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Synchronizing Diachronic Uncertainty

Abstract. Diachronic uncertainty, uncertainty about where an agent falls in time,
poses interesting conceptual difficulties. Although the agent is uncertain about where
she falls in time, this uncertainty can only obtain at a particular moment in time.
We resolve this conceptual tension by providing a transformation from models with
diachronic uncertainty relations into “equivalent” models with only synchronic un-
certainty relations. The former are interpreted as capturing the causal structure of
a situation, while the latter are interpreted as capturing its epistemic structure. The
models are equivalent in the sense that agents pass through the same information
sets in the same order, In this paper, we investigate how such a transformation
may be used to define an appropriate notion of equivalence, which we call epistemic

equivalence. Although our project is motivated by problems which have arisen in a
variety of disciplines, especially philosophy and game theory, our formal development
takes place within the general and flexible framework provided by epistemic temporal
logic.

Keywords: Diachronic uncertainty, Epistemic temporal logic, The absent-minded
driver, Absent-mindedness, Sleeping beauty

1. Introduction

Philosophers and game theorists have become increasingly interested
in problems of diachronic uncertainty. In particular, if the agent knows
at one state in a decision problem that at a later state she will forget
or otherwise lose awareness of where she is in time, how should the
agent compute appropriate actions and/or beliefs? In the game theory
literature, the paradigmatic case of such forgetfulness is the Absent-
Minded Driver (Piccione and Rubinstein, 1997); in the philosophical
literature, much discussion has centered around the Sleeping Beauty
problem (Elga, 2000). The crucial observation behind our contribution
to these debates is that agents can only be uncertain at a point in time;
in other words, all uncertainty is synchronic.

Any realistic model of a decision-making agent should describe the
succession of epistemic states through which the agent passes. Each
one of these states will be synchronic, in the sense that it occurs at a
distinct point in time, although these synchronic uncertainties may be
uncertainties about where the agent falls in time. Given a specification
of a decision problem involving diachronic uncertainty, we may ask: (i)
Is there an “equivalent” problem involving only synchronic uncertain-
ties? (ii) What is the relevant notion of equivalence here? (iii) How do
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2

the probabilities in this second model relate to those in the original
model?

We will provide specific answers to (i) and (ii), and conclude with
a brief sketch of a solution to (iii). Although a number of different
formal frameworks may be used to investigate this issue, we will restrict
ourselves to epistemic temporal logic, one of the most rich and flexible
formalisms for modeling diachronic uncertainty. After introducing ETL
in section 2 and discussing a fundamental ambiguity in the interpreta-
tion of ETL models, we will return to extensive form games in section 3
in order to motivate our concerns. Section 4 introduces the main con-
cepts of the paper, synchronic completion and epistemic equivalence. In
section 5, we provide a brief formal development, incluing a preservation
theorem: the fragment of the ETL language containing only knowledge
and future operators (but not their duals) is preserved under synchronic
completion. We conclude in section 6 with a discussion of the issues that
arise when extending synchronic completion to a probabilistic context.

2. Interpreting ETL models

We wish to investigate the relationship between synchronic and di-
achronic uncertainty. In order to make our investigation more precise,
we must work within a unified formal framework. In the game theory
literature, all modeling of such problems uses the formalism of extensive
form games. In the philosophical literature, although a vanilla Bayesian-
ism lurks in the background, no one formalism dominates discussion;
a linchpin assumption of the debate, however, is that propositions
can change truth value through time (in particular, “self-locating”
propositions, which refer indexically to the agent’s position in the tem-
poral structure of the world). Epistemic temporal logic ((Parikh and
Ramanujam, 1985), (Fagin, et al., 1995), (Hodkinson and Reynolds,
2006)) lies at a happy meeting ground between these two approaches.
Syntactically, epistemic temporal languages are rich enough to express
uncertainty about where the agent falls in the temporal order. Se-
mantically, both epistemic temporal logic and extensive form games
use partitioned tree structures as models. Only minor adjustments are
needed to embed extensive form games into the space of ETL models.
After a brief discussion of the basic structure of ETL models, we ex-
amine a fundamental ambiguity within the formalism: models within
ETL can be interpreted as capturing either the causal or the epistemic

structure of a situation.
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2.1. Models for epistemic temporal logic

Fix a countable set Σ of events and a finite set of agents A. We write Σ∗

for the set of finite sequences of elements in Σ. A history is an element
in Σ∗. Given h ∈ Σ∗ and e ∈ Σ, we write he for the history h followed
by the event e. Also given h, h′ ∈ Σ∗, we write h � h′ if h is a finite
prefix of h′. If h � h′ and h 6= h′, we write h ≺ h′. We denote the length
of a given sequence σ by len(σ).

Definition 2.1 (ETL models) An ETL model is a tuple (H,∼, V )
where:

− H is a subset of Σ∗ that is closed under finite prefixes,

− ∼ is a function that assigns to an agent in A an equivalence
relation on H.

− V is a function that assigns a subset of H to an atomic proposi-
tion in in the set of atomic propositions At. ⊳

Since ∼i is an equivalence relation, it induces a partition on H.
Given an ETL model H = (H,∼, V ) and a history h ∈ H, we denote
by [h]Hi the equivalence class under ∼i to which h belongs. When there
is no confusion about which model is under discussion, we omit the
superscript. We will refer to these equivalence classes as “information
sets” or “uncertainty partitions.”

Strictly speaking, ETL models only contain information about tem-
poral ordering, they do not come with an explicit notion of absolute
time. In many applications, however, it is helpful to assume that all
histories are synchronized, i.e. that nodes at the same depth represent
possibilities which might obtain at the same moment. The rest of the
paper assumes synchronization in this sense. Since this assumption
allows us to investigate the temporal relationship between nodes on
different histories, it greatly simplifies the ensuing discussion. It also
suggests a simple definition of diachronic uncertainty.

Definition 2.2 (Diachronic uncertainty) Let H = (H,∼, V ) be an
ETL model and h a history in H. An equivalence class [h]i is diachronic

if there is some h′ ∼i h such that len(h′) 6= len(h). H is diachronic
if there is some h ∈ H such that [h]i is diachronic. Otherwise, H is
synchronic. ⊳
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2.2. Causal models vs. epistemic models

Usually, ETL models are interpreted as capturing the causal structure
of the world: if he, hf ∈ H then the events e and f are possible after the
history h. Divergent histories represent alternate possibilities allowed
by the causal structure of the world. Each node is a choice point at
which nature, or some agent, may act, causing some new event to occur.
This causal tree is then decorated with relations ∼i for each agent i;
these relations partition the set of worlds H into equivalence classes.
The interpretation here is that agent i cannot distinguish between any
two worlds falling within the same partition as induced by ∼i. Call a
model interpreted in such a fashion a causal model.

In a causal model, an information set may include nodes of differ-
ent depths (or histories of different lengths). In such cases, the model
exhibits diachronic uncertainty. An agent experiences diachronic un-
certainty if she is uncertain about where she falls in time. From a
conceptual standpoint, there is an important distinction to be made
here. If an agent is uncertain between two histories h and h′, but h 6≺ h′

and h′ 6≺ h, then she visits the relevant information set only once. As
such, even though the agent exhibits diachronic uncertainty, it is easy
to conceive of this uncertainty as occurring at a single point in time.
For example, I may hear an alarm clock go off, but be uncertain about
whether my partner set it five minutes fast the night before or not. Then
I am uncertain about where I fall in time, but I am uncertain at a single
moment and not in any way forgetful. If it was me who who set the
alarm, then I am forgetful, but my state upon hearing the alarm is still
visited only once (this is sometimes called imperfect recall). If, however,
h ∼ h′, and h ≺ h′ or h′ ≺ h, then I am absent-minded. Absent-
mindedness is conceptually problematic in causal models because the
agent passes through the same information set more than once (at h
and h′), exhibiting the same state of uncertainty at multiple points in
time (this issue is discussed more thoroughly in section 3.2).

By constructing a tree which captures causal possibilities and deco-
rating it with epistemic relations, we have prioritized causal structure
in our modeling choices. Suppose instead that we prioritize epistemic
structure. What happens if we insist that models characterize the se-
quence of epistemically possible states rather than the sequence of
causally possible states? Then he, hf ∈ H would imply that the epis-

temic states e and f are possible after the history h. We might call a
model interpreted in this way an epistemic model. An epistemic model
of an absent-minded agent would explicitly distinguish the epistemic
states left implicit in the causal model.
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Note that the formalism of ETL does not distinguish causal from
epistemic structure. Whether we take a model as a causal model or an
epistemic model is purely a matter of interpretation. However, given
our conceptual analysis, we may wish to restrict these interpretations
to distinguished classes of ETL models. In particular, the above ob-
servation, that diachronic uncertainty is always uncertainty at a point
in time, implies a crucial desideratum for characterizing the subset of
ETL models which may be interpreted as capturing epistemic structure:

Desideratum A: Uncertainty relations ∼i must only occur between
histories of the same length.

Before we can specify exactly which subset of ETL models are best
interpreted as epistemic, however, we must consider a second desider-
atum, this one originating in the game theory literature.

3. Uncertainty in extensive form games

When playing a game, an agent has moves available to her at various
decision points. If an agent is uncertain at which point she falls in a
game, she must not be able to distinguish between the nodes in her
uncertainty partition on the basis of which moves are available to her.
In section 3.1 we introduce some useful definitions for understanding
how this consideration has been modeled in the literature. In section
3.2, we consider a specific model of causal structure, the absent-minded
driver, and discuss how it could be transformed into a model of the
corresponding epistemic structure.

3.1. Game Theoretic Indistinguishability

We begin with several definitions. Although these definitions are moti-
vated by models of uncertainty in extensive form games, we offer them
in terms of ETL models for the sake of consistency with the rest of our
discussion.

Definition 3.1 (strong synchronicity) An ETL model (H,∼, V ) ex-
hibits strong synchronicity if, for any agent i, and histories h, h′, h ∼i h

′

implies len(h) = len(h′). ⊳

Definition 3.2 (weak synchronicity) An ETL model (H,∼, V ) ex-
hibits weak synchronicity if for any agent i and histories h, h′, h ∼i h

′

implies h 6≺ h′. ⊳
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Strong synchronicity is the formal equivalent of desideratum A, and
coincides exactly with the definition of synchronicity given in Def-
inition 2.2. We list it again to contrast it with weak synchronicity,
which obtains whenever there is no absent-mindedness. Although weak
synchronicity has been the more popular constraint in the game theory
literature (see discussion below), our insight that uncertainty is always
uncertainty at a point in time demands that we interpret synchronicity
in the strong sense.

The following two definitions may seem unduly strong to the logi-
cian, but one must bear in mind that in extensive form games, one can
only be uncertain between nodes at which one is able to act.

Definition 3.3 (agent-dependent) An ETL model (H,∼, V ) is agent-

dependent if for any agent i, event e, and histories h, h′, if h ∼i h
′ and

he ∈ H, then h′e ∈ H ⊳

Definition 3.4 (cardinality-dependent) An ETL model (H,∼, V )
is cardinality-dependent if for any agent i and histories h, h′, if h ∼i h

′,
then |{h′′ ∈ H | ∃e(h′′ = he)}| = |{h′′ ∈ H | ∃e(h′′ = h′e)}|, where
|x| denotes the cardinality of the set x. ⊳

Information sets were initially introduced into extensive form games
in order to model a player’s ignorance about the moves of her oppo-
nents. A player may be uncertain about how many other players have
played since her last move, what moves they made, or even her own past
moves (i.e. she may exhibit imperfect recall). However, these players
always know where they fall in the temporal structure of the game,
in particular, they remember whether they have played or not, even if
they can’t remember the move they made. Models of games involving
such agents are just those which satisfy weak synchronicity. However,
from the game theoretic viewpoint, demanding weak synchronicity is
not enough. We must ensure that there are no clues in the structure of
the game which undermine the coherence of the uncertainty partitions.
What additional constraint will address this worry?

(Kuhn, 1953) defines information sets in extensive form games such
that two constraints are met. First, no two worlds in the information
set may lie on the same branch (i.e. players do not forget if they
have moved). Second, at each world in the partition, the cardinality
of the set of potentially occurring events must be the same. (Piccione
and Rubinstein, 1997) drops the first constraint in order to allow for
absent-minded players; however, it strengthens the second constraint
by stipulating not just that the cardinality of the set of possible events
be the same for each world in an information set, but that the set of
possible events be identical for each world. Thus, (Kuhn, 1953) defines
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models which are cardinality-dependent and satisfy weak synchronic-
ity, while (Piccione and Rubinstein, 1997) defines models which are
agent-dependent.

These constraints are motivated by the idea that an information
set models a situation in which an agent must act, although she does
not know the current state of the world. Actions are just distinguished
events, events caused by some particular agent. If different (or different
numbers of) actions are available to an agent at two nodes in the game
tree, then the agent can use her knowledge of which actions are avail-
able to her to distinguish these histories from each other. Therefore,
if two states of the world are indistinguishable to an agent, then the
agent must have the same actions available to her at each one. Agent-
dependency and cardinality-dependency are attempts to capture this
intuition. These concerns motivate our second desideratum for charac-
terizing the subset of ETL models which can be interpreted as capturing
epistemic structure:

Desideratum B: The same (number of) events must follow any world
in an uncertainty partition.

Formally, we realize this desideratum by constraining attention to agent-
dependent models. However, as will become clear, this definition cap-
tures a slightly different constraint within our models than that which
motivated Kuhn and Rubinstein. In particular, we must consider the
discrepancy between an agent’s beliefs and the actual state of the world:
the agent may consider events possible which are not in fact possible.
In order to make the distinction between possible events, and events
the agent believes are possible, we need to distinguish worlds from the
events which produced them. We illustrate this point with an example.

3.2. Example: the absent-minded driver

In the example of the absent-minded driver (Piccione and Rubinstein,
1997), a man leaves a bar drunk and forgets while driving home whether
he has already reached his turn or not. The problem is usually modeled
with an information set including two indistinguishable intersections.
The driver must pass through these intersections in sequence, so he will
encounter them at different times. Thus, there must be some events
possible at one which are not possible at the other. However, in terms
of actions, the driver only has two options: turn or go straight. So, if
our model only includes the actions available to the agent, excluding
other events, it will satisfy agent-dependence.
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a. standard model b. “token” model

Figure 1. The absent-minded driver

The driver desires to turn at the second intersection, as this is the
road to his home. He wishes not to turn at the first intersection as
it leads to the bad part of town. If he misses both turns and simply
drives straight, he must spend the night at a motel. If we follow the
conventions of epistemic temporal models as described in section 2.1,
our tree model is generated by the appropriate sequences of events (see
figure 1.a). So, for example, the node associated with reaching the bad
part of town involves the events “go straight” and “turn”, so it will be
characterized by the history st, while the node associated with staying
in a motel involves the event “go straight” occurring three times, so it
will be characterized by the history sss.

However, if we attempt to construct a model of the driver’s sequence
of epistemic states, we discover that the state of uncertainty he exhibits
concerning the intersection which he is passing through occurs twice:
once at the intersection leading to the bad neighborhood, a second
time at that leading to his home. If we attempt to construct a model
of the epistemic structure of this situation, then, we must include the
worlds corresponding to histories s and ss twice. How can we capture
the idea that the same world, or epistemic possibility occurs twice?
We cannot simply duplicate the relevant strings as our underlying set
theory satisfies extensionality. Furthermore, length of string is what
determines depth in the tree and, correspondingly, time of occurrence.
Thus, there is no room here to say that the same world occurs twice at
different times, as this would require a single string to be two distinct
lengths. What we need is a trick to circumvent these facts about our
formalism, a way to identify worlds other than considering the entire
string associated with them.
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The issue here is really a confusion between tokens and types. We
have considered a set of event types, allowing the same type of event
(“go straight”) to occur over and over. Really, however, when an agent
is uncertain, she cannot distinguish between event tokens—she confuses
this instance of going straight with that instance of going straight. In
order, then, to construct a clear model of the epistemic structure of
the absent-minded driver, we need to first convert our standard model
of the problem into one involving only token events. This amounts to
the stipulation that each event occurs only once. We call ETL models
satisfying this condition token-event models (Definition 5.1, below).

In the case of the absent-minded driver, we have two event types,
but five event tokens. If we reconstruct the model using only tokens,
instead of one event s = “go straight”, we now have three events s1 =
“go straight from the bar”; s2 = “go straight at the first intersection”;
and s3 = “go straight at the second intersection”. Likewise for the two
turns. Nodes in the tree are still defined by sequences of events. Now,
however, the history associated with arriving at the bad part of town
is not captured by the string st, but by s1t1, and that associated with
arriving at the motel corresponds not to sss, but instead to s1s2s3.
Since we have stipulated that events occur only once in the tree, we
have effectively produced a distinct label for each history. If we wish, we
may identify each history with its distinct final (i.e. rightmost) event.
Figure 1.b reproduces the token-event model for the absent minded
driver labeled in this fashion.

What is the epistemic structure of this situation? Well, our analysis
should satisfy desiderata A and B above. According to desideratum
A, uncertainty should only be synchronic. This means that the agent
experiences two distinct states of uncertainty. The first occurs when he
passes through the first intersection, the second when he passes through
the second intersection. Both states have the same content; however,
the agent cannot tell whether the previous event was “go straight from
the bar” or “go straight at the first intersection.” So, these event-tokens

are types when considered from the epistemic standpoint. By beginning
with a token-event model isomorphic to the original model, we can
identify multiple nodes in the generated model with a single, token
state of the world by simply repeating the corresponding token-event.

According to desideratum B, the same set of events should be pos-
sible from all histories in an information set. Possibility, now, is inter-
preted as epistemic possibility—i.e. what epistemic states are possible
from a given epistemic state? The answer to this question will still be
constrained by the causal structure of the world. At the first intersec-
tion, for example, the agent is in a state of uncertainty concerning which
intersection he is passing through. Two epistemic states are possible
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Figure 2. The absent-minded driver (epistemic)

in the agent’s future: one is identical to that he just left, a state of
uncertainty about which intersection he is passing through; the second
is that induced by the agent’s arrival in the bad part of town.

With these two desiderata in mind, consider figure 2. This tree ex-
hibits only synchronic uncertainties. For any worlds in an information
set, the exact same possibilities follow. Furthermore, if we connect
the labeling of nodes with that in figure 1.b, we can see that the
agent passes through the same epistemic states in the same order as
in the absent-minded driver. We claim that figure 2 characterizes the
epistemic structure of the absent-minded driver.

Notice that our labeling trick in figure 1.b allows us to distinguish
possible events from those the agent merely believes are possible. The
subsequent worlds from any node in figure 2 represent epistemic pos-

sibilities, i.e. states of knowledge at which the agent may find himself
at the next point in time. The labels on worlds (i.e. the rightmost
event on the corresponding history) keep track of the events the agent
(perhaps wrongly) believes are possible. This brings out the conceptual
difference between the role of agent dependence in (Piccione and Ru-
binstein, 1997) and in our own discussion. For Piccione and Rubinstein,
agent dependence captures the constraint that the agent must believe
he has the same actions available at each world in an information set
or else he could distinguish between them. For us, agent dependence
captures the constraint that from a single epistemic state, there is only
a single uniform set of possible epistemic states which may occur. An
information set represents a single epistemic state, so from each world in
the information set, the same set of possibilities must follow. Thus, the
same formal constraint does distinct conceptual work in our approach.
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4. Epistemic equivalence

We now have the apparatus to answer our motivating question: when
are two models epistemically equivalent? Usually, models are defined as
equivalent with respect to some specific criterion they both satisfy. For
example, (Thompson, 1952) investigates the idea that two extensive
form games are equivalent if they share the same strategic form. We
would like to find a concept that will play the same role as strategic
form did for Thompson, an epistemic criterion that can be used to
partition the space of ETL models into equivalence classes.

Let’s begin by singling out the class of models which satisfy desider-
ata A and B above. These models are in synchronic normal form:

Definition 4.1 (Synchronic normal form) An ETL model is in syn-

chronic normal form if

− it exhibits strong synchronicity

− it is agent-dependent ⊳

For every countable diachronic model, there exists an isomorphic token-
event model. Furthermore, for every token-event model, there is a
unique model in synchronic normal form such that agents pass through
the same information sets in the same order. We call such a normal
form model the synchronic completion of the corresponding token-
event model. For example, figure 2 depicts the synchronic completion
of the model in figure 1.b. The intuitive characterization of this concept
(which we formalize in section 5) can be expressed as follows:

Synchronic completion For any ETL token-event model H, the syn-

chronic completion of that model, SC(H), is just the unique model
in synchronic normal form such that agents pass through the same
information sets in the same order as in the original model.

It is crucial to note here that the concept of synchronic completion
applies only to token-event models. This is explained by the conceptual
analysis in section 3.2. To summarize: when considering diachronic
uncertainty from the epistemic standpoint, we realize that agents are
not confused between event types, but rather event tokens. Thus, we
can only make sense of the epistemic structure of a situation if we first
relabel all event types in its model with corresponding tokens. These
new events are tokens from the causal perspective, but will be treated as
types in the corresponding epistemic model. Formally speaking, there
is no distinction; the difference is purely one of interpretation.
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We now have all the apparatus to define our key concept: epis-

temic equivalence. The idea here is that two models are epistemically
equivalent if isomorphic token-event models share the same synchronic
completion (up to isomorphism); intuitively, agents pass through the
same epistemic states in the same order in both models.

Epistemic Equivalence Two token-event ETL models H and G are
epistemically equivalent if the synchronic completions of H and G are
isomorphic.

The concept of epistemic equivalence partitions the space of all
ETL models into equivalence classes of models which share synchronic
completions (either directly or via an isomorphic token-event model).
There is a unique (up to isomorphism) model in synchronic normal
form which represents the epistemic structure of each equivalence class.
The preservation theorem proved below is surprising precisely because
it illustrates a breakdown between this intuitive notion of epistemic
equivalence and the basic epistemic language.

5. Formalization

Now we will make these ideas more precise. We first formalize the basic
notions described in the previous sections and then introduce the model
transformation that captures the idea of synchronic completion. Once
we have formalized this concept, we will be able to show that a certain
class of ETL formulas are preserved under synchronic completion.

5.1. Basic notions

Fix a countable set of events Σ. For simplicity, we only deal with the
single agent case and omit indices for the equivalence relation ∼ in
ETL models. Given an ETL model H = (H,∼, V ) and a history h, we
denote by [h]H the equivalence class under ∼ to which h belongs. When
there is no confusion about which model is under discussion, we omit
the superscript. Given h ∈ Σ∗, we denote by Σ(h) the set of events
constituting h and by r(h) the right-most element of h. Given a set x,
we denote the cardinality of x by |x|.

Definition 5.1 (Token-event ETL models) An ETL model H =
(H,∼, V ) is a token-event ETL model if

1. for every h ∈ H, len(h) = |Σ(h)| and
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2. for every h, h′ ∈ H, Σ(h) ∩ Σ(h′) − Σ(g) = ∅

where g is the longest (possibly empty) initial segment of h and h′, i.e.

g � h and g � h′ plus there is no g′ such that g ≺ g′, g′ � h, and
g′ � h′. ⊳

We next demonstrate that consideration can be restricted to token-
event models without undermining the generality of our results. ETL
models, H = (H,∼, V ) and H′ = (H ′,∼′, V ′), are isomorphic, if there
is a one-to-one surjective map f : H → H ′ such that, for all h, h′ ∈ H,

− h ∼ h′ iff f(h) ∼′ f(h′) and

− h ∈ V (p) iff f(h) ∈ V ′(p).

Given the definition, it is clear that, for any ETL model H = (H,∼, V ),
if |H| ≤ |Σ|, then there is a token-event ETL model isomorphic to H.
This ensures that we can always find an appropriate token-event model
for every (countable) ETL model.

5.2. Synchronic completion

We now give the formal definition of synchronic completion of token-
event ETL models. We need some definitions. We denote by h(n) (1 ≤
n ≤ len(h)) the initial segment of h of length n and by hn the n-th
element of h. Given a set H ⊆ Σ∗, we define r(H) := {r(h) | h ∈ H}.
Given a number n ≥ 0, we denote by Hn the set of elements h in H
such that len(h) = n. The next definition provides an operation that
“synchronizes” an ETL models up to a finite level n.

Definition 5.2 (Synchronization up to n) Let H = (H,∼, V ) be a
token-event ETL model. Let n ≥ 1. We define SCn(H), SCn(∼), and
SCn(V ) by induction up to n as follows:

1. SC1(H) := H1 ∪ {r(h) | ∃h′ ∈ H1 : h ∈ H and h ∈ [h′]} :

2. h ∈ SCk+1(H) iff there are h′ ∈ SCk(H) and e ∈ Σ such that:

− h = h′e and

− ∃g ∈ Hk : r({h′′ | (h, h′′) ∈ SCk(∼)}) = r([g]) and ge ∈
Hk+1

3. (h, h′) ∈ SC1(∼) iff h, h′ ∈ SC1(H) and there are g, g′ ∈ H
such that:

− h = r(g),
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− h′ = r(g′) and

− g ∼ g′.

4. (he, h′e′) ∈ SCk+1(∼) iff (i) h, h′ ∈ SCk(H), (ii) e, e′ ∈ Σ, (iii)
h = h′, and (iv) there are g, g′ ∈ H such that:

− g ∼ g′,

− e = r(g) and

− e′ = r(g′)

5. h ∈ SC1(V )(p) iff h ∈ SC1(H) and ∃g ∈ H : h = r(g) and
g ∈ V (p)

6. h ∈ SCk+1(V )(p) iff ∃g ∈ H : r(g) = r(h) and g ∈ V (p) ⊳

This definition makes use of the following fact: each event e that con-
stitutes a token-event ETL model corresponds to the unique history in
that model whose right-most element is e. Conditions 1 and 2 ensure
that the k-th level of the synchronized ETL model SCk(H) contains
both the nodes that are in the k-th level and the nodes that are indistin-
guishable from them in the original model H. Intuitively, if an agent is
uncertain between a node at time k and a node at time j 6= k, we erase
the diachronic uncertainty relation and add a copy of the node from
time j at time k. This new node is “the same” as the original one in the
sense that it satisfies the same propositional letters as the original; this
is ensured by conditions 5 and 6. Finally, conditions 3 and 4 guarantee
that the new indistinguishability relation SCn(∼) respects the original
∼ in the sense that nodes in the new model are indistinguishable only
if the corresponding nodes in the original model are indistinguishable.

We can now state the definition of synchronic completion.

Definition 5.3 (Synchronic Completion) Let H = (H,∼, V ) be a
token-event ETL model. The synchronic completion of H, SC(H) =
(SC(H), SC(∼), SC(V )), is defined as follows:

− SC(H) :=
⋃∞

k=1 SC
k(H)

− SC(∼) :=
⋃∞

k=1 SC
k(∼)

− SC(V )(p) :=
⋃∞

k=1 SC
k(V )(p) ⊳

A brief inspection of the above definitions reveals that the synchronic
completion of an ETL model satisfies the two desiderata, synchonicity
and agent-dependency, discussed in the previous section. The following
is a simple consequence of the definitions; the proof of the proposition
is given in appendix 7.1.
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Proposition 5.4 The synchronic completion of any ETL model is in

synchronic normal form.

Next, we present the result that underscores the intuition that a
token-event model H and its synchronic completion are epistemically

equivalent in the sense that an agent’s experience is the same in both
models. To do so, we need the following definition.

Definition 5.5 (Epistemic history along h in H) Let H = (H,∼
, V ). The epistemic history I(H, h) = (I1(H, h), . . . ,Ilen(h)(H, h)) is a
sequence such that, for all 1 ≤ k ≤ len(h) Ik(H, h) = r([h(k)]). ⊳

This definition formalizes the concept of an agent’s “experience” by
equating it with the sequence of information sets an agent passes through.
(This analysis is closely related to that offered in (Piccione and Rubin-
stein, 1997).) The following theorem states that, given a token-event
ETL model H and a history h in H, an agent passes through the same
sequence of information sets along h in the synchronic completion of H
as in H. The proof of the theorem is given in appendix 7.2.

Theorem 5.6 Let H = (H,∼, V ) be a token-event ETL model. For all

h ∈ H,

I(H, h) = I(SC(H), h).

Now that we have Definition 5.5 and Theorem 5.6, we may be
confident that the previously defined concept of epistemic equivalence
captures an intuitive notion of epistemic sameness. For completeness,
we restate the definition here.

Definition 5.7 (Epistemic Equivalence) Two token-event ETL mod-
els H and G are epistemically equivalent if SC(H) and SC(G) are
isomorphic.

5.3. Truth-preservation under synchronic completion

By Definition 5.7, an ETL model and its synchronic completion are
epistemically equivalent. Together with Proposition 5.4, we see that
the operation of synchronic completion transforms a (token-event) ETL
model into an epistemically equivalent ETL model that is synchronic
and agent-dependent.

Although synchronic completion preserves epistemic structure, in-
terpreted as the sequence of information sets that the agent passes
through, it changes other aspects of the original ETL model’s structure.
Natural questions we can ask here are: What properties of an ETL
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structure are preserved by synchonic completion? What properties are
not? Examining these questions will shed some light on the nature of
knowledge under diachronic uncertainty.

First we discuss what structures are preserved by the operation. For
this, we investigate the kinds of formulas whose truths are preserved
by synchronic completion. We emphasize here that this is another
advantage of working within the ETL framework.

Definition 5.8 (Preserved formulas) We define the set Pres of for-
mulas inductively as follows:

ϕ ::= P | ϕ ∧ ϕ | ϕ ∨ ϕ | Kϕ | Fϕ

where P is a propositional formula. ⊳

The intended readings of Kϕ and Fϕ are respectively “ϕ is known”
and “There is some future sequence of events after which ϕ.” The duals,
K̂ and F̂ , of K and F are defined in the standard way. The intended
readings of K̂ϕ and F̂ϕ are “ϕ is considered possible” and “After any
future sequence of events, ϕ.”

Let H = (H,∼, V ) be a token-event ETL model. The truth of
formulas in Pres is defined in a standard way in ETL. Here we list
the cases for the two modalities.

H, h |= Kϕ iff ∀h′ ∈ H : h ∼i h
′ ⇒ H, h′ |= ϕ

H, h |= Fϕ iff ∃σ ∈ Σ∗ : hσ ∈ H and H, hσ |= ϕ

We can show the following result. The proof is given in appendix 7.3.

Theorem 5.9 (Preservation under synchronic completion) Let

ϕ be a formula in Pres. Then, for all h ∈ H,

H, h |= ϕ ⇒ SC(H), h |= ϕ.

Theorem 5.9 demonstrates that formulas in which the knowledge
operator K and the future operator F appear but not their duals are
preserved under synchronic completion. More colloquially, knowledge
of future possibility and the future possibility of knowledge are pre-
served. Many types of formulas are not preserved, however; why these
particular ones? The crucial point to remember here is that we have
reinterpreted what a history signifies. In a model interpreted as causal,
nodes signify states of the world; in a model interpreted as epistemic,
nodes signify states of information. With the change in our interpreta-
tion of the models, comes a corresponding change in our interpretation
of modal operators.
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F , for example, no longer corresponds to physical possibility, but to
epistemic possibility. As an example, consider again the absent-minded
driver, as illustrated in figure 1.b. Call this H; SC(H) is illustrated
in figure 2. The absent-minded driver can reason about the histories
available to him if we stipulate that each world has a distinguished
proposition letter true at that world and no other. For the sake of
discussion, let’s consider the second intersection (s2), the driver’s home
(t2), and the hotel (s3). Stipulate that H, s2 |= a, H, t2 |= b, and H, s3 |=
c, but no other worlds satisfy a, b, or c.

Now, consider a formula such as KFb; intuitively, the driver knows
that in some future he arrives home. This formula is in Pres and is
true at the root node of both H and SC(H). However, this formula
could mean two distinct things depending upon whether we interpret
the model causally or epistemically. If interpreted causally, the formula
says that there is a future way the world could be such that the driver
arrives home, and he knows it. Interpreted epistemically, the formula
says there is a future way the driver’s epistemic state could be such
that it contains the information he is home, and he knows this. What
theorem 5.9 tells us is that even in cases of diachronic uncertainty,
the epistemic and causal interpretations of this formula have the same
truth value. This is important because only when causal and epistemic
possibility match up does the driver have knowledge that can help him

decide how to act.
In contrast, consider the formula ϕ = KF̂ (a→ F̂ (b∨ c)). Since this

formula contains the dual of F , it is not in Pres. Investigation reveals
that H, ∅ |= ϕ but SC(H), ∅ 6|= ϕ. How can we make sense of this? In-
terpreted causally, the formula says that the driver knows that in every
future way the world could be, if he is at the second intersection, then
in every future way the world could be he is either at home or at the
hotel. Interpreted epistemically, the formula says that the driver knows
that in every future epistemic state he could be in, if he is at the second
intersection, then in every future epistemic state he is either at home
or at the hotel. In this case, the epistemic and causal interpretations
come apart. The reason, of course, is that the driver considers possible
scenarios which are not physically possible; in particular, he considers
it possible that he is at the second intersection when he is only at the
first, and thus there are future epistemic possibilities in which he is not
at home or the hotel, but instead in the bad part of town (t1).

This is a case where knowledge comes apart from knowledge which

can guide action, but only because it is knowledge which quantifies
over all futures. By quantifying over all futures we can uniquely identify
temporal states, but that is exactly what an agent who is diachronically
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uncertain cannot do. So, in general, such “knowledge” is not useful

knowledge for the absent-minded agent.

6. Probability and sleeping beauty

The “paradox” of the absent-minded driver is a puzzle about how
knowledge of future absent-mindedness affects the driver’s strategy.
In general, however, diachronic uncertainty also poses a puzzle for the
assignment of probabilities: if I am in a diachronic information set,
what probability should I assign to each world I consider possible? This
question does not arise in the absent-minded driver (for reasons to be
discussed below), but it does arise in the problem of sleeping beauty
(Elga, 2000). We conclude with a brief discussion of this problem and
potential strategies for analyzing it with synchronic completion.

Sleeping Beauty voluntarily participates in a bizarre psychological
experiment. On Sunday night, the experimenters flip a fair coin, then
put Beauty to sleep without telling her the outcome. If the coin came
up heads, they wake Beauty on Monday, but do not expose her to
any information about what day of the week it is. At the end of the
day, they erase her memory and put her back to sleep. On Wednesday,
they wake Beauty and the experiment is over. If the coin came up
tails, the experimenters wake Beauty on both Monday and Tuesday.
Each day, Beauty is prevented from accessing information about the
day of the week and at the end of the day, her memory is erased. On
Wednesday, the experimenters wake Beauty and the experiment is over.
Since Beauty knows the exact structure of the experiment, we can ask
how she should assign probabilities (for example, to the outcome of the
initial coin toss) once the experiment is underway.

The key feature of the sleeping beauty scenario is that Beauty expe-
riences an event (waking) once or twice depending upon the outcome
of a random process, but her diachronic uncertainty prevents her from
distinguishing the single occurrence from the double occurrence case.
A structurally analogous problem was introduced in (Piccione and
Rubinstein, 1997), but without the elaborate backstory. Figure 3.a
is analogous to the model in (Piccione and Rubinstein, 1997), but it
omits moves which would allow Beauty to opt out of the experiment
in accordance with the Elga scenario. The strategy taken by Elga here
is analogous to that taken by (Aumann, et al., 1997) with respect to
the absent-minded driver. In order to analyze the structure of belief
change in the absent-minded driver, (Aumann, et al., 1997) removes
all possibility for the driver to act, constructing a scenario called “the
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Figure 3. Sleeping beauty. For even synchronization, α = β = 1/3; for historic

synchronization, α = 1/2 and β = 1/4.

forgetful passenger.” Likewise, Elga has removed the actions available
to Beauty in order to analyze her beliefs in isolation.

Once she is awoken during the experiment, Beauty knows that there
are three possible scenarios: 1. it is Monday and she won’t be awoken
again; 2. it is Monday and she will be awoken again; 3. it is Tuesday.
Furthermore, she can easily calculate from the model the probability
with which she arrives at each of these worlds. If probabilities are as-
signed to edges, we can find the probability that one is at a particular
world by simply multiplying the values assigned to all edges leading
up to that world. So, from outside the model, it is easy to see that
p(M1) = 1/2, p(M2) = 1/2, and p(T2) = 1/2. But Beauty cannot
distinguish between any of these three worlds, so we must somehow
normalize the probabilities within her information set.

(Piccione and Rubinstein, 1997) discusses two distinct strategies
for normalizing probabilities in the sleeping beauty scenario. In the
philosophical literature, the respective virtues of these two strategies
have been hotly debated; much of the discussion has centered around
details specific to the backstory and the evidential rules Beauty should
apply in light of these details. In the context of the present framework,
however, the two options for assigning probabilities in sleeping beauty
are simply special cases of two general rules for extending synchronic
completion to probabilistic models.

One strategy is to simply normalize over the worlds, treating them
all equally. Since the probability we arrive at each of the worlds is
1/2, this analysis assigns p(M1) = p(M2) = p(T2) = 1/3. A second
strategy normalizes separately over histories. Since there is only one
world in the “heads” history, p(M1) = 1(1/2) = 1/2. Since there are two
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worlds with equal probabilities in the “tails” history, p(M2) = p(T2) =
(1/2)(1/2) = 1/4. (Piccione and Rubinstein, 1997) calls the former
strategy “consistent” and the latter strategy “Z-consistent.” This ter-
minology is somewhat loaded, however, so let’s refer to evenly weighted
normalization as “even synchronization” and the normalizaton over
histories separately as “historic synchronization.” Formal definitions
for even and historic synchronization are given in appendix 7.4. The
synchronic completion of sleeping beauty is given in figure 3.b.

(It should be obvious now why this debate does not arise in the
context of the absent-minded driver. Both worlds in the absent-minded
driver’s diachronic information set fall on the same history. Since only
one history is under consideration, normalizing over all worlds evenly
and normalizing separately within histories produce the same result.)

Although a number of arguments have been given for either strategy,
we will point out only two considerations here. If one follows the second
strategy and assigns a larger probability to M1 than M2 and T2, one
is subject to a “money pump,” i.e. a second agent can take advantage
of the fact that Beauty will place a bet twice in one scenario and only
once in the other to make bets with her such that she will always lose.
Assigning probabilities in accordance with the first strategy avoids the
money pump, but at the cost of an apparent inconsistency with previous
beliefs. If Beauty normalizes over worlds and not histories, she seems
doomed to conclude that the probability of the outcome heads changes
from 1/2 to 1/3 just because she has been woken during the experiment.

The advantage of examining this debate in the context of synchronic
completion is simple: the method for assigning probabilities within a
diachronic information set must be explicitly stipulated in the trans-
formation itself. This allows for the general investigation of the conse-
quences of each strategy, without an undo dependence on the details
of this specific example.

The authors suspend judgment on the “correct” transformation un-
til after a more thorough investigation. At present, however, we lean
slightly towards historic synchronization for two reasons. Although even
synchronization sounds like the simpler procedure when described in
ordinary language, it turns out that its formal statement as a transfor-
mation is slightly more complex than that of historic synchronization
(compare Definition 7.16 and Definition 7.17). This is because during
even synchronization an additional normalization procedure needs to
occur to ensure the information set as a whole does not take up any
more than the permitted probability mass at a given depth in the
tree. In historic synchronization, this normalization is performed by
the probability of the history at that depth.

IsaacHoshi-JoLLI9.tex; 11/02/2010; 16:33; p.20



21

Second, consider again figure 3.a and its synchronic completion,
figure 3.b. The probability of reaching W1 is clearly 1/2. Both even and
historic synchronization preserve the probability ofW1 (and indeed, the
probabilities of all histories outside of diachronic information sets). But
historic synchronization assigns 1/2 to α while even synchronization
assigns 1/3 to α. As mentioned above, Beauty exhibits an apparent
inconsistency with her knowledge of the past coin toss if she assigns
M1 probability 1/3. What is not often emphasized in the literature
is her apparent inconsistency with future events as well. Once Beauty
emerges from the experiment, the probability that it is Wednesday
and the coin came up heads is still 1/2. Deviating from the known
probabilities of both one’s past and one’s future within an information
set seems unwise in principle.

Finally, we conclude with a suggestion for future research. One of the
most compelling arguments for even synchronization, going all the way
back to (Piccione and Rubinstein, 1997) is the money pump argument.
But accepting a bet is an action, and ETL can model actions just as
well as chance events. A natural move would be to build this action
into the model and see how it is transformed by even and historic syn-
chronizations. Of course, a serious attempt at exploring this possibility
should move past the simple probabilistic ETL models discussed here to
models which distinguish intentional actions from chance. The authors
hope that the present work paves the way for future investigations along
these lines.
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7. Appendix

7.1. Proof of Proposition 5.4

The following facts are straightforward consequences of Definition 5.2.

Observation 7.1 For all n ≥ 1 and h, h′ ∈ SCn(H), len(h) = len(h′) =
n.

Observation 7.2 For every n ≥ 1, Hn ⊆ SCn(H).

Proposition 7.3 Let n ≥ 1. For every h, g ∈ SCn(H) and σ ∈ Σ∗, if

hσ ∈ SCn(H) and (h, g) ∈ SCn(∼), then gσ ∈ SCn(H).

Proof. By straightforward induction on the length of σ, based on the
inductive clause of SCn(H) in Definition 5.2. qed

Now we show some simple but important properties of synchronic
completions, which will be used also for the proofs below. Let H =
(H,∼, V ) be an ETL model and G = (G,≈, U), the synchronic com-
pletion of H.

Proposition 7.4 H ⊆ G.

Proof. The claim is an immediate consequence of Definition 5.3 and
Observation 7.2. qed

Proposition 7.5 G is synchronic.

Proof. For each h, g ∈ G, if h ≈ g, then (h, g) ∈≈ for some n. However,
by the inductive clause for ≈ in Definition 5.2, we have len(h) = len(g).
qed

Proposition 7.6 For every h, g ∈ G and e ∈ Σ, if he ∈ G and h ≈ g,
then ge ∈ H ′.

Proof. The claim follows from Proposition 7.3. qed

Proposition 5.4 The synchronic completion of any ETL model is in
a synchronic normal form.
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Proof. The proposition is an immediate consequence of Propositions
7.5 and 7.6. qed

7.2. Proof of Theorem 5.6

Theorem 5.6 Let H = (H,∼, V ) and G = (G,≈, U) be respectively a
token-event ETL model and its synchronic completion. For all h ∈ H,

I(H, h) = I(G, h).

Proof. We show by induction on n (1 ≤ n ≤ len(h)) that In(H, h) =
In(G, h). The base case follows immediately from Proposition 7.5 and
the definition of SC1(H) and ∼1 in Definition 5.2.

Let [h] = {g | h ∼ g} and [h]′ = {g | h ≈ g}. Assume as IH that
In(H, h) = In(G, h). Suppose that a ∈ In+1(H, h). Then there is some
g such that h(n+1) ∼ ga. Now, by Proposition 7.4, we have h(n) ∈
G and in particular h(n) ∈ SCn(H) by the definition of SCn(H) (in
Definition 5.2). By IH, we have r([h(n)]) = r([h(n)]

′). Furthermore, by
inspecting the definition of SCn(∼), we see r([h(n)]n) ⊆ r([h(n)]

′). So,

by the definition of SCn+1(H), we have h(n)a ∈ SCn+1(H). Finally we

have a ∈ In+1(G, h) by the definition of SCn+1(∼). Hence In+1(H, h) ⊆
In+1(G, h).

Next, suppose a ∈ In+1(G, h). Then there is some g such that
h(n+1) ≈ ga. By the definition of SCn+1(∼), there are some l, k such
that lhn+1 ∼ ka. Since H is a token-event ETL model, l is unique. It
must be the case, then, that l = h(n) and therefore h(n+1) ∼ ka. Thus
we have a ∈ In+1(H, h). Hence In+1(H, h) ⊆ I(G, h). qed

7.3. Proof of Theorem 5.9

To obtain the desired preservation result, we need to prove some facts
about synchronic completions of token-event ETL models. Below let
H = (H,∼, V ) be a token-event ETL model and G = (G,≈, U), the
synchronic completion SC(H) of H.

Observation 7.7 Let P be a propositional formulas. Then, for every

h ∈ H and g ∈ G, if r(h) = r(g), H, h |= P iff G, g |= P .

Proof. The claim immediately follows from the definition of U in
Definition 5.2. qed

Observation 7.8 Let Kϕ ∈ Pres. If G, h |= Kϕ, then G, g |= Kϕ for

every g such that h ∼ g.
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Proof. The claim is an immediate consequence of the fact that ∼ is an
equivalence relation on G. qed

Definition 7.9 (ETL model after h) For every h ∈ G, the model

Gh = (Gh,≈h, Uh) after h is defined by:

− g ∈ Gh iff ∃l : lg ∈ G and h ≈ lg1.

− ≈h=≈ ∩(Gh ×Gh).

− Uh(p) = U ∩Gh. ⊳

Proposition 7.10 For every h, g, g′ ∈ G such that len(g), len(g′) ≥
len(h),

g ≈ g′ iff g ≈h g
′.

Proof. The left-to-right direction is clear. The other direction follows
from the fact that, for every g, g′ ∈ G, if g ≈ g′, then g = le and g′ = le′

for some l ∈ Σ∗ and e, e′ ∈ Σ (as defined in the inductive clause of ≈
in Definition 5.2.) qed

Proposition 7.11 G, h |= ϕ iff Gh, h |= ϕ.

Proof. The proof is by induction on ϕ. The base case is immediate
from Definition 7.9. The cases for ∨,∧, F are straightforward. For the
knowledge modality case, assume G, h |= Kψ. This means that G, g |= ψ
for all g with h ≈ g. By Proposition 7.10, this is equivalent to Gh, g |= ψ
for all g with h ≈h g. qed

Proposition 7.12 Let Fϕ ∈ Pres. If G, h |= Fϕ, then G, g |= Fϕ for

every g such that h ≈ g.

Proof. Assume G, h |= Fϕ. Then we have G, hσ |= ϕ for some σ ∈ Σ∗.
By Proposition 7.11, we have Ghσ, hσ |= ϕ. By Proposition 7.6, we
have gσ ∈ G. By Proposition 7.6 and Definition 5.2, Ghσ and Ggσ are
isomorphic. Thus Ggσ, gσ |= ϕ. By applying Proposition 7.11, we obtain
G, gσ |= ϕ. qed

Theorem5.9 Let ϕ be a formula in Pres. Then, for all h ∈ H,

H, h |= ϕ ⇒ G, h |= ϕ.

Proof. We show the claim by induction on ϕ. The base case is clear
from Observation 7.7. The boolean cases, ∧ and ∨, and the future
modality case are straightforward. For the knowledge modality, assume
H, h |= Kϕ. Then we have H, h |= ϕ for every g with h ∼ g. In
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particular, since ∼ is an equivalence relation, we have H, h |= ϕ. By
IH, G, h |= ϕ. Now we would like to show that G, g |= ϕ for all g with
h ≈ g.

Now we go by cases. First, assume that ϕ is propositional. By Def-
inition 5.2, r([h]) = r({h′ | h ≈ h′}). Thus, by Observation 7.7, if
H, h′ |= ϕ for all h′ with h ∼ h′, then G, g |= ϕ for all g with h ≈ g.

Second, assume that ϕ is of the form Kψ or Fψ. Then we are done
by Observation 7.8 or Proposition 7.12.

Finally, assume that ϕ is not of the form in the previous two cases.
Then, transform ϕ into a conjunctive normal form

∧

Φi. Each Φi is a
disjunction of propositional formulas and formulas of the form Kα or
Fα. Let g be such that h ∼ g. If some non-propositional disjunct is true
at h, then Φi is true in all g by Observation 7.8 or Proposition 7.12.
Thus, assume that non-propositional disjuncts are all false. In this case,
we apply the argument from the case that ϕ is propositional. Hence,
H, g |=

∧

Φi for all g with h ∼ g. qed

7.4. Synchronic completion of probabilistic ETL models

There are a number of natural ways to extend epistemic temporal
logic with probabilities. (Cao, 2006), for example, develops a sophis-
ticated approach in which probabilities are indexed by worlds. The
precise probabilistic version of ETL chosen will determine what types
of transformation rule are possible for assigning new probabilities dur-
ing synchronic completion. In this section, we examine a very simple
probabilistic extension of ETL, one suitable for analyzing the beliefs of
“passive” players in a game where all moves are made by chance.

Definition 7.13 (probabilistic ETL models) A probabilistic ETL

model is a tuple (H,∼, V, µ) where:

1. (H,∼, V ) is an ETL model

2. µ : H −→ [0, 1] is a function assigning real numbers to histories
such that,

− µ(∅) = 1

− for any h ∈ H,
∑

{h′:∃e∈Σ(h′=he)} µ(h′) = 1 ⊳

µ assigns transition probabilities to histories. The correct interpretation
here is not that µ(h) tells us the probability of being at h simpliciter,
but rather the probability of transitioning to h from the previous node
in the tree.
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Definition 7.14 (probability at time t) Given a probabilistic ETL
model (H,∼, V, µ) and a time t, the probability P (h) of a history h such
that len(h) = t is P (h) = Π{h′:h′�h}µ(h′). ⊳

It is easy to prove that P is a probability distribution over histories of
length t.

Within a synchronic information set, it is uncontroversial how to
assign probabilities to worlds.

Definition 7.15 (synchronic probability) Given a synchronic prob-
abilistic ETL model (H,∼, V, µ) and an information set [h], the prob-
ability P̄ (h) that the agent is at history h ∈ [h] is

P̄ (h) =
P (h)

∑

{h′:h′∈[h]} P (h′)

⊳

Next we define two strategies for extending the definition of syn-
chronic completion to probabilistic ETL models. Even synchronization
normalizes over all worlds in an information set. Historic synchro-
nization normalizes separately over worlds on each history within an
information set.

Definition 7.16 (Even synchronization up to n) Let H = (H,∼
, V, µ) be a token-event probabilistic ETL model. Let n ≥ 1. We de-
fine SCn(H), SCn(∼), SCn(V ), and SCn(µ) by induction up to n as
follows:

1. SCn(H), SCn(∼), and SCn(V ) are just as in Definition 5.2

2. for h ∈ SCk(H),

SCk(µ)(h) =

(

∑

{h′:h′∈[h]∧h′∈Hk}
P (h′)

)

[

P (h)
∑

{h′:h′∈[h]}
P (h′)

]

∑

{h′:h′∈SCk(H)∧∃e,f∈Σ∃h′′(h=h′′e∧h′=h′′f)} P (h′)

⊳

The most important constraint on µ is that the µ of all histories leading
out of single node must sum to 1. In synchronic completion, however, we
attach new edges to histories at each level. So, we must renormalize over
all histories which share a parent at each depth k, this is the role of the
denominator. The left half of the numerator ensures that a diachronic
information set is normalized with respect to already synchronic events.
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In other words, we need to ensure that the probability mass assigned
to a particular information set at depth k doesn’t change when we
add in the (formerly) diachronic nodes. Finally, the right side of the
numerator performs the evenly weighted normalization over all nodes
in an information set.

Definition 7.17 (Historic synchronization up to n) Let H = (H,∼
, V, µ) be a token-event probabilistic ETL model. Let n ≥ 1. We de-
fine SCn(H), SCn(∼), SCn(V ), and SCn(µ) by induction up to n as
follows:

1. SCn(H), SCn(∼), and SCn(V ) are just as in Definition 5.2

2. for h ∈ SCk(H),

SCk(µ)(h) =

P (h)

[

P (h)
∑

{h′:h′∈[h]∧(h�h′∨h′�h)}
P (h′)

]

∑

{h′:h′∈SCk(H)∧∃e,f∈Σ∃h′′(h=h′′e∧h′=h′′f)} P (h′)

⊳

When normalizing over histories rather than complete information sets,
we do not need to adjust the probabilities of worlds h in an information
set which does not contain worlds h′ such that h � h′ or h′ � h.
This is because the total probability weight on all the worlds in the
information set which do lie in the same history is always equal to the
weight on the single world which actually falls at the relevant time.
This is ensured by the left side of the numerator. The right side of
the numerator normalizes over all nodes in an information set falling
on the same history. Just as in even synchronization, the denominator
normalizes over all worlds descending from a single parent.
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