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ABSTRACT: When dielectric materials are brought into contact and then separated, 

they develop static electricity. For centuries, it has been assumed that such 

contact charging derives from the spatially homogeneous material properties (along the 

material’s surface), and that within a given pair of materials, one charges uniformly 

positively and the other, negatively. We demonstrate that this picture of contact charging is 

incorrect.  While each contact-electrified piece develops a net charge of either positive or 

negative polarity, each surface supports a random “mosaic” of oppositely charged regions 

of nanoscopic dimensions. These mosaics of surface charge have the same topological 

characteristics for different types of electrified dielectrics, and  accommodate significantly 

more charge per unit area than previously thought.  
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Contact electrification (1-3), which is the transfer of charge between two surfaces that 

are brought into contact and then separated, is one of the oldest areas of scientific study 

dating back to Thales of Miletus and his experiments with amber charging against wool (4). 

Although contact electrification has been successfully applied in several useful 

technologies (e.g., photocopying (5), laser printing (6), and electrostatic separations(7)) and 

chemical systems (8,9), remarkably little is known about the mechanism underlying this 

phenomenon, especially in non-elemental insulators (1,10-15). In this context, it is 

commonly assumed that (i) contact-charging derives from spatially homogeneous (on 

length-scales larger than molecular) surface properties of contacting materials (1-3, 16-20) 

and (ii) within a given pair of materials, one charges uniformly positively and the other, 

uniformly negatively (1,7,15,21-24) (Fig. 1A-upper right). These assumptions, however, 

make it difficult to explain numerous experimental observations whereby different particles 

made of the same bulk material (25) or even different macroscopic regions of the same 

sample (contact-charged (26,27) or probed using tips under bias (28, 29)) can exhibit 

different charging characteristics. Here, we show that contact-electrified non-elemental 

insulators are in reality random “mosaics” of positively (+) and negatively (-) charged 

regions of nanoscopic dimensions (Fig. 1A-lower right). These mosaics are universal in the  

sense as they comprise at least two characteristic length scales which are the same for 

different materials. The mosaics accommodate significantly more charge per unit area than 

previously estimated for contact electrification, but the overall/”net” charge on an 

electrified surface remains relatively small due to the “compensation” between the (+) and 

the (-) regions. In addition, the appearance of charge mosaics is accompanied by the 

changes in surface composition and by the transfer of material between the contacting 
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surfaces. Overall, our results indicate that contact electrification cannot be attributed to and 

predicted by the material’s homogeneous properties alone, as is often assumed when 

constructing the so-called triboelectric series (13, 30, 31). Instead, control of contact 

charging phenomena requires the control of the chemical and possibly micromechanical 

properties at and near the surfaces of the contacting polymers.  

The starting point of the present study is a recent observation that CE can occur between 

flat pieces of identical materials (32). According to the conventional view of contact 

electrification, this should not happen since the chemical potentials of the two 

surfaces/materials are identical and there is apparently no thermodynamic force to drive 

charge transfer. This scenario, however, assumes that CE is determined by the average 

compositions and properties of the materials (reflected in the chemical potentials) and 

completely neglects fluctuations from these averages. Indeed, a theoretical model 

accounting for these fluctuations can explain charging between identical materials 

assuming that each contacting surface is represented as a random “mosaic” of charge-

donating (D) and charge-accepting (A) regions and charge transfer occurs in places where 

D and A overlap during contact (see Fig. 1A-lower right and, for further details, Ref. (32)).  

While interesting in concept, the existence of charge mosaics has not been proven 

experimentally, even for the case of identical materials. Furthermore, it remains to be 

determined whether the mosaic picture is generalizable to contact-electrification between 

different insulators and, if so, on what scales the mosaics form. If the “mosaic” model were 

correct, then any contact-electrified surface should present itself as a union of (+) and (-) 

regions. 
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To test this hypothesis, we used the Kelvin Force Microscopy (KFM) to image surface 

potentials, , over various types of contact-electrified surfaces (e.g., polydimethylsiloxane, 

PDMS; polycarbonate, PC; polytetrafluoroethylene, PTFE; silicon; aluminum; see 

Supporting Online Material, SOM, Section 1). Concurrently, the overall/net charge on all 

the materials before and after electrification was measured using a Faraday cage connected 

to a high-precision electrometer (Keithley, 6517B). In all experiments, we verified that the 

results did not depend on (i) the time of contact (for times from 2 sec to 1.5 hrs), (ii) the 

pressure applied during contact (0.01 – 4.5 MPa) or (iii) the way in which the surfaces were 

separated (e.g., rapidly or slowly peeled off one another). We note that experiments using 

PDMS, in particular, rule out the possibility that uneven, “mosaic” charging would reflect 

imperfect contact between the surfaces (since PDMS is known to come into conformal 

contact with other polymers (33).  

Figures 1B-D shows typical KFM maps. In all cases, the surfaces were not charged 

before CE ( ~ 0; Fig. 1B). After contacting against other materials, however, the potential 

maps comprised a mosaic of (+) and (-) regions. Such maps were observed for all 

contacting materials (Figs. 1C and 1D), irrespective of whether the net charge was positive 

or negative, indicating that the mosaic charging is a generic feature of contact-electrified 

dielectrics. . As might be expected, the charges on the electrified pieces decayed with time 

after contact electrification. Figure 2A illustrates that the decay of the net charge follows, to 

a good approximation, first-order kinetics with the decay rate constants on the order of 

~ 10-3 s-1 similar to those recorded by others (34). This macroscopic decay originates from 

the discharging of the mosaics’ individual patches (Fig. 2B). Analysis of potential scans 



 

5 

such as those shown in Fig. 2C indicates that discharging is first-order in time with rate 

constants on the order of ~ 10-3 s-1 (i.e., of magnitude similar to ). Interestingly, 

the scans also reveal that charge does not migrate laterally within the electrified materials, 

such that the patches do no “blur” (see SOM, Section 2) and the geometric  structure of the 

mosaics is preserved during their discharge. In the absence of lateral charge mobility, 

discharge is likely due to the collisions of the polymer surface with the 

molecules/ions/particles contained in the surrounding air. The previously observed rates of 

discharge via this so-called “external decay” are similar to those we estimated (34, 35). 

Having established their presence, we investigated the geometric structure of the charge 

mosaics. To this end, we digitized the KFM potential maps into (+) and (-) regions (Fig. 

3A) and characterized the boundaries separating +/- regions by the profiles of the so-called 

local box counting (LBC) dimension. This dimension is defined as , 

where  is the minimum number of squares of size  needed to cover the boundary 

curve (Fig. 3B). It is well known that the profiles  can provide more insight into the 

geometric differences and similarities at various scales than the asymptotic definition of the 

BC dimension, , familiar from fractal geometry (36). Importantly, 

the analyses based on the LBC dimension lead to two major conclusions: (1) The 

profiles are similar for different materials studied and at different length scales of analysis 

(Fig. 3C) and (2) the mosaic patterns can be described as random scalar fields involving at 

least two spatial length scales. To verify the second conclusion, we generated various types 
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of multi-scale, random fields and compared their structure (i.e., ) with that of the 

experimental potentials obtained from the KFM scans. The random fields were generated 

by distributing white-noise fluctuations over a collection of independent meshes of 

different characteristic mesh-sizes  (see SOM, Section 3 for more details). None of the 

patterns involving only one fluctuation length scale (Fig. 3D) matched the profiles 

observed in experiments. On the other hand, good agreement was achieved using a random 

field comprising two fluctuation length scales (Fig. 3E). The best agreement corresponded 

to length scales σ1 = 0.45 m and σ2 = 0.044 m (red dotted line in Fig. 3C) – these length 

scales were similar for various types of electrified surfaces.  

The σ1 length scale of several hundreds of nanometers is clearly discernible in the 

potential maps in Figure 1. The smaller, σ2-scale regions within the larger patches can be 

resolved under high-resolution KFM (Fig. 4A), and the magnitudes of charges distributed 

over these regions can be estimated from the potential profiles. This is illustrated in Fig. 4B 

which shows a typical potential line-scan over two nearby regions of opposite polarities. 

Importantly, this experimental potential (and other scans similar to it) fits well to the 

potential calculated for a “dipole” of two oppositely charged surface “patches,” each 

containing ca. 500 elementary charges of the same polarity. Given that the size of the 

patches is in tens of nm, one can deduce the surface charge density of approximately one 

elementary charge per ~10 nm2, or on the order of C/cm2. We note that this value is 

significantly higher than the “net” surface charge densities measured by Faraday cup for 

macroscopic electrified polymers – typically, these values are in nC/cm2 range (32,37). We 

surmise, however, that there is no inconsistency here: While the small, individual islands 
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within the “mosaic” are highly charged, the total areas of all the “+” and “-” regions are 

similar (typically, within ~0.1% as determined from images like those in Fig. 3A), and so 

the charge “compensation” results in a relatively small net charge over larger areas. An 

important corollary is that in CE, more charges are being transferred than had previously 

been assumed based on the macroscopic charge densities – in other words, CE is not a 

“sparse” event affecting ca. one in ~ 10,000 surface groups, but a more probable event 

affecting ca. one in ~100 groups on the material’s surface.  

Of course, the above observations do not explain how and why the charge mosaics 

emerge. To gain at least some insights into the nature of this process, we performed a series 

of experiments using Confocal Raman Spectroscopy (CRS) and also X-ray Photoelectron 

Spectroscopy (XPS). The Raman spectra were recorded with spatial resolution down to 250 

nm (i.e., commensurate with the σ1 scale of the charge mosaics) and are summarized in Fig. 

5A and 5B. The two relevant observations we make is that contact electrification is 

accompanied by the changes in material’s composition near the surface (Fig. 5B; for the 

Raman spectra at different depth, see SOM, Section 4) and also by increased surface 

“patchiness” (Fig. 5A) resembling that of charged mosaics. In terms of composition, 

contact electrification gives rise to the increase in the intensity of signals that can be 

assigned (38-40) as oxidized species (e.g., for PDMS, SiCH2COOH with C=O band 

stretches at 1642 cm-1 and 1710-1730 cm-1, as well as carboxy or peroxy acids with  C=O 

bands between  1730-1830 cm-1). Interestingly, in previous works on the degradation of 

elastomers (such as PDMS used here) (39), it has been demonstrated that these oxidized 

species form as a result of homolytic and heterolytic bond-breaking and subsequent 

reaction with atmospheric oxygen and/or water. In the context of our present studies, these 
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findings suggest that contact charging might involve heterolytic bond breaking and, if so, 

the emergence of the charge mosaics could be related to the transfer of charged material 

“patches” between the contacting materials. This hypothesis of material transfer during 

contact electrification of dielectrics has been considered for a long time (41,42) albeit has 

not been universally accepted. Our XPS studies on pairs of polymers that feature distinct 

elemental peaks confirm the presence of material transfer. One especially convenient pair 

to study is PDMS (containing Si but not F) and PTFE (containing F but not Si). The spectra 

in Figures 5C and 5D show that upon contact, the F 1s signal at 690 eV appears in the 

spectrum of PDMS, while distinct Si 2p at 102.5 eV and O 1s at 533 eV peaks appear in the 

spectrum of PTFE (the intensities of these peaks also increase with the number of polymer-

polymer contacts). These and other measurements (see SOM, Section 5 for the XPS of 

PDMS/PC and PDMS/PMMA pairs) indicate that contact electrification is, indeed, 

accompanied by material transfer.  

A picture that then emerges is that contact-electrification is a complex process involving 

a combination of, at least, bond cleavage, chemical changes, and material transfer occurring 

within distinct patches of nanoscopic dimensions. The exact relationship between these 

effects – and possibly also those due to the presence of surface water (15) and local electric 

fields (43) – remains unclear but prompts several intriguing questions for future research 

(e.g., How is charge polarity related to the types of bonds broken in given regions? Does 

the mechanics of material transfer determine the length-scale of the mosaics?). 

Understanding these and other effects will require implementation of experimental 

techniques that could probe the changes in local material properties of the dielectrics with 

molecular–scale resolution. Finally, in light of our findings, it becomes clear why previous 
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attempts to construct the so-called triboelectric series based on the “average” material 

properties (30,31) often gave ambiguous results – in reality, it is the nanostructure of the 

material’s surface and the fluctuations in this structure that determine the macroscopically 

observed charging trends. 
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Fig. 1. Possible scenarios of contact electrification and experimental KFM surface 

potential maps. The traditional view in (A, upper right) assumes that upon contact and 

separation, one surface charges uniformly positively and the other, uniformly negatively. In 

contrast, the mosaic picture in (A, lower right) assumes that each surface is a union of 

regions that have different propensities to accept or donate charge. Upon contact charging, 

these regions are then expected to develop different charge polarities. The mosaic picture of 

contact electrification is validated by the potential maps shown in (B)-(D). The map in (B) 

corresponds to PDMS before contact electrification. Such approximately uniform profiles 

were also observed for other “native” materials tested. In contrast, contact charged surfaces 

in (C) and (D) feature a “mosaic” of (+) and (-) regions. (C) PDMS charged negatively 

against another PDMS piece, (D) PC contact-charged positively against PDMS. The left 

column has 2D projections of the maps; on the right, the corresponding 3D maps are 

displayed. Color scale is adjusted to -1 V to 1 V in all images. Net surface charge densities 

on the contact-charged pieces (measured by Faraday cup prior to KFM measurements) were 
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A) 0.005, B) -0.20, and C) 0.16 nC/cm2. All images have scan area of 4.5 m × 4.5 m; 

scale bars correspond to 500 nm. 
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Figure 2. Kinetics of mosaic’s discharge.  (A) The magnitudes of the net charges 

(measured by a Faraday cup) on the negatively (gray circles) or the positively (black 

triangles) charged PDMS pieces decay with time. The decay rate constants, , are 

determined from the slopes of the semi-logarithmic plots in the inset and are ~1×10-3 s-1 

for PDMS(+) and ~0.9×10-3 s-1 for PDMS (-). Similar magnitudes of the rate constants 

are observed for different types of contact-charged materials. (B) Typical KFM maps of a 

polymer (here, PDMS) before charging (t = 0 s), immediately after charging (t = 3000 s), 

and at two longer times t = 5000 and 8000 sec, when the charge within the mosaic 

dissipates. Discharge within the mosaics can be quantified from the line scans taken across 

the potential maps. In the example maps (C), the dashed lines correspond to the line scans 

in (D). Scale bar in C represents 1 µm. These potential profiles are related to surface charge 

densities and their evolution is modelled as first-order decay (see SOM, Section 2), with the 

decay rate constant ~10-3 s-1. Lateral migration of charge is found negligible (with effective 

diffusion constant D < 1× 10-16 m2/s) 
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Fig. 3. Geometric universality of charge “mosaics”. (A) A typical experimental KFM scan 
of electrostatic potential and the corresponding digitized map (“boundary set”) delineating 
regions of positive and negative potentials. (B) Illustrates calculation of the local box 
counting (LBC) dimension of a potential map whereby the “wiggly” lines correspond to the 
boundaries between (+) and (-) regions. The map is covered by grids of different box sizes 
(here, � = 1,2,4). Next, for a given � , the number of boxes, N(�), through which the 
wiggly lines/boundaries are passing is calculated – in the figure, these boxes are shaded in 

light pink. Finally, LBC dimension is calculated as . Plotting it for 

different values of �  (in experimental KFM maps ε = 1 pixel to ε = 1024 pixels, scan area 
4.5 �m × 4.5 �m) yields profiles such as those in (C). (C) LBC profiles for boundary sets 
from different KFM scans and a modeled profile corresponding to a two-scale random field 
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(�1=0.45 �m and �2=0.044 �m; dotted red line). (D) Image of a random field with a 
single scale of fluctuations, � and (E) of a field with two spatial fluctuation scales �1=0.45 
�m and �2 =0.044 �m corresponding to the modeled LBC profile in (C)). 
 
 
 
 
 
 

 
 

Fig 4. Deducing charge density within the mosaic’s islands from high-resolution KFM 

scans of an electrified surface. (A) A typical KFM potential map (here, PDMS charged 

against PDMS); white line corresponds to the line over which the potential profile in (B) 

was taken (black line). Red, dotted curve in (B) gives a potential profile calculated above 

(at ~ 100 nm, corresponding to the elevation of the KFM tip) a plane presenting two 

oppositely charged, nearby “islands”. Theoretical potential fits the experimental profile 

assuming that each of the nanoscopic islands comprises ca. 500 elementary charges 

(corresponding to surface charge ~ C/cm2). Scale bar in (A) corresponds to 100 nm. 
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Fig. 5. The microscopic basis of charged mosaics. (A) Confocal Raman microscopy 

images of (left) an uncharged PDMS piece (using a gold coated silicon wafer as 

background); (middle) positively charged and (right) negatively charged PDMS pieces 

contact-charged against one another  (in both cases, uncharged PDMS piece was taken as a 

background). Scale bars =2 m. (B) Total Raman spectra (R= Raman Intensity) of the 

regions mapped in (A). The peaks at 1642 cm-1  and 1710-1730 cm-1 for SiCH2COOH 

(marked with  “*”), and between 1730-1830 cm-1 for SiCOOH and RCOOOH where R=Si 

or C (marked with “+”) (38-40) increase in comparison to the non-contacted piece thus 



 

20 

indicating chemical modifications occurring upon contact charging. These modifications 

are accompanied by material transfer, as evidenced by the XPS spectra of a PTFE/PDMS 

pair in (C) and (D). Insets showing the high resolution spectra demonstrate transfer of 

PTFE onto PDMS (appearance of F 1s peak at 690 eV) and of PDMS onto PTFE. 

(appearance of Si 2p at 102.5 eV and O 1s at 533 eV peaks).
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Section 1. Further experimental details. The materials used in most of our experiments 

were aluminum foil (purchased from VWR international), polytetrafluoroethylene (PTFE, 

from McMaster-Carr, CAT# 8545K26), polycarbonate (PC, from McMaster-Carr, CAT# 

8574K172) and poly(dimethylsiloxane) (PDMS). PDMS was prepared by mixing a 

degassed elastomer base and a crosslinker in a 10:1 w/w ratio (Sylgard 184, Dow Corning). 

Prepolymer mixture was cast on an atomically flat [100] silicon wafer (Montco Silicon 

Technologies, Inc.), silanized with 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane and was 

cured at 65 oC for 24 h. After curing the prepolymer, the PDMS pieces (ca. 1cm × 1cm × 

0.4cm) were gently peeled off the wafer.  



 

22 

Prior to contact-charging, pieces of all materials were left to discharge for at least 

24 hrs under argon. The electroneutrality (i.e., lack of any detectable net charge) of all 

materials was confirmed by (1) measurements using a house-made Faraday cup connected 

to a high precision electrometer (Keithley Instruments, model 6517B). Only pieces with 

charge densities below the electrometer’s detection limit <0.005 nC/cm2, were considered 

to be neutral (vs. densities above 0.1-0.2 nC/cm2 after charging) and used in further 

experiments; (2) KFM potential imaging; here neutrality was assumed if the highest 

potential on the scanned surface did not exceed 10 mV (vs. > 500 mV for electrified 

pieces).  

All experiments were performed under ambient conditions (typically, temperature ~22 oC, 

relative humidity ~24 %). The Faraday cup was also used to measure net charges on the 

contact-electrified materials. 

KFM measurements were performed on a Veeco Dimension Icon Scanning Probe 

Microscope. Pt/Ir coated tips (SCM-PIT) were purchased from Veeco Probes (tip radius 

curvature ≤ 20 nm, spring constant 2.8 N/m, and resonant frequency of 75 kHz). Raman 

confocal microscopy was performed on Nanophoton Raman 11 microscope with pixel 

resolution of 250 nm × 250 nm. X-ray photoelectron spectroscopy (XPS) analyses were 

performed with an Omicron ESCA probe, which was equipped with EA125 energy 

analyzer. Photoemission was stimulated by a monochromatic Al K alpha radiation (1486.6 

eV) with the operating power of 300 W. Survey scan and high-resolution scan were 

collected using pass energies of 70 and 26 eV, respectively. Analyzer substrate angel was 
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45o. Binding energies of spectra were referenced to the C 1s binding energy set at 285 eV. 

At least 3 different measurements were performed for each sample.  

 

Section 2. Modeling the discharging of the mosaics.  

Gradual decay of charge from the mosaic’s patches can be modeled based on the potential 

profiles such as those shown in Figures 2C and 2D in the main text. In general, charge 

dissipation can be due to the so-called “external decay” via collisions with molecules in the 

surrounding atmosphere, or due to the “lateral” charge migration in the plane of the support 

(with concomitant “neutralization” of charges of opposite polarities) (35). Noting that the 

potentials recorded by the KFM instrument are proportional to the surface charge densities, 

q (J.W. Hong, S.-i. Park, Z.G. Kim, Rev. Sci. Instr.  70, 1735-1739, 1999), a simple model 

accounting for both modes of charge decay can be written in terms of reaction-diffusion 

equations: 

 

In these equations, positive and negative charge densities  are denoted by and , 

respectively, D+ and D- stand for the effective diffusion coefficients of charges (charge 

transport in dielectrics has been demonstrated as diffusive in previous works (D. Mandler, 

P.R. Unwin, J. Phys. Chem. B., 107, 407-410, 2003; Y. Hori, Journal of Electrostatics, 48, 

127-143, 2000), kd’s are the rates of external discharge, kn represents the rate of (rapid) 

charge neutralization when the charges of the opposite polarities are found at the same 
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location, and x = [0,L] is the domain of the problem corresponding to the directions along 

which the scans in Figs. 2C,D are taken. For different values of the parameters listed above 

and for appropriate initial and boundary conditions (e.g., symmetric boundary conditions at 

the ends of the domain;  and , where L = 2 µm), these 

equations can be integrated numerically (here, using finite element method implemented 

with Comsol Multiphysics software).  

First, we consider the case when charge mobility is appreciable. A typical situation is 

then illustrated in Fig. S1A and S1B, which shows the evolution of a charge profile 

between two nearby, oppositely charged patches. Initially, in Fig. S1A, the left patch is 

charged positively (red), and the right patch is charged negatively (blue). After integrating 

the RD equations for times commensurate with the experimental conditions (thousands of 

seconds, cf. Fig. 2C in the main text), the profiles change. If the diffusion coefficient is 

appreciable (D+ and/or D-  > ~ 10-16 m2/s), the profiles not only decay in magnitude but also 

characteristically “broaden” while the position of the “zero”– indicated by the arrows in 

Fig. S1 – changes. This situation corresponds to the charged patches becoming blurry as 

they discharge. In sharp contrast, when the values of D’s are smaller (Fig. S1C), the 

profiles broaden much less and the position of the “zero” is virtually unchanged. 

Comparing with the experimental profiles in Fig. 2D where the positions of the “zero” are 

not changing with time, we conclude that in our experiments, lateral charge mobility is 

negligible. 
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Figure S1. Evolution of charge profiles starts from the initial conditions in (A). In (B), the 

charge mobility is relatively large (here, D = 2× 10-16 m2/s), the profile decays and broadens 

with time, and its  “zero” moves to ~1.5 µm. In (C), charge mobility is significantly lower 

(D = 1× 10-18 m2/s), broadening is much less pronounced, and the position of the “zero” 

hardly changes. In both cases, the integration times were 2100 sec and the particular kinetic 

rates were taken as s-1 and kn = 1 × 104 m2/C·s. The general conclusions, 

however, do not depend on these kinetic parameters which control the “vertical” decay of 

charge, not lateral mobility.  

 

Given  the negligible role of lateral charge mobility, the RD equations can be simplified to 

simple O.D.E.s and which, in conjunction with data such as that 

in Fig. 2D,  can be used to fit kinetic rate constants describing discharging of the (+) and (-) 

patches. This procedures yield the values of ~  ~ 10-3 s-1, which agree with the 

“macroscopic” decay rate constants (cf. Fig. 2A).  
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Section 3. LBC profiles of experimental and simulated surface charge distributions.  

The LBC profiles of the boundaries separating the (+) and (-) regions in the surface 

potential KFM scans are shown in Fig. 3C in the main text. In this Section, we compare 

these results with LBC profiles obtained for various types of computer-generated potentials 

which contain random  fluctuations introduced at a hierarchy of spatial scales (technically 

speaking, these synthetic potentials are realized by the so-called “smooth random scalar 

fields”). 

 Given the scan area D, the random fields used for constructing the synthetic potential 

are generated by first choosing a family of square meshes covering D and having different 

periodicities/mesh sizes ,  where k belongs to an ordered set of real numbers such that  

 is  the coarsest mesh and is the finest mesh.  Then, for each mesh in this family, 

every grid point is assigned a z-component of magnitude drawn randomly from a  Gaussian 

distribution with zero mean and variance one. The random z-components assigned to the 

points of each mesh are chosen independently and are statistically uncorrelated. 

Consequently, the distance between the neighboring points in each mesh can be associated 

with a scale of fluctuations. If only a single fluctuation scale is present, it can be thought of 

as the characteristic island size. The synthetic potential with a number of different 

fluctuation scales is generated by a superposition of  random fields constructed for each 

mesh in the family. 

 The LBC profiles (cf. caption to Fig. 3B in the main text) computed for such random 

fields with a single fluctuation scale do not agree with those obtained for the experimental 

scans. In the examples shown in Fig. S2A-C, the synthetic potentials were obtained by 

generating random fluctuations at points of a single mesh with periodicity  for k = 2, 3, 
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5, and 20 pixels; the mesh used for analysis contains 1024 × 1024 pixels. Varying the 

fluctuation scale (i.e., the mesh size ) results in an overall shift of the synthetic LBC 

profiles but it has little effect on their slope, which remains steeper than for the LBC 

profiles measured for the experimental potentials. The observed shift of the LBC profiles 

merely indicates that for a decreasing scale of fluctuations in the examined potentials, a 

smaller box size has to be used in the LBC measure in order to detect the structural details 

of the boundary set. 

 In contrast, we find that experimental LBC profiles agree with synthetic profiles 

incorporating two different length scales  and . The structure of the mosaics recorded 

by KFM is best reproduced (in the LBC sense) for synthetic fields with  pixels 

(0.45 m) and pixels (0.044 m), as illustrated in Fig. S2D-F. 
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Fig. S2. (A-B) Examples of simulated random fields with single fluctuation scale , their 

zero level sets (i.e., boundaries between the “+” and “-“ regions) and (C) corresponding 

profiles of LBC. Single-scale random fields cannot reproduce the experimental potential 

structure (black curve), (D-F) Comparison between LBC profile obtained from a random 

field with two spatial fluctuation scales and the experimental KFM scans. The experimental 

LBC profiles are the same as in Fig. 3 in the main text and the best agreement is obtained 

from a simulated random field with 1=110 pixels (about 0.45 m) and 1=10 pixels (about 

0.044 m). 
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Section 4. Additional Raman spectra at different depths. 

 

Fig S3. Total Raman spectra of a negatively charged PDMS piece contact-charged against 

another PDMS piece. The region shaded in pink contains peaks at 1642 cm-1  and 1710-

1730 cm1  (SiCH2COOH) and between 1730-1830 cm-1 (RCOOH and RCOOOH, where 

R=Si or C) characteristic of compositional changes due to contact electrification. The 

intensity of these peaks decreases as the scan depth is increased from 50 nm to 2.0 m, 

confirming that contact-electrification affects predominantly the layer of the material near 

the surface – this observation agrees with multiple other studies on contact-electrification 

(16-19).  
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Section 5. Additional XPS spectra demonstrating material transfer. 

 

 

Fig. S4. XPS spectra of (A) PDMS/PC and (B) PDMS/PMMA after contact electrification. 

Transferred of PDMS onto PC and PMMA is evidenced by the appearance of a 

characteristic Si 2p peak at at 102.5 eV.  

 

 


