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Abstract

Players repeatedly face a coordination problem in a dynamic global game. By choos-
ing a risky action (invest) instead of waiting, players risk instantaneous losses as well as
a loss of payoffs from future stages, in which they cannot participate if they go bankrupt.
Thus, the total strategic risk associated with investment in a particular stage depends
on the expected continuation payoff. High continuation payoff makes investment today
more risky and therefore harder to coordinate on, which decreases today’s payoff. Thus,
expectation of successful coordination tomorrow undermines successful coordination to-
day, which leads to fluctuations of equilibrium behavior even if the underlying economic
fundamentals happen to be the same across the rounds. The dynamic game inherits the
equilibrium uniqueness of the underlying static global game.
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version of the manuscript. The usual disclaimer applies.

†School of Economics, University of Edinburgh, William Robertson Building, 50 George Square, Edinburgh
EH8 9JY, jakub.steiner@ed.ac.uk., tel. +441316513008. Author’s second affiliation is CERGE-EI in Prague.

1



1 Introduction

Strategic complementarities resulting in multiple equilibria are common in many

economic situations.1 Models with multiple equilibria and self-fulfilling beliefs

have been suggested to explain sudden shifts of the economy from one state to

another, but the weakness of early coordination models was their reduced pre-

dictive power. Without an additional selection principle, they could not discrim-

inate among multiple equilibria, and thus such models severed the natural link

between fundamentals and economic outcomes; see concluding remarks in Mat-

suyama (1991) for discussion of pros and cons of models with multiple equilibria.

The global games literature, originating in Carlsson and van Damme (1993) filled

the gap by showing that the multiplicity of equilibria in coordination games with

complementarities is a peculiar consequence of an unrealistic assumption that the

underlying economic fundamental is common knowledge. If observation of the fun-

damental is noisy, the multiplicity of equilibria is eliminated and the fundamental

fully determines economic activity.

In static global games models, economic outcomes change only if the funda-

mental changes (possibly by a small amount). Thus although the global games

framework solves the indeterminacy due to self-fulfilling beliefs, it leaves no place

for endogenous fluctuations unconnected to the evolution of the underlying fun-

damentals, and hence it misses some of the attractive features of the older models

based on self-fulfilling beliefs.

Some dynamic global games allow for a partial separation between the current

economic fundamental and behavior — equilibrium behavior may differ across two

rounds even if the fundamentals in these rounds are identical. The obvious reason

is that, in dynamic models, the current fundamental is not a complete description

of the economic environment; past or future rounds influence behavior as well.

However, we are unaware of a dynamic global game that would allow for fully

endogenous cycles. The change in behavior is always triggered by a change in

the fundamental, which is exogenous. See Section 4 for a detailed review of the

dynamic global game literature.

1Complementarities have been used to model search (Diamond, 1982); bank runs (Diamond and Dybvig,
1983); currency attacks (Obstfeld, 1996); or business cycles ( Benhabib and Farmer, 1994). Cooper (1999)
provides a survey of coordination problems in macroeconomics.
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The dynamic link among the coordination problems in the model at hand is

that each player, by her current action, influences not only her instantaneous pay-

off, but also her future participation in the game. For instance, a risky investment

influences not only the instantaneous profit, but also investor’s ability to partic-

ipate in future projects: unsuccessful investment can lead to bankruptcy. Fear

of bankruptcy may motivate an investor not to invest, especially in the days just

before an expected boom. The amount of strategic risk associated with invest-

ment depends on the expected equilibrium outcome in the near future. It is higher

before a boom than before a slump, and this negative link between tomorrow’s

and today’s coordination leads to endogenous fluctuations of investment that will

never converge to a steady state.

The model at hand inherits equilibrium uniqueness from the underlying static

global game. Equilibrium behavior in each round is determined by an equilibrium

threshold; players invest only if the current fundamental exceeds the threshold,

and otherwise they wait. The thresholds, although uniquely determined, differ

across periods. This can be interpreted as fluctuations of market sentiments;

crises occur when these sentiments are too pessimistic — thresholds are too high

— compared to the realized fundamentals. The model combines the equilibrium

uniqueness of global games with the cyclicality of strategic delay models which

analyze situations when players are motivated to delay investment to match the

timing of others’ investments. (e.g. Shleifer, 1986; Gale, 1995).

We introduce the basic model in an abstract setup in Section 2. To illustrate the

economic intuition behind the main result, we apply the model to three economic

problems in Section 3. We compare the model with other dynamic global games

in Section 4. Section 5 covers certain technical generalizations of the basic model

and Section 6 concludes.

2 The Basic Game

2.1 The Model

A continuum of players interacts in a sequence of coordination problems. Player

i ∈ [0, 1] chooses action ai ∈ {0, 1} in each round t ∈ {1, . . . , T}; we briefly discuss
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infinite horizon at the end of 2.3. We will refer to action 1 as investing and to

action 0 as waiting. The instantaneous payoff ui
t of player i in round t is ui

t = 0 if

she waits and ui
t = τ i

t π(θt, lt) if she invests, where τ i
t ≥ 0 is the degree of player i’s

involvement in the game at round t, θt is the economic fundamental at t, and lt

is the measure of players investing at t. Players maximize the sum of discounted

instantaneous payoffs
∑T

t=1 δtui
t.

The fundamentals θt are i.i.d. random variables with twice continuously differ-

entiable c.d.f. Φ(·) on the real line. We relax the assumption of i.i.d. fundamentals

in Section 5.1. Players observe fundamentals with an error. Each player receives

in each round t a private signal xi
t = θt + σεi

t, where the idiosyncratic errors εi
t are

independent across players and rounds and drawn from a continuous p.d.f. f(·)

with support on the real line. We will be interested in the equilibrium of the game

in the limit as the size of the noise σ → 0.

For the moment, let us keep the involvement levels τ i
t fixed. We call the

simultaneous move game with the set of players I = [0, 1], action sets Ai = {0, 1},

payoff function π(θ, l), and the informational structure described above, the static

stage game. We assume that the static stage game is a global game satisfying the

following assumptions taken from Morris and Shin (2003):

A1 Action Monotonicity: π(θ, l) is weakly increasing in l.

A2 State Monotonicity: π(θ, l) is weakly increasing in θ.

A3 Strict Laplacian State Monotonicity:
∫ 1

0
π(θ, l)dl strictly increases in θ.2

A4 Uniform Limit Dominance: There exist θ ∈ R ∪ {−∞,∞} and θ ∈ R ∪

{−∞,∞} and ε > 0 such that 1. π(θ, l) < −ε for all l ∈ [0, 1] and θ < θ and 2.

π(θ, l) > ε for all l ∈ [0, 1] and θ > θ.3

A5 Continuity:
∫ 1

0
g(l)π(θ, l)dl is continuous with respect to θ and densities g(·).

A6 Finite Expectations of Signals: E[z] =
∫

∞

−∞
zf(z)dz is well-defined.

Each static stage game, if treated in isolation, is an identical coordination

problem which has under complete information (for large set of fundamentals) two

pure strategy equilibria in which either all or no players invest. The incomplete

2We use a slightly stronger version than Morris and Shin (2003), who only require that
∫ 1

0
π(θ, l)dl = 0

has a unique solution.
3This is a slightly weaker version of the original assumption in Morris and Shin (2003). By allowing θ and

θ to be ±∞, we admit also games in which one of the action is strictly dominant, and hence the solution is
trivial.
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information structure transforms the game into a global game which, in the limit

σ → 0, has a unique equilibrium characterized by a threshold signal above which

players invest and below which they wait, see Proposition 2.2 in Morris and Shin

(2003).

The dynamic link among different stage games is that the involvement τ i
t is

endogenous: τ i
1 is normalized to 1, and values in later rounds are defined recursively

by τ i
t+1 = τ i

t b(a
i
t, θt, lt), with 0 ≤ b(ai

t, θt, lt). While we focus on economic situations

where current activity “wears out” the player’s involvement, b(ai
t, θt, lt) ≤ 1, it is

not a necessary condition for Proposition 1. Define ρ(θ, l) = b(1, θ, l) − b(0, θ, l)

and let it satisfy the following three assumptions:

A7 ρ(θ, l) is weakly increasing in l.

A8 ρ(θ, l) is weakly increasing in θ.

A9
∫ 1

0
g(l)ρ(θ, l)dl is continuous with respect to θ and densities g(·).

High involvement is beneficial to players because the possibility of waiting

ensures that the payoff 0 is always available. Thus investors benefit from high

θt and lt twice, through increases not only in the current profit, but also in the

involvement in future rounds.

An example of a setup satisfying A7–A9 is a situation with players constrained

only to one investment, b(1, θ, l) ≡ 0, b(0, θ, l) ≡ 1. As an alternative example,

players are allowed to invest many times, but investing players may go bankrupt

with a probability that decreases in the instantaneous payoff; that is, b(1, θ, l) ≡

r(π(θ, l)) with 0 ≤ r(·) ≤ 1 increasing, and b(0, θ, l) ≡ 1. In the latter example

τ i
t+1 is expected involvement, because bankruptcy is a random event.

The measure of players is kept constant across rounds; we assume that players

who disappear from play are replaced by new entrants. This assumption is re-

moved in Section 5.2. Finally, we assume a joint condition on the instantaneous

payoff function π(·, ·) and the continuation function ρ(·, ·):

A10 π̃(θ, l) ≡ π(θ, l) + δρ(θ, l)V satisfies the uniform limit dominance condition

for all V > 0.

A sufficient condition for A10 to hold is that limθ→+∞ π(θ, 0) = +∞ and

limθ→−∞ π(θ, 1) = −∞.4 Another sufficient condition is that ρ(θ, l) ≥ 0 for θ

4This is satisfied by the commonly used payoff function π(θ, l) = θ − 1 + l.
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above some θ and ρ(θ, l) ≤ 0 below some θ.5

The information set of player i at t is

I i
t = {xi

1, . . . , x
i
t, θ1, . . . , θt−1, l1, . . . , lt−1, a

i
1, . . . , a

i
t−1}

. A pure strategy s = {s1, . . . , sT} is a sequence of functions that assigns to

each path of information sets {I i
1, . . . , I

i
T} a path of actions {s1(I

i
1), . . . , sT (I i

T )}.

However, as shown below, the equilibrium strategy has a simpler structure; the

equilibrium action depends only on the current signal xi
t.

2.2 The Solution

The interaction in the last round T is a static stage game, and thus it is a global

game solvable by proposition 2.2 in Morris and Shin (2003). The unique strategy

surviving iterated elimination of dominated strategies in the limit σ → 0 is a

threshold strategy:

s∗T (x) =

{

1 if x > θ∗T ,

0 if x < θ∗T ,

with the threshold θ∗T such that s∗T (·) is the best response to the belief according to

which the measure lT of investing players is distributed uniformly on [0, 1]. Morris

and Shin (2003) “dub such beliefs ... as being Laplacian, following Laplace’s

(1824) suggestion that one should apply a uniform prior to unknown events from

the principle of insufficient reason.” Such beliefs arise endogenously in global

games for a player observing the threshold signal.

Given Laplacian beliefs, the threshold θ∗T is the indifference point solving

∫ 1

0

π(θ∗T , l)dl = 0,

which has a unique solution by A3.

Knowing the equilibrium strategy of the final stage game, we can compute

the expected profit τ iVT . In the limit σ → 0, all players invest if and only if

5This is satisfied by the payoff functions in applications 3.1 and 3.2.
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the fundamental θT > θ∗T . In that case lT = 1 and all receive τ i
T [π(θT , 1) +

b(1, θT , 1)VT+1] where VT+1 = 0 as the game does not continue beyond the round

T . If θT < θ∗T all players wait and receive τ i
T VT+1 ≡ 0. Thus we have

VT =

∫ θ∗
T

−∞

[

δb(0, θ, 0) × VT+1

]

dΦ(θ) +

∫ +∞

θ∗
T

[

π(θ, 1) + δb(1, θ, 1) × VT+1

]

dΦ(θ).

The stage game at T − 1 is again a static coordination problem but, in con-

trast to stage T , players also influence the continuation payoff at T by influ-

encing τ i
T . The reduced payoff at T − 1 is b(0, θT−1, lT−1)VT for waiting, and

π(θT−1, lT−1) + b(1, θT−1, lT−1)VT for investing. We will refer to this interaction as

the modified stage game. Its equilibrium is determined by the payoff differential

between investing and waiting: π̃T−1(θ, l) = π(θ, l) + δρ(θ, l)VT .

The payoff differential π̃T−1(·, ·) satisfies all of the assumptions of Proposition

2.2 in Morris and Shin (2003): 1. Action monotonicity is implied by A1 and

A7. 2. State monotonicity is implied by A2 and A8. 3. Strict Laplacian state

monotonicity is implied by A3 and A8. 4. Uniform limit dominance is assumed

in A10. 5. Continuity is implied by A5 and A9. 6. Finite expectation of signals

is assumed in A6.

The threshold at T −1 is again an indifference point of a player with Laplacian

beliefs; it solves
∫ 1

0
π̃T−1(θ

∗

T−1, l)dl = 0 and we can continue to solve earlier rounds.

Proposition 1. For any ε > 0, there exists σ such that for all σ < σ, if strategy s

survives iterated elimination of dominated strategies in the game Γσ, then st(xt) =

0 for all xt ≤ θ∗t − ε and st(xt) = 1 for all xt ≥ θ∗t + ε for all t ∈ {1, . . . , T}, where

θ∗t ≡ ϑ(Vt+1) is the unique solution to

∫ 1

0

[

π(θ∗t , l) + δρ(θ∗t , l)Vt+1

]

dl = 0 (1)

and Vt is detemined recursively by

Vt = G(Vt+1) ≡

∫ ϑ(Vt+1)

−∞

δb(0, θ, 0)Vt+1dΦ(θ)+

∫ +∞

ϑ(Vt+1)

[

π(θ, 1)+δb(1, θ, 1)Vt+1

]

dΦ(θ),

(2)

together with the boundary condition VT+1 = 0.
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Proof. Follows from the text above and from Proposition 2.2. in Morris and Shin

(2003).

2.3 Evolution of Thresholds

The thresholds are a function of the expected continuation values, θ∗t = ϑ(Vt+1).

Thus the equilibrium is fully determined by the continuation values Vt which evolve

according to the mapping Vt = G(Vt+1). The long-run behavior of the system is

determined by the fixed points of G(·) and their stability. For many setups, the

mapping G(·) has a unique, unstable fixed point, in which case the thresholds

necessarily fluctuate and the system never converges to a steady state.

For instance, consider payoff π(θ, l) = θ − 1 + l and let each player invest only

once, b(1, θ, l) = 0, b(0, θ, l) = 1. The equations (1) and (2) simplify into

θ∗t = ϑ(Vt+1) =
1

2
+ δVt+1,

Vt = G(Vt+1) = δVt+1Φ

(

1

2
+ δVt+1

)

+

∫ +∞

1

2
+δVt+1

θdΦ(θ).

Let us plot a qualitative picture of the mapping G(·). An increase in Vt+1 has

two effects on Vt. The direct effect is positive: if the realization of θt happens

to be low and players wait, then they receive a higher continuation payoff δVt+1.

However, the strategic effect is negative: the threshold θ∗t increases because players

have more to lose by investing if Vt+1 is high. This decreases Vt because the

players coordinate on investing at t less often. The relative size of the two effects

depends on Vt+1. Let us, qualitatively, distinguish three regions of Vt+1 given the

distribution of fundamentals as on Figure 1.

1. A very low value of Vt+1 means a very low threshold θ∗t , and thus players

almost always coordinate on investment; the continuation value thus affects

VT only minimally. Both effects are negligible. This is the plateau on the

graph of G(·) in Figure 1.

2. An increase in Vt+1 causes θ∗t to fall into the main mass of the probability

distribution Φ(·), where the negative strategic effect is strong and it over-

balances the positive direct effect. A small increase in Vt+1 substantially

8
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Figure 1: Thick line — mapping G(·) for a nonzero variance of priors τ > 0. Thin line —
mapping G(·) in the limit τ → 0. Dotted line — the probability density φ(ϑ(Vt+1)) at the
threshold θ∗T = ϑ(Vt+1). Dashed line — diagonal.

decreases the probability of successful coordination, and hence Vt sharply

decreases.

3. Higher values of Vt+1 lead to a threshold θ∗t so high that players almost always

coordinate on waiting. Hence, the strategic effect is negligible and the direct

effect causes Vt to grow as δVt+1. This is the region of the steady increase of

G(·) on the right of Figure 1.

The stability of the fixed point depends on the region in which G(·) crosses the

diagonal. The condition 1
2

< E[θ] < 1
2
/(1− δ) ensures that, for V ar[θ] sufficiently

small, the fixed point is unique and unstable. In such a case, thresholds evolve

in a regular cycle of fixed periodicity or in a chaotic path. Figure 2 depicts a nu-

merical example of a fluctuating threshold path for particular parameters.6 The

booms and slumps are random events depending on the realized fundamentals,

with booms more probable in rounds with low thresholds. Thus the rounds with

low thresholds can be interpreted as times of investor’s optimism — players (cor-

rectly) believe that their opponents will invest even if the realized fundamental

happens to be low.

Equilibrium uniqueness holds for any T , and if the mapping G(·) has a unique

6Prior beliefs distribution N(0.6, 0.012) and δ = 0.8.
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Figure 2: a) Evolution of the expected continuation values Vt generated by the mapping G(·).
b) Evolution of the thresholds θ∗t = ϑ(Vt+1). The symbol � denotes periods in which players
coordinated on investment for one particular realization of random fundamentals {θ1, . . . , θT}.

and unstable fixed point, permanent fluctuations must occur even for very large,

but finite T . Next, let us consider a game with infinite time horizon. In such a

game, the equilibrium uniqueness result does not hold, as the boundary condition

VT+1 = 0 is lost; nevertheless, the continuation values Vt still evolve according

to the mapping Vt = G(Vt+1) in any equilibrium. Thus, in the case of a unique

unstable fixed point, although we cannot specify a unique sequence of Vt, we know

that the values and the thresholds fluctuate. Hence the main prediction of the

model is the existence of fluctuations rather than any particular equilibrium path.

3 Applications

We present three simple models illustrating the basic framework within an eco-

nomic context: a currency attack model building on Morris and Shin (1998), a

model of co-moving crises, and a model of search cycles. While the solution of

the first model is a straightforward application of Proposition 1, the other two

models slightly generalize the basic framework. The crises model consists of two

independent time series of coordination problems observed by a common pool of

investors. The equilibrium actions happen to be correlated across the two series

despite that the fundamentals are not. The model of search differs from the basic

model in the details of the dynamic link among rounds.

10



3.1 Currency Attacks

In the first application we extend the Morris and Shin (1998)7 model of cur-

rency crises by adding a continuation structure — unsuccessful speculators may

go bankrupt and thus lose access to future profits. Morris and Shin consider a

currency pegged to an exchange rate e∗ which, if the government does not protect

the peg, will float to a rate ζ(θt) ≤ e∗, where the function ζ(·) is continuous and

increasing. A continuum of speculators with measure 1 decide whether or not to

sell the currency short. The transaction cost of short-selling is c. If the currency is

devaluated, short-selling pays a net profit e∗ − ζ(θt)− c. The government defends

the peg, but only if it is not too costly. The cost of defending increases with the

measure of the short sales; the government will defend if the measure of attack-

ing speculators is smaller than a(θt), which is continuous and increasing in the

economic fundamental θt. The instantaneous payoff for not attacking is 0. The

instantaneous payoff for attacking is summarized by

π(θt, lt) =

{

e∗ − ζ(θt) − c if a(θt) < lt,

−c if a(θt) ≥ lt.
(3)

The authors assume the existence of dominance regions.8 The informational struc-

ture is that of a global game. The function π(θt, lt) is weakly monotone9 in θt and

lt, the Laplacian state is unique, and thus the static stage game is a global game.

We extend this model by assuming that an unsuccessful speculation results in

bankruptcy with probability β. Alternatively, we could assume that managers re-

sponsible for the attack decision get fired if the attack fails (Chevalier and Ellison,

1999), in which case they miss bonuses based on future profits. The speculative

capital of unsuccessful speculators is assumed to end up in the hands of other

speculators after the bankruptcy, so the measure of the potential speculative cap-

ital is 1 in all rounds. Abandoning the peg makes further attacks impossible, so

all players have zero future profits after the successful attack regardless of their

7See also Heinemann (2000).
8The government devaluates for sufficiently bad fundamentals even without any speculators, and even a

coordinated attack of all speculators will not lead to devaluation for sufficiently good fundamentals.
9π(θ, l) decreases with θ whereas, formally, Proposition 1 requires π increasing in θ. Such a situation can

be accommodated by introducing θ̃ = 1 − θ.

11



lt > a(θt) lt ≤ a(θt)
Attack 0 (1 − β)
Wait 0 1

Table 1: Continuation probability b(ai
t, lt, θt).

20 40 60 80 100
time

0.525

0.55

0.575

0.6

0.625

0.65

0.675

threshold Evolution of Thresholds

Figure 3: Evolution of the thresholds below which the speculators attack. The attack is
more probable when the threshold is high. A (successful) attack has happened in the period
denoted by the symbol �, for a particular realization of the random fundamentals.

action. The continuation probabilities b(ai, θt, lt) are summarized in Table 1, and

the process satisfies A7–A10.

Applying Proposition 1 we get:

Corollary 1. Proposition 1 applies with thresholds θ∗t = ϑ(Vt+1) solving equation

[1 − a(θ∗t )][e
∗ − ζ(θ∗t )] − a(θ∗t )δβVt+1 = c. (4)

The evolution of expected future payoffs is determined by

Vt = G(Vt+1) =

∫ ϑ(Vt+1)

−∞

(e∗ − ζ(θ) − c) dΦ(θ) + δVt+1[1 − Φ(ϑ(Vt+1))], (5)

together with the boundary condition VT+1 = 0.

To illustrate the result, we study a numerical example with the exchange rate

difference e∗ − ζ(θ) being constant and equal to 1. The function a(θ) describ-

12



ing the willingness of the government to protect the peg is set to a(θ) = θ.

Equation (4) simplifies to ϑ(Vt+1) = 1−c
1+δβVt+1

and (5) simplifies to G(Vt+1) =

Φ(ϑ(Vt+1))(1− c) + δVt+1[1−Φ(ϑ(Vt+1))]. We plot the evolution of thresholds for

particular parameters10 in Figure 3. Periods with high thresholds are windows

of probable attacks because the speculators (correctly) believe that others attack

even if the fundamentals of the economy are quite high.

3.2 Emerging Markets Crises — Co-movement

The framework of Section 2 combines endogenous fluctuations of beliefs with equi-

librium uniqueness and thus it is suitable for a study of beliefs-based contagion of

crises. We consider two developing countries without any direct links but with a

common set of investors. We assume that investment in either of the two coun-

tries may cause bankruptcy. The effect of bankruptcy on the unsuccessful investor

is the same, regardless of the country in which the unsuccessful investment has

been realized — future profits in both countries are lost. Thus, the willingness

to risk investment at date t is influenced in both countries by the common value

Vt+1. High future profits, regardless of the country in which they will be realized,

undermine coordination in both countries today, which causes co-movement of the

willingness to invest:

We consider two emerging market countries A and B with economic fundamen-

tals θA,t and θB,t respectively, each with a continuum of investment opportunities

of measure 1. There is a continuum of investors of measure 1, of which each ob-

serves two investment opportunities in each round — one in A and one in B. In

each round t, each investor can invest in the project she observes in either country,

in both, or in neither. The instantaneous payoff to an investor is the sum of re-

turns from her current investments in A and B. The investments are, within each

country, strategic complements. To keep the problem within the simple global

games framework, we do not allow the players to choose the amount of their in-

vestment; they choose in each country only whether to invest one unit or not. We

10The prior distribution is N(0.67, 0.0012), β = 0.5, c = 0.3, d = 0.9.
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assume simple return functions:

πc(θ, l) =

{

1 − γc if l > 1 − θ,

−γc if l ≤ 1 − θ,

where γc > 0 for c ∈ {A, B}. The payoff from not investing is 0. The return in A

does not depend on investment lB,t or the fundamental θB,t, and vice versa. The

fundamentals θA,t and θB,t, drawn from distributions ΦA(·) and ΦB(·), respectively,

are independent across countries and times, so the instantaneous payoffs and the

distributions cannot themselves explain any correlation in economic outcomes.

We now introduce a continuation structure which leads to correlation in in-

vestment in the otherwise independent countries. Investment in country c causes

bankruptcy of the investor with probability bc. More precisely, if a player does

not invest in either of the countries, then the probability of bankruptcy is 0; if she

invests only in country c, then the probability is bc; if in both countries, then the

probability is bA +bB. We do not model a detailed mechanism of bankruptcy. The

bankruptcy is a black box for distress that a company (or manager) may meet in

an emerging market and which may constrain the company’s (manager’s) future

activities. Bankruptcy, although it was caused by a problem in one country, pre-

cludes the player from operating in both A and B in all future rounds. We assume

that events in A and B that lead to bankruptcy are independent.

The modified stage game of country c ∈ {A, B} in period t is described by the

payoff difference between investing and not investing:

π̃c,t(θc,t, lc,t) = πc(θc,t, lc,t) − bcδVt+1, (6)

which constitutes two independent global games, one for each country. These can

be solved in each round, so we can again solve the game backwards.

Proposition 2. The game has, for generic parameter values, a unique equilibrium

(in the limit of precise signals σ → 0). Investors invest in country c ∈ {A, B} at

date t if and only if the fundamentals θc,t are above the threshold θ∗c,t where

θ∗c,t ≡ ϑc(Vt+1) = γc + bcδVt+1 (7)
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if γc + bcδVt+1 < 1, and ϑc(Vt+1) = +∞ otherwise.

The evolution of Vt is determined by

Vt = G(Vt+1) ≡ ΦA(ϑA(Vt+1))δVt+1 + ΦB(ϑB(Vt+1))δVt+1 + (8)

(1 − ΦA(ϑA(Vt+1)))[1 − γA + (1 − bA)δVt+1] +

(1 − ΦB(ϑB(Vt+1)))[1 − γB + (1 − bB)δVt+1],

together with the boundary condition VT+1 = 0.

Proof. The incentive π̃c,t(θc,t, lc,t) to invest in country c described by (6) satisfies

Assumptions A1, A2, A3, A5. The noise distribution f(·) satisfies A6. The

modified payoff π̃c,t(·, ·) exhibits dominance regions for any Vt+1 > 0 except when

1−γc−δbcVt+1 = 0. Thus, unless Vt+1 = 1−γc

δbc

, which happens only for non-generic

parameters, the dominance regions exist. Therefore, coordination problems of

both countries at each stage are global games, and the thresholds11 ϑc(Vt+1) are

the solutions to the equation
∫ 1

0
π̃c,t(l, θ)dl = 0, which gives (7). Equation (8)

describes that, in the limit of precise signals, all players invest if and only if

θc,t > θ∗c,t = ϑc(Vt+1), in which case they receive the instantaneous payoff 1 − γc

and go bankrupt with probability bc; players wait if θc,t < ϑc(Vt+1) and receive

δVt+1.

We have generated the random fundamentals and marked the crises during

which investors do not invest by �, see Figure 4.12 The fluctuations of the thresh-

olds and the occurrence of the crises are correlated across the two countries despite

the lack of direct links between them. A high threshold above the country’s aver-

age fundamental means that crisis is probable, as investors will (correctly) believe

that others invest only if the realized fundamental is high. The high thresholds

can thus be interpreted as pessimistic market sentiments.

The effect is related to changes in the degree of strategic risk caused by a

wealth increase, and the implied decrease of absolute risk aversion studied in

Goldstein and Pauzner (2003). In contrast to this approach, our fluctuations

11Or investing is trivially dominated if Vt+1 > 1−γc

δbc

.
12γA = 0.3, γB = 0.5, prior beliefs distribution in country A is N(0.78, 0.0022); in country B N(0.82, 0.0012),

δ = 0.9, bA = 0.15, bB = 0.1.
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Figure 4: a) The evolution of the future expected profits Vt+1 is common for both countries.
b) As a consequence, the evolution of the thresholds θ∗A and θ∗B is correlated. The probability
of crisis is high when the thresholds are high. The symbol � denotes a crisis for one particular
realization of random fundamentals.

of strategic risk are caused by changes in the lottery rather than by changes in

risk attitudes; our players are risk-neutral. Another difference is that our model,

compared to Goldstein and Pauzner, has a reverse causality: profits tomorrow

influence strategic risk today, whereas wealth accumulated yesterday influences

risk aversion today in the Goldstein and Pauzner model. A crisis in A at t is not

caused by a crisis in B at t or earlier in our model. Rather, the correlation of crises

is caused by the commonality of the expected future profit. Thus, the outcome of

our model is a contagion in the broad sense of an excess co-movement, but not in

a narrow sense requiring a causal link from an earlier crisis to a later one.

3.3 Fluctuations of Search Activity

In this section we study a model of one-sided search in which, unlike in the two

previous applications, the ability to search tomorrow is not decreased by any out-

come of the search today. Rather, the incentive to search is determined by the

current expected difference in continuation values between employed and unem-

ployed players. It is easier to find a partner if potential partners are actively

searching for a partnership than in a society where nobody else searches, see Dia-

mond (1982). High future search activity decreases the current incentive to search,

because it makes long term unemployment unlikely and thus decreases the disad-
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vantage of being currently unemployed. The model again exhibits a negative link

between future and current activity levels, which leads to endogenous fluctuations

in search activity and in the unemployment level.

There is a continuum of identical players, each player needing a partner to

produce. Players receive an instantaneous payoff of 1 in each round in which they

have a partner, in which case we call them employed. After the payoff is received,

the partnership survives into the next period with probability 0 < p < 1, or

dissolves with probability 1−p. Players without a partner receive 0 instantaneous

payoff, we call them unemployed, and they can search for a partner by incurring

(stochastic) cost θt drawn from a c.d.f. Φ(·).13

An unemployed player who searches at t finds a partner with probability mt =

m(lt), where lt is the relative share of searching players among the unemployed

ones, not their absolute number,14 which effectively renormalizes the measure of

players to 1 in each round. The function m(lt) is assumed to be increasing, and

for simplicity, we let m(lt) = lt.

Proposition 3. The game has a unique equilibrium (in the limit of precise sig-

nals σ → 0). Let Ve,t, Vu,t be the expected continuation values for employed and

unemployed players respectively, and let ∆t = Ve,t − Vu,t be the expected payoff

advantage of an employed player.

The threshold search cost θ∗t , below which unemployed players search, is

θ∗t = ϑ(∆t+1) =
δ∆t+1

2
. (9)

The evolution of the expected payoff advantage ∆t of having a partner is determined

by

∆t = G(∆t+1) = 1 +

∫ ϑ(∆t+1)

−∞

θdΦ(θ) + [p − Φ (ϑ(∆t+1))]δ∆t+1, (10)

13We assume that costs are sometimes prohibitively high which implies the existence of the right dominance
region, and that the costs are sometimes negative, which implies the existence of the left dominance region.
This can be justified by government paying a subsidy for the search, which exceeds the true costs, or by an
intrinsic motivation exceeding pecuniary costs.

14This can be justified in the following way: Unemployed players first simultaneously decide whether to
prepare for future production by incurring cost θt. They are afterwards randomly matched to pairs and
partnership is formed if both members of a pair are prepared.
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together with the boundary condition

∆T+1 = 0.

Proof.

Lemma 1. ∆t > 0 for all t = 1, . . . T .

Proof. (Lemma 1) In the appendix.

Fix t and suppose Ve,t+1, Vu,t+1 are uniquely determined. The employed players

face no decisions and receive the expected payoff

Ve,t = 1 + pδVe,t+1 + (1 − p)δVu,t+1. (11)

Unemployed players face a coordination problem characterized by the payoff

u(at, lt, θt) =

{

ltδVe,t+1 + (1 − lt)δVu,t+1 − θt if ai
t = 1,

δVu,t+1 if ai
t = 0.

An unemployed player’s incentive to search is

π̃t(θt, lt) ≡ u(1, lt, θt) − u(0, lt, θt) = δ∆t+1lt − θt.

Thus the modified stage game satisfies A1-6 and can be solved as a global game.15

The threshold ϑ(Vt+1) in equation (9) is the unique solution of
∫ 1

0
π̃t(θ, l)dl = 0.

Given the threshold, we may express the expected profits of an unemployed player

as

Vu,t = δVe,t+1Φ(ϑ(∆t+1)) −

∫ ϑ(∆t+1)

−∞

θdΦ(θ) + δVu,t+1[1 − Φ(ϑ(∆t+1))]. (12)

The function G(∆t+1) in (10) can be found by subtracting (12) from (11).

We compute the evolution of ∆t for particular16 parameters, see Figure 5. The

15π̃t(θt, lt) decreases in θ instead of increasing as required in A2, but this can be accommodated by intro-
ducing θ̃ = 1 − θ.

16The prior beliefs distribution is N(1.3, 0.052), p = 0.95, δ = 0.9; the ratio of partnerless players at t = 0
is 0.1.
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Figure 5: a) Evolution of the advantage of being partnered ∆t = Ve,t − Vu,t. b) Evolution of
the unemployment level for a particular realization of the random fundamentals. A decrease
is more probable when ∆t+1 is high.

value of ∆t oscillates. When tomorrow’s advantage ∆t+1 of being employed is

high, players coordinate on searching even if the search costs are relatively high.

Thus, the probability that the unemployment level falls at t is increasing in ∆t+1.

Like Diamond (1982), we have limited ourselves to a one-sided search model,

in which we do not distinguish the roles of employers and employees; rather,

any pair of players can form a productive pair. The advantage is that we stay

within the framework of simple global games in which all players are the same ex

ante. Both our model and Diamond’s model admit fluctuations in the measure

of partnerless players, which Diamond interprets as unemployment fluctuations.

However, whereas the fluctuations are a possible outcome of Diamond’s model,

they are a necessary outcome in our model.

4 Dynamic Global Games Literature

The dynamic global games literature can be organized according to the assumed

intertemporal links.

Frankel and Pauzner (2000), Burdzy, Frankel and Pauzner (2001) and Frankel

and Burdzy (2005), study a series of coordination problems in which fundamen-

tals evolve according to a stochastic process and players experience frictions in

changing their actions. These models have a unique equilibrium in which the ac-

tions may depend not only on the current fundamental, but also on the current
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level of investment. The models thus, under some specifications of parameters,

exhibit hysteresis. Oyama (2004) assumes complementarities between actions of

successive generations in an OLG model. This model also exhibits hysteresis; the

equilibrium strategy is characterized by two thresholds θ∗ < θ∗∗. During a boom,

players wait only if the fundamental falls below θ∗, but afterwards they return to

investing only after the fundamental rises above θ∗∗, and vice versa. Because of

the hysteresis, the coordination outcome can differ across two instances in these

models even if the fundamentals happen to be identical. However, fluctuations of

equilibrium behavior occur only after an exogenous, though possibly small shock

to the economic fundamental; the economy cannot shift during a period in which

the fundamental happens to be stationary.

Morris and Shin (1999)17 consider another dynamic link: past fundamentals

serve as a public signal for the current period. Such a public signal influences equi-

librium behavior if the noise is non-vanishing. The thresholds θ∗t thus fluctuate,

but they are exogenously determined by the realizations of θt−1.

Angeletos, Hellwig and Pavan (forthcoming) allow players to postpone deci-

sions on an attack for the sake of acquiring additional information about the

fundamental. The economic fundamental is kept constant, but private beliefs

evolve as the players observe the outcomes of previous attacks and receive new

private signals. The failure of a more aggressive attack yesterday conveys a more

pessimistic signal about the current fundamental, and hence hinders today’s at-

tack, compared to a less aggressive attack yesterday — this negative link allows

for equilibrium fluctuations in the intensity of attacks. The fluctuations can be

entirely fundamental-independent, and driven solely by changes in beliefs, thanks

to the exogenous arrival of new information.

The next subsection is devoted to the part of the dynamic global games liter-

ature that is most closely related to the paper at hand.

17See also Chamley (1999) who lets players receive information about previous fundamentals by observing
the history of investment levels.
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4.1 Recursive Global Games

Giannitsarou and Toxvaerd’s (2003) general study of recursive global games is

a natural benchmark for the model at hand. As in our model, players interact

in a finite series of interrelated stage games. The state of a player is described

by an idiosyncratic variable τ i
t , and the state of the economic environment by

common variables θt and wt. The informational structures of this and our model

are identical and typical of the global games literature; players observe θt with

small idiosyncratic errors, but more generally than our basic model, the authors

allow θt to follow a Markov process. The variables τ i
t and wt are defined recursively:

τ i
t+1 = b(τ i

t , a
i
t, θt), wt+1 = c(wt, lt, θt).

The authors assume that the transition functions b and c are increasing in all

arguments, the instantaneous payoff function u(ai, θ, l, τ i, w) is supermodular in

all pairs of arguments, and the distribution of θt stochastically increases in θt−1.

The authors solve the game by backwards induction. The modified payoff at

each stage is

u(ai
t, θt, lt, τ

i
t , wt) + δVt+1(θt, lt, τ

i
t , wt),

where Vt+1(θt, lt, τ
i
t , wt) is the expected continuation payoff conditional on its argu-

ments. The main result is that the modified stage game in each round is a global

game with a unique equilibrium solvable by the techniques of Frankel, Morris, and

Pauzner (2003).

The result rests on the assumption that all of the intertemporal links in the

model are of a positive nature. For instance, today’s high investment increases

future investment, because high future w will increase future motivation to invest.

In turn, high future investment motivates players to increase current investment

in order to increase the future involvements τ i. Thus, the positive intertemporal

links further strengthen the contemporaneous complementarity.

Interestingly, there are dynamic economic processes that violate the positive

links assumed in Giannitsarou and Toxvaerd (2003), and yet each modified stage

game is a global game with a unique equilibrium. Toxvaerd (2004) studies a dy-

namic interaction in which the static stage game violates the complementarity in
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each round, and yet the modified stage games, taking into account the continu-

ation payoff, are global games. Another example that deviates from the positive

dynamic links in Giannitsarou and Toxvaerd (2003) and yet is solvable by the

iteration of global games techniques is the model at hand. The future involve-

ment τ i does not increase with a player’s action; on the contrary, it “wears out”

if the player currently invests. This negative link — tomorrow’s high investment

motivates players to invest less today — distinguishes the paper at hand from

both Giannitsarou and Toxvaerd (2003) and Toxvaerd (2004), in which the link

between tomorrow’s investment and today’s investment is positive. Thus while

these models result in an endogenous growth or decline, our model offers a frame-

work suitable for an analysis of endogenous cycles.

5 Generalizations

In the next two sections, we enrich the basic model from Section 2 with some

of the structure of Giannitsarou and Toxvaerd (2003). We allow for a Markov

process in the evolution of θt in Section 5.1. Changes in the number of players

are allowed in Section 5.2, which can be understood within Giannitsarou’s and

Toxvaerd’s framework as a change in an aggregate state variable wt. As stressed

in the previous section, our model violates Giannitsarou’s and Toxvaerd’s (2003)

assumption of the positive intertemporal links: the number of future participating

players, and the individual involvement decrease with current investment. Con-

sequently, these generalizations are not straightforward, and we need to impose

certain restrictions to obtain equilibrium uniqueness. We impose a restriction on

the degree of the intertemporal dependence of fundamentals in Section 5.1, and

we limit the number of players to two in Section 5.2. For the sake of simplicity,

we assume a simple evolution of the involvement τ i
t : players are allowed to invest

only once, so that b(1, θ, l) = 0 and b(0, θ, l) = 1 in both Sections 5.1 and 5.2.

While we examine the two generalizations in the two independent extensions of

the basic model, these can be easily combined into one.
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5.1 Relaxing the I.I.D. Nature of Shocks

The fundamental θt follows a Markov process; θt is distributed according to

Φ(θt; θt−1), with a starting distribution Φ0(θ1) in Round 1. As in the basic model

from Section 2, θt−1 is observable at t. We assume

A11 Φ(·; θ′t−1) weakly first order stochastically dominates Φ(·; θt−1) whenever

θ′t−1 ≥ θt−1.

The equilibrium continuation value Vt+1(θt) is no longer a constant as it was in

the case of i.i.d. fundamentals. Rather, it depends on θt through the influence on

the distribution of θt+1 and the modified stage payoff π̃t(θ, l) = π(θ, l) − δVt+1(θ)

may fail to exhibit strategic complementarities. In order to assure the state mono-

tonicity of the modified payoff, Vt+1(θ) must not increase in θ too quickly compared

to π(θ, l). For this reason, we impose additional assumptions on the instantaneous

payoff function:

A12 The derivative ∂
∂θ

π(θ, l) is bounded below by m > 0 and above by n < +∞.

A13 π(θ, 1) − π(θ, 0) is bounded above by q < +∞.

The modified payoff π̃t(θ, l) has a left-hand dominance region because π̃t(θ, l) <

π(θ, l). One possible way to assure existence of a right-hand dominance region is

to assume:

A14 There exists Φ(·) which first order stochastically dominates Φ(·; θt−1) for any

θt−1.

As a consequence, Vt(θt−1) is bounded and A12 assures that limθ→+∞ π(θ, 0) =

+∞, and hence the right-hand dominance region exists.

Proposition 4. Suppose A1–A6 and A11–A14. There exists k > 0, independent

of the length of the game T , such that if ∂
∂θt−1

E[θt|θt−1] < k and − ∂
∂θt−1

Φ(θt; θt−1) <

k, then the game has a unique equilibrium (in the limit σ → 0). The thresholds θ∗t

and continuation values Vt(·) are uniquely determined by

∫ 1

0

π(θ∗t , l)dl − δVt+1(θ
∗

t ) = 0, (13)

Vt(θt−1) =

∫ θ∗
t

−∞

δVt+1(θ)dΦ(θ; θt−1) +

∫ +∞

θ∗
t

π(θ, 1)dΦ(θ; θt−1), (14)

together with the boundary condition VT+1(θ) ≡ 0, and the continuation value
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Vt(θt−1) increases in θt−1 for each t = 2, . . . T .

Proof. Define V to be the solution to

V =

∫ +∞

−∞

max[δV , π(θ, 1)]dΦ(θ). (15)

This value is well defined because ∂

∂V

∫ +∞

−∞
max[δV , π(θ, 1)]dΦ(θ) is below δ and

the right-hand side of (15) is positive for V = 0; hence (15) has a unique solution.

We solve the game by induction. Fix t, and suppose Vt+1(θ) ≤ V and δ ∂
∂θ

Vt+1(θ) <

m, both for all θ ∈ R. Then the modified stage game at t with the payoff

π̃t(θ, l) = π(θ, l)−δVt+1(θ) satisfies all of the six global game assumptions. There-

fore, it has a unique equilibrium described by (13) and (14).

For the induction argument, we need to show that Vt(θ) ≤ V and δ ∂
∂θ

Vt(θ) < m.

Vt(θ) ≤ V holds because the integrand in (14) is weakly smaller than the integrand

in (15). We prove that δ ∂
∂θ

Vt(θ) < m in the next two lemmas.

Lemma 2. Suppose t(θ′) − t(θ) ≥ u(θ′) − u(θ) whenever θ′ ≥ θ. Define T (θ) ≡
∫

∞

−∞
t(θ̃)dΦ(θ̃; θ) and U(θ) ≡

∫

∞

−∞
u(θ̃)dΦ(θ̃; θ). Then, under A11,

T (θ′) − T (θ) ≥ U(θ′) − U(θ), (16)

whenever θ′ ≥ θ.

Proof. In the appendix.

We have Vt(θ) =
∫ +∞

−∞
vt(θ̃)dΦ(θ̃; θ), where

vt(θ) =

{

π(θ, 1) if θ > θ∗t ,

δVt+1(θ) if θ < θ∗t .

Next, we define v′

t(·) which increases more quickly than vt(·):

v′

t(θ) =

{

π(θ∗t , 1) + n(θ − θ∗t ) if θ > θ∗t ,

π(θ∗t , 0) + n(θ − θ∗t ) if θ < θ∗t .

Lemma 3. v′

t(θ
′) − v′

t(θ) ≥ vt(θ
′) − vt(θ) whenever θ′ ≥ θ.
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Proof. In the appendix.

According to Lemma 2, δ ∂
∂θ

Vt(θ) is smaller than δ ∂
∂θ

V ′

t (θ), where V ′

t (θ) =
∫ +∞

−∞
v′

t(θ̃)dΦ(θ̃; θ).

δ
∂

∂θt−1

V ′

t (θt−1) = δn
∂

∂θt−1

E[θ|θt−1] − δq
∂

∂θt−1

Φ(θ∗t ; θt−1), (17)

and (17) is, for k > 0 sufficiently small, smaller than m.

The induction assumption that Vt+1(θ) < V and δ ∂
∂θ

Vt+1(θ) < m holds trivially

for t = T because VT+1(θ) ≡ 0.

5.2 Evolving Number of Players

Two players repeatedly interact in the stage games with i.i.d. fundamentals. The

static stage game payoff function π(θ, a−i) satisfies all of the global games assump-

tions. In particular, π(θ, a−i) satisfies A1, A2, A4, A5, A6. Assumption A3 must

be modified for a finite set of players:

A3’ 1
2
[π(θ, 0) + π(θ, 1)] strictly increases in θ.

The investing players are not replaced by new entrants. Thus, if a player waits

and her opponent invests, the player finds herself in a nonstrategic situation in

the subsequent round with the instantaneous payoff for investing being π(θ, 0).

Proposition 5. Suppose A1, A2, A3’, A4, A5, A6 and A10. The game with

evolving number of players has a unique equilibrium (in the limit σ → 0). Each

player at t conditions her investment s∗(xi
t, r) on her signal xi

t and the number of

remaining opponents r ∈ {0, 1}:

s∗T (xi
t, r) =

{

1 if xi
t > θ∗T (r),

0 if xi
t < θ∗T (r).

The thresholds θ∗t (r) are the unique solutions of

r
∑

a−i=0

[

π(θ∗t (r), a
−i) − δVt+1(r − a−i)

]

= 0, (18)
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where

Vt(r) = δVt+1(r)Φ (θ∗t (r)) +

∫

∞

θ∗
t
(r)

π(θ, r)dΦ(θ), (19)

with the boundary condition VT+1(r) = 0, for r = 0, 1.

Proof. Fix t and suppose that the equilibrium continuation values at t satisfy

Vt+1(1) ≥ Vt+1(0). Then the modified stage game with payoff function π̃t(θ, a
−i) =

π(θ, a−i)− δVt+1(1−ai) satisfies A1, A2, A3’, A4, A5 and A6. The modified stage

game at t for two player interaction is thus a global game, and its equilibrium

threshold solves (18) with r = 1. In the case that the opponent has invested

before t, the player solves the nonstrategic problem and the optimal threshold is

given by (18) with r = 0. The expected continuation payoff at t is given by (19).

It remains to show that Vt(1) ≥ Vt(0):

Vt(0) =

∫ +∞

−∞

max[π(θ, 0), δVt+1(0)]dΦ(θ), (20)

while Vt(1) is weakly larger than

∫ +∞

−∞

max

[

π(θ, 0) + π(θ, 1)

2
, δ

Vt+1(1) + Vt+1(0)

2

]

dΦ(θ), (21)

because the players optimize under Laplacian beliefs. Both arguments of the max

operator are weakly larger in (21) than in (20).

The initial statement that Vt+1(1) ≥ Vt+1(0) is trivially true for t = T , as

VT+1 = 0, which closes the induction.

The generalization of Proposition 5 to a larger number of players is not straight-

forward. The complication is that the continuation values Vt(r) may fail to increase

in the number of remaining opponents. In a static game, three players coordinate

on investment more easily than two players, because the expected number of in-

vesting players under the Laplacian belief is larger in the first case. At the same

time, in the dynamic game, the expected continuation values are larger for three

players than for two, which makes coordination harder in the latter case. As a re-

sult, Vt(r) may be non-monotone even if Vt+1(r) is not, which may lead to multiple

equilibria, as the modified stage game may fail to satisfy the action monotonicity
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condition. Thus, for a large number of players, the equilibrium thresholds may

be uniquely determined for some stages at the end of the game, but multiple

equilibria may exist in the earlier stage games.

6 Summary

Bankruptcy is worse prior to a boom than prior to a slump. Searching for a job

today is more important if tomorrow’s search prospects look grim, than if tomor-

row looks bright. We have formalized this ideas in a dynamic global game model

which consists of a series of simple static global games. The non-trivial dynamic

link among the rounds is that players influence not only their instantaneous pay-

off, but also their ability to participate in future projects. Successful coordination

tomorrow increases the strategic risk associated with bankruptcy today, and thus

makes today’s investment more risky. Coordination tomorrow thus undermines

today’s coordination, creating a negative feedback effect between tomorrow and

today, which leads to cycles. The dynamic model inherits attractive features of

static global games: it is dominance solvable and thus, in the unique equilibrium,

fluctuations unconnected to economic fundamentals not only may happen, but are

a certain outcome of the model.

The unique equilibrium with a chaotic path should not be taken as a literal

prediction of behavior, because the slightest error in computation of thresholds

would multiply greatly after a few iterations. It is extremely difficult to coordinate

on such a chaotic equilibrium, and yet no other equilibrium exists. We believe

that such a chaotic equilibrium of perfectly rational players is a benchmark for

a dynamic system of boundedly rational agents. That the system of perfectly

rational agents necessarily fluctuates suggests that a boundedly rational dynamic

system would fluctuate as well.

A Appendix

Proof. Lemma 1 We prove the statement by induction. Suppose ∆t+1 ≡ Ve,t+1 −

Vu,t+1 ≥ 0. Then δVu,t+1 ≤ Vu,t ≤ δVe,t+1. Using Ve,t = 1+δpVe,t+1 +δ(1−p)Vu,t+1,
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we get

∆t ≤ 1 + δp∆t+1,

∆t ≥ 1 − δ(1 − p)∆t+1.

Let us denote the maximum and minimum of {∆u}
T
u=t by M and m. The equations

imply

M ≤ 1 + δpM,

m ≥ 1 − δ(1 − p)M,

which gives

m ≥ 1 −
δ(1 − p)

1 − δp
,

and the right-hand side is positive for all 0 < p < 1 and 0 < δ < 1.

Proof. Lemma 2 Inequality (16) is equivalent to

∫

t(θ̃)dΦ(θ̃; θ′) −

∫

t(θ̃)dΦ(θ̃; θ) ≥

∫

u(θ̃)dΦ(θ̃; θ′) −

∫

u(θ̃)dΦ(θ̃; θ),

which in turn is equivalent to

∫

[t(θ̃) − u(θ̃)]dΦ(θ̃; θ′) ≥

∫

[t(θ̃) − u(θ̃)]dΦ(θ̃; θ). (22)

The function t(·) − u(·) is weakly increasing and thus, as Φ(θ̃; θ′) stochastically

dominates Φ(θ̃; θ), (22) holds.

Proof. Lemma 3

1. The statement holds above θ∗t because ∂
∂θ

π(θ, l) < n.

2. The statement holds below θ∗t because ∂
∂θ

δVt+1 < m ≤ n.

3. Both vt and v′

t are discontinuous at θ∗t . The discontinuity is larger in the case of

v′ than v because π(θ∗t , 1)−π(θ∗t , 0) > π(θ∗t , 1)−δVt+1(θ
∗) = π(θ∗t , 1)−

∫ 1

0
π(θ∗t , l)dl.

The last equality is implied by (13).
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