ck,l(t)γφl(γ)u∂u[φk(u)]+aγ
∑
k,l

Ck,l(t)uφk(u)γ∂γ [φl(γ)]

−
∑
k,l

Ck,l(t)f(t)φl(γ)∂u[φk(u)] (2.40)

where

λk,l= γ̂k+dγ l. (2.41)

is the eigenvalue of the decoupled operator LuFP +LγFP . The evolution of the coefficient
Ck,l can be obtained by exploiting the orthonormality of the eigenfunctions with
appropriate weights $(u),$(γ) (see (2.29)-(2.31)). Consequently, we have with the
initial conditions C0

k,l determined by the initial distribution p(u,γ,t= 0). Clearly, in
order to compute the appropriate Galerkin projections, one needs to evaluate the
following integrals:

(I)

∫ ∞
−∞

γφl(γ)φl′(γ)$(γ)dγ, (2.42)

(II)

∫ ∞
−∞

uφk(u)φk′(u)$(u)du, (2.43)

(III)

∫ ∞
−∞

u∂u[φk(u)]φk′(u)$(u)du, (2.44)

(IV )

∫ ∞
−∞

γ∂γ [φl(γ)]φl′(γ)$(γ)dγ, (2.45)

(V )

∫ ∞
−∞

∂u[φk(u)]φk′(u)$(u)du. (2.46)
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where (I), (II) have the same structure and, similarly, so do (III), (IV). Recall that

φk(u) =U1/2ϕk(U u), U =

√
γ̂

σ2
u

, (2.47)

φl(γ) =G1/2ϕl(Gγ), G=

√
dγ
σ2
γ

. (2.48)

The above integrals can be evaluated as follows

(I)

∫ ∞
−∞

γφl(γ)φl′(γ)$(γ)dγ=

√
σ2
γ

dγ

∫ ∞
−∞

eξ
2

ξϕl(ξ)ϕl′(ξ)dξ

=

√
σ2
γ

dγ

∫ ∞
−∞

ξψl(ξ)ψl′(ξ)dξ

=

√
σ2
γ

2dγ

∫ ∞
−∞

(b+ +b−)ψl(ξ)ψl′(ξ)dξ

=

√
σ2
γ

2dγ

∫ ∞
−∞

(
(l+1)1/2ψl+1(ξ)ψl′(ξ)+ l1/2ψl−1(ξ)ψl′(ξ)

)
dξ

=

√
σ2
γ

2dγ

(
(l+1)1/2 δl+1−l′ + l1/2δl−1−l′

)
. (2.49)

and

(II)

∫ ∞
−∞

uφk(u)φk′(u)$(u)du=

√
σ2
u

2γ̂

(
(k+1)1/2 δk+1−k′ +k1/2δk−1−k′

)
(2.50)

where we used ξ= (b+ +b−)/
√

2 and relations (2.28). The integrals (III) and (IV) are
computed in a similar fashion leading to

(III)

∫ ∞
−∞

u∂u[φk(u)]φk′(u)$(u)du=

∫ ∞
−∞

eξ
2

ξ∂ξ[ϕk(ξ)]ϕk′(ξ)dξ

=

∫ ∞
−∞

ξeξ
2/2∂ξ[e

−ξ2/2ψk(ξ)]ψk′(ξ)dξ=

∫ ∞
−∞

ξ (∂ξψk(ξ)−ξψk(ξ))ψk′(ξ)dξ

=−
√

2

∫ ∞
−∞

ξb+ψk(ξ)ψk′(ξ)dξ=−
√

2

∫ ∞
−∞

ξ (k+1)1/2ψk+1(ξ)ψk′(ξ)dξ

=−(k+1)1/2
∫ ∞
−∞

(b+ +b−)ψk+1(ξ)ψk′(ξ)dξ

=−(k+1)1/2
∫ ∞
−∞

(
(k+2)1/2ψk+2(ξ)ψk′(ξ)+(k+1)1/2ψk(ξ)ψk′(ξ)

)
dξ

=−(k+1)1/2
(

(k+2)1/2δk+2−k′ +(k+1)1/2δk−k′

)
. (2.51)
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and

(IV )

∫ ∞
−∞

γ∂γ [φl(γ)]φl′(γ)$(γ)dγ=−(l+1)1/2
(

(l+2)1/2δl+2−l′ +(l+1)1/2δl−l′

)
.

(2.52)

Finally, the integral (V) is evaluated as follows

(V )

∫ ∞
−∞

∂u[φk(u)]φk′(u)$(u)du=

√
γ̂

σ2
u

∫ ∞
−∞

eξ
2

∂ξ[ϕk(ξ)]ϕk′(ξ)dξ

=

∫ ∞
−∞

eξ
2/2∂ξ[e

−ξ2/2ψk(ξ)]ψk′(ξ)dξ=

∫ ∞
−∞

(∂ξψk(ξ)−ξψk(ξ))ψk′(ξ)dξ

=−
√

2

∫ ∞
−∞

b+ψk(ξ)ψk′(ξ)dξ=−
√

2

∫ ∞
−∞

(k+1)1/2ψk+1(ξ)ψk′(ξ)dξ

=−
√

2γ̂

σ2
u

(k+1)1/2δk+1−k′ . (2.53)

Upon substitution of the expressions (I)-(V) into (2.40), the linear infinite system of
ODEs for the coefficients Ck,l can be written as

dCk,l
dt

=−λk,lCk,l

−αk
(

(l+1)1/2Ck,l+1 + l1/2Ck,l−1

)
−βk

(
(l+1)1/2Ck−2,l+1 + l1/2Ck−2,l−1

)
− α̃l

(
(k+1)1/2Ck+1,l+k1/2Ck−1,l

)
− β̃l

(
(k+1)1/2Ck+1,l−2 +k1/2Ck−1,l−2

)
+κkf(t)Ck−1,l (2.54)

where

αk =au

√
σ2
γ

2dγ
k, βk =au

√
σ2
γ

2dγ
k1/2(k−1)1/2, κk =

√
2γ̂

σ2
u

k1/2,

α̃l=aγ

√
σ2
u

2γ̂
l, β̃l=aγ

√
σ2
u

2γ̂
l1/2(l−1)1/2. (2.55)

Any practical application of the expansion (2.39) requires a finite-dimensional trun-
cation which leads to

pMMM (u,γ,t) =
∑

06k6K,

06l6L

CMMMk,lφk(u)φl(γ), MMM = (K,L), (2.56)
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Fig. B.2. (Left) The general structure of the matrix AMMM in (2.18) of the truncated system
(2.36) with K=L= 5 for the coefficients in the eigenfunction expansion of the probability density
p(u,γ,t) associated with (1.1). For aγ = 0 in the system (1.1) the matrix AMMM is an upper Hessenberg
matrix (i.e. lower triangular plus the first superdiagonal) which leads to a specific closedness property
resulting in the evolution of Ck,l depending only on Ck′,l′ with k′6k,l′ = 0, .. .,L.

so that the coefficients, CMMMk,l, in the truncated expansion (2.17) satisfy a linear system

dCMMMCMMMCMMM

dt
=AMMM (t)CMMMCMMMCMMM , (2.57)

where truncated vector of coefficients is CCCMMM = (C1,(1,...,L), C2,(1,...,L),...,CK,(1,...,L))
T ;

the structure of the resulting matrix is shown in figure B.2. Alternatively, the trun-
cated system can be written as

dCMMMk,l
dt

=−λk,lCMMMk,l (2.58)

−αk
(

(l+1)1/2CMMMk,l+1 + l1/2CMMMk,l−1

)
−βk

(
(l+1)1/2CMMMk−2,l+1 + l1/2CMMMk−2,l−1

)

− α̃l
(

(k+1)1/2CMMMk+1,l+k1/2CMMMk−1,l

)
− β̃l

(
(k+1)1/2CMMMk+1,l−2 +k1/2CMMMk−1,l−2

)
+κkf(t)CMMMk−1,l, for k∈ [0,1,...,K], l∈ [0,1,...,L],

and

CMMMk,l= 0, for k /∈ [0,1,...,K], l /∈ [0,1,...,L].
(2.59)

We note two important properties of the system (2.58)
(i) For aγ = 0 in (1.1) so that α̃l= β̃l= 0 for all l the evolution of Ck,l in (2.18)

involves only terms with k′6k

d

dt
Ck,l∝

∑
k′6k,l′

Ck′,l′ , (2.60)
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Fig. B.3. Erroneous instabilities in the truncated system for the coefficients in the
GrCh expansion. The largest eigenvalue of the matrix of the truncated system (2.18) (see also
figure B.2) as a function of the mean damping γ̂ for different truncations and varied σγ ,dγ . The
matrix of the truncated system loses positive semi-definiteness for sufficiently small γ̂ (i.e. for
sufficiently small number of finite moments in the equilibrium PDF of (1.1)). The above results
were obtained with aγ = 0,σu= 0.5 but there is little change for perturbations with aγ�1 in (1.1).

this property is due to properties of Hermite polynomials exploited in evalu-
ation of the integrals (I)-(V) above.

(ii) The truncation affects directly the entries multiplying CMMMk−2,L+1 and CMMMk,L+1,
k= 0,...,K, and the removed coefficients grow with L.

Erroneous instabilities in the truncated system due to onset of inter-
mittency

As discussed in §2.2, the GrChE method relies on computing the evolution of
the time-dependent coefficients in the truncated spectral expansion of the probability
density in eigenfunctions of the corresponding Fokker-Planck operator. An impor-
tant drawback of the finite truncation, which is particularly problematic in systems
with intermittency, is associated with erroneous exponential instabilities in the linear
system for the expansion coefficients. We illustrate these effects in figure B.3 which
highlight the following facts:

• For sufficiently weak mean damping γ̂ (leading to increasingly intermittent
dynamics) the truncated system (2.36) for the expansion coefficient has a
positive eigenvalue λmax>0 which leads to erroneous exponential instability
coupled with an onset of non-realizability of the GrChE approximations.

• The threshold γ̂min for the onset of such instabilities in the truncated system
(2.36) increases with the order of truncation and as the damping fluctua-
tions approach the white noise limit (i.e., increasingly large mean damping is
needed to prevent onset of the instability).

It is also shown in figure 5.4 that even if the truncated system (2.36) is stable
(i.e., λmax= 0), the corresponding approximate equilibrium solutions are generally
non-realizable as probability densities with spurious large amplitude components dom-
inating the solutions. Moreover, for very low-order expansions (2.17) the truncated
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system (2.36) is stable and the approximate solutions are realizable PDFs but they
completely miss the intermittency in the true marginal PDF for u satisfying (1.1).

B.4. Second order statistics of u from the truncated system Given the
approximate density pMMM (u,γ,t) it is possible to compute the approximate second-order
statistics of u as

ūMMM (t) =

∫ ∫
upMMM (u,γ,t)dudγ, V ar(uMMM (t)) =

∫ ∫
(u− ū)2pMMM (u,γ,t)dudγ.

(2.61)
We note that the expressions in (2.61) can be simplified using the fact that if f(x)

is a polynomial of degree less than n, then∫ ∞
−∞

f(x)Hm(x)e−x
2

dx= 0, m>n. (2.62)

Therefore, we have

ūMMM (t) =

∫ ∞
−∞

ϕ0(γ)dγ
∑
α=0,1

Cα,0(t)

∫ ∞
−∞

uϕα(u)du

=

(
πσ2

γ

dγ

)1/4(
C0,0(t)

∫ ∞
−∞

uϕ0(u)du+C1,0(t)

∫ ∞
−∞

uϕ1(u)du

)

=

(
σ2
γ

dγ

)1/4(
σ2
u

γ̂

)3/4(π
2

)1/2
C1,0(t), (2.63)

V ar(uMMM (t)) =

∫ ∞
−∞

ϕ0(γ)dγ
∑

α=0,1,2

Cα,0(t)

∫ ∞
−∞

(u− ū)2ϕα(u)du

=

(
πσ2

γ

dγ

)1/4(
σ2
u

γ̂

)5/4
π1/4

2
(C0,0(t)+

√
2C2,0(t))−

(
σ2
γ

dγ

)1/2(
σ2
u

γ̂

)3/2
π

2
C 2

1,0(t).

(2.64)

Important points to note regarding the above results are:
(i) The second-order statistics is determined by only three coefficients

C0,0,C1,0,C2,0.
(ii) For aγ = 0 in (1.1) and due to the property (2.60) from previous

section the evolution of the second-order statistics expressed through
C0,0(t),C1,0(t),C2,0(t) depends only on terms C0,l,C1,l,C2,l with l= 0,. ..,L
(see figure B.2).

(ii) For a 6= 0 the second-order statistics expressed through C0,0(t),C1,0(t),C2,0(t)
is coupled to Ck,l with k>2 (see figure B.2).

B.5. Class of degenerate two-dimensional systems preserving the
closedness property of (1.1) with aγ = 0.
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We show here that any extension of the test model (1.1) with aγ = 0 to

a) du(t) =
(
−(γ̂+γ(t))u(t)+f(t)

)
dt+σudWu(t),

b) dγ(t) =−(dγγ+F (γ(t)))dt+σγdWγ(t),
(2.65)

with F (γ)∼O(γ2) leads to a linear system for the GrChE coefficients Ck,l with a
similar lower-triangular structure as (2.18) for the system (1.1) shown in figure B.2b.
Consequently, such systems will possess the same closedness property (2.60) as (1.1)
with aγ = 0.

Consider the Fokker-Planck for the full system (2.65) given by

∂tp(u,γ,t) = 1
2σ

2
u∂

2
up+ γ̂ ∂u[up]+ 1

2σ
2
γ ∂

2
γ p+dγ ∂γ [γp]+∂u[(γu−f(t))p]+∂γ [F (γ)p],

(2.66)
which can be written as

∂tp(u,γ,t) =LuFP p+LγFP p+∂u[(γu−f(t))p]+∂γ [F (γ)p], (2.67)

where

LuFP p= 1
2σ

2
u∂

2
up+ γ̂ ∂u[up], (2.68)

LγFP p= 1
2σ

2
γ ∂

2
γ p+dγ ∂γ [γp]. (2.69)

In the absence of the coupling term γu and F (γ)≡0, the FP equation (2.38) can be
separated using the following expansion

p(u,γ,t) =

∞∑
k,l=1

Ck,l(t)φk(u)φl(γ), (2.70)

where φk(u), φl(γ) are the same as before.

The evolution of the element Ck,l can be obtained by exploiting the orthogonality
of the eigenfunctions with appropriate weight functions $(u),$(γ) (see (2.29)-(2.31))

∑
k,l

dCk,l(t)

dt
φk(u)φl(γ) =−

∑
k,l

λk,lCk,l(t)φk(u)φl(γ)

+
∑
k,l

Ck,l(t)γφl(γ)φk(u)+
∑
k,l

Ck,l(t)φl(γ)F ′(γ)φk(u)

+
∑
k,l

Ck,l(t)γφl(γ)u∂u[φk(u)]+
∑
k,l

Ck,l(t)φk(u)F (γ)∂γ [φl(γ)]

−
∑
k,l

Ck,l(t)f(t)φl(γ)∂u[φk(u)] (2.71)

Clearly, in order to compute the appropriate Galerkin projections, one needs to
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evaluate the following integrals:

(I)

∫ ∞
−∞

γφl(γ)φl′(γ)$(γ)dγ, (2.72)

(II)

∫ ∞
−∞

u∂u[φk(u)]φk′(u)$(u)du, (2.73)

(III)

∫ ∞
−∞

∂u[φk(u)]φk′(u)$(u)du, (2.74)

(IV )

∫ ∞
−∞

F ′(γ)φl(γ)φl′(γ)$(u)du, (2.75)

(V )

∫ ∞
−∞

F (γ)∂γ [φl(γ)]φl′(γ)$(γ)dγ (2.76)

where (I)-(III) have already been derived in the previous section. The important point
is that only the integrals (II) and (III) contribute to terms with k′ 6=k in the system
for the coefficients Ck,l and these integrals are the same as in the case with F = 0.
Consequently, systems with arbitrary F (γ) will not violate the ‘closedness’ property
(2.60) resulting in good estimates for the second-order statistics in such systems from
the GrChE approximations. Similarly, to the system (1.1) discussed in the previous
section, this closedness property is violated for any perturbations of the dynamics of
γ in (2.65b) coupling it to the dynamics of u.

Appendix C. Approximate second-order statistics of u through the
Gaussian closure approximation. The simple Gaussian moment closure approx-
imation of the statistics associated with (1.1) carried out in the same fashion as the
one developed for a related system in [2, 3] and relies on the following:

(i) decomposition the system variables in to the mean and fluctuations parts,
i.e.,

u= ū+u′, γ= γ̄+γ′, such that u′=γ′= 0, ¯̄u= ū, ¯̄γ= γ̄,

where the overbar denotes the ensemble average,
(ii) the Ito formula,
(iii) neglecting the third and higher order moments in the evolution of the statis-

tics.

In the case of the system (1.1) this procedure leads to the following system with
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quadratic nonlinearities

d

dt
u=−(γ̂+auγ̄)ū−auu′γ′+f(t), (3.1)

d

dt
γ̄=−(dγ +aγ ū)γ̄−aγγ′u′, (3.2)

d

dt
u′2 =−2(γ̂+auγ̄)u′2−2auūu′γ′+σ2

u, (3.3)

d

dt
γ′2 =−2(dγ +aγ ū)γ′2−2aγ γ̄u′γ′+σ2

γ , (3.4)

d

dt
u′γ′=−(γ̂+dγ +auγ̄+aγ ū)u′γ′−auūγ′2−aγ γ̄u′2. (3.5)

which has to be solved in order to obtain the time-dependent statistics of u and γ.

Appendix D. Analytical expression for the invariant measure for test
model (1.1) and its moments in the while noise limit of damping fluctu-
ations. Here, we consider the dynamics of a real scalar mode u1 in the limit when
the random fluctuations about the mean damping decorrelate very fast. We formally
consider this scenario as the white noise limit of the fluctuations in the damping and
derive: (i) an equilibrium PDF in the case when the mean damping and forcing are
constant, (ii) the moments of the time-dependent PDF and condition for the existence
of all moments of order up to n.

peq(u) =
N0

(σ̃2
γu

2 +σ2
u)δ1

exp

(
2f

σ̃γσu
arctan

(
σ̃γ
σu
u

))
, (4.1)

with δ1 = 1+(γ̂− 1
2 σ̃

2
γ)/σ̃2

γ and the finite constant σ̃γ defined below.

The procedure of obtaining the limiting dynamics is as follows. We consider the
limit dγ→∞ to ensure that that the decorrelation time vanishes in the limit. In the

statistically steady state with respect to the noise Ẇγ the autocorrelation function of
γ(t) becomes

Corrγ(τ) = 〈γ(t+τ)γ(t)〉eq =
σ2
γ

2dγ
e−dγτ . (4.2)

where 〈·〉eq denotes the equilibrium ensemble average. Thus, if we keep the following
ratio fixed and satisfying

0<σ̃γ =
σγ
dγ

= const.<0, (4.3)

the absolute value of the autocorrelation function (4.2) formally approaches a delta
function, i.e.

lim
dγ→∞

σγ/dγ=const

|Corrγ(τ)|= σ̃

2
δ0(τ), (4.4)

or equivalently the process γ(t) approaches the white noise so that

dγ(t)→ σ̃γdWγ(t). (4.5)
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As usual in physics and engineering, the white noise limit of colored noise leads
to the following Stratonovich SDE (e.g. Gardiner, 1997)

du(t) =
[
− γ̂(t)u(t)+f(t)

]
dt− σ̃γu(t)◦dWγ(t)+σudWu, (4.6)

as a consequence of the requirement of non-vanishing correlations 〈u(t)γ(t)〉 before
and after the limit. The above white noise limit of (1.1) can be written in Ito form as

du(t) =
[
−α(t)u(t)+f(t)

]
dt− σ̃γu(t)dWγ(t)+σudWu, (4.7)

where α(t) = γ̂(t)− 1
2 σ̃

2
γ .

D.1. Invariant measure Here, we determine the stationary solutions of the
Fokker-Planck equation associated with (4.7) when γ̂ and f are constant, i.e.,

∂tp(u,t) =−∂u [(−αu+f)p(u,t)]+
1

2
∂2u
[
(σ̃2
γu

2 +σ2
u)p(u,t)

]
(4.8)

The stationary solutions, peq(u), of (4.8) correspond to invariant measures for u and
satisfy

∂u
[
(σ̃2
γu

2 +σ2
u)peq(u)

]
= 2(−αu+f)peq(u), (4.9)

which can be easily integrated as

peq(u) =
N0

A(u)
exp

(∫ u

u0

B(u′)/A(u′)du′
)

(4.10)

where

A(u) = σ̃2
γu

2 +σ2
u, B(u) = 2(−αu+f). (4.11)

The exact solution of (4.10) is easily found by evaluating elementary integrals to be
given by a density with fat algebraic tails

peq(u) =
N0

(σ̃2
γu

2 +σ2
u)δ1

exp

(
2f

σ̃γσu
arctan

(
σ̃γ
σu
u

))
, (4.12)

with δ1 = 1+(γ̂− 1
2 σ̃

2
γ)/σ̃2

γ , as claimed at the beginning of this section.

Appendix E. Statistics of the system (1.1) with simple parametric un-
certainty. Here, instead of white noise driven damping fluctuations in (1.1) we
consider the case when the damping fluctuations are given by γ=σγ ξ (see Case 1 of
§3.1) so that the path-wise solutions of u are

u(t) =u0e
−(γ̂+σγξ)(t−t0) +

∫ t

t0

e−(γ̂+σγξ)(t−s)f(s)ds. (5.1)

The mean 〈u〉 is easily found as

〈u(t)〉= 〈u0〉e−γ̂(t−t0)+
1
2σ

2
γ(t−t0)

2

+

∫ t

t0

e−γ̂(t−s)+
1
2σ

2
γ(t−s)

2

f(s)ds, (5.2)
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and the variance is given by

V ar(u) = e−2γ̂(t−t0)+2σ2
γ(t−t0)

2

V ar(u0) (5.3)

+2〈u0〉
∫ t

t0

e−γ̂(2t−t0−s)+
1
2σ

2
γ(2t−t0−s)

2
(

1−e−σ2
γ(t−t0)(t−s)

)
f(s)ds (5.4)

+

∫ t

t0

∫ t

t0

e−γ̂(2t−s−s
′)+ 1

2σ
2
γ(2t−s−s

′)2
(

1−e−σ2
γ(t−s)(t−s

′)
)
f(s)f(s′)dsds′

(5.5)

Important facts:
• The mean (5.2) and variance (5.3) are unbounded for t∈ IR (due to the

quadratic term 1
2σ

2
γ(t− t0)2 in the respective exponents.)

• There exists a metastable phase for both the mean and variance within a time
interval [t0 t] satisfying

−γ̂(t− t0)+σ2
γ(t− t0)2<0.

• There exists a metastable phase for the mean within a time interval [t0 t]
satisfying

−γ̂(t− t0)+
1

2
σ2
γ(t− t0)2<0.
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