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Abstract

In the oocytes of many animals including humans, the meiotic spindle assembles without centrosomes. It is still unclear how
multiple pathways contribute to spindle microtubule assembly, and whether they are regulated differently in mitosis and
meiosis. Augmin is a c-tubulin recruiting complex which ‘‘amplifies’’ spindle microtubules by generating new microtubules
along existing ones in mitosis. Here we show that in Drosophila melanogaster oocytes Augmin is dispensable for chromatin-
driven assembly of bulk spindle microtubules, but is required for full microtubule assembly near the poles. The level of
Augmin accumulated at spindle poles is well correlated with the degree of chromosome congression. Fluorescence
recovery after photobleaching shows that Augmin stably associates with the polar regions of the spindle in oocytes, unlike
in mitotic cells where it transiently and uniformly associates with the metaphase spindle. This stable association is enhanced
by c-tubulin and the kinesin-14 Ncd. Therefore, we suggest that meiosis-specific regulation of Augmin compensates for the
lack of centrosomes in oocytes by actively biasing sites of microtubule generation within the spindle.
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Introduction

Spindles can assemble without centrosomes naturally in oocytes

and artificially in mitotic cells [1–3]. This report asks whether the

meiotic spindle is simply a mitotic spindle without centrosomes, or

if oocytes have developed specific mechanisms which compensate

for the absence of centrosomes. Centrosome-dependent and

chromosome-dependent pathways are two well documented

pathways which generate spindle microtubules [4]. Recently

another pathway has been described. This pathway generates

new microtubules from the side of existing spindle microtubules

[5], and therefore depends on other microtubule assembly

pathways. A new microtubule branches at a low angle and with

the same polarity as the original filament, and is mediated by the

8-subunit c-tubulin recruiting complex Augmin in mitosis [6,7,8].

Augmin subunits are functionally interdependent, and require

each other for protein stability [6,9]. The Augmin complex was

originally identified in Drosophila, but shown to be conserved widely

among higher eukaryotes [6,7,10–15].

The Augmin complex is associated uniformly with spindle

microtubules, recruits c-tubulin onto spindle microtubules, and

increases both the density of spindle microtubules during mitotic

metaphase as well as the density of central spindle microtubules

during mitotic anaphase [6,9,10,16]. Therefore, Augmin’s func-

tion in mitosis is proposed to amplify microtubules by generating

new microtubules along existing spindle microtubules [6]. The

localisation of Augmin to centrosomes or centrosomal regions is

shown in mammalian interphase and in Drosophila mitotic

prophase, although the significance of these localisations has not

been demonstrated [7,11,17,18]. The microtubule binding activity

of the human Augmin complex is regulated by phosphorylation by

Plk1 and Aurora A [19,20].

Mutations of Augmin subunits have been isolated in Drosophila

and lead to female sterility [9,16]. In mutant oocytes, the spindle

microtubules are robustly assembled with chromosomes mis-

aligned and homologous centromeres further apart [9]. This

suggests that in oocytes Augmin plays a different role from that in

mitosis. Here we report meiosis-specific regulation of this c-tubulin

recruiting complex that may function to substitute for the lack of

the centrosomal activity in oocytes.

Results

Augmin plays a crucial role in limiting chromosome
spreading within the spindle

We have previously isolated a null mutant of the core Augmin

subunit Wac, in which other subunits of the Augmin complex are

also destabilised [9]. In the mutant oocytes, chromosomes are

misaligned with homologous centromeres mostly bi-oriented, but

further apart within the robustly assembled meiotic spindle. In later

stages, chromosomes are mis-segregated at a very high frequency,

leading to female sterility [9]. To establish the precise role of Augmin,

we followed chromosome behaviour and microtubule assembly in
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live wild-type and mutant oocytes from nuclear envelope breakdown

onwards (Figure 1A, B; Movies S1, S2). When the nuclear envelope

breaks down, chromosomes were clustered together in both wild-type

and mutant oocytes. Then, in wild-type oocytes, individual

chromosomes moved within a limited range (up to 8 mm) along the

spindle axis for about 30 minutes, before chromosomes were

congressed to the equator of the spindle. In contrast, in most mutant

oocytes, chromosomes tended to cover a wider range than wild type

and spread widely along the spindle axis from the start of spindle

formation. Chromosomes eventually congress in most, but not all,

older oocytes (Figure S1). Therefore Augmin is required for limiting

the range of chromosome movement to keep chromosomes at the

spindle equator especially in early stages.

Augmin is dispensable for bulk spindle microtubule
assembly

Previous studies showed that in mitosis, Augmin assembles the

majority of spindle microtubules independently of centrosomes

[6,9,16,17]. In contrast, our previous observation from fixed

oocytes indicated that metaphase I spindles in a wac null mutant

show no significant difference in microtubule density from those in

wild type [9]. To investigate the kinetics of meiotic spindle

assembly, live imaging was carried out in mutant and wild-type

oocytes expressing GFP-a-tubulin. The timing of the appearance

of the first spindle microtubules after nuclear envelope breakdown

showed only a marginal difference between wild type and the

mutant (Figure 2A; Figure S2). Taken together, these results

indicate that unlike in mitosis of S2 cells, Augmin is largely

dispensable for bulk spindle microtubule assembly in oocytes.

Augmin is required for full microtubule assembly near
the acentrosomal poles

In mitotic metaphase, Augmin is associated with spindle

microtubules uniformly, and in cells depleted of Augmin,

Author Summary

Although centrosomes are the main sites of microtubule
assembly in mitotic cells, the meiotic spindle assembles
without centrosomes in the oocytes of many animals
including humans. It has also been shown that bipolar
spindles can be assembled in mitotic cells even when
functional centrosomes are artificially eliminated. It is still
unclear how spindle microtubules assemble without
centrosomes, and whether microtubule assembly is regu-
lated differently in mitosis and meiosis. Here we investi-
gated the role and regulation of the conserved protein
complex Augmin, which recruits c-tubulin to microtubules
to generate new microtubules, in Drosophila oocytes. We
found that meiosis-specific regulation of Augmin substi-
tutes for a lack of centrosomal activity in oocytes by
biasing microtubule assembly towards poles. As Augmin is
conserved widely in higher eukaryotes, our finding has an
important implication in our understanding of chromo-
some segregation and mis-segregation in human oocytes.

Figure 1. Chromosomes fail to congress in wac mutant oocytes. (A) Chromosome movement in wild-type and wacD oocytes expressing Rcc1-
mCherry. Scale bar = 10 mm. Time = min:sec. (B) The degree of chromosome congression in wild-type and wacD oocytes. The spread of the
chromosome mass along the spindle axis, excluding the 4th chromosome (the double arrow in the diagram), in six oocytes each plotted from nuclear
envelope breakdown (time 0) over time.
doi:10.1371/journal.pgen.1003562.g001

Meiosis-Specific Augmin Regulation
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microtubule density is uniformly reduced. Therefore, it was

originally proposed that Augmin amplifies (augments) microtu-

bules by generating new microtubules alongside existing ones [6].

In fixed oocytes we previously showed that an Augmin subunit is

concentrated at the polar regions of the meiotic spindle in oocytes

[9]. We hypothesise that in oocytes, Augmin may generate

microtubules within the metaphase spindle in a spatially biased

manner.

To test this hypothesis, we quantified the spatial distribution of

the microtubule density within the spindle in wild-type and mutant

oocytes. Oocytes were fixed and immunostained with tubulin, and

the signal intensity was measured along each spindle from one pole

to the other. After normalisation, the tubulin intensity was plotted

along the spindle length (Figure 2B). In the wac mutant, the tubulin

intensity near the polar regions relative to the spindle equator is

significantly lower than in wild type (p,0.01). This can be

explained by a decrease of microtubule density near the poles or

an increase at the spindle equator in the wac mutant. As Augmin is

known to generate microtubules, we favour the first interpretation.

To further confirm this observation from fixed samples, we

examined live oocytes using GFP-tubulin. We found a significant

increase in the frequency of spindles with a missing or weak

spindle pole in mutant oocytes (Figure 2C, D). Although these

morphologies were not obvious in fixed samples either due to

fixation or the absence of GFP-tagged protein, results from live

oocytes further support the possibility of an underlying reduction

in microtubules near the polar regions of the meiotic spindle.

Therefore, our evidence suggests that Augmin is required for full

assembly of microtubules near spindle poles in oocytes, rather than

to simply amplify the existing microtubules as is seen in mitotic

metaphase.

The level of Augmin at spindle poles is well correlated
with chromosome congression

We previously showed by immunostaining that in oocytes, the

Augmin subunit Dgt2 concentrates at acentrosomal spindle poles in

meiotic metaphase I. This is in clear contrast to the uniform

localisation of Dgt2 along spindle microtubules in mitotic

metaphase. To further confirm this localisation, we generated

transgenic flies which express Dgt2 tagged with GFP (GFP-Dgt2) in

oocytes. Live analysis shows that GFP-Dgt2 signal was enriched in

the polar regions of meiotic spindles (Figure 3A). To exclude the

possibility that the Dgt2 subunit on its own, but not the Augmin

complex, localises to the poles, the localisation of other Augmin

subunits was examined in oocytes. Wac tagged with GFP also

showed similar enrichment at the spindle poles (Figure 3B).

Furthermore, immunostaining showed that Dgt6 was also concen-

trated to the polar regions of the spindle (Figure 3C). This behaviour

Figure 2. Augmin facilitates the generation of microtubules near spindle poles. (A) Timing of the first microtubule assembly from nuclear
envelope breakdown in wild-type and wacD mutant oocytes. The error bars are SEM. n$11, p = 0.06. (B) Normalised tubulin intensity plots along the
long axis of the wild-type and wacD mutant spindles. Pixel intensity was measured along a line from one pole to the other as in the diagrams below.
Box plots show the central 50% of the data (box), the median (central bisecting line), and 1.5X the interquartile range (whiskers). The tubulin intensity
of the sub-polar spindle regions (the regions 3,8) relative to that of the equator region (5,6) is significantly lower in the wacD mutant than wild type
(p,0.01). (C) Spindle poles are often missing or weak in wacD oocytes expressing GFP-tubulin, while they are robust in wild-type oocytes expressing
GFP-tubulin. Scale bar = 10 mm. (D) The frequencies of various spindle morphologies in wild-type and wacD oocytes expressing GFP-tubulin. The
spindles with at least one weak or missing pole were significantly more frequent in the wac mutant (p,0.01, n$48).
doi:10.1371/journal.pgen.1003562.g002
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of Augmin as a complex is consistent with our previous observation

that the amount of Dgt2 is greatly reduced in the absence of Wac in

ovaries [9]. Therefore we conclude that the Augmin complex is

concentrated at the polar regions of spindles in oocytes.

We noticed that the intensity of Augmin in the polar regions of

the spindle was variable from one oocyte to another. To test

whether the polar accumulation of Augmin promotes chromo-

some congression, we measured the intensity of the GFP-Dgt2

signal at spindle poles and the degree of chromosome congression

(as the length of the chromosome mass along the spindle axis) for

each spindle from oocytes with various ages. We found a strong

positive correlation between the intensity of Dgt2 signals in the

polar region and the degree of chromosome congression

(Figure 3D).

Most Augmin complexes are stably associated with the
polar regions of the spindle

In S2 cells, it has been previously shown that Augmin on the

mitotic spindle turns over very rapidly (t1/2 of 4 seconds; [6]). To

establish the molecular dynamics of Augmin on the spindle in

wild-type oocytes, fluorescence recovery after photobleaching

(FRAP) was used to measure the turnover rates of GFP-Dgt2

associated with the meiotic metaphase spindle in mature oocytes.

After the spindle was photobleached by laser, recovery of the

fluorescent signal was monitored over time. Surprisingly, the

recovery was much slower in oocytes than that reported in mitotic

metaphase of S2 cells.

To quantify the turnover rate, recovery time of fluorescent

signals were pooled together and plotted (Figure 4A). A one-

population model, or a two-population model with only one

turnover population did not fit to the data satisfactorily. We found

that a two-population model with two distinct turnover popula-

tions fit to the observation very well. It is estimated that 85% of

GFP-Dgt2 belongs to the slow population with a half turnover

time (t1/2) of 5 minutes, and 15% belongs to the fast population

with t1/2 of 8 seconds.

This turnover rate is much slower than an estimated value from

the published data in mitotic metaphase using S2 cells [6].

However, a direct comparison is difficult due to the difference in

the experimental conditions. Additionally, S2 cultured cells may

not accurately represent mitotic cells in flies. Spindle defects in S2

cells depleted of Augmin appear stronger than that of neuroblast

mitosis in mutants lacking Augmin which are in fact viable

[6,9,10,16,17,21,22]. Therefore, we carried out FRAP experi-

ments on mitotic spindles in syncytial embryos laid by the GFP-

Dgt2 expressing flies (Figure 4B). The recovery curve showed that

GFP-Dgt2 on metaphase mitotic spindles consists of 85% of the

fast population with t1/2 of 15 seconds and 15% of non-turnover

or very slow turnover population.

We found that Wac-GFP also showed a slow turnover in oocytes

comparable to GFP-Dgt2 confirming that this is the behaviour of

the Augmin complex (Figure S3). Furthermore, FRAP of GFP-

tubulin indicated that microtubule dynamics is comparable

between mitotic spindles in syncytial embryos and meiotic spindles

in oocytes, excluding a possibility that a slow turnover of Augmin

in oocytes is a mere reflection of slow microtubule turnover in

oocytes (Figure S4). Therefore we conclude that the Augmin

complex is associated with spindle microtubules much more stably

in oocytes than in mitosis. This indicated the existence of an

oocyte-specific mechanism which stabilises the association of

Augmin to the polar regions of the spindle.

c-tubulin and Ncd contribute to the stability of Augmin
on the meiotic spindle

Augmin is thought to recruit the c-tubulin complex to nucleate

new microtubules on existing microtubules. It is possible that the

stable interaction of Augmin with the meiotic spindle is caused by

its attachment to the nucleated microtubule and for some reason

nucleation of microtubules is much more efficient in oocytes

(‘‘nucleate to stabilise’’ model; Figure 4F). In this case, a reduction

of c-tubulin would greatly decrease the population of stably

attached Augmin.

To test this possibility, c-tubulin37C, the major c-tubulin in

oocytes, was depleted by RNA interference (RNAi). Depletion

was confirmed by Western blotting using an antibody that

recognises all c-tubulin isoforms (Figure 4E), and immunostaining

showed a spindle defect similar to the previous report [23]. FRAP

of GFP-Dgt2 showed that there is no dramatic decrease in the

proportion of the slow-turnover population (85% to 74%;

Figure 4C). The morphology of the spindle polar region was

not significantly changed during FRAP. The most significant

difference is the increase in the turnover rate of the slow

population (t1/2 = 5 minutes to 2 minutes 50 seconds), although it

Figure 3. Augmin accumulation at spindle poles is correlated
with chromosome congression. (A, B) GFP-Dgt2 and Wac-GFP
localise to wild-type acentrosomal spindle poles. (C) Dgt6 localises to
spindle poles in wild-type oocytes by immunostaining. (D) The Augmin
level in spindle pole regions is well correlated with the level of
chromosome congression. Live oocytes expressing GFP-Dgt2 and Rcc1-
mCherry were used to measure two parameters: the spread of the
chromosome mass (including the 4th chromosomes) along the spindle
axis (as in Figure 1B), and the intensity of GFP-Dgt2 signal above the
background (as in Methods & Materials) for each spindle. Correlation
between the chromosome spread and the log of GFP-Dgt2 intensity is
significant (r = 20.772, p,0.01, n = 26).
doi:10.1371/journal.pgen.1003562.g003

Meiosis-Specific Augmin Regulation
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is still much slower than the fast-turnover population (t1/2 =

8 seconds). However, as Western blot showed residual c-tubulin

either from incomplete depletion by RNAi or the other c-tubulin

isoform (c-tubulin23C), the role of c-tubulin may be bigger.

Nevertheless, our quantitative study suggests that interaction with

c-tubulin is not the major cause of the stable population, but

further stabilises the already stable population (‘‘stabilise, then

nucleate’’; Figure 4F).

Next we looked into the involvement of Ncd (a kinesin-14),

a minus-end directed motor which cross-links spindle microtu-

bules. Ncd is not essential for viability but is important for pole

focusing of acentrosomal spindles and accurate chromosome

segregation in oocytes [24]. It could potentially anchor Augmin

onto microtubules, or cross-link newly nucleated microtubules to

existing microtubules and further stabilise the microtubule

interaction of the stable Augmin population. FRAP of GFP-

Dgt2 in ncd mutant oocytes showed that there is little change in the

proportion of the slower population (85% to 82%; Figure 4D). The

morphology of the spindle polar region was not significantly

changed during FRAP. The most significant difference is the

decrease in t1/2 of the slower population (5 minutes to 3 minutes

10 seconds). This suggests that interaction with Ncd does not play

a major role in stabilising Augmin onto the spindle in the first

place, but further stabilises the already stable population possibly

by cross-linking the newly nucleated microtubule to an existing

microtubule (Figure 4F).

Discussion

Oocytes form the spindle without centrosomes in many animals

including humans and Drosophila [1]. We propose that oocytes

have specific mechanisms which compensate for the lack of

centrosomal activity in meiotic metaphase (Figure 5). In mitotic

prophase, Augmin concentrates to centrosomal regions [17]. In

mitotic metaphase, it localises uniformly and transiently to the

spindle, and generates the majority of centrosome independent

microtubules (Figure 5; [6,9,16,17]). In oocytes, Augmin associates

with the poles of the metaphase I spindle in a stable manner, and

biases microtubule assembly near the poles which lack centro-

somes (Figure 5). The microtubules generated from the spindle

poles may be important to congress chromosomes towards the

spindle equator.

The position of chromosomes is thought to be determined by a

balance of multiple forces acting on chromosomes. The main

source of the forces is the kinetochore-microtubule interaction.

This interaction mainly pulls, but also can push, chromosomes,

and is sensitive to lack of tension [25,26]. In addition, other forces

acting on chromosome arms, often called polar ejection forces,

push chromosomes to the spindle equator [25]. These forces are

generated by an interaction between chromosome arms and

spindle microtubules. Proposed origins of polar ejection forces

include motor activities on chromosomes (chromokinesins),

chromosomal proteins tracking microtubule ends and simple

collision of chromosomes with polymerising microtubules [25,27].

It is still poorly understood how chromosomes find the equator of

the spindle by a balance of these forces. The organisation of

spindle microtubules results in spatial differences of some forces,

and chromosomes are positioned where poleward forces and anti-

poleward forces are balanced. It is proposed that chromosomes are

congressed at the equator as polar ejection forces are strongest

near the poles and gradually decrease at the equator, which

reflects the density and polarity of microtubules [25].

Polar ejection forces may play even more important roles in

chromosome congression in oocytes than mitosis, but crucial

differences of spindles between the two modes of divisions make it

more challenging to understand. As the spindle is formed without

centrosomes in oocytes [28], microtubule density is lowest near the

poles [29]. This difference of the spindle geometry potentially may

affect the spatial distribution of polar ejection forces and other

forces. Another difference is that centromeres/chromosomes are

clustered together even before the nuclear envelope breaks down

[29]. After the spindle elongates from the clustered chromosomes,

chromosomes initially become spread along the spindle, and then

congressed. The third difference is that, without centrosomes, the

position of chromosomes heavily influences the length of the

spindle and the distribution of microtubules within the spindle.

Furthermore, the age of the oocytes or the length of metaphase

arrest increases chromosome congression and decreases spindle

length [30]. We know from the observation of other mutants that

more spreading of chromosomes results in longer spindles, but do

not know whether the converse is correct. This intimate

relationship makes it difficult to disentangle the causal relationship

Figure 4. Augmin is stably associated with spindle microtubules.
(A–D) FRAP of spindle-associated GFP-Dgt2 in wild-type metaphase I
oocytes (A), in wild-type prometaphase/metaphase syncytial embryos
(B), in oocytes depleted of c-tubulin37C by RNAi (C), and in ncdD

homozygous mutant oocytes (D). A typical meiotic figure used for FRAP
is shown for each. Error bars are SEM. n$15 in meiosis and n$11 in
mitosis. (E) Western blot of oocytes using an antibody which recognises
all c-tubulin in oocytes in wild type and after depletion of c-tubulin37C
by RNAi. (F) Two hypothetical models for stable association of Augmin
with spindle microtubules. Our data are consistent with the ‘‘stabilise
and then nucleate’’ model.
doi:10.1371/journal.pgen.1003562.g004
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between spindle length/morphology and chromosome congres-

sion.

In the wac mutant, chromosomes are more widely spread in the

meiotic spindle with homologous centromeres further apart, even

relatively to the spindle length [9]. This chromosome spreading is

particularly prominent in the wac mutant at the early stages of

spindle formation, and becomes less prominent at the later stages,

suggesting that an Augmin-independent polar ejection force

gradually takes over though not completely. The failure or delay

of proper chromosome congression in the wac mutant is better

explained by a decrease in the pushing force acting on

chromosome arms (polar ejection force) rather than an increase

in the pulling force acting on kinetochores. In wac meiotic spindles,

we found that the density of microtubules in sub-polar regions is

relatively reduced, consistent with the polar concentration of

Augmin in wild-type spindles. These microtubules generated near

poles may be important for polar ejection forces by interacting

with chromosomes directly, or through motors or microtubule end

tracking proteins. We found a strong correlation between Augmin

accumulation in the polar regions and chromosome congression,

although the correlation does not necessarily imply a causal

relationship. These findings suggest that polar microtubules

generated by Augmin at the spindle poles are important for the

polar ejection force which congresses chromosomes in oocytes.

However, we cannot exclude alternative possibilities, such as that a wac

mutation more indirectly affects chromosome positioning by altering

the general organisation of the meiotic spindle, or the localisation of

factors that influence chromosome movement or architecture. We

examined thread-like projections thought to be connecting homolo-

gous heterochromatin using a phospho-H3 antibody [23,31], but no

noticeable differences were observed. Furthermore, although we did

not see Augmin at the central spindle region higher than cytoplasmic

background during spindle formation, we cannot exclude a possibility

that Augmin may play a role there.

As we previously showed [9], wac mutant oocytes exhibit an

elevated frequency of mono-orientation of homologous centro-

meres (,10% of X chromosomes), and further show a very high

incidence of chromosome mis-segregation in both stages of meiosis

(,80% and ,70% of meiosis I and II, respectively). Similarly, in

nod mutant oocytes which show reduced congression of achias-

matic chromosomes, it was genetically estimated that about 50% of

achiasmatic X chromosomes and about 2% of chiasmatic ones mis-

segregate [32]. This evidence suggests that chromosome congres-

sion or a force behind chromosome congression is crucial for

accurate chromosome segregation in oocytes. Additionally, a nod

mutant frequently shows detachment of achiasmatic chromosomes

from the spindle [29], while such detachment is seen less often in the

wac mutant. Thus Nod may play a role in anchoring chromosomes

to microtubules, as well as generating a polar ejection force.

The Augmin complex is much more stably associated with

spindle microtubules in oocytes than in mitotic cells. This

difference is not simply explained by a difference in spindle

dynamics, as the turnover of spindle microtubules is fast in both

oocytes and syncytial mitosis. Interestingly, the turnover of

Augmin on spindle microtubules in oocytes is significantly slower

than the turnover of spindle microtubules itself. At first glance, this

seems contradictory or puzzling. However, Augmin freed from

one depolymerised microtubule can easily be re-captured by other

microtubules in proximity rather than diffusing into the cytoplasm.

Therefore the Augmin turnover between spindle and cytoplasm

can be much slower than the turnover of individual microtubules.

Alternatively, as our data showed a small proportion of

microtubules are less dynamic, Augmin somehow could preferen-

tially bind to these stable microtubules.

We also found that c-tubulin and Ncd further stabilise the slow-

turnover population of Augmin. One explanation is that Augmin

already anchored to a microtubule is further stabilised by

combined actions of c-tubulin which nucleates a new microtubule

and Ncd which crosslinks this new microtubule to existing

microtubules. However, we could not exclude possibilities that

these indirectly affect the turnover of Augmin by altering the

spindle dynamics or organisation.

In Xenopus egg extract, bipolar spindles can be formed in the

presence and absence of centrosomes [33]. It has also been shown

that a bipolar spindle can be assembled without centrosomes in

mitotic cells [2,3]. Therefore, it is often assumed that the only

difference between a mitotic and a meiotic spindle is the presence

of centrosomes. But our study clearly demonstrated that a meiotic

spindle in oocytes is more than a mitotic spindle without

centrosomes, and meiosis-specific regulation of Augmin is a

crucial part of this difference. The Augmin complex was originally

identified in Drosophila, but shown to be conserved widely among

higher eukaryotes [6,7,11,12,13,14,15]. Therefore our finding of

meiosis-specific Augmin regulation has an important implication

in our understanding of chromosome segregation and mis-

segregation in human oocytes.

Materials and Methods

Molecular techniques
Standard DNA manipulation and immunological techniques

were used throughout [34,35]. Full-length Rcc1 was fused to

mCherry and cloned into pUASp expression vector. A mutation

(AAAATG to TAAATG) was introduced upstream of the ATG to

Figure 5. Stable association of Augmin with spindle poles compensate for the lack of centrosomes in oocytes.
doi:10.1371/journal.pgen.1003562.g005
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reduce the expression level. Dgt2 and Wac were cloned into the

Gateway expression vectors pPGW and pPWG respectively. The

plasmids were injected into w1118 embryos by Genetic Research

Inc. For western blot, c-tubulin (GTU-88; Sigma) primary

antibody was used (1/500). Fluorescently labelled secondary

antibodies were detected by Odyssey (Licor).

Fly techniques
Standard techniques of fly manipulation were followed [36]. All

stocks were grown at 25uC in standard cornmeal media. w1118 was

used as wild type. Heterozygous flies for P[TRiP.HMS00517]attP2

and nanos-Gal4 maternal driver were used for c-tubulin37C RNAi.

Details of mutations and chromosome aberrations can be found in

[37] or at FlyBase (http://flybase.org) [38].

Cytological techniques
Immunostaining of non-activated oocytes was carried out as

previously described [39]. Antibodies against a-tubulin (DM1A;

Sigma) and Dgt6 (1/50; [17]) were used. Live-imaging of meiosis I

spindle was carried out as described [40]. Adult flies expressing

Rcc1-mCherry (except for FRAP) were matured 3 to 5 days at

about 21uC before dissection. Series of z-sections covering the

entire spindle (separated by 1 mm) were taken every 1 to

2.5 minutes. The following transgenes were used as heterozygotes:

UASp-GFP-a-tubulin, GAL4 under the maternal nanos promotor,

and UASp-Rcc1-mCherry on the third chromosome, and UASp-GFP-

Dgt2 and UASp-Wac-GFP on the second chromosome.

Cytological analysis
The images were taken with a laser scanning confocal

microscope for immunostaining and FRAP experiments, and

with a spinning disc confocal for other live samples, as previously

described [8,30]. Z sections were separated by 1 mm. Images

were presented as a maximum intensity projection of the z-stacks,

were processed using Photoshop/ImageReady (Adobe), imageJ or

Volocity, and the brightness and contrast were uniformly

adjusted for the whole field without changing features of the

images. Measurement of tubulin intensity throughout fixed

spindles (Figure 2B) was carried out on the maximum intensity

projection. Pixel intensity was measured along a line from one

pole to the other. The position along the line was normalised to

the spindle length. The fluorescence intensity was normalised to

the maximum intensity. The spindle length was divided into 10

and the medians of pixel intensities for each division in each

spindle were box-plotted. The signal intensity of sub-polar

regions (divisions 3,8) relative to the equator (5,6) was

significantly different between wild type and the mutant

(p,0.01). p-values were calculated using the Wilcoxon test

(Figure 2B, 3D), the Student’s t-test (Figure 2A) and Chi square

test (Figure 2C). To compare Dgt2 accumulation at the poles with

the spread of chromosomes, the sum of intensity (I) was measured

on maximum intensity projection in two regions of interest (ROI).

The first ROI (I1, N1 = 100,000 to 160,000 pixels) includes both

spindle and cytosol and the second region (I2, N2 = 500 to 3000

pixels) is the sum of the two spindle poles (including as little

cytosol as possible). The following equation was then used to

substract the background intensity (cytosol intensity): intensity per

pixel at the poles = I2-(I1-I2)/(N1-N2). For the FRAP in wild

type, c-tubulin37C RNAi and ncdD mutant oocytes, the females

were matured at 25uC for five days before dissection. For all the

oocytes, an identical region of interest (ROI = 3006125 pixels;

the pixel size is 0.1 mm) covering the whole spindle was bleached.

Pictures of one pole (3z sections 1 mm apart) were taken every

5 seconds for 165 seconds. Three images were taken before

bleaching. The analysis was performed on the maximum intensity

projection. The fluorescence intensity was measured in an ROI of

10 pixels diameter within the pole. The average intensity for each

oocyte (F(t)) was corrected for the acquisition-induced photo-

bleaching using the average intensity (FControl(t)) of non-FRAPed

spindles using equation 1. The corrected intensity (FCorr(t))

was then normalised (FNorm(t)) between the pre-bleach and the

post-bleach intensities (t = 0) using equation 2. A model of two

recovering populations (equation 3) fits well to the observations.

FCorr tð Þ~F tð Þ| FControl preð Þ=FControl tð Þ½ � ð1Þ

FNorm tð Þ~ FCorr tð Þ{FCorr 0ð Þ½ �= FCorr preð Þ{FCorr 0ð Þ½ � ð2Þ

FNorm tð Þ~f 1{2 {t
�

tf1=2

� �� �
zs 1{2 {t

�
ts1=2

� �� �
ð3Þ

where f and s are the proportion of the fast and slow populations,

and tf1/2 and ts1/2 are the half-recovery times of the two

populations.

For the FRAP in wild-type embryos, embryos were collected after

1.5 hour aging, manually dechorionnated and covered with

halocarbon oil. For GFP-Dgt2 FRAP, an ROI (2106125 pixels)

covering only one half spindle was bleached as in oocytes; for both

GFP-tubulin and Wac-GFP FRAP, the ROI (2106125) covered the

whole spindle. The analysis was performed as for oocytes except that

the reduction of fluorescence in a non-FRAPed spindle in the same

embryo was used to correct for acquisition-induced photobleaching

of corresponding FRAPed spindles (the average of #25% after 80 s).

Supporting Information

Figure S1 The spread of chromosomes in relation to the age of

oocytes. For each live oocyte expressing Rcc1-mCherry, the

spread of the chromosome mass along the spindle axis was

measured and the stage of the oocyte was roughly estimated by the

morphology of the dorsal appendages. n$15. The frequencies of

oocytes with the chromosome mass more than 10 mm and between

8 and 10 mm are indicated by bars with a dark and light shade.

(EPS)

Figure S2 Dynamics of chromosomes and the spindle in wild-

type and wac oocytes. Time lapse images of live wild-type and

wacD oocytes expressing GFP-tubulin (green) and Rcc1-mCherry

(red). Time from nuclear envelope breakdown (NEB) is indicated

as min:sec. Scale bar = 10 mm.

(EPS)

Figure S3 FRAP analysis of Wac-GFP on the spindle in wild-type

oocytes and syncytial embryos. FRAP of spindle-associated Wac-

GFP in wild-type metaphase I oocytes (A) and in wild-type

prometaphase/metaphase syncytial embryos (B). Wac-GFP turnover

is much slower in oocytes than syncytial mitosis. A model to assume

two populations with different turnover rates fits well to the

observation in oocytes, while a model to assume one turnover and

one non-turnover population fits well to the observation in syncytial

mitosis. Error bars are SEM. n = 17 in meiosis, and n = 15 in mitosis.

(EPS)

Figure S4 Tubulin turnover on the spindle in wild-type oocytes

and syncytial embryos. FRAP of spindle-associated GFP-tubulin in

wild-type metaphase I oocytes (A) and in wild-type prometaphase/

metaphase syncytial embryos (B). A model to assume one turnover

and one non-turnover population fits well to the both observations.
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More than 100% recovery in mitosis may reflect a slight increase

in spindle microtubules during mitotic progression. As tubulin

turnover is fast in both, it alone is unlikely to explain the difference

in Augmin turnover on the spindle between mitosis and meiosis.

Error bars are SEM. n = 16 in meiosis, and n = 13 in mitosis.

(EPS)

Movie S1 Chromosome behaviour in a wild-type oocyte

expressing Rcc1-mCherry. The total length of the movie is

100 minutes. The width of the frame is 30 mm.

(MOV)

Movie S2 Chromosome behaviour in a wacD oocyte expressing

Rcc1-mCherry. The total length of the movie is 100 minutes. The

width of the frame is 30 mm.

(MOV)
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