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Abstract

We discuss the Lagrangian transport in a time-dependent oceanic system involving
a Lagrangian barrier associated with a salinity front which interacts intermittently with
a set of Lagrangian eddies - ‘leaky’ coherent structures that entrain and detrain fluid
as they move. A theoretical framework, rooted in the dynamical systems theory, is de-
veloped in order to describe and analyse this situation. We show that such an analysis
can be successfully applied to a realistic ocean model. Here, we use the output of the
numerical ocean model DieCAST [12, 16] studied earlier in [30] where a Lagrangian bar-
rier associated with North Balearic Front in the Northwestern Mediterranean Sea was
identified. The numerical model provides an Eulerian view of the flow and we employ
the dynamical systems approach to identify relevant hyperbolic trajectories and their
stable and unstable manifolds. These manifolds are used to understand the Lagrangian
geometry of the evolving front-eddy system. Transport in this system is effected by
the turnstile mechanism whose spatio-temporal geometry reveals intermittent pathways
along which transport occurs. Particular attention is paid to the ‘Lagrangian’ interac-
tions between the front and the eddies, and to transport implications associated with
the transition between the one-eddy and two-eddy situation. The analysis of this ‘La-
grangian’ transition is aided by a local kinematic model that provides insight into the
nature of the change in hyperbolic trajectories and their stable and unstable manifolds
associated with the ‘birth’ and ‘death’ of leaky Lagrangian eddies.

1 Introduction

Advances in observational methods and in computational resources have revealed a variety
of flow structures in the ocean, such as jets, fronts, and eddies, that evolve in a ‘coherent’
fashion despite their highly convoluted instantaneous geometry. Recent observations and
experiments indicate that these structures significantly influence transport characteristics of
the geophysical-scale flows (see, for example [43]). The global, geometrical framework of
nonlinear dynamical systems theory, which helps uncover the role that localised structures
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play in influencing the motions of collections of trajectories in space and time, has proven to
be useful for analysing transport issues in fluid flows. The application of this mathematical
approach to realistic geophysical flows has required the development of new concepts in
dynamical systems theory, resulting in the notion of ‘finite-time dynamical systems’. Recent
reviews of this framework in the context of oceanographic flows can be found in [45, 32, 41],
and we briefly discuss the relevant issues at the beginning of §3.

The zonally propagating jet is one example of a geophysical flow structure that has been
the subject of extensive analysis within the geometrical framework of dynamical systems.
Beginning with the work of Bower [4], a variety of kinematic models of jets have been con-
sidered ([42, 13, 15, 34, 5]) which paved the way for the analysis of transport in dynamically
consistent models of jets ([39, 46, 47]). The insight and mathematical ideas developed in
the course of these studies were then used to develop a deeper understanding of the Gulf
Stream from observational data by Lozier et al. [26]. This progression of work on transport
in zonally propagating jets illustrates the power and flexibility of the dynamical systems
approach. Whether the flow is realised as a kinematic model, dynamical model, or a model
obtained from observations, the abstract approach of dynamical systems theory is the same
in each case, regardless of the specific form of the velocity field under consideration. In [30]
this approach was used to study transport associated with a front in the North-Western
Mediterranean Sea using a high resolution numerical ocean model, DieCAST, developed in
[11, 12, 16]. It was shown there that the dynamical systems approach could be used to give
a geometrical characterization of the front in a manner that allowed both qualitative and
quantitative analyses of transport properties. In particular, it was shown that the location of
the front could be identified as a “Lagrangian barrier” across which transport is weak. More-
over, transport to, across, and away from the front occurred by a complex spatio-temporal
route of filaments that could be described and quantified with the ideas of lobe dynamics.

In [30], where the Lagrangian front was the only analysed structure, the authors pointed
out that transport across the front could be affected by nearby eddies. In this work we
continue the analysis of Lagrangian transport in the North-Western Mediterranean Sea by
considering the situation where the front interacts with one, or two, oceanic eddies. Such
a flow configuration opens up a wealth of new spatio-temporal transport pathways in the
considered flow which we identify and explain using the framework developed here.

There is an important concept that we address and develop further in this paper. While
the Lagrangian description of jets and fronts in the context of dynamical systems theory
is well established, a Lagrangian description of an eddy is more elusive. This conceptual
problem seems to originate from the fact that while the traditional understanding and view
of an eddy is Eulerian in nature, the transport issues associated with such structures are
inherently Lagrangian. Eulerian eddies are often identified from by tracking the evolution
of closed contours vorticity, contours of the see surface height, or using the Okubo-Weiss
criterion [38]. However, a key feature transpiring from observations is that eddies are ‘leaky’
coherent structures that entrain and detrain fluid as they evolve. Hence, it seems that a
Lagrangian eddy should not be defined by the fluid that it contains. We will provide such a
definition in this paper that is appropriate for our needs. We remark that the ‘Lagrangian
description of an eddy’ is a topic of current importance as a result of recently obtained data
sets showing that eddies play a very important role in transport processes in the ocean ([7]).

In complex time-dependent flows one can often observe the appearance and disappearance
of Eulerian eddies. As will be shown in the following sections, these events are, in some
cases, signatures of Lagrangian transitions in the flow which have important consequences
on transport characteristics, opening up new transport pathways. However, there is no
general relationship between the Eulerian and Lagrangian flow transitions. Consequently,
it is impossible to determine purely from the Eulerian observations whether, for example, a
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‘birth’ of an Eulerian eddy was accompanied by a change in the underlying Lagrangian flow
structure. Our work not only develops the theoretical framework to describe and analyse
this situation, but it also shows that it can be applied to a realistic ocean model.

The structure of the paper is as follows. In §2 we describe the relevant Eulerian flow fea-
tures which lead to identification of the front-eddy system in the velocity field generated by a
realistic, high resolution model of the Mediterranean Sea. In §3 we introduce the dynamical
systems tools required to describe the geometry and transport in the front-eddy system. It
is also in this section where we discuss the Lagrangian description of an eddy. In §4 we use
the tools of §3 to describe transport in the flow generated by the numerical model introduced
in §2. The analysis is carried out by first identifying two distinct Lagrangian flow configu-
rations, referred to as Scenario I and II, which intermittently dominate the flow structure.
We then identify transport pathways associated with each of these configurations separately
and use the insight provided by such analysis to understand how transitions between these
Lagrangian configurations can occur. The Lagrangian geometry associated with these inter-
mittent transitions is discussed in more detail in §4.3. Finally, §5 presents the conclusions as
well as describes some outstanding issues and directions for future work.

2 The Ocean Circulation Model and the Eulerian Struc-
tures of Interest

The details of the numerical model, sufficient for our purposes, can be found in [30], but we
provide a brief summary of features that may be of immediate interest for this work.

The velocity field that we study is obtained from an ocean model, DieCAST [11], adapted
to the Mediterranean Sea [12, 16]. The model uses the 3D primitive equations and is dis-
cretised with a fourth-order collocated control volume method. The model is initialized at
a state of rest and the spin-up phase of integration is carried out for 16 years. Each year is
considered to have 12 months of 30 days length each (i.e. 360 days). Details of boundary
conditions, physical parameters such as horizontal and vertical viscosity and diffusivity, and
the various types of forcing can be found in the above references.

The horizontal resolution is the same in both the longitudinal (φ) and latitudinal (λ)
directions, with ∆φ= (1/8) of degree and ∆λ = ∆φ cosλ thus making square horizontal
control volume boundaries. The vertical resolution is variable, with 30 control volume layers.
The thickness of control volumes in the top layer is 10.3 m and they are smoothly increased
up to the deepest bottom control volume face at 2750 m.

We focus on velocity fields obtained at the second layer which has its center at a depth of
15.93 m. This is representative of the surface circulation and is not as directly driven by wind
as the top layer. Figure 1 shows the velocity field at day 679 (the 19th day of the eleventh
month – November – of the second year). The instantaneous stagnation points (ISPs; see
Appendix A.1) are displayed: the hyperbolic ISPs (i.e. saddle points in the linear, frozen-time
approximation) are denoted with a cross and the elliptic ISPs (i.e. stable points in the linear
(frozen-time) approximation) are denoted with a gray dot. The area of interest is located in
the Western Mediterranean Sea and the Eulerian current studied in [30] is highlighted with
the dark straight line. At the Eastern end of the dark straight line we show a dark circle
surrounding an elliptic ISP, which we recognize as the Eulerian signature of an eddy.

Figure 2 shows the velocity field at day 683 (the 23rd day of the eleventh month –
November – of the second year). We illustrate the same Eulerian features as in 1, but we also
highlight a smaller (Eulerian) eddy (marked with a small dark circle) that has appeared after
a saddle node bifurcation of ISPs at day 680 (the signature that the saddle-node bifurcation
of ISPs occurred is the additional pair of ISPs, one saddle and one elliptic, at the Eastern
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Figure 1: DieCAST model, NW Mediterranean. The velocity field at day 679 showing the Eulerian
current (denoted by the dark line) studied in [30] as well as an Eulerian eddy at the eastern end of the current.
This situation is often associated with a Lagrangian flow structure referred to hereafter as Scenario I. In this
figure the dark regions represent land. The large dark region of the upper left hand corner is Spain, the large
island in the middle is Majorca, the small island to the right of Majorca is Menorca, and the island to the
left of Majorca is Ibiza.
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Figure 2: The velocity field at day 683 highlighting the same Eulerian features as for day 679, but with an
additional (small) Eulerian eddy at the eastern end of the current resulting from the creation a new elliptic
ISP in a saddle-node bifurcation at day 680. This situation is often associated with existence a Lagrangian
structure referred to later as Scenario II.
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end of the straight line).
The velocity field has small vertical components, so therefore this is not strictly a two

dimensional flow. It is important to bear in mind that the vertical velocity is not a primary
variable in most ocean models (including DieCAST) and it is inferred instead from some
variant of the continuity equation. Vertical velocities in the top layers in the DieCAST model
are of the order of 10−5 m/s, and it is argued in [30] that, as a rule of thumb, we can consider
that trajectories preserve two dimensionality during time intervals of about 20 days. We
discuss a much more general justification of 2D analysis in stratified 3D flows in Appendix B.
Our arguments do not rely on smallness of the vertical velocities. Instead, we argue that the
2D Lagrangian techniques can be used to study transport in a layer whose thickness depends
on the ratio between average horizontal velocities in the layer to the average vertical shear of
the horizontal velocity components. The key fact is that within such a layer one may analyse
the geometry of a time-dependent transport barrier which maintains its (approximately)
invariant properties in the horizontal directions while allowing some trajectories to leave or
enter it from layers below or above it (see figure 20).

Our goal is to understand the Lagrangian transport features associated with scenarios I
and II, as well as how they change in the transition between these two scenarios. In order
to do this, we will need to develop a Lagrangian characterization of these Eulerian features,
and we will develop the tools and concepts for doing this in the next section. However, it is
important to realize that our Lagrangian analysis is guided by the Eulerian features of the
data set.

3 Dynamical Systems perspective of Lagrangian trans-
port

In this section we recall the basic tools from dynamical systems theory that we will use to
analyse Lagrangian transport of the front-eddy system. Following many earlier works us-
ing the dynamical systems approach for analyzing Lagrangian transport in unsteady flows
(see references in §1), the notion of hyperbolicity is central to our analysis and it provides
the means for characterizing trajectories in time-dependent flows which behave like “moving
saddle points”. These hyperbolic trajectories have stable and unstable invariant manifolds1

(see Appendix A.3) which, similarly to the separatrix manifolds of saddle points in steady
flows, can be used to identify boundaries between distinct regions in the flow domain. In
particular, we will use the stable and unstable manifolds of the so-called Distinguished Hy-
perbolic Trajectories (DHTs) (see Appendix A.2), to construct a Lagrangian front, i.e. an
elongated transport barrier which strongly inhibits transport across it (here we follow [30]),
and a Lagrangian eddy (or eddies) characterised by an area of predominantly recirculating
flow. From this construction we will be able to identify and understand spatio-temporal
transport routes associated with different configurations of the front-eddy system by follow-
ing the time evolution of the so-called lobes (cf. §3.2 and Appendix A.4). The geometry
of lobes associated with different Lagrangian structures present in the flow will also give us
the means for determining whether an ‘interaction’ between coexisting coherent structures
actually takes place.

Dynamical systems theory is often described as the study of the ‘long time’ or asymptotic
behaviour of systems. Indeed, the notions of hyperbolicity and stable and unstable manifolds
of hyperbolic trajectories are concepts that are defined in the limit as time goes to plus

1In fluid mechanical terminology the phrase “invariant manifold” is synonymous with ‘material surface’
(in our setting the surface is a curve) and ‘stable and unstable’ refer to the behaviour of trajectories on the
appropriate material surface, which we will describe shortly.

5



or minus infinity. Hence, these notions would appear to be somewhat problematic when
considering applications to time-dependent velocity fields that are only defined for a finite
time. The original applications of dynamical systems theory to the study of transport in flows
was for two dimensional time-periodic or three-dimensional steady flows (for some history
see [1, 45, 32]). The case for applying this approach to the study of Lagrangian transport
in geophysical flows defined as data sets obtained from either numerical computation or
experimental measurement is compelling, and it has necessitated the development of the
notion of a ‘finite-time dynamical system’. In this setting notions of finite-time hyperbolic
trajectories and finite-time stable and unstable manifolds have been proposed (see, e.g., [35,
21, 17, 9, 23, 31]). Such notions have proven to give useful insight and quantitative predictions
in geophysical flows (cf. the ‘story of the jet’ discussed in the introduction, and considered in
some detail in [45, 32, 41]). The main difference between these finite-time concepts and their
infinite-time counterparts is a loss of uniqueness of relevant hyperbolic structures that arises
from the inability to consider asymptotic limits2. This implies, in particular, that the finite-
time stable and unstable manifolds associated with any hyperbolic trajectory in an unsteady
2D flow on a finite time interval have the dimension of the extended phase space (x, y, t)
(rather than a lower dimension). These issues are discussed in [14, 35, 21, 17, 9, 23, 31]. For
our analysis this is not really a severe limitation since our finite-time hyperbolic trajectories
are fluid particle trajectories. Consequently, the particular finite-time stable and unstable
manifolds that we compute for these trajectories are “material surfaces” in the extended phase
space (x, y, t) and we show directly their relevance to transport in the front-eddy system3.

3.1 Working definition of a Lagrangian eddy.

Identification of eddies, or vortices, in flows is a topic that has received a great deal of
attention in the fluid dynamics literature; [20] contains a recent discussion of the issues as
well as a survey of the literature (but see also [38, 3, 10, 18, 25]). We seek a “working
definition” of a Lagrangian eddy which will enable us to determine when such a structure is
present in the flow of interest and the manner in which fluid is entrained and detrained by the
eddy. Our construction exploits the fact that, in contrast to steady two-dimensional flows,
the stable and unstable manifolds of hyperbolic trajectories (see Appendix A.3) in unsteady
flows are time-dependent and, at any fixed time instant, they can intersect at isolated points
within the flow domain. For our purposes a Lagrangian eddy will be a region bounded by
intersecting segments of stable and unstable manifolds of hyperbolic trajectories with the
resulting swirling sense of motion (clockwise or anticlockwise) on the boundary induced by
the motion of trajectories making up the boundary segments. Figure 3 is an example of a
Lagrangian eddy constructed in this way using, respectively, one hyperbolic trajectory (top
row in figure 3) and two hyperbolic trajectories (bottom row in figure 3). Both these examples
show the instantaneous eddy (and manifold) geometry so that each point on the plotted lines
corresponds to an instantaneous location of a different trajectory.

At any time instant t = ti, the boundary Bi of the single DHT eddy is made up of
a segment of the unstable manifold Wu

γ1{γγγ1(ti), pppi} and a segment of the stable manifold

2Of course, one could argue that practically one realizes these notions through a numerical computation,
which is necessarily a finite-time realization. However, making this assertion mathematically precise requires
some considerable work that is beyond the scope of this paper, and much of which has not yet been undertaken
(but see [19]).

3To avoid confusion with the classical, infinite time, notions of hyperbolicity and stable and unstable
manifolds from dynamical systems theory one might think it would be less confusing to adopt new names
for the analogous notions in the finite-time setting. Perhaps this would be a better approach, but at this
point the terminology is fairly pervasive throughout the literature and new terminology could be even more
confusing. In [41] an attempt is made to deal with this through the use of the phrase “material manifold”,
and this precisely describes a key feature of the relevance of these curves to fluid transport.
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Figure 3: Schematic construction of a (time-dependent) boundary, Bi, of a Lagrangian eddy using stable

and unstable manifolds of a single DHT, γγγ1(t) (top row), and two DHTs, γγγ1(t), γγγ2(t) (bottom row). At

the time instant, t = ti, the boundary of the single DHT eddy is made up of a segment of the unstable

manifoldWu
γ1
{γγγ1(ti), pppi} and a segment of the stable manifoldW s

γ1
{γγγ1(ti), pppi} which intersect at the boundary

intersection point pppi. The boundary of the two-DHT eddy involves two bip’s, pppi, p̃ppi, and four distinct

manifold segments: Wu
γ1
{γγγ1(ti), p̃ppi}, W s

γ2
{γγγ2(ti), p̃ppi}, Wu

γ2
{γγγ2(ti), pppi}, W s

γ1
{γγγ1(ti), pppi}. These eddies can

exchange mass with the exterior region Rext through lobes delineated by intersecting segments of the stable

and unstable manifolds of the DHTs. Characteristics of the Lagrangian transport mediated by these lobes

depend on the manifold geometry (see §3.2 and Appendix A.5 for more details).

W s
γ1{γγγ1(ti), pppi} which intersect at the boundary intersection point pppi (see Appendix A.5 for

more details); i.e. the boundary Bi at time ti is given by

Bi = Wu
γ1

{
γγγ1(ti), pppi

} ∪W s
γ2

{
γγγ2(ti), pppi

}
. (1)

The boundary of the two-DHT eddy involves two bip’s, pppi, p̃ppi, and four distinct manifold
segments: Wu

γ1{γ1γ1γ1(ti), p̃ppi}, W s
γ2{γγγ2(ti), p̃ppi}, Wu

γ2{γγγ2(ti), pppi}, W s
γ1{γγγ1(ti), pppi}.

The motion on the material boundary, induced by the evolution of the trajectories con-
tained within the segments of the invariant manifolds, is counterclockwise in the single DHT
configuration and clockwise in the two DHT case (see also Appendix A.5 and figure 18). This
construction of an eddy was used earlier in [21], where the name dynamic eddy was proposed,
and in [32] to describe the Lagrangian transport associated with the interaction of an eddy
with a jet. We remark that most procedures that identify eddies in the recent oceanographic
data sets are Eulerian in nature, e.g. [7] uses the Okubo-Weiss criteria. It is an interesting
question to relate our Lagrangian construction of an eddy and the other criteria described
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above. However, this is an extensive research topic in its own right and well beyond the scope
of this paper.

3.2 Lobes and Lagrangian transport.

Lobes are formed from intersecting pieces of stable and unstable manifolds of hyperbolic
trajectories (see, for example, the shaded areas in figure 3). We recall some basic definitions
and lobe properties in Appendix A.4. (A more detailed discussion of this well-established
notion can be found, for example, in [29, 32, 41].) The evolution of lobes can be used to
understand the spatio-temporal mechanism for long range transport away from localized flow
structures (eg. an oceanic front or an eddy).

Lobes associated with different Lagrangian structures in a flow can overlap. Since the
lobes are flow invariant, their intersections are also invariant which implies that overlapping
lobes will remain ‘interlocked’ throughout the flow evolution4. This lobe ‘interaction’ will
play a crucial role in our Lagrangian analysis, giving rise to much more complex transport
templates.

Historically, special lobes, called ‘turnstiles’, were considered as the main building blocks
supporting the mechanism for crossing the time-dependent boundary, B(t) (cf. §3.1). The
basics of the construction for aperiodic time-dependence and finite time given in [29, 41].
The background and history of this notion can be found in [32] (relevant references for the
original work for area-preserving maps are [6, 2, 27]). In the following analysis we also
identify a different transport mechanism which operates intermittently in one of the eddies
in the analysed flow. Two examples of distinct manifold geometry, resulting in different
transport properties are sketched in figure 3. The manifold geometry shown in the single
DHT case corresponds to the ‘traditional’ turnstile mechanism (this geometry can be also
realised in the two-DHT case; see figure 19). The important feature of manifold geometry can
be summarised as follows. Consider a collection of successive intersection points, pppi, kkki, llli,
between a stable manifold W s

γ1 and an unstable manifold Wu
γ2 at time ti such that

W s
γ1{γ1(ti), pppiγ1(ti), pppiγ1(ti), pppi} < W s

γ1{γ1(ti), kkkiγ1(ti), kkkiγ1(ti), kkki} < W s
γ1{γ1(ti), llliγ1(ti), llliγ1(ti), llli}. (2)

If the following holds

Wu
γ2{γ2(ti), pppiγ2(ti), pppiγ2(ti), pppi} > Wu

γ2{γ2(ti), kkkiγ2(ti), kkkiγ2(ti), kkki} > Wu
γ2{γ2(ti), llliγ2(ti), llliγ2(ti), llli}, (3)

then the turnstile lobes are formed (as sketched in the top row of figure 3). If, on the the
hand

Wu
γ2{γ2(ti), pppiγ2(ti), pppiγ2(ti), pppi} < Wu

γ2{γ2(ti), kkkiγ2(ti), kkkiγ2(ti), kkki} < Wu
γ2{γ2(ti), llliγ2(ti), llliγ2(ti), llli}, (4)

as in the two-DHT case shown in figure 3, a different ‘tumbling’ mechanism is at play. We
will show in the following sections that both these transport mechanisms are important in
our flow. We postpone a more detailed discussion of different manifold geometries leading to
these distinct transport mechanisms to the Appendix A.5.

4 Lagrangian structures and transport in the front-eddy
system

Transport across an oceanic front, identified in the North-Western Mediterranean Sea, was
recently discussed in detail in [30]. In that work a ‘leaky’ Lagrangian transport barrier

4The flow invariance of material manifolds and lobes is, of course, only strictly satisfied for inviscid fluid
flows.
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(i.e. the front) between two disjoint regions of the flow domain, as well as a set of turnstile
lobes mediating transport across it, were constructed from two invariant manifolds of two
DHTs which were located at the two ends of the front. However, it was pointed out in [30]
that the presence of strong eddies near the identified Lagrangian front could open up new
transport pathways, introducing additional complexity to the spatio-temporal flow structure
near the front, especially when following the flow evolution over time intervals longer than
those considered in [30]. In order to take into account the existence of the additional long-
lived flow structures, potentially interacting with the front, it is necessary to consider a more
complicated manifold structure. We focus first on two different situations which involve an
interaction of a Lagrangian front with one or two Lagrangian eddies (cf. §3.1). We refer
to these two cases as, respectively, Scenario I and Scenario II. Such a choice was largely
motivated by a careful inspection of the realistic flow data obtained for the North-Western
Mediterranean Sea from the DieCAST model, already mentioned in §2. We stress that the
distinction between the flow configurations associated with Scenario I and II is somewhat
artificial since the analysed flow evolves intermittently between these two scenarios.

Our goal in this section is two-fold. First, we aim to understand transport processes
acting in Scenarios I and II. We then allow for transitions between these two configurations
which ‘open-up’ new, intermittent transport pathways and cannot be understood by consid-
ering the two scenarios separately. We also want to outline a general procedure for extracting
the relevant Lagrangian information from the Eulerian velocity data associated with realis-
tic, aperiodically time-dependent flows. Our analysis develops methods for understanding
the essential features and basic building blocks that generate this complex spatio-temporal
structure and its influence on Lagrangian transport.

4.1 Transport associated with the interaction of an Eulerian current
with a single eddy

The Eulerian flow features which are often associated with the existence of the Lagrangian
flow structure of Scenario I were highlighted earlier in figure 1 (see also figures 4, 5). It is
generally impossible to predict with certainty that such a Lagrangian structure exists in a
flow until the geometry of the relevant invariant manifolds is determined. As can be seen
in figure 5, the manifolds in the tangle we associated with Scenario I belong to two DHTs
(cf. Appendix A) which we refer to hereafter as the western DHT (HW ) and the eastern
DHT (HE). It is thus necessary that we first demonstrate the existence of these ‘special’
hyperbolic trajectories in the flow. This is not always a straightforward task, since we search
for these DHTs using an iterative algorithm, described in [23], which requires a ‘good’ initial
guess in order to converge. In the search process, we are usually guided by the Eulerian
flow features, such as the hyperbolic ISPs, which remain near the ends, or near branching
points, of the identified current. We usually use such paths of ISPs as the initial guesses
in the DHT-finding algorithm. However, we remind the reader that any other frozen-time
hyperbolic guess could be used in the algorithm, as long as it leads to its convergence to a
hyperbolic trajectory (see §A and [24]).

Assuming that we located the required DHTs in the flow and computed sufficiently long
segments of their (time-dependent) stable and unstable manifolds, we can analyse the La-
grangian transport processes associated with Scenario I, using the tools introduced in §A.
In order to do that, we first need to identify the geometry of a (time-dependent) boundary
between different regions present in the flow for an ordered sequence of ‘observation times’
t0 < t1 < ... < tN . Here, we choose only a two element sequence {t1, t2}, which is sufficient
to illustrate the construction of the boundary, as shown in figure 4, and to understand the
action of the turnstile mechanism which mediates transport across different parts of this
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Figure 4: Scenario I. Construction of a time-dependent boundary, BI−III∪BII−III , which involves invariant
manifolds of two hyperbolic trajectories HW and HE . The geometry at two ‘observation’ times (a) t = t1
and (b) t = t2 (t2 > t1) is sketched. We show only the manifold segments which are necessary to define
the boundary at a given time. The intersection points of invariant manifolds used in the construction of the
boundary (i.e. boundary intersection points) are denoted by bft1 and bft2 for the front, and by bet1 , bet2
for the eddy. The boundary divides the flow domain into three distinct regions: RI , RII and RIII .

boundary.
Construction of the boundary segment BI−II coincides with that presented in [30] and

relies on the fact that, generically, invariant manifolds of DHTs in unsteady flows intersect
repeatedly (but this must be verified for specific data sets). This allows us to choose a
sequence of boundary intersection points {bfi} (see §A and figures 18, 3), one for each time
ti, and define BI−IIi as the union of the segment Wu

HW
{HW , bfti} of the unstable manifold of

HW and of the segment W s
HE
{HE , bfti} of the stable manifold of HE (cf. (1)). Hereafter, we

refer to the segment BI−II as the ‘front’, since its location is correlated with sharp gradients
of salinity and temperature fields in the data (see [30]).

In order to capture additional transport features associated with the existence of the
Lagrangian eddy at the eastern end of the front, we also have to take into account the
geometry of the remaining branches of invariant manifolds of HE . The boundary between
the eddy region and the surrounding flow at t = ti, denoted as BII−IIIi , is given by the union of
two segments of invariant manifolds associated with HE : a segment of its unstable manifold,
Wu
HE
{HE , beti}, and a segment of its stable manifold, W s

HE
{HE , beti}, intersecting at the

boundary intersection point beti (see figure 4).
Consequently, at any time instant, we can distinguish three distinct regions in the flow

domain, which are separated by Lagrangian barriers formed by the connected boundary
segments BI−II and BII−III . We denote the region to the North of the front by RI , the
interior of the eddy by RIII , and the region bordering the eddy from the South and the
North-East by RII . The analysis of transport between these regions requires different levels
of complexity, depending on the transport route considered. In order to understand transport
processes across the front or across the eddy boundary (i.e. the routes of the form Ri ↔ Rj ),
it is sufficient to analyse the evolution of simple turnstile lobes associated with the respective
boundary segment (see figure 5). Understanding transport routes which arise due to the
interaction between the front and the eddy requires taking into account those pairs of simple
turnstile lobes, associated with the front and the eddy boundary, which overlap with each
other (see figure 8). Finally, there are transport processes whose understanding requires
the existence of the composite lobes in the underlying flow. Below, we discuss transport
routes present in Scenario I and shown schematically in figure 14a in the order of increasing
complexity.

Transport across the front (RI ↔ RII)

10



Figure 5: Scenario I. Schematic construction of turnstile lobes for the front and the eddy at (a) t = t1 and
their geometry after evolution to t = t2 (b) (see also figure 4). The front turnstile lobes are defined as the
lobes formed by segments of Wu

HW
and of W s

HE
between the boundary intersection point (‘bip’) at t = t1,

denoted as bft1 , and the pre-image of the bip at t = t2, denoted by bf−t2 ≡ fff
−1
t1

(bft2 ). At t = t2, bft1 evolves

to bf+
t1
≡ fff t2 (bft1 ). The action of the flow-induced mapping fff , defined by (13), was illustrated in figure 18.

The eddy multilobe turnstile, bounded by be−t2 and bet1 at t = t1 is constructed in an analogous way. The
squares, triangles and stars are to aid visualization of how the turnstile lobes evolve from t1 to t2.

The turnstile lobes associated with the front (BI−II) can be constructed in a standard
way which was carried out earlier in [30]. We do so by considering the lobes formed at t = t1
by the intersecting segments of Wu

HW
and W s

HE
between two primary intersection points,

bft1 and bf−t2 (see figure 5), which satisfy the ordering under the flow evolution in the form
bft1 <s bf

−
t2 (see figure 18). The point bft1 is the boundary intersection point at t = t1 and

the point bf−t2 denotes the pre-image of the boundary intersection point at t = t2 under the
the volume- and orientation-preserving map fff (cf. (13)), induced by the underlying flow (i.e.
bf−t2 ≡ fff−1

t1 (bft2) ). An example of a two-lobe front turnstile constructed in this way is shown
in figure 5a (see the lobes marked by “�” and “4”). Provided that the next observation
time t2 is chosen in such a way that the turnstile is advected sufficiently close to HE , under
the action of fff , the two front lobes must evolve in the way shown in figure 5b which results
in a transfer of fluid particles confined within these lobes across the front.

In order to show the existence of such a transport route in the aforementioned flow in the
North-Western Mediterranean Sea (cf. §2), we show in figure 6 the computed geometry of
the relevant invariant manifolds in the flow at day 664 and day 683. The blue curves mark
there the stable manifold of the eastern DHT (HE) and the red curve denotes the unstable
manifold of the western DHT (HW ). The two sets of coloured dots mark locations of a fixed
number of conveniently chosen fluid-particle trajectories at the two time instants, and are
to aid the visualisation of transport across the front. The magenta-coloured dots mark fluid
particles confined to northern lobes, i.e. the lobes originating close to W s

HW
north of the

front segment BI−II in figure 6a). The green-coloured dots mark fluid particles confined
to southern lobes (i.e. the lobes originating close to W s

HW
south of the front on day 664).

At the later stage of the evolution, shown in figure 6b, the northern lobes containing the
magenta dots end up south of the front and the southern lobes containing the green dots
have migrated to the north of the front by day 683.

Transport in and out of the eddy (RII ↔ RIII)
The basic transport mechanism across the boundary of the eddy region (BII−III) can be

described in a way analogous to the one developed for the transport across the front although,
in this case, the existence of homoclinic tangles (rather than heteroclinic tangles) is needed
for transport across this boundary segment to take place. We note here that this transport
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Figure 6: DieCAST model, NW Mediterranean. Transport across the Lagrangian front (see the
segment BI−II in figures 4, 10) between days 664 and 683 illustrated by following the evolution of a set of
trajectories which originate in lobes located initially to the South of the front (green; region RII) and in lobes
to the North of the front (magenta; region RI). This transport route acts in the way sketched in figures 5
and 11 (see the lobes �, 4). Justification of the 2D analysis is presented in Appendix ??.
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Figure 7: DieCAST model, NW Mediterranean. Transport across the eddy boundary (segment BII−III
in figures 4, 10) between days 682 and 701 illustrated using a two-lobe turnstile (compare with figure 5). The
red and blue curves mark, respectively, the unstable and stable manifolds of the hyperbolic trajectory denoted
by the black dot. The black squares denote the boundary intersection points.

route is also present in Scenario II and it remains active even if the flow structure evolves
intermittently between Scenarios I and II. We construct the relevant simple turnstile lobes
by considering the lobes formed by the intersecting segments of Wu

HE
and W s

HE
between the

pre-image of the bip at t = t2, denoted as bf−t2 = f−1
t1 (bft2), and the boundary intersection

point bft1 (see the lobes marked by N, F, IJ, � in figure 5). The evolution of such lobes
is governed, as before, by the volume- and orientation-preserving map fff induced by the
flow. The invariance of the manifold intersection points under the action of fff implies that
at t = t2 these lobes are bounded by the segments of invariant manifolds between bft2 and
bf+
t1 = fff t2(bft1), as shown in figure 5b.

Assuming that the relevant Lagrangian flow structure is fully captured by Scenario I (i.e.
there are no intersections between BII−III and stable or unstable manifolds of other DHTs),
the eddy turnstile lobes are advected away from HE in a counter-clockwise sense around the
perimeter of the large eddy region RIII until they re-approach HE along W s

HE
. By then, the

eddy lobes which were initially located in RII (see N, F) are entrained into the eddy region
and the lobes which originated inside the eddy at t = t1 (see IJ, �) are ejected to RII and
stretched into long filaments along the unstable manifold of HE (see figure 5b).

Note also that fluid particles located south of the front at t = t1 (in the region RII) but
not contained in the eddy lobes will travel around the perimeter of the eddy region without
being entrained into RIII , and then proceed to the North along the unstable manifold of
HE . This transport route is sketched in figure 14 as the outermost blue path, located outside
RIII ( note that this route is also present in Scenario II). Whether a fluid particle is advected
around exterior of the eddy to the North, or whether it is entrained first into the eddy region

13



Figure 8: Scenario I. Illustration of an interaction between the front lobes and the eddy lobes (note that
the bip at t1 (i.e. bft1 ) is defined differently to that of figure 4 in order to visualise the interaction). (a)
initial geometry showing a lobe associated with the eddy boundary (i.e. BII−III in figure 4) overlapping with
one of the lobes associated with the front; (b) the overlap area (shaded) is entrained into the eddy by t = t2
(the eddy boundary at t2 is defined in Fig. 4b).

and rapidly stirred before exiting to the North is very sensitive to the spatial and temporal
location of the particle (i.e. it depends on which lobe it is in).

We now illustrate this transport route in the same front-eddy system which we identified
earlier in the North-Western Mediterranean Sea (figures 1, 2), and which we used to illustrate
the transport across the front (figure 6). We note that within the time intervals required
to observe the turnstile transport mechanism across the eddy boundary the Lagrangian flow
structure often evolves intermittently between Scenarios I and II (see figure 17). However, as
can be seen from our construction shown in figures 5 and 11, the short-term transport across
the boundary segment BII−III remains unchanged regardless of whether the flow evolves
according to Scenario I or Scenario II. We discuss the effect of this transitions on transport
in more details in §4.3.

Figure 7 shows the computed geometry of the relevant invariant manifolds of HE whose
segments make up the large, time-dependent eddy region at the eastern end of the front (see
RIII in figures 4, 10). The four snapshots shown in the insets correspond to days 682, 687,
695 and 701 in the simulation. The boundary intersection point at each of these times is
marked by the black square and the stable and unstable manifolds of HE are colour-coded in
the same fashion as in figure 6 (i.e. red - the unstable manifold, blue the stable manifold). We
highlight in this figure an evolution of a two-lobe turnstile associated with the eddy boundary
BII−III (see figure 4) by using the green- and magenta-coloured dots to mark locations of
a fixed set of fluid particles. The green-coloured particles are confined within a lobe which
initially, on day 682, was located inside RIII . These particles are expelled from the eddy
region around day 695, as illustrated in figure 7c. At the same time, the fluid particles
(magenta) confined within the eddy turnstile lobe located initially (day 682, figure 7a) in
RII are entrained into RIII , as shown in figure 7c,d.

Note that the transport processes responsible for mass exchange across the Lagrangian
front and across the boundary of the Lagrangian eddy would persist if we considered each
of these flow structures in isolation. However, if the two structures interact with each other,
additional transport routes open up in the flow, leading to enhanced tracer stirring in the
combined system. We discuss these additional transport routes below.

Transport routes arising due to front-eddy interaction (RI → RII → RIII)
The simple-turnstile mechanism outlined above is not capable of describing transport
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Figure 9: DieCAST model, NW Mediterranean. Interaction of the Lagrangian front with the large
eddy manifested by an intersection of a front turnstile lobe with an eddy lobe (yellow-shaded area). Water
contained within the intersecting area can be traced back to cold water lobes which originate in the North
(see the magenta dots with figure 6 and the “�”-lobe in figures 5, 11). This volume of water is entrained into
the large eddy across the boundary segment BII−III inside a simple eddy lobe, according to the mechanism
shown in figures 5, 11.

processes arising through the interaction of the front end the eddy. In order to determine
whether or not a fluid (or tracer) particle which crossed the front from the North in a front
lobe is subsequently going to be entrained into the large eddy region, one has to determine if
this particle is also contained in one of the lobes associated with the eddy. Such a procedure
usually requires examining simple turnstile lobes which have much larger arc lengths than
those considered before. The necessary condition for an interaction between two distinct
Lagrangian structures, which is manifested by mass transport across their respective bound-
aries, is the overlap between at least one pair of lobes belonging to each of these structures.
In other words, we say that two (localised) Lagrangian flow structures, say A and B, interact
if at least one lobe associated with A intersects at least one lobe associated with B. The
invariance of the manifold intersection points under the flow induced map fff implies then
that a tracer captured within the intersecting area remains confined within it for all time
(assuming no diffusion), which results in an entrainment of the intersecting part of the lobe
associated with A inside B or vice versa. We note that this phenomenon has been observed
before, for example in [32], although it was not explicitly defined.
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Figure 10: Scenario II. Construction of a time-dependent boundary, BI−III ∪ BII−III ∪ BI−IV ∪ BIII−IV,
which separates distinct regions in the flow (RI , RII , RIII and RIV ) at two different ‘observation’ times (a)
t = t1 and (b) t = t2. RIII denotes the large eddy region, which is also present in Scenario I, and RIV marks
the emergent small-eddy region. Compare this geometry with that of Scenario I shown in figure 4. Transport
across this boundary can be analysed by considering turnstile lobes shown in figure 11.

In order to illustrate the interaction between a northern front lobe (i.e. a lobe associated
with BI−II which originates in RI) and an eddy turnstile lobe, we change the location (with
respect to that of figure 4a) of the boundary intersection points, bft1 and bet1 , as shown
in figure 8a. As a consequence, one of the lobes in the eddy turnstile now stretches over
distances comparable with the characteristic length of the front and intersects with one of
the front turnstile lobes (shaded area). Evolution of these turnstiles to t = t2 results in the
entrainment of a portion of the front lobe into the eddy region (see figure 8b). Note that
only the northern lobes, i.e. the lobes that can be inverse-mapped to RI using fff (cf. 13),
can be entrained into the eddy region RIII during such a process.

In [30] the turnstile mechanism for cross-frontal transport generates filaments of cold
and less salty water protruding into the warmer and saltier region South of the front. If
the geometry of the relevant manifolds is such that the eddy turnstile lobes intersect with
the front turnstile lobes, as sketched earlier in figure 8, the flow evolution will first bring
the cold-water, northern front lobe, containing the intersecting area, South of the front (to
region RII) and then into the large eddy. Such a scenario is indeed observed in the front-eddy
system we identified in the North-Western Mediterranean Sea. We illustrate this process in
figure 9 where the shaded area can be traced back in time to one of the lobes originating in
the North (see figures 6 and 8).

4.2 Additional transport routes associated with the emergence of
the second eddy in the front-eddy system

The evolution of the velocity field obtained from the DieCAST ocean circulation model (cf.
§2) for the North-Western Mediterranean Sea is characterised by an intermittent emergence
and disappearance of an additional smaller Eulerian eddy at the eastern end of the front,
as illustrated earlier in figures 1 and 2. The evolution of the associated temperature field
indicates that the presence of the second Eulerian eddy is often correlated with an injection
of warm-water filaments into the large eddy region from the North, across the small eddy,
and that such a process is not present when the small eddy disappears. The appearance of
this additional transport route indicates indirectly a change in the underlying Lagrangian
flow structure with respect to Scenario I (see figures 10, 11) where such a transport process
cannot be realised. We develop here the Lagrangian characterisation of a front-eddy system
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which is composed of two Lagrangian eddies interacting with the front. We refer to such
a flow geometry as Scenario II and describe the Lagrangian mechanism responsible for the
entrainment of warm water filaments into the large eddy region across the small eddy region.
We later show, in §4.3, show how these two Lagrangian structures (i.e. Scenario I and II)
can evolve between each other.

The emergence of the additional Eulerian eddy at the end of the front is accompanied by
a saddle-node bifurcation of the ISP path which was earlier used to locate HE in §4.1. This
bifurcation produces an elliptic ISP, which we associate with the birth of the new Eulerian
eddy, and a new hyperbolic ISP. The newly created path of the hyperbolic ISPs can be used
as an initial guess in the DHT-finding algorithm [23] in an attempt to determine whether
a new DHT exists in the flow, alongside the previously located DHTs which enabled us to
recognise the manifold geometry of Scenario I. If such a procedure does indeed lead to the
identification of the additional DHT, the underlying structure of the intersecting invariant
manifolds of the three DHTs forms a tangle which is rather different than the one associated
with the Lagrangian geometry of Scenario I (see figures 5 and 11).

In what follows, we will denote the DHT on the western end of the front as HW , as in
the description of Scenario I, and the two remaining DHTs by HNE and HSW , according
to their relative geographical location (see figure 10). For this geometry, in addition to the
previously identified disjoint regions in the flow domain, RI , RII and RIII , we can distinguish
a fourth region, denoted as RIV , corresponding to the small eddy region (see figure 10).

The boundary in this scenario is constructed in a similar way to that described for Scenario
I in §4.1. We illustrate this process in figure 10. In addition to the front and the large eddy
boundary intersection points, denoted by bfti and beII−IIIti respectively, we need to specify
two additional bips on the boundary of the small eddy region RIV , denoted by beI−IVti and
beIII−IVti .

All of the transport routes discussed in the context of Scenario I are also present in
Scenario II (see figure 14). In figure 11 we illustrate the construction of the appropriate
simple turnstile lobes which mediate transport across different parts of the boundary.

There also exists new transport routes for this geometry which arise due to the presence
of the two new boundary segments, BI−IV and BIII−IV . The simple turnstile lobe transport
mechanism across these segments is illustrated in the insets of figure 11 (see the lobes marked
by “66”, “6”, “HH” and “H” in figure 11).

These transport routes can be observed in the flow field data obtained from the DieCAST
model (§2) which we illustrate in figure 12. The presented sequence of instantaneous geometry
snapshots illustrates entrainment of a lobe (light blue) from region RI into RIV across the
small eddy in the way sketched earlier in figure 11. Since the small eddy region exists in
the studied flow for relatively short periods of time (i.e. it emerges and disappears several
times in the available data set), we were able to detect a single lobe being entrained into the
small eddy and a single lobe being ejected out of it (the geometry of the DHTs during the
examined episode is shown in figure 17). Note that the transport mechanism which is active
here is not the turnstile mechanism and that the light and dark blue lobes end up spread
in distinct regions (i.e. light blue lobe in region RIII and the dark blue lobe in RI) as a
consequence of this mechanism.

Finally, in figure 13, we show an evidence of interaction of lobes associated with different
Lagrangian structures in the flow in the North-Western Mediterranean Sea. This mechanism
is responsible for transporting some of the warm water filaments, originating in RII , across
the front and then into the large eddy region RIII through the small eddy RIV . The black
curve shown in figure 13 shows the geometry of the computed unstable manifold of HW .
The yellow-shaded region marks an overlap between a front lobe and a small eddy lobe. The
front lobe formed by the intersecting segments of Wu

HW
and W s

HES
contains warm water
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Figure 11: Scenario II. Schematic evolution of ‘simple’ turnstile lobes (i.e. lobes which do not overlap
with other lobes) from t = t1 to t = t2. Transport across the front (see BI−II in figure 10) and across
the boundary segment BII−III of the large eddy region is the same as in Scenario I. Transport across the
boundary of the emergent small eddy region is illustrated in the insets.

transported earlier across the front from the South (i.e. RII → RI across BI−II), according
to the previously described simple lobe turnstile mechanism of cross-frontal transport. The
overlapping area (yellow) between the front lobe and a small eddy lobe, is first entrained
into the small eddy region (figure 13b) and subsequently ejected into the large eddy region
(figure 13d).

In figure 14 we summarise the transport mechanisms discussed in the two previous sections
in relation to Scenarios I and II by sketching transport routes of a tracer contained in northern
lobes (blue; lobes that can be inverse mapped in time to the region RI) and in southern lobes
(green; lobes that can be inverse mapped in time to the region RII). We assume here that
the Lagrangian configurations of Scenario I or Scenario II exist in the flow for times long
enough that all the indicated transport routes can be accomplished. If the Lagrangian flow
structure evolves ‘too rapidly’ between the two configurations, or if it changes to a completely
different structure, some of these routes may be terminated prematurely. Note finally that
additional transport routes, not present in Scenarios I and II, might appear in the flow if the
front-eddy system interacts significantly with other Lagrangian flow structures. For example,
while following the evolution of a lobe associated with the large eddy (RIII), just like the one
shaded in figure 9a, one could observe this lobe (or part of it) to travel South-West instead of
moving counterclockwise around the perimeter of the large eddy. The turnstile mechanism
for transport associated with the invariant manifolds considered in Scenarios I and II does
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Figure 12: DieCAST model, NW Mediterranean. Entrainment of water (light blue lobe) from the
region north of the front (RI in figures 4, 10) into the large eddy (RIII in figures 4, 10) via the small eddy
(RIV in figure 10). Note that this transport route is only possible when the small eddy, created when the
two DHTs HNE and HNE separate, exists long enough (see figure 17 for the geometry of the DHTs during
this process).
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Figure 13: DieCAST model, NW Mediterranean. Interaction of a front lobe with a small eddy lobe,
revealing a transport route (RII → RI → RIV → RIII ; see also figure 14b) which is possible only when the
flow evolves according to Scenario II for sufficiently long time. This route allows injection of a portion of hot
southern waters which crossed the front inside a front lobe (shaded) into the large eddy region across the
small eddy region RIV .
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Figure 14: Possible transport routes for front lobes which originate near the stable manifold of HW in
the far North (blue) or in the far South (green) at t → −∞. Note that these transport routes may be
terminated prematurely if the Lagrangian geometry of the underlying flow evolves into one different than
those of Scenario I and II. Note also that the journey of the southern lobes indicated in Scenario II by
the green branch: RII → RI → RIV → RIII may be severely affected if the flow does not remain in the
Lagrangian configuration of Scenario II for a sufficiently long time.

not allow for such a process to take place. A proper description of transport processes in
such a case would therefore require considering the geometry of all intersecting invariant
manifolds of an extended system, including the stable and unstable manifolds associated
with the additional Lagrangian flow structure which interacts with the front-eddy system.

4.3 Time transition between Scenario I and Scenario II

The studied example of the flow in the North-Western Mediterranean Sea shows an inter-
mittent evolution between the flow structures of Scenario I and II. The transition between
these two flow configurations is usually highlighted by an (Eulerian) bifurcation of the ISPs
(cf. Appendix A.1) in the flow, leading to the appearance or disappearance of the second
smaller eddy. We managed to understand the Lagrangian transport mechanisms associated
with each of these scenarios by uncovering the structure of intersecting stable and unstable
manifolds of the relevant DHTs in the flow within conveniently chosen time intervals. Recall
that we identified two such DHTs (HW and HE), together with their stable and unstable
manifolds, in order to describe the geometry of the front interacting with the Lagrangian
eddy in Scenario I (see figure 4). In the Lagrangian description of Scenario II we considered
three DHTs (HW , HSW and HNE) and their invariant manifolds in order to define the front
interacting with two Lagrangian eddies (see figure 10). Clearly, in order to understand how
the manifold tangle associated with the two DHTs of Scenario I can evolve into the manifold
tangle of three DHTs in Scenario II, we first need to understand the relationship between the
two sets of DHTs throughout the time interval corresponding to the transition. Then, we
can understand the effect of such a transition on the Lagrangian transport in the underlying
flow by analysing the evolution of the relevant invariant manifolds. Lagrangian descriptions
of flow transitions of this type have received little attention in the geophysical fluid dynamics
literature and there is no rigorous mathematical theory to guide our analysis.

In order to isolate the relevant geometrical structures and behaviour in a controlled set-
ting we first consider a kinematic model of the local flow in the front-eddy system in the
neighbourhood of the bifurcating ISPs, given by the streamfunction

ψ = −s(t)xy + (v(t)/2δ)e−δ(x
2+y2) + β(y − x), s, v, δ, β > 0 (5)

where the first term represents the linear, time-dependent strain, the second term represents
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Figure 15: Sketches of projections of the ISP’s (thin) and the DHT’s (thick) onto the plane
(x, y, t) = (x,−x, t) in the extended phase space of the system (6), corresponding to two unfoldings of
the normal form for the pitchfork bifurcation (7). a,b,c) the asymptotically steady evolution of (6) and d,e,f)
an arbitrary time dependence.

a time-dependent vortex flow, and the last term represents a uniform flow. The choice of the
amplitude functions s(t) and v(t) will determine a particular scenario; it will soon become
clear that the amplitude of the uniform flow β represents a symmetry breaking parameter
when considering bifurcations of the ISPs present in the flow.

The velocity field corresponding to (5) is given by:

ẋ = −s(t)x− v(t)e−δ(x
2+y2)y + β

ẏ = s(t)y + v(t)e−δ(x
2+y2)x+ β

}
(6)

It is straightforward to determine that the ISPs in such a flow must lie on the line y = −x
and that, assuming x, y � 1, their location on this line in terms of distance from the origin,
% = (x2 + y(x)2)1/2, is given by the roots of

F (%) = (v − s)%− v%3 + β +O(%5). (7)

The first two terms in (7) can be recognised as the normal form of a pitchfork bifurcation. We
note that in our setting the bifurcation parameter, λ = v(t) − s(t), is actually a function of
time; β is in this case one of the unfolding parameters of this normal form into a corresponding
non-degenerate, third-order form F̃ = (v − s)% + v%3 + α%2 + β. Provided the bifurcation
parameter λ increases monotonically in time (λ̇ > 0) there is one hyperbolic ISP in the
system before the bifurcation takes place at, say tbif, and there are three ISPs (one elliptic
and two hyperbolic) after the bifurcation.

In figure 15 we illustrate two different possible bifurcations of the ISPs which can be
obtained in system (6) from the unfolding of (7) for different values of β. The sketches shown
in figures 15a,b correspond to an asymptotically steady evolution of (6) when λ(t) has the
form of a sigmoid (figure 15c). The sketches shown in figures 15c,d illustrate the same two
types of bifurcations as in figures 15a,b but with λ varying in time in a more complicated
fashion. In the symmetric case, when β = 0 (codimension-two bifurcation), the original ISP
bifurcates into three new ISPs in a familiar pitchfork bifurcation (figure 15a,d), which occurs
at tbif such that v(tbif) = s(tbif). When β 6= 0, two new ISPs, one elliptic and and one
hyperbolic, are born in a saddle-node bifurcation and exist, for t > tbif, alongside the original
ISP (figure 15b,e).
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Figure 16: Geometry of the DHTs (black) and their unstable manifolds (red) computed for the system (6)
in the asymptotically steady case when: a) the symmetric pitchfork bifurcation (β = 0) of the system’s ISPs
(green) takes place; b) the saddle-node bifurcation of the system’s ISPs occurs (β 6= 0).

Consider now the system (6) on the time-interval, T = [ti, tf ], containing the bifurcation
time of the ISPs (i.e. tbif ∈ T ) so that the flow evolution corresponds locally to the transition
between Scenarios I and II. We study first an asymptotically steady evolution of (6) by setting
set s = 1 and v = atan(5 t)−atan(5 ti) (cf. figure 15c). This represents a flow evolving from a
pure strain, characterised by a single hyperbolic ISP, to the familiar cat’s-eye flow, having two
hyperbolic ISPs. The advantage of considering such a time dependence lies in the fact that,
if we allow T = IR, the DHTs present in the flow must necessarily converge to the hyperbolic
ISPs of (6) for t → ±∞, since these ISPs are the only bounded, hyperbolic trajectories in
the steady flow limit.

If there is a symmetric pitchfork bifurcation in the flow (6) (i.e. when β = 0), the
two continuous paths of hyperbolic ISPs which exist throughout the time interval T can be
used as the initial guesses in the DHT-finding algorithm [23]. Results of this procedure are
presented in figure 16a where the computed DHTs are shown as black curves in the extended
phase space of the system (spanned by the two spatial directions and time). The red surface
also shown there is obtained by recording the time-evolution of the unstable manifolds of the
two DHTs in the extended phase space. These two (finite-length) manifold segments are so
close tho each other that they are virtually indistinguishable numerically. Note that as the
DHTs diverge from each other, parts of their unstable manifolds are rolled up around the
(red-coloured) trajectory which coincides with the bifurcated elliptic ISP, indicating the the
centre of an eulerian eddy. In order to identify the boundary of the Lagrangian eddy, defined
earlier in Appendix A, we would also have to show the geometry of the stable manifolds of the
two DHTs, which we avoid for visual clarity. The computed DHTs approach each other for
t < tbif, when following them backward in time, and they become virtually indistinguishable
when t→ −∞ (not shown in figure 16). It can also be seen that for t→ ti or t→ tf , when
the system (6) is effectively time-independent due to our choice of the amplitudes, v(t) and
s(t), the two DHTs converge towards the paths of ISPs, as expected.

When the system (6) undergoes the saddle-node bifurcation of the ISPs (i.e. when β 6= 0),
the problem of computing the DHTs in the flow becomes more cumbersome. In such a case we
only have one path of ISPs which stretches across the whole time interval T . Consequently, we
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Figure 17: DieCAST model. Geometry of the two DHTs, HNE and HNE , involved in the transition
between Scenario I and Scenario II. Note that these DHTs only diverge from each other when Scenario II
operates in the flow.

have only one ‘good’ guess which allows us to find, using the iterative DHT-finding algorithm,
the location of only one of the two the DHTs which we expect to be present in the flow, at
least in the asymptotically steady case. However, based on the geometry described for the
symmetric case and the fact that for β � 1 the saddle-node bifurcation of the ISPs takes
place close to the original path of ISPs (see (7)), we can attempt to construct a continuously
differentiable (hyperbolic) guess for the second DHT by extending the bifurcated hyperbolic
path of ISPs backward in time in such a way that it approaches the first DHT (in a time-
backward sense) when tbif − t� 1. This heuristic method proves very useful in locating the
second DHT for the class of problems we consider (we do not, as yet, have more rigorous
estimates on the range of situations for which such a method is successful).

In figure 16b we show the results of computations performed in the system (6) having the
same time dependence as that used in figure 16a but undergoing the saddle node bifurcation
of the ISPs (i.e. β 6= 0). The DHTs identified in the flow are shown as the thick black curves.
The paths of the hyperbolic ISP are shown in green and the path of the elliptic ISP is shown
in red. It is again remarkable that the computed segments of unstable manifolds of the two
DHTs seem to coincide throughout the whole time interval T . The surface corresponding
to the time evolution of the unstable manifold of one of the DHTs is shown in olive-green
and the surface for the other DHTs is numerically indistinguishable from the one shown.
The asymptotic steady streamline pattern is again the ‘cat’s eye’ pattern even though the
Eulerian characteristics of the transition to this configuration, i.e. the bifurcation of the
ISPs, was rather different.

Finally, figure 17 shows results of applying the procedure for identifying the DHTs and
their manifolds during the transition between Scenario I and II in a flow generated by the
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DieCAST model. Clearly, a similar trajectory geometry to that of figure 16 is revealed. These
DHTs were used in manifold computations shown earlier in figure 12 (and also figures 6, 7,13).

Based on the above examples and the results shown in figure 12, three important conclu-
sions can be drawn:

1) It can be clearly seen there that the two computed, finite-length segments of the stable
manifolds are very close to each other at all times in the region corresponding to the large
eddy away from the small eddy (cf. figures 4, 10). This implies that, even though the
boundary of the large eddy could be considered as having a fine structure, associated with
the tightly packed segments of the two stable manifolds, Wu

HES
and Wu

HEN
, any lobes that

could be formed by the intersections of this structure with the unstable manifolds would
have a negligible area and would not therefore affect the Lagrangian transport across the
corresponding boundary.

2) The manifold structure associated with Scenario I can be regarded as being made up of
two almost identical copies of manifolds: one associated with HES and the other associated
with HEN . Since these two structures, including the DHTs, are practically indistinguishable
during the operation of Scenario I, we can identify the DHT labelled HE in the description
of Scenario I with any of the two DHTs, HES or HEN , associated with the small eddy in
Scenario II.

3) During the transition from Scenario I to Scenario II, the two stable manifolds separate
only in the neighbourhood of the two DHTs with which they are associated. This allows one
to identify the boundary of the small Lagrangian eddy formed by segments of the unstable
manifolds intersecting independently W s

HES
and W s

HEN
. Thus, although both these DHTs

exist within the time interval when the flow evolves according to Scenario I, we only need to
consider one DHT (labeled HE in Scenario I).

In summary, from the analysis of the kinematic model we have learned the following which
appear to be the essential geometrical and kinematical features of the flow that are involved
in the structural transition of the flow from Scenario I to Scenario II that is associated with
the birth of a satellite eddy near the Eastern DHT (HE) recognised in Scenario I (§4.1). The
emergence of the satellite eddy requires the presence of an additional DHT in the flow which
remains very close the HE during the time interval associated with flow evolution described
by Scenario I. (The additional DHT is denoted as HNE in the description of Scenario II,
discussed in §4.2, and HE from Scenario I is equivalent to HSW in Scenario II.) Moreover,
the stable and unstable manifolds of these two DHTs, or at least the finite-length segments
of the computed manifolds, also remain very close to each other before the transition. During
the birth of the second eddy, the DHTs diverge from each other along the unstable manifold
of HE so that their unstable manifolds are ‘shadowing’ each other even after the transition
(figure 16). The stable manifolds of the two DHTs, denoted as HSW and HNE according
to the nomenclature of Scenario II, do not coincide after the transition and their transverse
intersections with the unstable manifolds can be used to determine the boundary of the
second eddy (figures 10, 11).

5 Conclusions

In this paper we have continued the study started in [30] of Lagrangian transport near the
North Balearic Front in the Northwestern Mediterranean Sea using the velocity field obtained
from the numerical model DieCAST. As in the previous work, the problem is approached
from the point of view of dynamical systems theory. We focussed on transport associated
with the interaction of the front with one, or two eddies. The numerical simulation provides
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us with an Eulerian view of the flow and we use the dynamical systems approach to identify
relevant hyperbolic trajectories and their stable and unstable manifolds which are used to
uncover a Lagrangian structure of the front-eddy system. The Eulerian framework is insuf-
ficient for understanding transport properties in such complicated flows. We showed that
Lagrangian transport in the system is effected by the turnstile mechanism whose temporal
evolution reveals the spatio-temporal routes along which transport occurs. We also showed
that different transport routes are possible depending on whether the front interacts with one
or two eddies. We provided the Lagrangian characterization of eddies and presented detailed
studies of their transport properties in a ‘realistic oceanographic data set’. Also, the ‘La-
grangian interaction’ of eddies with a front was discussed and analysed. Our work is the first
of this type in an oceanographic context. Moreover, we considered the transport implications
associated with the transition between the one and two eddy situation and showed how some
transport routes can be activated or deactivated due to the transition. We expect that this
type of transition between different Eulerian flow structures is common in geophysical flows
and that it will involve a variety of different Lagrangian scenarios beyond those studied in
this paper. We introduced a local kinematic model which provided insights into the nature
of the change in hyperbolic trajectories and their stable and unstable manifolds associated
with the “birth and death” of eddies. Further mathematical development from such insights
will be crucial for understanding the implications for Lagrangian transport in much more
complicated front-eddy systems than those identified in our particular data set.
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A The Basic “building blocks” from dynamical systems
theory for analyzing Lagrangian transport

Recall that the Eulerian flow features we identify in the data obtained from the DieCAST
ocean model can be regarded as two-dimensional to a good approximation during the time
interval considered (about 20 days; see §2). We thus recall the most important notions
used to develop the Lagrangian characterisation of these features in their two-dimensional
formulation. However, most of these tools can be generalised and applied to three-dimensional
flows.

First we describe the “Eulerian notion” of an instantaneous stagnation point. While these
are (generally) not fluid particle trajectories, they may be useful “signatures” associated with
Eulerian structures which suggest a need for a Lagrangian transport analysis.

A.1 Hyperbolic instantaneous stagnation points (ISP’s)

Consider a dynamical system, associated with a two-dimensional velocity field vvv over a time
interval T , given by

ẋxx = vvv(xxx, t), xxx ∈ D , t ∈ [ti, tf ] ≡ T , (8)
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where D ⊂ IR2 is the domain of vvv. We explicitly assume that the system (8) is defined over
a finite-time interval (i.e. ti, > −∞, tf < ∞) which has important consequences in further
considerations.

An instantaneous stagnation point, xxxisp satisfies vvv(xxxisp, t∗) = 0 for some t∗ ∈ T . We say
that an ISP is (frozen-time) hyperbolic if the Jacobian matrix of the linearization about xxx∗

at a fixed time t∗, i.e. ∂vvv(xxx, t∗)/∂xxx|xxx=xxx∗ , has two real, non-zero eigenvalues. (For 2D, incom-
pressible flows this reduces to a requirement that the eigenvalues are of equal magnitudes
but opposite signs). If the eigenvalues are pure imaginary and complex conjugates of each
other, we say that the corresponding ISP is (frozen-time) elliptic. It turns out that, for as
long as the ISP remains hyperbolic, one can continue a unique curve of ISPs in time (i.e. a
path of ISPs in the extended phase space (x, y, t)), which is given implicitly by

vvv(xxxisp(t), t) = 0, t ∈ T̃ , (9)

where T̃ ⊂ T is a time interval within which the Jacobian,
∣∣∂vvv(xxx, t)/∂xxx|xxx=xxxisp(t)

∣∣, does not
vanish, as required by the Implicit Function Theorem (see [32] for more information and
further references). It is often the case that the Jacobian of the (frozen-time) linearisation
about a hyperbolic ISP vanishes at some time, say t = t̃, as the path of ISPs is continued
either forward or backward in time. Such points correspond to bifurcations of ISPs and are,
in some special cases, associated with changes in the Lagrangian structure of the flow (see,
for example, §4.3 below). There is no general relationship between the (Eulerian) structure
of ISPs in the time-dependent velocity field vvv and the Lagrangian structure of trajectories of
the corresponding dynamical system (8). The paths of ISPs do not generally correspond to
trajectories of the system (8) and they can often be eliminated by an appropriate coordinate
transformation. Similarly, the instantaneous streamline patterns do not coincide with any
invariant structures in the flow and attempts to determine transport properties from their
geometry are generally inappropriate (unless the flow is steady or slowly varying). However,
the paths of hyperbolic ISPs can be used as an initial guess in an iterative algorithm developed
in [23] which identifies a class of hyperbolic trajectories of the system (8) which are important
in transport considerations.

A.2 Finite-time, Distinguished Hyperbolic Trajectories (DHTs)

Let xxx = γγγ(t) be a trajectory of the system (8) and consider a linearisation of the flow about
γγγ 5 in the form

ξ̇ξξ = ∂xxxvvv(γγγ(t), t) ξξξ, (10)

where ξξξ = xxx− γγγ and ∂xxxvvv(γγγ(t), t) is the Jacobian of vvv(xxx, t) evaluated at xxx = γγγ(t).
We say that γγγ(t) is finite-time hyperbolic on the time interval T = [ti, tf ] if the equation

(10) has an exponential dichotomy on T . Roughly speaking, this means that trajectories
located sufficiently close to γγγ can separate at an exponential rate. Formally, the equation
(10) has the exponential dichotomy on T if there exists a projection P (P2 = P), and positive
constants K, L, α, and β such that:

|X(t, ti)PX−1(s, ti)| 6 Ke−α(t−s), for t > s, t, s ∈ [ti, tf ],

|X(t, ti)(Id−P)X−1(s, ti)| 6 Le−β(s−t), for s > t, t, s ∈ [ti, tf ], (11)

5Dynamical systems theory can often suffer from a proliferation of notation that may tend to obscure
understanding. In our setting hyperbolic trajectories are generally time-dependent, and are denoted by γγγ.
However, in some cases denoting the specific time dependence is not necessary and for the sake of a less
cumbersome notation we may simply denote it as γγγ.
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where X is the fundamental solution matrix of the system (10) (see [23, 8, 22, 36] for more
information).

Similarly to the infinite-time setting, hyperbolic trajectories in flows defined by (8) over a
finite time interval are clustered into highly convoluted, connected sets in the extended phase
space D × T of the system (8). When analysing the Lagrangian transport in such flows, it
is important to identify the location of those trajectories in the hyperbolic structures which
play a ‘distinguished’ role as their ‘organising centres’. We refer to such trajectories as
Distinguished Hyperbolic Trajectories (DHTs). The notion of what is meant by the term
“distinguished” is discussed in more detail in [23, 32, 28].

The DHTs cannot, generally, be found analytically and we use the algorithm developed
in [23, 24] to locate them. We emphasise here that, although we often use carefully chosen
hyperbolic paths of ISPs of (8) as initial guesses in this iterative procedure, any frozen-
time-hyperbolic path in the flow (8) can be used as the input for the algorithm if it leads
to its convergence (see [24]). Due to the fact that the flow given by (8) is only known
for a finite time interval, no DHT can be determined uniquely (cf. [23]). Instead, there
exist a small neighbourhood of hyperbolic trajectories in (x, y, t) which can serve as the
distinguished ones. The volume of this neighbourhood shrinks with increasing length of
the time interval. In this work our use of the term DHT is utilitarian in the sense that
the finite-time hyperbolic trajectories, and their associated stable and unstable manifolds,
that we identify are constructed with particle trajectories and they provide a description of
the transport associated with the front-eddy system that leads to a precise spatio-temporal
description of Lagrangian transport.

A.3 Stable and unstable manifolds of DHTs.

The usefulness of the notion of hyperbolicity in transport considerations comes from the
fact that one can define stable and unstable manifolds of a hyperbolic trajectory in time-
dependent flows in a way analogous to associating separatrix streamlines with saddle points
in steady flows. In the case of flows defined for all time, a stable manifold of a hyperbolic
trajectory γγγ, denoted at the time instant t∗ by W s

γ (t∗), is defined as a set of points such that
trajectories passing through these points at t = t∗ will approach γγγ at an exponential rate as
time goes to infinity. (It can be shown that for two dimensional incompressible flows such
a set of points lies on a curve.) Consequently, an unstable manifold at time t∗, denoted by
Wu
γ (t∗), corresponds to a curve having the property that trajectories passing through any

point on this curve at t = t∗ approach γγγ at an exponential rate as time goes to minus infinity.
In the case of flows whose evolution is known only over the time interval T = [ti, tf ]

the above definitions have to be modified. A finite-time stable manifold of the hyperbolic
trajectory γγγ(t) contains all trajectories, say xxxs(t), whose distance from γγγ is smaller than the
initial separation, i.e. |γγγ(t)− xxxs(t)| < |γγγ(ti)− xxxs(ti)| for t ∈ (ti, tf ]. Similarly, a finite-time
unstable manifold contains all trajectories xxxu whose distance from γγγ is less than the final
distance, i.e. |γγγ(tf )− xxxs(tf )| < |γγγ(t)− xxxs(t)| for t ∈ [ti, tf ). As long as the time interval T
is finite, these manifolds have a non-zero volume in the extended phase space (x, y, t).

The link between the two definitions (i.e. in the finite- or infinite-time setting), is re-
vealed when considering a finite-time evolution of a flow defined for all time. Then, every
infinite-time hyperbolic trajectory has the ‘true’ stable and unstable manifolds which are con-
tained within their ‘thick’ finite-time counterparts. Moreover, all the material manifolds (i.e.
manifolds composed of the flow trajectories) contained in the finite-time unstable manifold
identified for T = [ti, tf ] necessarily approach the ‘true’ unstable manifold when we consider
the flow evolution past tf . Similarly, all material manifolds contained in the finite-time sta-
ble manifold identified for T = [ti, tf ] necessarily approach the ‘true’ stable manifold when
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considering the backward-time flow evolution past ti. Of course, this ‘asymptotic thinning’
is not present for the finite-time stable and unstable manifolds of trajectories which are only
finite-time hyperbolic, even in flows defined for all time. In the finite-time setting any mate-
rial manifold contained, for example, in the finite-time unstable manifold of a DHT can be
used in transport considerations. This is because, from the point of view of transport, the
‘invariance’ property of a chosen material manifold is more important than its uniqueness, as
long as this manifold is contained within the finite-time stable or unstable manifolds of the
relevant DHT. In our work we compute these manifolds using the algorithms developed in
[31, 33] and, when using the notion of the stable (or unstable) manifold, we mean a particular
material manifold contained in the corresponding finite-time stable (or unstable) manifold.

A.4 Lobes

Consider a point, pppi which at time t = ti lies on an intersection of an unstable manifold
Wu
γ1(ti) of a hyperbolic trajectory γγγ1, and a stable manifold W s

γ2(ti) of a hyperbolic trajectory
γ2γ2γ2 (note that homoclinic intersections are also allowed when γ1γ1γ1 = γ2γ2γ2, as shown in figure 18).
Then, one can construct a path connecting pppi and γ1γ1γ1(ti) along Wu

γ1(ti), which we denote
as Wu

γ1

{
γγγ1(ti), pppi

}
6, and another path connecting pppi and γ2γ2γ2(ti) along W s

γ2(ti), which we
denote as W s

γ2

{
γγγ2(ti), pppi

}
. A particular subset of such intersection points, called primary

intersection points (‘pip’), turns out to play an important role in further constructions.
Formally a primary intersection point (at the time instant t = ti), of two invariant manifolds
of hyperbolic trajectories is defined (see [29]), as a point that satisfies

Wu
γ1

{
γγγ1(ti), pppi

} ∩W s
γ2

{
γγγ2(ti), pppi

}
= pppi, (12)

i.e. it is the only intersection point of the two manifold segments defined above. Note that
the invariance of these manifolds under the flow induced by (8) implies invariance of their
intersections which must therefore coincide with some trajectories of (8). Thus, if pppi is a pip
at t = ti, its image at some later time, say t = tj , must also be a pip given by pppj = x(tj ; ti, pppi),
where x(· ; ti, pi) represents a trajectory of (8) passing through pi at t = ti. These relations
can be cast in terms of a flow-induced mapping fff7 between points on the same trajectory as
(see also figure 18)

pj = fff j(pi) ≡ x(tj ; ti, pppi), pi = fff−1
i (pj) ≡ x(ti; tj , pppj). (13)

Consider now two pips, pppi and kkki at time ti, such that there are no other pips on the
segments of Wu

γ1(ti) and W s
γ2(ti) that connect kkki and pppi. The invariance of these manifolds

and their intersection points, kkki and pppi, under the action of the flow induced mapping fff
implies that the region bounded at t = ti by the segments Wu

γ1{kkki, pppi} and W s
γ2{kkki, pppi} is

also invariant under the action of fff . We define a lobe as the area bounded by these manifold
segments, and we denote it by Lkipi (see figure 18 and also figure 19). If the flow given by
(8) is incompressible (i.e. ∇ · vvv) = 0), the flow-induced map fff is volume-preserving and the
area of the lobe remains constant throughout the evolution. A thorough discussion of lobe
dynamics can be found in [40], [9], [44], [29]. Examples of applications to oceanographic flows
can be found in [37], [39], [46, 47].

6The reader should be cautious here. While the notations Wu
γ1

(ti) and Wu
γ1

˘
γγγ1(ti), pppi

¯
appear similar

here, they mean something quite different. The former denotes the unstable manifold of γγγ1(ti) and the latter
denotes a finite piece of the unstable manifold of γγγ1(ti), starting at γγγ1(ti) and ending at pppi.

7The notation fff will serve to denote the mapping from one point to another along trajectories of the flow.
A subscript, say i, on fff will denote a specific time ti at which initial points for the flow map are taken.
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Figure 18: Maintenance of ordering of primary intersection points, ppp and kkk, under flow evolution illustrated
for three different times (ti, ti+1, ti+2). The segment W s

γ1
{γ1(t), ppp(t)γ1(t), ppp(t)γ1(t), ppp(t)}, connecting γ1γ1γ1 and ppp(t) along the

stable manifold of γγγ1, is always shorter than the segment W s
γ1
{γ1(t), kkk(t)γ1(t), kkk(t)γ1(t), kkk(t)}. The flow induced mapping, fff

(see (13)), maps the primary intersection points (‘pips’) along trajectories of the corresponding dynamical
system. The evolution of lobes (“1”, “2”, “3”, “4”, “5”, “6”) associated with the boundary B(t) corresponds
to the traditional turnstile mechanism.

A.5 Lagrangian transport associated with lobe dynamics

Given a monotonically increasing sequence of times {tn}n∈Z, and a sequence of pips {bbbn}n∈Z
along with the corresponding stable and unstable manifold segments (see §A.4), one can
construct a family, {Bn}n∈Z, which forms a ‘leaky’ Lagrangian transport barrier (see §3.1
and figure 3 for an example). Turnstile lobes, which mediate transport across such a time-
dependent boundary, are constructed by first considering a sequence of pips {bbbn}n∈Z which
additionally satisfy the ordering under time evolution in the form

bbbn−1 <s fff
−1
n−1(bbbn). (14)

In the case of the single DHT geometry shown in figure 18, the notation of (14) simply
means that bbbn−1 is closer to γγγ1(tn−1) along W s

γ1(tn−1), than is fff−1
n−1(bbbn) (fff is a flow induced

map defined in (13)). Then, if there are N (N > 0) pips between endpoints of the seg-
ment W s

γ1

{
fff−1
n−1(bbbn), bbbn−1

}
, there exist N + 1 turnstile lobes associated with the boundary

segment Bn−1 which are delimited by the intersecting segments Wu
γ1

{
fff−1
n−1(bbbn), bbbn−1

}
and

W s
γ1

{
fff−1
n−1(bbbn), bbbn−1

}
. As time evolves to t = tn, such turnstile lobes are mapped under

the flow action fff to the lobes delimited by the intersecting segments Wu
γ1

{
bbbn, fffn(bbbn−1)

}
and

W s
γ1

{
bbbn, fffn(bbbn−1)

}
. Note that in the case of the manifold geometry sketched in figure 18 and
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a)

b) c)

Figure 19: Schematic illustration of instantaneous manifold geometry which generates the same eddy
boundary (see (a)) but leads to different transport mechanisms; the two-DHT configuration is used here
but the same applies to the single DHT case. b) The ordering of the successive intersection points satisfies
pppi <(u,γ2) kkki <(u,γ2) llli (i.e. pppi is closer to γγγ2 along Wu

γ2
than kkki and llli). This (invariant) lobe geometry was

shown to mediate transport across the small eddy in §4.2 (see also bottom row of figure 3). c) The ordering
of successive intersection points satisfies llli <(u,γ2) kkki <(u,γ2) pppi. This traditional turnstile lobe mechanism
was shown to operate in the large eddy and across the front (see §4.1 and also figure 18). See §A.5 for more
details.

figure 19c, the points pppi, kkki, llli and their images under the flow induced mapping fff can be used
as the sequence of pips generating the turnstile lobes. We used this construction extensively
in §4.1 and §4.2. If, on the other hand, the manifold geometry is such that pppi <u kkki <u llli
these pips and their images under fff cannot be used to construct a sequence satisfying (14)
(a two-DHT version of such a geometry is shown in figure 19b). The lobes generated in this
case are responsible for a new mechanism which was shown to mediate transport through the
small eddy in §4.2 (see figure 12).

B Validity of the 2D Lagrangian analysis based on com-
putation of stable and unstable manifolds of hyper-
bolic trajectories in 3D fluid flows

When applying 2D Lagrangian transport analysis to an output of a 3D numerical ocean
model, a natural question arises as to the validity of such an approach. In what follows,
we assume that such velocity fields are defined over a finite time interval I ⊂ IR within a
grid of vertically stacked computational levels Ln ⊂ IR2, n = 1, 2, . . . , N . We determine
here conditions under which the knowledge of the time-dependent geometry of stable and
unstable manifolds of hyperbolic trajectories computed in a 2D horizontal slice of a 3D fluid
flow provides information on Lagrangian transport within a volume of the 3D flow. We
argue that structures obtained by a ‘vertical extension’ of the evolving stable and unstable
manifolds are approximately invariant within a layer whose thickness depends on the ratio
of the characteristic velocity within the 2D slice to the characteristic vertical shear of the
horizontal velocities in the neighbourhood of the considered 2D slice. The smaller the ratio
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(in the sense defined below), the thinner the layer within which such ‘vertical extensions’
of the 2D time-dependent analysis are justified. Conversely, if such a ratio is large the
2D analysis can be valid in a relatively thick layer of the 3D flow. Such time-dependent,
vertically extended manifolds do not, in general, coincide with stable and unstable manifolds
of hyperbolic trajectories of the full 3D flow. Nevertheless, they represent approximate
transport barriers within the corresponding layers.

B.1 Preliminaries

Consider first the following velocity field defined over a finite time interval I

vvv : IR3 × I → IR3,

vvv(x, y, z, t) =
(
u(x, y, t), v(x, y, t), w(x, y, z, t)

)
, (15)

where (x, y, z) ∈ IR3, t ∈ I ⊂ IR.
Trajectories of fluid parcels which evolve according to (15), are given by the solutions of

a) ẋ = u(x, y, t)

b) ẏ = v(x, y, t)

c) ż = w(x, y, z, t)

 (16)

Due to the particular functional form of the system (16), (16a-b) can be solved indepen-
dently of (16c)). Consequently, the solutions of (16) passing through xxx0 = (x0, y0, z0) at time
t = t0, are given by

ζζζ(t;xxx0, t0) =

[
ζζζh
(
t; (x0, y0), t0

)
ζv
(
t; (x0, y0, z0), t0

) ] , ζζζ(t0;xxx0, t0) = (xxx0, t0), (17)

where

ζζζ : I × IR3 × I → IR3, ζζζh : I × IR2 × I → IR2, ζv : I × IR3 × I → IR. (18)

Moreover, the solutions (17) of (16) can be embedded in the phase manifold P = IR3 × I
using a one-parameter family of evolution maps, {φτ}τ∈I , which are defined as

φτ : P → P, τ ∈ I,

φτ (xxx, t) =
(
ζζζ(τ,xxx, t), τ

)
, φt(xxx, t) = (xxx, t). (19)

Definition B.1 (Time slice of the phase manifold) A time slice of P at time t∗ is given by

St∗ = {(xxx, t) ∈ P : t = t∗}. (20)

B.2 Invariant manifolds of the system (16)

Consider now a differentiable manifold M embedded in P so that any point m ∈ M can
be represented by (xxxm, tm) ∈ P. The intersection of M with St∗ (i.e. the instantaneous
geometry of M) can be represented in IR3 as

Mt∗ = P(M∩St∗), (21)
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where the injective map P is defined as

P : P → IR3,

(xxx, t) 7→ xxx. (22)

Hereafter, we will refer to Mt∗ as the manifold snapshot at time t∗.

Definition B.2 (Invariant manifold) We say that a manifold M ↪→ P is invariant under
the evolution of the dynamical system

(P, {φτ}τ∈I) associated with (16) if

P
(
φτ (Mκ, κ)

)
=Mτ , (23)

for every s, τ ∈ I.

Consider now a time-ordered family of Cr (r > 1) curves

γγγt : IR→ IR2, t ∈ I, (24)

s 7→ γγγt(s), (25)

representing snapshots of an invariant manifold γγγ ↪→ IR2 × I of the 2D system (16a-b) (γγγt
denotes a curve at t parametrised by s). Similarly to (B.2), the invariance of γγγ with respect
to the family of maps {ϕτ}τ∈I given by

ϕτ : IR2 × I → IR2 × I,

ϕτ (x, y, t) =
(
ζζζh(τ, (x, y), t), τ

)
, (26)

implies that
P2D

(
ϕτ (γκγκγκ, κ)

)
= γτγτγτ , (27)

where

P2D : P2D → IR2,

(x, y, t) 7→ (x, y). (28)

We now show that, a manifold M ↪→ P whose 2D snapshots are given by

Mt = γγγt × IR, (29)

is invariant under the evolution induced by (16). In order to prove this, it is sufficient to
show that any vertical line, given by

Γt1 =
{

(x, y, z) ∈ IR3 : (x, y) = γγγt1(s), z ∈ IR}, (30)

where t = t1 and s are fixed, is mapped into a vertical line at time t = t2 under the evolution
of φt2 . This can be checked by explicitly evaluating P

(
φt2(·, t1)

)
at two arbitrary points of

Γt1 , say, pppi = (γγγt1(s), zi)T and pppii = (γγγt1(s), zii)T . These points are mapped at t = t2 to

p̃ppi = P
(
φt2(pppi, t1)

)
= ζζζ(t2, pppi, t1) =

[
ζζζh(t2, γγγt1(s), t1)

ζv(t2, pppi, t1)

]
, (31)

33



and

p̃ppii = P
(
φt2(pppii, t1)

)
= ζζζ(t2, pppii, t1) =

[
ζζζh(t2, γγγt1(s), t1)

ζv(t2, pppii, t1)

]
. (32)

Clearly, if pppi and pppii are contained in a vertical line Γt1 , the points p̃ppi and p̃ppii lie on a vertical
line

Γt2 = {(x, y, z) ∈ IR3 : (x, y) = ζζζh(t2, γγγt1(s), t1), z ∈ IR} (t1, s fixed). (33)

The consequences of this fact are two-fold:

(i) One can construct a one-parameter family of 2D manifolds {Ls}s∈IR whose snapshots
are given by the vertical lines

Lst = ζζζh(t,γγγt0(s), t0)× IR, (34)

and such that each Ls is invariant under the evolution induced by (16) (cf. Definition
2.1) In other words, the vertical line Lst1 at t = t1 is mapped under the evolution induced
by (15) onto a vertical line Lst2 at t = t2. Note that, depending on properties of ζv (18),
the vertical ordering of points on these lines may change during the evolution.

(ii) Given the ordered sequence of 1D snapshots {γγγt}t∈I (cf. (24)) representing the invariant
manifold of the restricted system (16a-b), the manifold whose snapshots are given by
Mt = γγγt × IR is an invariant manifold of the system (16). The 3D invariant manifold
M ↪→ P is additionally foliated by the 2D invariant manifolds Ls ↪→ P.

B.2.1 Finite-thickness layer

If the considered layer has a finite thickness

LH = {(x, y, z) ∈ IR3 : z ∈ [z∗ −H, z∗ +H]}, 0 < H <∞, (35)

some trajectories of the system (16) contained in the invariant manifolds Ls (see (34)) may
cross the boundary surfaces, z = z∗ − H or z = z∗ + H, during the forward or backward
evolution. Note, however, that the determination of the evolving geometry of M within LH
(i.e. M ↪→ LH × I) does not require the information about the flow beyond LH . Consider,
for example, a trajectory (3) contained in Ls in figure 20. Although it cannot be continued
within LH beyond t = t2, it can be replaced by another trajectory in the same fibre t2) since
only one trajectory in each fibre is needed to determine the geometry of each Mt.

B.3 General velocity field in Cartesian coordinates

Consider now a situation with an arbitrary (smooth and appropriately non-dimensionalised)
velocity field vvv(x, y, z, t) within a layer, LH (see 35). The dynamical system associated with
vvv is given by

a) ẋ = u(x, y, z, t),

b) ẏ = v(x, y, z, t),

c) ż = w(x, y, z, t),

 (x, y, z) ∈ LH ⊂ IR3. (36)

Consider now this system in the neighbourhood of z = z∗, which we can write as

a) ẋ = u(x, y, z∗, t) + hFu(x, y, h, t),

b) ẏ = v(x, y, z∗, t) + hFv(x, y, h, t),

c) ḣ = w(x, y, z∗ + h, t),

 , (x, y, z∗ + h) ∈ LH , (37)
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Figure 20: Schematic and simplified illustration of snapshots of an invariant manifold M obtained
by a ’vertical extension’ of an invariant manifold γγγ of the reduced system (16a-b) in the phase mani-
fold P = IR3 × I. Two manifold snapshots in a layer LH ⊂ IR3 are shown in grey and the snap-
shots γγγt are shown in red at two different times t1 and t2. The corresponding manifold snapshots
Mt = {(x, y, z) ∈ Ln ⊂ IR3 : (x, y) = γγγt, z ∈ Zn} at two different times are shaded. The invariant
manifoldM ↪→ LH × I is fibrated by the family of 2D manifolds Ls (cf. (34)). Intersections of one such fibre
with the snapshots Mt are given by the green vertical lines. Computation of the manifold snapshots Mt

can be continued beyond the time interval it takes a single trajectory to cross the layer. A trajectory which
leaves the layer can be replaced by another trajectory in the fibre (see (3) and (4) at t = t2) since only one
trajectory in each fibre is needed to determine the geometry of each Mt.

where

Fu(x, y, h, t; z∗) =
∂u(x, y, z, t)

∂z

∣∣
z=z∗

+O(h;x, y, t, z∗), (38)

Fv(x, y, h, t; z∗) =
∂v(x, y, z, t)

∂z

∣∣
z=z∗

+O(h;x, y, t; z∗). (39)

In (38) and (39), we symbolically represent the higher-order terms in the Taylor expansion
about z∗ by O(h;x, y, t, z∗).

We now assume that within LH , we have ε = H/K � 1 where

K = min
[

min
(x,y,z∗+s)∈LH , t∈I

[
u(x, y, z∗, t)
Fu(x, y, s, t)

]
, min
(x,y,z∗+s)∈LH , t∈I

[
v(x, y, z∗, t)
Fv(x, y, s, t)

]]
(40)

In order to highlight this assumption, we introduce ε as an ordering parameter in (37)
which leads to

a) ẋ = u(x, y, z∗, t) + εhFu(x, y, h, t)

b) ẏ = v(x, y, z∗, t) + εhFv(x, y, h, t)

c) ḣ = w(x, y, z∗ + h, t)

 , (x, y, z∗ + h) ∈ LH . (41)
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A remark is in order here. Clearly, K = 0 at any ISP (see §A.1) in the flow and the
assumption on the smallness of ε cannot be valid in a neighbourhood of an ISP (see also
figure 21). Analysis of the flow structure in the neighbourhood of such isolated points would
require a more involved Melnikov-type treatment, exploiting local analysis of invariant man-
ifold structure in the neighbourhood of such points.

If we now expand x, y and h in the asymptotic series in ε, i.e.

x = x(0) + εx(1) + ε2x(2) . . . (42)

y = y(0) + εy(1) + ε2y(2) . . . (43)

h = h(0) + εh(1) + ε2h(2) . . . , (44)

and substitute these into (41) we obtain (upon collecting like terms in powers of ε)

ε0 :


ẋ(0) = u(x(0), y(0), z∗, t),

ẏ(0) = v(x(0), y(0), z∗, t),

ḣ(0) = w(x, y, z∗ + h(0), t),

(45)

ε1 :


ẋ(1) = ∂u(x,y(0),z∗,t)

∂x

∣∣
x=x(0)x

(1) + ∂u(x(0),y,z∗,t)
∂y

∣∣
y=y(0)y

(1) + h(0)Fu(x(0), y(0), h(0), t),

ẏ(1) = ∂v(x,y(0),z∗,t)
∂x

∣∣
x=x(0)x

(1) + ∂v(x(0),y,z∗,t)
∂y

∣∣
y=y(0)y

(1) + h(0)Fv(x(0), y(0), h(0), t),

ḣ(1) = ∂w(x,y(0),z∗+h
(0),t)

∂x

∣∣
x=x(0)x

(1) + ∂w(x(0),y,z∗+h
(0),t)

∂y

∣∣
y=y(0)y

(1) + ∂w(x,y(0),z,t)
∂z

∣∣
z=z∗+h(0)h

(1),

(46)

ε2 : . . . (47)

Note that the leading order solution of (41), corresponding to (45), is given by (17).
Consequently, the manifolds Mt, defined in (29), remain invariant with respect to (45). As
long as we consider the dynamics within a layer LH such that H � K, the higher-order
solutions contribute to small (order ε) perturbations of the ‘vertical’ invariant structures
discussed in §B.2.

B.4 Spherical geometry

Many geophysical models, including DieCast are formulated in spherical coordinates rather
than Cartesian coordinates. We briefly outline here the main modifications to the conclusions
of the previous sections. Given the velocity field in spherical coordinates, i.e.

vvv(ϕ, ϑ, r, t) = uϕ(ϕ, ϑ, r, t)eeeϕ + uϑ(ϕ, ϑ, r, t)eeeϑ + ur(ϕ, ϑ, r, t)eeer (48)

within the layer LH = {(ϕ, ϑ, r) ∈ IR3 : r ∈ [r∗−H, r∗+H]}, the corresponding dynamical
system is given by

a) ϕ̇ =
uϕ(ϕ, ϑ, r, t)

r sinϑ

b) ϑ̇ =
uϑ(ϕ, ϑ, r, t)

r

c) ṙ = ur(ϕ, ϑ, r, t)

 (49)
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Figure 21: Typical example of the instantaneous values of K−1
uϕ and K−1

uϑ
which play a role (via (53)) in

determining the validity of the 2D analysis of the DieCAST output in the region examined in §4. These
values remain small, as desired, except for localised ‘spikes’ usually associated with the presence of ISPs.

If we consider the dynamics within a layer centered at r∗, the system (49) can be rewritten
as

a) ϕ̇ =
uϕ(ϕ, ϑ, r∗, t)

r∗ sinϑ
+ hFϕ(ϕ, ϑ, h, t)

b) ϑ̇ =
uϑ(ϕ, ϑ, r∗, t)

r∗
+ hFϑ(ϕ, ϑ, h, t)

c) ḣ = ur(ϕ, ϑ, r∗ + h, t)


(50)

where

Fϕ(ϕ, ϑ, h, t) =
1

r∗ sinϑ

(
∂uϕ(ϕ, ϑ, r, t)

∂r

∣∣
r=r∗

− uϕ(ϕ, ϑ, r∗, t)
r∗ sinϑ

+O(h;ϕ, ϑ, r∗, t)
)
, (51)

Fϑ(ϕ, ϑ, h, t) =
1
r∗

(
∂uϑ(ϕ, ϑ, r, t)

∂r

∣∣
r=r∗

− uϑ(ϕ, ϑ, r∗, t)
r∗

+O(h;ϕ, ϑ, r∗, t)
)
. (52)

Provided that H � K similar conclusions can be drawn as in §B.3 except that K is given in
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this case by

K = min
[

min
(ϕ,ϑ,r∗+h)∈LH , t∈I

Kuϕ
(ϕ, ϑ, r∗, t), min

(x,y,z∗+s)∈LH , t∈I
Kuϑ

(ϕ, ϑ, r∗, t)
]
. (53)

where

Kuϕ
=
uϕ(ϕ, ϑ, r∗, t)
Fϕ(ϕ, ϑ, s, t)

, Kuϑ
=
uϑ(ϕ, ϑ, r∗, t)
Fϑ(ϕ, ϑ, s, t)

. (54)

In figure 21 we show a typical example of the instantaneous fields corresponding to K−1
uϕ

(figure 21a) and K−1
uϑ

(figure 21b) in (53) computed in the layer L2, centered at 15.93m, where
the 2D computations in §4 were performed. The derivatives in Kuϕ and Kuϑ

were approxi-
mated by finite differences between layer L1 (centred at 5m) and L2 (centred at 15.93m) and
the higher order terms were not considered due to the lack of data on the neighbouring layers
(the DieCAST run we had access to stored data at six layers (Li, i = 1, 2, 7, 10, 17, 19) out of
the total of 30 computational layers.) Although not shown here, both K−1

uϕ
and K−1

uϑ
remain

small except localised and short lived spikes which are usually associated with the ISPs.
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