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NONADIABATIC TRANSITIONS THROUGH TILTED AVOIDED
CROSSINGS∗

VOLKER BETZ† AND BENJAMIN D. GODDARD‡

Abstract. We investigate the transition of a quantum wave-packet through a one-dimensional
avoided crossing of molecular energy levels when the energy levels at the crossing point are tilted.
Using superadiabatic representations, and an approximation of the dynamics near the crossing region,
we obtain an explicit formula for the transition wave function. Our results agree extremely well with
high precision ab-initio calculations.
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1. Introduction. The photo-dissociation of diatomic molecules is one of the
paradigmatic chemical reactions of quantum chemistry. The basic mechanism is that
a short laser pulse lifts the electronic configuration of the molecule into an excited
energy state. The nuclei then feel a force due to the changed configuration of the
electrons, and start to move according to the classical Born–Oppenheimer dynamics.
Then, at some point in configuration space, the Born–Oppenheimer surfaces of the
electronic ground state and first excited state come close to each other, leading to
a partial breakdown of the Born–Oppenheimer approximation. As a result, with a
certain small probability the electrons fall back into the ground state, facilitating the
dissociation of the molecule into its atoms. This important mechanism is at the heart
of many processes in nature, such as the photo-dissociation of ozone, or the reception
of light in the retina [27]. For further details on the general mechanism we refer to
[20].

The mathematical problem associated with photo-dissociation is to determine
nonadiabatic transitions at avoided crossings in a two-level system, with one effective
spatial degree of freedom. Thus, we study the system of partial differential equations

(1.1) iε∂tψ = Hψ,

with ψ ∈ L2(R,C2), and

H = − ε2

2 ∂
2
xI + V (x).

Above, I is the 2× 2 unit matrix, and, with σx and σz the Pauli matrices as defined
in (3.2),

V (x) = X(x)σx + Z(x)σz + d(x)I =

(
Z(x) X(x)
X(x) −Z(x)

)
+ d(x)I
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2248 VOLKER BETZ AND BENJAMIN D. GODDARD

is the real-symmetric potential energy matrix in the diabatic representation. Units are
such that � = 1 and the electron mass mel = 1. ε2 is the ratio of electron and reduced
nuclear mass, typically of the order 10−4. The time scale is such that the nuclei (with
position coordinate x) move a distance of order one within a time of order one. The
motivation of (1.1) and its relevance for photo-dissociation is discussed further in [3].

There is a natural coordinate transformation of (1.1) that exploits the scale sepa-
ration provided by the small parameter ε. The corresponding representation is called
the adiabatic representation, and is given as follows: Let the unitary matrix U0(x)
diagonalize V (x) for each x. Using the same notation U0, we define a unitary operator
on L2(R,C2) by ψ0(x) = (U0ψ)(x) ≡ ψ(U0(x)). Then ψ0 solves

(1.2) iε∂tψ0 = H0ψ0,

with H0 given to leading order by

(1.3) H0 = −ε
2

2
∂2xI +

(
ρ(x) + d(x) −εκ1(x)(ε∂x)
εκ1(x)(ε∂x) −ρ(x) + d(x)

)
.

Here, ρ =
√
X2 + Z2 is half the energy level separation, and

κ1 =
Z ′X −X ′Z
Z2 +X2

is the adiabatic coupling element. A consequence of the choice of time scale in (1.2)
is that solutions will oscillate with frequency 1/ε. Thus the operator ε∂x is actually
of order one. However, we have still achieved a decoupling of the two energy levels in
(1.3), up to errors of order ε, as long asX2(x)+Z2(x) > 0. Generically, this inequality
is always true: assuming that the entries of V are analytic in the nuclear coordinate
x, then eigenvalues of V do not cross [26], and so their difference 2

√
X2 + Z2 remains

positive. An avoided crossing is a (local or global) minimum of ρ(x), which results in
nonadiabatic transitions between the adiabatic energy levels.

The problem of photo-dissociation, or more generally of nonradiative decay, can
now be formulated mathematically: assume that (1.2) is solved with an initial wave
packet ψin ∈ L2(R,C2) that is fully in the upper adiabatic level (i.e., the second
component of ψin is zero). This is the situation just after the laser pulse brings the
electrons to their excited state. Assuming that the initial momentum is such that
the wave packet travels past an avoided crossing, we wish to describe the second
component of ψ0(x, t), to leading order, long after the avoided crossing has been
passed. By doing this, we predict not only the probability of a molecule dissociating,
but also the quantum mechanical properties (momentum and position distribution)
of the resulting wave packet.

Solving the above problem, even numerically, is very difficult. The reason is that
the energy levels ±ρ(x) are uniformly separated, and it is well known [12, 13, 17, 19]
that then the transmitted wave packet is exponentially small in the parameter ε. This
means that even for moderately small values of ε, we are trying to capture a very small
effect. As an example, let us assume that the initial wave packet ψin has L2-norm
of order one, and that the parameters are such that the L2-norm of the transmitted
wave function is expected to be of order 10−6, which we will later see is a fairly typical
value. This means that any straightforward numerical method with an overall error
of more than 10−6 will produce meaningless results, and thus if we were to apply
a standard method (like Strang splitting) on the full equation (1.2), we would have
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to use ridiculously small time steps. To make things worse, the solution is highly
oscillatory. Thus, even though (1.2) is a system of just 1+ 1 dimensional PDE’s, it is
not at all trivial to solve numerically. Efficient numerical methods to solve (1.2) will
therefore require insight into the analytical structure of the equation.

In [2], we used superadiabatic representations in order to obtain such insight. We
derive a closed-form approximation to the transmitted wave function at the transition
point, which is highly accurate for general potential surfaces and initial wave packets
whenever d(x), the trace of the potential, is small, but deteriorates when d(x) is
moderate or large at the transition point. In general, it cannot be taken for granted
in real world problems that d(x) is small. Therefore, in this paper we treat a potential
with an arbitrary trace. Our result is weaker than the one in [2]. While in the
latter paper, we could allow arbitrary incoming wave functions as long as they were
semiclassical, we essentially require the incoming wave packet to be either Gaussian or
a generalized Hagedorn wave packet in the present work. However, in that case we still
obtain a closed form expression for the transmitted wave function at the transition
point, and the accuracy is as good as in [2].

The importance of nonadiabatic transitions has resulted in much effort to un-
derstand them. A simplification of the problem is to replace the nuclear degree of
freedom by a classical trajectory. This approach is both long-established [28] and
well understood [1, 11, 5] and leads to the well-known Landau–Zener formula for the
transition probability between the electronic levels. This formula underpins a range
of surface hopping models [25, 15, 14, 6]. Although these and other trajectory-based
methods [24] yield reasonably accurate transition probabilities in the cases where they
are applied, they are unable to accurately predict the shape of the transmitted wave
packet [14]. More importantly, they seem to work well only when the transmitted
wave packet is not too small. As an example, Fermanian Kammerer and Lasser [6]
prove that the absolute error of their surface hopping algorithm is of the order at most
ε1/8, while numerical evidence suggests that the true error is closer to order ε1/2. This
is acceptable for them since they treat systems with several nuclear degrees of free-
dom, where generically the electronic adiabatic energy levels cross and transitions
are of order one, provided the wave packet actually hits the crossing. In our case,
where the energy levels generically stay separated, error margins of ε1/2 completely
obscure the exponentially small effect we are looking for, and are therefore not good
enough. In this sense the one-dimensional problem is more difficult numerically than
the moderately high-dimensional one, although of course very high dimensions pose
their own significant difficulties. Yet another approach is the Zhu–Nakamura theory
[18], which in a nonrigorous fashion strives to provide improved Landau–Zener rates
based on the full quantum scattering theory of the problem, albeit in rather special-
ized situations. Once again only the transition probabilities are treated, and not the
wave packet itself.

Due to the complexity of the full quantum-mechanical problem of transitions at
avoided crossings, there are few existing mathematical approaches. The approach
that is most relevant to our work is that of Hagedorn and Joye [13], where a formula
is given (and proved) for the asymptotic shape of a nonadiabatic wave function in
the scattering regime at an avoided crossing. Their formula looks quite different
from ours, which is given in section 2, and it is too involved to display it here. See
Theorem 5.1 of [13]. Of course, one would wish the formula of Hagedorn and Joye and
our algorithm eventually lead to the same result, but the reality is more complicated.
Indeed, we do not expect our results to agree with those of [13] in the asymptotic
limit ε → 0, since, as we explain below, our results rely on certain approximations
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2250 VOLKER BETZ AND BENJAMIN D. GODDARD

that are valid only when ε is small but not too small. Thus the algorithm we give is
not asymptotically correct when ε → 0 and all other parameters are fixed. On the
positive side, it has the advantage of being trivial to implement and giving very good
results in practice, while the formula of Hagedorn and Joye is not very well suited
for numerical implementation. Moreover, there is evidence (given in the appendix of
this paper) that our transition formula becomes correct in the limit when ε→ 0 and
simultaneously the momentum of the incoming wave scales like ε−α with α > 1/3. It
would be of great interest to compare our transition formula to the one of [13] in this
case. However, the latter is too implicit and involved to easily do this.

It is important to note that for p0 of the order ε
−α with α close to 1/3, transitions

are still beyond all orders in ε. Indeed, as explained in the next section, the order of
magnitude for transitions is exp(− c

p0ε
), where p0 is the incoming momentum. Thus

the situation is very different from the cases treated in [9, 10], where the energy gap
between the adiabatic surfaces is scaled such that transitions remain of order one. In
[21], Rousse considers different scalings of the energy gap; however, those results are
valid only up to errors of order o(1) in ε. This means that no statement about the
exponentially small transitions can be inferred from that paper.

Finally, let us remark that in applications all of the above asymptotic considera-
tions are of somewhat secondary importance. ε and the other parameters of the model
are dictated to us by the problem at hand, and for values of the order ε = 10−2, which
are fairly typical for the square root of the mass ratio between electrons and nuclei,
whether an incoming momentum p0 is of order ε−1/3 or of order 1 is largely a matter
of opinion. The good thing about the algorithm we propose is that it works well for
a wide range of parameters. Indeed, we have found that it starts to really deteriorate
only when either the transmitted wave packet becomes too large, or too small. In
the first case, we are leaving the asymptotic regime, and it has to be expected that
asymptotic methods do not work well. In the second case, it is already becoming very
difficult to run reliable ab-initio dynamics to compare our results with, due to the
oscillatory nature of the dynamics. Furthermore, the transition probabilities become
so small that they are unlikely to be relevant for any practical application.

2. Computing the nonadiabatic transitions. In this section we will give a
concise overview of our method for computing nonadiabatic transition wave functions,
and explain the various parameters entering the final formula. The justification of our
method, some extensions, and a numerical test will be given in the remainder of the
paper.

The data of our problem consists of two parts, the potential energy matrix V and
the initial wave function. More precisely, we assume that we are given ρ(x) and d(x)
as in (1.3), and that ρ has a unique global minimum in the region of space that we
are interested in. We choose the coordinate system such that this minimum occurs
at x = 0, and we thus have

ρ(x) = δ +O(x2), d(x) = d0 + λx +O(x2).

The transmitted wave function depends only on λ and ρ, but unfortunately the latter
quantity does not enter in a simple way. Under the reasonable assumption that the
matrix elements X and Z are analytic functions of x at least close to the real axis,
then so is ρ2. We write ρ(q)2 = δ2 + g(q)2, where g is analytic and g(0) = 0. Since
g2 is quadratic at 0, a Stokes line (a curve with Im(ρ) = 0) crosses the real axis
perpendicularly, and, for small δ, extends into the complex plane to two complex

D
ow

nl
oa

de
d 

10
/0

2/
12

 to
 1

29
.3

1.
21

8.
12

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BORN–OPPENHEIMER TRANSITIONS 2251

zeros of ρ, namely qδ and q∗δ . We define, for any complex z, the “natural scale” [1]

τ(z) = 2

∫ z

0

ρ(ξ) dξ,

and write τδ = τ(qδ), where qδ by convention is the complex zero with positive
imaginary part. We write

τr = Re (τδ), τc = Im (τδ),

which are the two parameters that enter into the transition formula. When we are
given ρ in a functional form, neither the computation of its complex zeroes nor of
the complex line integral leading to τδ is a problem numerically, and can be carried
out to any required accuracy. However, in the case of radiationless transitions, the
potential energy surfaces are often only known approximately. As our final formula
will depend very sensitively on the value of τδ, small errors in this quantity will lead to
wrong predictions. This is not a fault of our method, but a general obstruction to any
numerical method aiming to calculate small nonadiabatic transitions: Namely, since
our formula below agrees very accurately with ab-initio computations, and depends
very sensitively on τδ, getting ρ wrong will lead to wrong results regardless of the
method used. In a way, it should not be too surprising that when looking for a very
small effect, we need to get the data right with very high accuracy. But it does pose
a serious practical challenge when trying to predict small nonadiabatic transitions.

As for the initial wave function, we first assume it to be initially concentrated in
the upper electronic energy band. This means that we will consider (1.2) with initial
condition ψ0(x, 0) = (φ+(x, 0), 0)

T . The restriction of this work, when compared to
the case with λ = 0 considered in [2], is on the form of φ+(x, 0), which we require to
be either Gaussian, or a finite linear combination of Gaussians, or a Hagedorn wave
function. For the present exposition, we restrict to the case where it is Gaussian. The
first step of our algorithm is straighforward.

Step 1. Solve the upper band adiabatic equation iε∂tψ+ = H+ψ+, ψ+(0) =
φ+(·, 0), where H+ = −ε2∂2x/2 + ρ(x) + d(x). This can be done either by direct
Strang splitting, or using the theory of Hagedorn wave packets [16]. For a transition
to occur, we need the wave packet to cross the transition region near x = 0, where ρ
is minimal. So we monitor the expected position 〈X〉 = ∫

x|ψ+(x)|2 dx and stop the
evolution when 〈X〉 = 0, say at time t0. Let us write φ(x) = ψ+(x, t0). φ is Gaussian
up to errors of order ε [16] and centered at x = 0. Thus we have

(2.1) φ̂ε(k) = exp
(
− c
ε
(k − p0)

2
)

with parameters p0 (the mean momentum) and c. Above, we used the semiclassical
Fourier transform; cf. (3.8).

Step 2. We now use the upper band wave function φ̂ε at the transition point in
order to generate a wave packet on the lower energy level. It is useful to recall that
in [2, 3], we assumed d = 0 and were able to approximate the dynamics near the
transition point by the free dynamics, leading to the formula

(2.2) φ̂−
ε
(k) = 1{k2>4δ}

v + k

2|v| ei
τδ
2δε |k−v| φ̂ε(v),

with v = v(k) = sgn(k)
√
k2 − 4δ. This formula has been validated also for non-

Gaussian incoming wave packets φ̂ε.
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In the case where d �= 0, the approximation of the true intraband dynamics by the
free time evolution is no longer a good one, and the transition formula is considerably
more involved. Put n0 = τc

εk0
, where k0 is part of the solution of the pair of equations

(2.3) k =
√
η2 + 4δ, η = k

(
1− 4cδ(η−p0)

τc

)
.

Again, the numerical value of n0 is easy to obtain. In what follows, we will use the
abbreviation

η∗ = η∗(k) =
√
k2 − 4δ.

Now put

φ̂−
ε
(k) ≈ 1

2
√
4α2,0α0,2 − α2

1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]
× (η∗ + k) e−

τc
2δε |k−η∗| e−i

τr
2δε (k−η∗) e−iϕ(p0) φ̂ε(η∗)χk2>4δ,

(2.4)

with

α1,0 =
sgn(k)τc + iτr − η∗n0ε− 4cδ(η∗ − p0)

2δ
√
ε

+

√
ε

k + η∗
,

α0,1 = −2(n0 + 1)ε1/2λ

k + η∗
, α1,1 = −iη∗ +

2(n0 + 1)λε

(k + η∗)2
,(2.5)

α2.0 = −2δn0ε+ η∗2

8δ2
− c− ε

2(k + η∗)2
, α0,2 = −i

2δλ

(k + η∗)
− 2(n0 + 1)λ2ε

(k + η∗)2
,

and

ϕ(p0) = − (n0 + 1)2ελa0δ

2(n0 + 1)2λ2ε2 + 2δ2a20
− 1

2
arctan

( a0δ

(n0 + 1)ελ

)
+ sgn(λp0)

π

4
,

where above a0 =
√
p20 + 4δ + p0. While formula (2.4) is trival to implement on a

computer and produces accurate results, it is not easy to interpret the various terms in
a physically meaningful way. On the other hand, everything except the factor e−iϕ(p0)

is obtained by plausible approximations and exact Gaussian computations. The latter
factor, which is a constant phase shift, is more tricky. It is obtained by computing
the phase in the case of an incoming Gaussian when the parameter c diverges, i.e.,
infinitely small momentum uncertainty, which gives ϕ(p0), and subtracting that. This
fixes a discrepancy in the phase of the transmitted wave function between our formula
without the factor and numerical ab-initio calculations, which is probably due to one
of our approximations below being too crude. We do not know where the original
inaccurate approximation has been made, or why the given recipe fixes it. Note,
however, that the phase shift in question must be due to the dynamics not being free
in the transition regime, as it vanishes when λ → 0. There are other phase shifts
in the transmitted wave function, a trivial one due to the energy gap and another
one due to the fact that fast Fourier modes contribute more to the transition. These
appear already in (2.2) and are well understood [13, 3].

Note ϕ(p0) is constant in both k and x and hence will not affect any quantum
mechanical expectation values. It would, however, play a role when we consider
interferences.
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The final step of our algorithm is again straightforward.
Step 3. Solve the lower band adiabatic equation with initial condition φ−, i.e.

solve

iε∂tψ− = H−ψ−, ψ−(t0) = φ−(·, t0),
where H− = −ε2∂2x/2−ρ(x)+d(x), and φ− is the inverse semiclassical Fourier trans-

form of φ̂ε−. For times so large that ψ− has support far away from the transition region,
it describes the transmitted wave function of equation (1.2) with great accuracy; see
section 6.

3. Evolution in the superadiabatic representations.

3.1. Superadiabatic representations. The key idea for deriving our transi-
tion formulae is to study the evolution in a suitable superadiabatic representation.
For a careful discussion of the theory of those representations, we refer to [3]. Here we
give only some intuition and the mathematical facts. The nth superadiabatic repre-
sentation is implemented by a unitary operator Un acting on L2(R,C2), and its main
property is that it diagonalizes the right-hand side of (1.1) up to errors of order εn+1.
Thus, the adiabatic representation (1.3) is the zeroth superadiabatic representation,
and in general,

Hn = U−1
n HUn = −ε

2

2
∂2xI +

(
ρ(x) + d(x) εn+1K+

n+1

εn+1K−
n+1 −ρ(x) + d(x)

)
,

where K±
n are the nth superadiabatic coupling elements. They are usually pseudo-

differential operators, and so are the Un. The useful consequence of switching to the
superadiabatic representation is that now the evolution of the second component ψ−

n

of ψn = Unψ, subject to ψ
−
n (−∞) = 0, is given by

(3.1) ψ−
n (t) = −iεn

∫ t

−∞
e−

i
ε (t−s)H−

K−
n+1 e

− i
ε sH

+

φds,

up to relative errors of order ε. Thus, provided we can control K−
n , (3.1) gives the

transmitted wave function in the nth superadiabatic representation to high precision.
There are some apparent problems with this idea. First, it is far from clear how

we hope to control K−
n . Second, the superadiabatic unitaries are, in general, very

hard to calculate, and as such this formulation does not allow the adiabatic wave
function to be easily obtained. Third, we have to decide which value of n we want to
use. The sequence K−

n is expected to be asymptotic in n, so after initially decaying
rapidly (in an appropriate sense) it will start to grow beyond all limits when n is taken
to infinity. The second problem above is resolved when we study the wave function in
the scattering regime, well away from the avoided crossing. In this case, for potentials
which are approximately constant, it is known that Un and U0 agree up to small errors
depending on the derivatives of the potential [23], and (3.1) can be used to calculate
the transmitted wave function. For the value of n, in [3] we showed for a special
choice of parameters ρ, κ that there exists an “optimal” n for which ψ−

n (t) builds
up monotonically, corresponding to a single transition. This n is given by the set of
nonlinear equations (2.3) that we have seen in the previous section. We expect this set
of equations to hold, in general, and have obtained very good results by using it here.

The problem of calculating K−
n turns out to be reducible to a set of differential

recursions, which we will now give. The discussion follows the one in [3] very closely,
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the only difference being that we now include a nonzero trace d(x) in the Hamiltonian.
All the calculations and arguments are almost the same as in [3], so we will omit them.

We change from the spatial representation to the symbolic representation (see,
e.g., [23]) by replacing x by q ∈ R and iε∂x by an independent variable p ∈ R, where
the factor ε takes into account the semiclassical scaling. We need to introduce some
further notation: We rewrite the potential as

V (q) = ρ(q)

(
cos

(
θ(q)

)
sin

(
θ(q)

)
sin

(
θ(q)

)
cos

(
θ(q)

))+ d(q)

(
1 0
0 1

)
,

which defines θ(q). It follows that the unitary transformation to the adiabatic repre-
sentation is given by

U0(q) =

⎛⎝cos
( θ(q)

2

)
sin

( θ(q)
2

)
sin

( θ(q)
2

) − cos
( θ(q)

2

)
⎞⎠ .

Hence the Pauli matrices in the adiabatic representation are given by

σx(q) = U0(q)σxU0(q), σy(q) = U0(q)σyU0(q), σz(q) = U0(q)σzU0(q),

where

(3.2) σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

and we have used that U∗
0 = U0.

Let 1 be the 2×2 identity matrix. A direct calculation confirms, with 1, the 2×2
identity matrix.

Lemma 3.1. We have

∂nq V (q) = an(q)σz(q) + bn(q)σx(q) + cn(q)1,

where an(q), bn(q), and cn(q) are given by the recursions

(3.3)

a0(q) = ρ(q), an+1(q) = a′n(q) + θ′(q)bn(q),

b0(q) = 0, bn+1(q) = b′n(q)− θ′(q)an(q),

c0(q) = d(q) cn+1(q) = c′n(q).

We then have the following explicit recursion for the coupling elements.
Theorem 3.2. The Hamiltonian in the nth superadiabatic representation is given

by

Hn(ε, p, q) =
p2

2
1+

(
ρ(q) + d(q) εn+1κ+n+1(p, q)

εn+1κ−n+1(p, q) −ρ(q) + d(q)

)
+

( O(ε2) O(εn+2)
O(εn+2) O(ε2)

)
,

where

κ±n+1(p, q) = −2ρ(q)(xn+1(p, q)± yn+1(p, q)).

Setting xn(p, q) =
∑n

m=0 p
n−mxmn (q) with similar expressions for yn, zn, and

wn, the coefficients xmn to wm
n are determined by the following recursive algebraic-

differential equations:

(3.4) xm1 = zm1 = wm
1 = 0, m = 0, 1, y01 = −i

θ′(q)
4ρ(q)

, y11 = 0

D
ow

nl
oa

de
d 

10
/0

2/
12

 to
 1

29
.3

1.
21

8.
12

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BORN–OPPENHEIMER TRANSITIONS 2255

with

xmn+1 = − 1

2ρ

⎛⎝1

i
(ymn )′ − 2

�m/2�∑
j=1

1

(2i)j
(
n+1−m+j

j

)
(bjz

m−2j
n+1−j − ajx

m−2j
n+1−j + cjy

m−2j
n+1−j)

⎞⎠
for n odd, and

ymn+1 =− 1

2ρ

(
1

i

(
(xmn )′ − θ′zmn

)
− 2

�m/2�∑
j=1

1

(2i)j
(
n+1−m+j

j

)(− ajy
m−2j
n+1−j + bjw

m−2j
n+1−j + cjx

m−2j
n+1−j

))
,

0 =
1

i

(
(zmn )′ + θ′xmn

)− 2

�m/2�∑
j=1

1

(2i)j
(
n+1−m+j

j

)
(bjy

m−2j
n+1−j + ajw

m−2j
n+1−j + cjz

m−2j
n+1−j),

0 =
1

i
(wm

n )′ − 2

�m/2�∑
j=1

1

(2i)j
(
n+1−m+j

j

)
(ajz

m−2j
n+1−j + bjx

m−2j
n+1−j + cjw

m−2j
n+1−j)

for n even. The coefficients an to cn are given by Lemma 3.1.
Proof. The proof is analogous to those of Theorem 3.4 and Proposition 3.5 of [3],

with some easy alterations due to the presence of d(x).
We note that, as in the trace-free case in [3], ymn = 0 for all m when n is even and

xmn = zmn = wm
n = 0 for all m when n is odd. Furthermore, from the above equations,

it is obvious that xmn = ymn = zmn = wm
n = 0 for odd m.

We now have an explicit expression for κ−n and may therefore also calculate K−
n ,

the superadiabatic coupling element, which is the Weyl quantization of the symbol
κ−n :

K±
n ψ(x) =

1

2πε

∫
R2

dξ dy κ±n
(
x+y
2 , ξ

)
e

i
ε ξ(x−y) ψ(y),

and from the recursions in Theorem 3.2, it is clear that

κ±n (p, q) =
n∑

j=0

pjκ±n,n−j(q),

where the κ±n,n−j can be calculated explicitly. Determining the asymptotics of this
two-parameter recursion is a very tricky problem to which we have no solution. How-
ever, in the regime of large p (meaning, large incoming momentum) the sum is well
approximated by the j = n term. In the appendix, we give a rigorous estimate of the
superadiabatic Hamiltonian and show that, when p� ε−1/3, κ±n is dominated by the
term pnκ±n,0(q). This translates into large momentum for the incoming wave function.
While these results certainly give rise to the hope that for large incoming momentum
a rigorous asymptotic analysis is possible, there are still many obstacles to overcome:
Just to mention two of them, the dependence of the error terms in Theorem 3.2 on n,
p, and q needs to be controlled, as does the propagation of errors through the Weyl
quantization below. A full asymptotic analysis of the regime p � ε−1/3 is therefore
still a work in progress. Here, we use the approximation of κ±n (q, p) by pnκ±n,0(q)
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without further justification, and find that it gives good results even for relatively
small values of p.

The asymptotics of the term κ−n,0 can be determined explicitly in the following
generic case. Without loss of generality, we assume that the avoided crossing occurs
at x = 0, specify the initial wave packet at t = 0, and write ρ(q)2 = δ2 + g(q)2,
where g is analytic and g(0) = 0. As is standard in asymptotic analysis (see, e.g.,
[1]), the asymptotic behavior of κ−n,0 is determined by the complex zeros of ρ. Since

g2 is quadratic at 0, a Stokes line (a curve with Im(ρ) = 0) crosses the real axis
perpendicularly, and, for small δ, extends into the complex plane to two complex
zeros of ρ, namely qδ and q∗δ . As argued by Berry and Lim [1], in the natural scale
τ(q) = 2

∫ q

0
ρ(q)dq and near q = 0, the adiabatic coupling function has the form

κ1(q) =
iρ(q)
3

(
1

τ(q)−τ∗
δ
− 1

τ(q)−τδ
+ κr(τ(q))

)
, with τδ = τ(qδ). In particular, κr has no

singularities for |τ | < |τδ|, and no singularities of order � 1 for |τ | � |τδ|. As can be
seen from Theorem 3.2, solving the recursions for κ−n requires taking high derivatives
of κ1. By the Darboux principle, the asymptotics are dominated by the complex
singularities closest to the real axis, τδ and τ∗δ . Hence, to leading order, we find

(3.5) κ−n,0(q) =
in

π ρ(q)(n− 1)!
(

i
(τ−τ∗

δ )
n − i

(τ−τδ)n

)
.

Using the definition of the Weyl quantization, a direct calculation [3] shows

(3.6) K−
n,0 =

n∑
j=0

(
n

j

)(
ε
2i

)j(
∂jxκ

−
n,0(x)

)
(−iε∂x)

n−j .

3.2. Approximation of the adiabatic propagators. In order to determine
a closed form approximation for (3.1), it is necessary to approximate the adiabatic
propagators. This is in contrast to the situation in [3] where the model was chosen
such that ρ is constant, and thus the adiabatic evolutions were trivial in Fourier space.

The first insight is that the operatorK−
n,0 given in (3.6) is sharply localized: K−

n,0f
will only be significantly different from zero if either f or some of its derivatives have
some support overlap with κ−n,0, which means they must be concentrated near the real
solution of Re (τ(q)) = Re (τδ) that is closest to q = 0. We will refer to this solution
as the transition point. In section 4.1 we will see that relevant values of n are of the
order 1/ε; furthermore, for large n we have (1 + x2)−n ≈ e−nx2

, and so κ−n,0 and its

derivatives are concentrated in a
√
ε neighborhood of the transition point. Since the

time scale is chosen such that the semiclassical wave packets (which have width of
order

√
ε) travel at speed of order one, the dominant transitions come from a time

interval of order
√
ε around the transition time, which we define to be the time when

the expected position of the incoming wave packet crosses the transition point.
Let us pick a coordinate system so that that the transition time is s = 0. We

cannot, however, choose the transition point to be at x = 0, since we have already fixed
x = 0 to be the local minimum of ρ. On the other hand, one of our later calculations
relies on the fact that the transition point is at least in a

√
ε neighborhood of 0; see

section 3.3. So from now on, we will always assume that the transition point does
indeed have this property. This assumption can be justified by the observation that
for sensible potentials, the real and imaginary parts of the complex zeroes of ρ are
coupled, and are either both relatively small or both large. However, in the latter
case, transitions tend to be so small that they are physically uninteresting. That said,
it would, of course, be much preferable to be able to treat arbitrary transitions, but
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we cannot do this yet. In what follows, we will always pretend that the transition
point is x = 0, although for the calculation in the next paragraph this is not yet
strictly necessary.

The above considerations allow us to replace the potential in the full adiabatic
dynamics by its first Taylor approximation, as the following formal calculation shows.

We take H±
1 := −ε2∂2x/2± δ+λx and wish to show that e−

i
ε sH

± − e−
i
ε sH

±
1 is small.

We have

e−
i
ε sH

± − e−
i
ε sH

±
1 = e−

i
ε sH

±
1
(
e
i
ε sH

±
1 e−

i
ε sH

± − 1
)

= e−
i
ε sH

±
1

∫ s

0

∂r
(
e
i
ε sH

±
1 e−

i
ε sH

± )
dr

= e−
i
ε sH

±
1

∫ s

0

e
i
ε sH

±
1
(
i
ε (H

±
1 −H±)

)
e−

i
ε sH

±
dr.

We now note that H±
1 − H± is quadratic near x = 0 and hence the integrand is of

order 1 in a
√
ε neighborhood of zero. Hence the left-hand side is bounded by the

length of the integration region
√
ε and, to leading order, it suffices to replace (3.1)

by

(3.7) ψ−
n (t) ≈ −iεn e−

i
ε tH

−
∫ t

−∞
e

i
ε s(−ε2∂2

x/2−δ+λx)K−
n+1 e

− i
εs(−ε2∂2

x/2+δ+λx) φds,

where we have not altered the s-independent propagator.
We now find it convenient to switch to the Fourier representation by applying the

semiclassical Fourier transform

(3.8) f̂ε(k) =
1√
2πε

∫
R

e−
i
εkq f(q) dq =

1√
ε
f̂
(
k
ε

)
.

We define K̂n through K̂nψ̂
ε = K̂nψ

ε
, and a direct calculation [3] gives

K̂±
n,0f(k) =

1√
2πε

∫
R

dη κ̂±n,0
ε

(k − η)
(

η+k
2

)n
f(η).

By Fourier transformation of both sides of (3.7), we see that ψ̂−
n

ε

is given by a double
integral:

ψ̂−
n

ε

(k, t)

≈ − iεn√
2πε

e−
i
ε tĤ

−(k)

∫ t

−∞
ds

∫
R

dη e
i
ε sĤ

−
1 (k) κ̂−n+1,0

ε

(k−η)
(

η+k
2

)n+1

e−
i
ε sĤ

+
1 (η) φ̂ε(η),

where Ĥ±
1 (Ĥ±) are the approximate (exact) adiabatic propagators in momentum

space.
By the Avron–Herbst formula, the approximate propagators are given exactly by

e−
i
ε sĤ

±
1 (k) = e−iλ

2s3

6ε eλs∂k e−
i
2ε ((k

2±2δ)s−λks2) .

In particular, we have

e
i
ε sĤ

−
1 (k) = e

iλ2s3

6ε e−λs∂k e
i
2ε (k

2−2δ)s e
i
2ελks

2

,(3.9)

e−
i
ε sĤ

+
1 (η) = e−

iλ2s3

6ε eλs∂η e−
i
2ε (η

2−2δ)s e
i
2εληs

2

.
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In order to make use of these expressions we must understand the effects of the shift
operators, where eλs∂k f(k) = f(k+λs). Using (3.9) in (3.7) we note that, due to the
invariance of the integral under η �→ η− λs, we may apply the η shift to the left with

opposite sign. Hence κ̂−n+1,0

ε

(k− η) is unaffected and (k+ η)n+1 �→ (k+ η− 2λs)n+1.
Shifting the remaining propagator in k by −λs, the remaining multiplicative parts

of the propagators are given by

exp
[

i
2ε

(
[(k − λs)2 − 2δ]s+ λ(k − λs)s2 − (η2 + 2δ)s+ ληs2

)]
.

Simplifying this expression and inserting it into (3.7) gives

ψ̂−
n

ε

(k, t) ≈− iεn√
2πε

e−
i
ε tĤ

−
1 (k)

∫ t

−∞
ds

∫
R

dη (k + η − 2λs)n+1κ̂−n+1,0

ε

(k − η)

× e
i
2ε

(
(k2−η2−4δ)s−(k−η)λs2

)
φ̂ε(η).(3.10)

3.3. Fourier transform of the coupling elements. In order to make use of
(3.10), we require the Fourier transform of κ−n,0. Using (3.8) on (3.5) gives

κ̂−n,0
ε

(k) =
1√
2πε

∫
e−

i
ε kq

in+1

π
ρ(q)(n− 1)!

[
1(

τ(q) − τ∗δ
)n − 1(

τ(q) − τδ
)n
]
dq

=
1√
2πε

∫
e−

i
ε kq(τ)

in+1

2π
(n− 1)!

[
1(

τ − τ∗δ
)n − 1(

τ − τδ
)n
]
dτ,

where we have used dτ = 2ρ(q)dq.
It is now that we need the transition point to be at or near q = 0. Provided this

is so, we can use that ρ has a minimum δ at q = 0, and expand q(τ) = τ
2δ + O(τ3).

Note that no second order term is present. As the remainder of the integrand is
concentrated in a

√
ε neighborhood around q = 0, we keep only the first order term,

giving

κ̂−n,0
ε

(k) ≈ 1√
2πε

∫
e−

i
2δεkτ

in+1

2π
(n− 1)!

[
1(

τ − τ∗δ
)n − 1(

τ − τδ
)n
]
dτ.

We now note that 1
(τ−α)n = (−1)n−1 1

(n−1)!∂
n−1
τ

1
τ−α and hence

κ̂−n,0
ε

(k) ≈ 1√
2πε

in+1

2π
(−1)n−1

∫
e−

i
2δεkτ ∂n−1

τ

[
1(

τ − τ∗δ
) − 1(

τ − τδ
)]dτ

=
1√
2πε

in+1

2π
(−1)n−1

∫
e−

i
2δεkτ ∂n−1

τ

[
−2iτc(

(τ − τr) + τ2c
)]dτ.

Using the identities f̂ε(k) = 1√
ε
f̂
(
k
ε

)
, ∂̂nτ f(k) = (ik)nf̂(k), ̂f(x− a)(k) = e−iak f̂(k),

and the standard Fourier transform

â
x2+a2 (k) =

√
π
2 e−a|k|

gives

κ̂−n,0
ε

(k) ≈ i

√
2δ√
πε

1

(2δ)n

(k
ε

)n−1

e−
τc
2δε |k| e−i

τr
2δεk ,
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where we have used τδ = τr + iτc. Inserting this formulation into (3.10) gives

ψ̂−
n

ε

(k, t) ≈− 1

4πε
e−

i
ε tĤ

−(k)

∫ t

−∞
ds

∫
R

dη (k + η)(1 − 2λs
k+η )

n+1
(
k2−η2

4δ

)n
× e−

τc
2δε |k−η| e−

iτr
2δε (k−η) e

i
2ε

(
(k2−η2−4δ)s−(k−η)λs2

)
φ̂ε(η).(3.11)

4. Evaluation of the integral.

4.1. The choice of n. Equation (3.11) still depends on the parameter n, the
order of the superadiabatic representation. For choosing n, we attempt to use the same
argument that was employed in [3] in order to obtain universal transition histories.
The idea then and now is that the modulus of the integrand in (3.11) depends on n,
while the phase does not. We will thus try to choose n such that stationary phase and
maximal modulus occur at the same point, making it possible to perform asymptotic
analysis on the integral.

We recall the assumption that τr is small, and consider the imaginary part of the
exponent. Indeed, we will set τr = 0 in what follows. This simplifies the analysis and
does not seem to greatly affect the accuracy of the final result. Differentiating the
phase of (3.11) with respect to s and η gives

(k2 − η2 − 4δ)− 2λ(k − η)s = 0,(4.1)

− 2ηs− λs2 = 0.(4.2)

Note that if λ = 0, then there is only one solution, namely k2 − η2 = 4δ and s = 0;
this remains a solution if λ �= 0.

For a simultaneous solution to (4.1) and (4.2) (i.e., stationary phase for both
integrals) we require either s = 0 and k2 − η2 − 4δ = 0, or λs = −2η and η the
solution to −5η2 + 4kη + k2 − 4δ = 0. In the second case, for k = O(1), we see that
η and hence s are also of order 1. We have already discussed that we expect the
significant transitions to occur only when s = O(ε1/2), and we therefore expect this
solution to contribute only a negligible amount to the transmitted wave packet. So
from the stationary phase condition, we obtain s = 0 and k2 − η2 − 4δ = 0.

For the modulus, we assume the case of a Gaussian wave packet of the form (2.1).
Differentiating the logarithm of the modulus with respect to η and s and equating to
zero leads to the equations

(n+ 1)
2λ

η + k − 2s
= 0,(4.3)

2c(η − p0)− τc
2δ
η + nε

2η

k2 − η2
− (n+ 1)ε

2λs

(k + η)(k + η − 2λs)
= 0.(4.4)

Equations (4.1)–(4.4) cannot be solved simultaneously, which shows an interesting
difference of the present case when compared to the nontilted case treated in [2]
and [3]. To make progress, we argue that the choice of the optimal superadiabatic
representation should depend only weakly on the trace λ of the potential. Therefore,
we allow λ to vary as well as n, η, and s, and obtain the joint solution s = λ = 0, and
n and η fulfilling n = τc

εk0
with k0 the solution of (2.3). In the future, we will always

use this value of n, denoted n0.

4.2. Rescaling. Recall that the wave packet moves a distance of order 1 in time
of order 1, and, for a semiclassical wave packet, is of width of order ε1/2. Hence for
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times of order εγ with γ < 1/2, in position space, the wave function is localized well
away from the transition region. It follows that there should be little contribution to
the integral outside s ∈ [−εγ , εγ ] for γ < 1/2. We thus restrict the s-integral to this
region.

We rewrite (3.11) as 1
4πε exp(− i

ε tĤ
−(k))

∫
R
dη

∫ εγ

−εγ ds g(k, η, s) with

g(η, k, s) = exp
[
n log

(
k2−η2

4δ

)
+ log(k + η) + (n+ 1) log

(
1− 2λs

k+η

)− τc
2δε |k − η|

− i τr
2δε (k − η) + i

2ε

[
(k2 − η2 − 4δ)s− λ(k − η)s2

]]
φ̂ε(η).

We now note that, in order for the phase of the integrand to be stationary in s, we
expect η ≈ η∗ = ±√

k2 − 4δ. For a semiclassical wave packet which has sufficient
momentum to move past the avoided crossing, the choice of sign will correspond to
the sign of the mean momentum of φ̂ε. For this choice of η∗ to make sense, it is clear
that we require k2−4δ � 0, and so introduce the cutoff function χk2>4δ. The physical
meaning of this cutoff is clear when one considers η to be the incoming momentum
and k the outgoing momentum: Since the potential gap is 2δ, by energy conservation
we have k2/2 = η2/2 + 2δ, and since we require η2 > 0 for the wave packet to move
past the crossing, we have k2 > 4δ.

We now set η = η̃ε1/2 + η∗, where η̃ is of order 1 and rescale the s inte-
gral by s = s̃ε1/2, which causes the domain of the s̃ integral to be at least of

order 1, and tend to the whole of R as ε → 0. Using
∫
R
dη
∫ εγ

−εγ
ds g(k, η, s) =

ε
∫
R
dη̃

∫ εγ−1/2

−εγ−1/2 ds̃ g(k, ε
1/2η̃ + η∗, ε1/2s̃), and removing the tildes from now on, we

are interested in
(4.5)

g(ηε1/2 + η∗, k, ε1/2s) = exp
[
n log

(
1− η2ε+2ηη∗ε1/2

4δ

)
+ log(k + η∗ + ηε1/2)

+(n+ 1) log
(
1− 2λsε1/2

k+η∗+ηε1/2

)− τc
2δε |k − η∗ − ηε1/2| − i τr

2δε (k − η∗ − ηε1/2)

+ i
2ε

[
(−η2ε− 2ηη∗ε1/2)sε1/2 − λ(k − η∗ − ηε1/2)s2ε

]]
φ̂ε(ε1/2η + η∗).

We now discuss the evaluation of these two integrals.

4.3. The s integral. Since the wave function φ̂ε is independent of s, we now
aim to perform the s-integration explicitly. We now consider the regime where ε is
small and k is of order 1. This is necessary as we wish to expand the logarithm term

in powers of s, and require that 2λsε1/2

k+η∗+ηε1/2

 1. This holds since, from the limits

of integration, we see that at worst sε1/2 ∼ εγ with γ > 0 and η∗ ∼ k ∼ η ∼ 1.
Expanding to second order gives

log
(
1− 2λsε1/2

k+η∗+ηε1/2

) ≈ − 2λsε1/2

k+η∗+ηε1/2
− 2λ2s2ε

(k+η∗+ηε1/2)2
.(4.6)

In the small-ε limit, εγ−1/2 → ∞, which, combined with the above expansion, reduces
the s-integral to a Gaussian integral of the form∫

R

exp(αs2 + βs)ds =

√
−π
α
exp

(
−β2

4α

)
for Re (α) < 0.
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In this case, we have

α = − 2(n+1)λ2ε

(k+η∗+ε1/2η)2
− iλ

2 (k − η∗) + iε1/2λ
2 η

(where Re (α) < 0) and

β = − 2λ(n+1)ε1/2

k+η∗+ε1/2η
− iη∗η − iε1/2

2 η2.

It therefore remains to calculate the integral over η:

ψ̂−
n

ε

(k, t)

=
χk2>4δ

4
√
πε

e−
i
ε tĤ

−(k)

∫
R

dη φ̂ε(ε1/2η + η∗)
(

2(n+1)λ2ε
(k+η∗+ε1/2η)2

+ iλ
2 (k − η∗)− iε1/2λ

2 η
)−1/2

× exp
[
n log

(
1− η2ε+2ηη∗ε1/2

4δ

)
+ log(k + η∗ + ηε1/2)

− τc
2δε |k − η∗ − ηε1/2| − i τr

2δε (k − η∗ − ηε1/2)
]

× exp
[
−
(
− 2λ(n+1)ε1/2

k+η∗+ε1/2η
− iη∗η − iε1/2

2 η2
)2

(
− 2(n+1)λ2ε

(k+η∗+ε1/2η)2
− iλ

2 (k − η∗) + iε1/2λ
2 η

)−1]
.

For a general φ̂ε, we can say little else, and the integral must be computed nu-
merically. However, in the important case where φ̂ε is a Gaussian, we can derive a
closed-form approximation, which is in excellent agreement with the full dynamics.
The main idea is to approximate the integrand in (3.11) in such a way as to produce
a Gaussian integral. The first hinderance to this comes from the log terms, which we
now consider.

4.4. Expansion of log terms. Along with the expansion in (4.6), we have

log(k + η∗ + ηε1/2) = log(k + η∗) + log
(
1 + ηε1/2

k+η∗
) ≈ log(k + η∗) + ηε1/2

k+η∗ − η2ε
2(k+η∗)2 ,

log
(
1− η2ε+2ηη∗ε1/2

4δ

) ≈ − η2ε+2ηη∗ε1/2

4δ − 1
32δ2 (η

4ε2 + 4η3η∗ε3/2 + 4η2η∗2ε),

where we have once again used that k, η∗, η ∼ 1.
In order to produce a Gaussian integral, it is necessary to make a number of

justifiable approximations. Expanding (k + η∗ + ε1/2η)−p, p = 1, 2 in (4.6) around
ηε1/2 = 0 and neglecting terms of order larger than ε in all three logarithm expansions
reduces them to

log
(
1− 2λsε1/2

k+η∗+ηε1/2

) ≈ − 2λsε1/2

k+η∗ + 2λsεη
(k+η∗)2 − 2λ2s2ε

(k+η∗)2 ,

log(k + η∗ + ηε1/2) ≈ log(k + η∗) + ηε1/2

k+η∗ − η2ε
2(k+η∗)2 ,(4.7)

log
(
1− η2ε+2ηη∗ε1/2

4δ

) ≈ − η2ε+2ηη∗ε1/2
4δ − η2η∗2ε

8δ2 .

Note that all three expansions now contain terms of at most order two in s and η and
thus are of the form required for a Gaussian integral.
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4.5. Explicit closed form. One final simplification is necessary to obtain a

Gaussian integral: Equation (4.5) still contains the third order terms, namely iε1/2

2 η2s

and iλ
2ε1/2

ηs2. But here we recall that the stationary phase argument required s = 0,
and in the scaled variables also η = 0. This allows us to remove the above terms:
Not only are these terms already the highest order in ε, but since we expect the main
contribution to the integral to come from the region around (s, η) = (0, 0), the effects
of these terms is negligible.

Inserting the expansions (4.7) into (4.5), ignoring the third order terms in s and η,

and setting φ̂ε(η) to be the Gaussian φ̂ε(η) = exp(− c
ε (η−p0)2) gives, for η sufficiently

small,

g(k, ηε1/2 + η∗, ε1/2s) = exp(α2,0η
2 + α1,0η + α1,1ηs+ α0,1s+ α0,2s

2),

with the αi,j given in (2.5). Note that the sgn(k) in α1,0 is necessary if we wish to
deal with negative momenta: For k > 0, we have k − η∗ > 0 and hence, for small ε,
k − η∗ − ε1/2η > 0. Therefore |k − η∗ − ε1/2η| = |k − η∗| − ε1/2η. However, for k < 0
we have k − η∗ − ε1/2η < 0 and |k − η∗ − ε1/2η| = |k − η∗|+ ε1/2η.

Gaussian integration now gives

(4.8)

∫
R

∫
R

dη ds g(k, ηε1/2 + η∗, ε1/2s)

=
2π√

4α2,0α0,2 − α2
1,1

exp

[
α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]
,

which holds for Re
(α2

1,1

α2,0
− 4α0,2) > 0.

We now check that the above constraint Re
(α2

1,1

α2,0
− 4α0,2) > 0 is satisfied for a

suitable parameter regime. For ease of analysis, we note that n0 is approximately
given by τc/(ε

√
p20 + 4δ) = O(ε−1). Taking ε to be small, to leading order we find

α2,0 = −n0ε
4δ − n0η

∗2ε
8δ2 − c ≈ − τc

4δ
√

p2
0+4δ

− τcη
∗2

8δ2
√

p2
0+4δ

− c,

α1,1 = −iη∗ + 2n0ελ
(k+η∗)2 ≈ −iη∗ + 2τcλ

(k+η∗)2
√

p2
0+4δ

,

α0,2 = −i 2δλ
(k+η∗) − 2(n0+1)λ2ε

(k+η∗)2 ≈ −i 2δλ
(k+η∗) − 2τcλ

2

(k+η∗)2
√

p2
0+4δ

.

Note that the real part of −4α0,2 is nonnegative, so we need only check the sign of

Re (α2
1,1/α2,0). Using α

2
1,1 = −η∗2 + 4τ2

cλ
2

(k+η∗)4(p2
0+4δ)

− i 4τcλη
∗

(k+η∗)2
√

p2
0+4δ

gives

Re
(α2

1,1

α2,0
− 4α0,2

)
� 8δ2

(k+η∗)4
√

p2
0+4δ

[
η∗2(k+η∗)4(p2

0+4δ)−4τ2
c λ

2

8δ2c
√

p2
0+4δ+2δτc+τcp2

0

]
.

Since τc > 0, this is clearly positive when p0 is sufficiently large. Hence the regime of
interest is ε small and p0 large. We then have

ψ̂−
n

ε

(k, t) ≈ e−
i
ε tĤ

− 1

2
√
4α2,0α0,2 − α2

1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]
× (η∗ + k) e−

c
ε (η

∗−p0)
2

e−
τc
2δε |k−η∗| e−i

τr
2δε (k−η∗) χk2>4δ,(4.9)

with the αi,j as given in (2.5).
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We note that setting λ = 0 gives α0,1 = α0,2 = 0 and α1,1 = iη∗, and returns the
n-independent form (see [3])

ψ̂−
n

ε

(k, 0) ≈ (η∗+k)
2|η∗| e−

c
ε (η

∗−p0)
2

e−
τc
2δε |k−η∗| e−i

τr
2δε (k−η∗) χk2>4δ.

4.6. Asymptotics of αi,j. We now show that, under suitable assumptions,
the αi,j given in (2.5) may be somewhat simplified. Note that n0 = O(ε−1) and so
α2,0 = O(1) and α1,0 = O(ε−1/2). However, the two terms which come from the
n-independent prefactor k+η in (3.11) are of lower order than the remaining terms in
the respective αi,j , and, hence, for small ε may safely be neglected. From the point of
view of exponential asymptotics this is completely natural, one would normally fix the
slowly varying terms (i.e., independent of ε, and in this case of n) at the stationary
value of the integrand. For clarity, we now have

α2,0 = −n0ε
4δ − n0η

∗2ε
8δ2 − c, α1,0 = −n0η

∗ε1/2

2δ − 2c(η∗−p0)
ε1/2

+ sgn(k)τc
2δε1/2

+ i τr
2δε1/2

.

One additional simplification is possible when p0 is large and the wave function
is quickly decaying (i.e., c is also large). In this case the modulus of the integrand is
negligible unless η∗ is close to p0. For such a range, using n0 ≈ τc/(ε

√
p20 + 4δ) shows

that the first three terms in α1,0 above are all negligible. Further, if the potential is
symmetric, τr = 0 and we may use the approximation α1,0 = 0. In addition, in this
limit, and with the assumption that λ is not too large, we see that the second terms
in each of α1,1 and α0,2 in (2.5) are negligible. To conclude, for ε small, p0 and c
large, and λ not too large, we have

α2,0 ≈ −τc(2δ + η∗2)
8δ2η∗

− c, α1,0 ≈ iτr
2δ
√
ε
, α1,1 ≈ −iη∗,

α0,1 ≈ − 2λ√
ε(k + η∗)η∗

, α0,2 ≈ − i2δλ

(k + η∗)
.

4.7. Additional phase shift. While testing the formula (4.9) against ab-initio
numerics, we found a discrepancy by a phase shift which, in the region where the
wave function has significant magnitude, is constant in k. We believe that this effect
comes from one of the approximations detailed above, but have currently been unable
to determine its exact cause. For many applications this phase shift is unimportant.
Since it is constant in k, all expected values of observables are correctly reproduced
by (4.9) in the case of a single Gaussian wave packet. Where the phase shift begins
to matter is for interference phenomena, and when considering a superposition of
Gaussians (see below) such that their centers are at significantly different locations
in k; then the phase shift will not be constant in k anymore, and we will get wrong
predictions for position expected values.

It is therefore desirable to have a method of removing this effect of the approxi-
mations. We now describe a heuristic method which has proven to be effective for a
wide range of potentials and initial Gaussian wave packets. Consider (4.9) for λ �= 0
and the wave function normalized by a prefactor

√
c/(πε). Note that if λ = 0, the

following argument is invalid. However, setting λ = 0 in (4.9) we see that the phase
depends only on τr, which agrees with that of [2] and the corresponding numerics.

We are going to consider the phase of the transmitted wave function in the limit
c→ ∞, i.e., the incoming wave packet approximating a δ-function at η = p0. Since the
numerical phase shift is independent of k, we need to choose a value of k at which to
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evaluate this phase. In the classical picture, from energy conservation we see that the
the transmitted wave packet should be approximately a δ-function at k =

√
p20 + 4δ,

and hence we consider this value of k, where the sign of the square root is chosen to
match that of p0.

We are therefore interested in

ψ̂−
n

ε

(
√
p20 + 4δ, 0) ≈

√
c√
πε

1

2
√
4α2,0α0,2 − α2

1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]
× a0 e

−τc
2δε |b0| e

−iτr
2δε b0 χk2>4δ,

where a0 =
√
p20 + 4δ+ p0 and b0 =

√
p20 + 4δ − p0. We now investigate the phase of

this wave packet when c → ∞ and note that there are contributions from both the
square root and the exponent.

We write α2,0 = β2,0 − c, and, since η∗ = p0, this is the only term that depends
on c. Consider first the prefactor

√
c√

4α2,0α0,2 − α2
1,1

=

√
c√

4(β2,0 − c)α0,2 − α2
1,1

=
1√

−4α0,2 +
1
c (4β2,0α0,2 − α2

1,1)

c→∞→ 1√−4α0,2

.(4.10)

For the exponent, we have

α2,0α
2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

=
(β2,0 − c)α2

0,1 + α0,2α
2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4(β2,0 − c)α0,2

=
−α2

0,1 +
1
c (β2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1)

4α0,2 +
1
c (α

2
1,1 − 4β2,0α0,2)

c→∞→ − α2
0,1

4α0,2
.(4.11)

It remains to determine the phases of (4.10) and (4.11). We write α1,0 = β1,0,
α1,1 = β1,1 + iγ1,1, α0,1 = β0,1, and α0,2 = β0,2 + iγ0,2, with βi,j , γi,j ∈ R. For (4.10),
we note that −α0,2 = −(β0,2+iγ0,2) =: r eiθ , where θ = arctan(

γ0,2

β0,2
), giving the phase

of (4.10) as − 1
2 arctan(

γ0,2

β0,2
). Using that γ0,2 = −λb0/2, β0,2 = −2(n0+1)λ2ε/a20, and

a0b0 = 4δ, we have − 1
2 arctan(

a0δ
(n0+1)ελ).

For the (4.11) we have − β2
0,1

4(β0,2+iγ0,2)
= −β2

0,1(β0,2−iγ0,2)

4(β2
0,2+γ2

0,2)
. Hence, using that β0,1 =

2(n0 + 1)ε1/2λ/a0, this phase is given by − (n0+1)2ελa0δ
2(n+1)2λ2ε2+2δ2a2

0
, and the total phase by

− (n0 + 1)2ελa0δ

2(n0 + 1)2λ2ε2 + 2δ2a20
+

1

2
arctan

(
− a0δ

(n0 + 1)ελ

)
− τr

2δε
b0.

One further adjustment seems to be necessary. One would expect that the phase
is continuous in λ, and we know that for λ = 0, the phase is − τr

2δεb0. However, the
limit of the λ-dependent terms in above expression is −1/2 arctan(sgn(λ) sgn(a0)∞) =
− sgn(λ) sgn(p0)π/4, and hence we take the phase shift to be

(4.12) ϕ(p0) = − (n0 + 1)2ελa0δ

2(n0 + 1)2λ2ε2 + 2δ2a20
− 1

2
arctan

( a0δ

(n0 + 1)ελ

)
+ sgn(λp0)

π

4
,

which seems to give very good numerical results for a wide range of all parameters.
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To summarize, we now have an explicit closed form for the transmitted wave
packet given an initial Gaussian of the form (2.1),

ψ̂−
n

ε

(k, t) ≈ e−
i
ε tĤ

− 1

2
√
4α2,0α0,2 − α2

1,1

exp
[α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]
× (η∗ + k) e−

τc
2δε |k−η∗| e−i

τr
2δε (k−η∗) e−iϕ(p0) φ̂ε(η∗)χk2>4δ,(4.13)

with ϕ(p0) as given in (4.12) and the αi,j as in (2.5), or, alternatively, with the
simplifications from section 4.6. n0 is given as indicated in (2.3). We thus have
finished the justification of the algorithm given in section 2.

4.8. Phase shift for large momentum. For large momentum, we use the
approximations a0 = 2p0 and n0 = τc/(εp0) and get the phase shift ϕ(p0) as ϕ(p0) ≈
− 1

ε
τ2
c λδp0

τ2
cλ

2+4δ2p4
0
− 1

2 arctan(
4p2

0δ
τcλ

) + sgn(λp0)
π
4 Note that if p0 → ∞, then ϕ(p0) → 0.

More concretely, we are interested in the rate at which it goes to zero when we write
p0 in terms of ε. Letting p0 = ε−α gives

ϕ ≈ −1

ε

τ2c λδ

τ2c λ
2ε1+α + 4δ2ε1−3α

− 1

2
arctan

(4ε−2αδ

τcλ

)
+ sgn(λp0)

π

4
.

Hence if α > 1/3, we see that ϕ(ε−α) → 0 as ε → 0. We note that this value of 1/3
is the same value as that for which we have rigorous bounds on the errors; cf. the
appendix.

From this analysis, it appears that the phase shift is a consequence of taking
momenta that are too small (or equivalently, ε that are too large).

5. Non-Gaussian incoming wave functions.

5.1. Extension to Hagedorn wave functions. We note that a general Hage-
dorn wave function [8] in one dimension is a Hermite polynomial multiplied by a

Gaussian. By linearity of the integral, it is sufficient to consider the case φ̂ε(η) =
ηp exp

(−c(η − p0)
2/ε

)
, p ∈ N. We perform the same rescaling as in section 4.2 and

note that the monomial prefactor becomes (ηε1/2 + η∗)p =
∑p

j=0

(
p
j

)
(ηε1/2)jη∗(p−j).

Using the same arguments as above, we obtain for each j the integral∫
R

∫
R

dηds (ε1/2η)j exp(α2,0η
2 + α1,0η + α1,1ηs+ α0,1s+ α0,2s

2).

We now note that ∂jα1,0
exp(α1,0η) = ηj exp(α1,0η) and since differentiation with

respect to α1,0 commutes with the integral, we have∫
R

∫
R

dη ds (ε1/2η)j exp(α2,0η
2 + α1,0η + α1,1ηs+ α0,1s+ α0,2s

2)

= εj∂jα1,0

2π√
4α2,0α0,2 − α2

1,1

exp

[
α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]

= εj
2π√

4α2,0α0,2 − α2
1,1

exp

[
α2,0α

2
0,1

α2
1,1 − 4α2,0α0,2

]
∂jα1,0

exp

[
α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]
.

In more generality, we wish to compute ∂jαf where f = exp(−aα2 + bα) =

exp(− 2a
2 (α − b

2a )
2 + b2

4a ). It is clear that this will be f multiplied by a scaled and
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shifted Hermite polynomial. In fact, we have ∂jαf = (−√
2a)jHj

(√
2a(α − b

2a )
)
f,

where Hj is the probabilist’s Hermite polynomial of order j (namely chosen such that
the coefficient of the leading order is 1).

In our case, we have a = − α2,0

α2
1,1−4α2,0α0,2

and b = − α0,1α1,1

α2
1,1−4α2,0α0,2

, giving b
2a =

α0,1α1,1

2α0,2
. Hence (3.11) with φ̂ε(η) = ηp exp

(−c(η − p0)
2/ε

)
is given by

ψ̂−
n

ε

(k, t) ≈ e−
i
ε tĤ

−(k) χk2>4δ

2
√
4α2,0α0,2 − α2

1,1

exp

[
α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]

× (η∗ + k) e−
c
ε (η

∗−p0)
2

e−
τc
2δε |k−η∗| e−i

τr
2δε (k−η∗)

×
p∑

j=0

(
p

j

)
εjη∗(p−j)

(
2α0,2

α2
1,1 − 4α2,0α0,2

)j/2

×Hj

⎡⎣( 2α0,2

α2
1,1 − 4α2,0α0,2

)1/2(
α1,0 − α0,1α1,1

2α0,2

)⎤⎦ ,
with the αi,j as given in (2.5).

Using the identityHp(x+y) = xp
∑p

j=0

(
p
j

)
x−jHj(y), with x=

η∗

ε

( 2α0,2

α2
1,1−4α2,0α0,2

)−1/2
,

and y =
( 2α0,2

α2
1,1−4α2,0α0,2

)1/2(
α1,0 − α0,1α1,1

2α0,2

)
gives

ψ̂−
n

ε

(k, t) ≈ e−
i
ε tĤ

−(k) χk2>4δ

2
√
4α2,0α0,2 − α2

1,1

exp

[
α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]

× (η∗ + k) e−
c
ε (η

∗−p0)
2

e−
τc
2δε |k−η∗| e−i

τr
2δε (k−η∗) εp

(
2α0,2

α2
1,1 − 4α2,0α0,2

)p/2

×Hj

[
η∗

ε

(
2α0,2

α2
1,1 − 4α2,0α0,2

)−1/2

+

(
2α0,2

α2
1,1 − 4α2,0α0,2

)1/2(
α1,0 − α0,1α1,1

2α0,2

)]
.

We are interested in the leading order behavior with respect to ε. From (2.5)
and using n0 = O(ε−1) we see that α2,0, α1,1, α0,2 are all O(1) whilst α1,0 and α0,1

are O(ε−1/2). Hence
2α0,2

α2
1,1−4α2,0α0,2

= O(1) and α1,0 − α0,1α1,1

2α0,2
= O(ε−1/2), which,

in particular, shows that the prefactor is O(εn) whilst the argument of the Hermite
polynomial is O(ε−1). Thus, to leading order, only the highest power of the Hermite
polynomial contributes, giving

ψ̂−
n

ε

(k, t) ≈ e−
i
ε tH

− 1

2
√
4α2,0α0,2 − α2

1,1

exp

[
α2,0α

2
0,1 + α0,2α

2
1,0 − α1,0α0,1α1,1

α2
1,1 − 4α2,0α0,2

]

× (η∗ + k) e−
c
ε (η

∗−p0)
2

e−
τc
2δε |k−η∗| e−i

τr
2δε (k−η∗) η∗pχk2>4δ,

which is precisely (4.9) with the Gaussian replaced by ηp exp(−c(η − p0)
2/ε).
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We note that the error in this closed form is expected to be of order
√
ε. Whilst

this could be improved by taking further terms in the expansion, in the following we
choose to concentrate on the case of a wave packet which has been decomposed into
a linear combination of Gaussians. The main reason for this is the heuristic phase
correction which is discussed in section 4.7. From numerical studies, we see that this
works well only for Gaussian wave packets, and without this correction, the relative
error between the formula and the “exact” numerical wave packet is of the order of
10%, compared to an error of around 2% for a Gaussian wave packet with the phase
correction.

5.2. General wave packets as superpositions of Gaussians. Due to the
strong reliance on the wave packet being a Gaussian in the preceding discussion,
formula (4.9) is not immediately applicable to general wave packets. However, we
propose a simple algorithm which allows use of (4.9) in many cases of chemical interest.

The main idea is that we can decompose such a wave packet into Gaussians.
Whilst for a general semiclassical wave packet this may be very difficult, for systems
of chemical interest we suggest that this is, in fact, relatively straightforward. For
a given two-level system, the potential energy surface around the minimum of the
ground state will be approximately quadratic, and hence the ground state may be
taken to be a Gaussian. When excited to the upper level, it remains Gaussian and
has mean momentum zero. It has been shown by Hagedorn [7] that, under suitable
regularity assumptions on the wave packet, and physically realistic assumptions on
the potential, the wave packet at time t is approximated up to errors of O(ε1/2)
by another Gaussian, whose coefficients can be found by solving a system of ODEs.
Hence, in particular, the wave packet at the crossing point can be taken to be a
Gaussian, which introduces errors of order O(ε1/2). Note that up to this point we are
studying one-level dynamics, and so absolute errors are as good as relative errors.

For a more general wave packet, or to obtain higher-order accuracy, the results
of [7] suggest decomposing the wave packet into Hagedorn wave packets, which, for
sufficiently regular wave packets, allows arbitrary accuracy. In general, if the original
wave packet is formed from a linear combination of the first J Hagedorn wave packets,
the ODEs must be solved for J + 3� − 3 Hagedorn wave packets to get an error of
O(ε�/2). Thus, for nearly Gaussian initial wave packets, one needs very few Hagedorn
wave packets to get very small errors. In order to apply our phase shift, it would be
necessary to decompose these low-order Hagedorn wave packets into Gaussians. As
the Hagedorn wave packets are given in their very specific functional form, this is sig-
nificantly more straightforward than decomposing a general semiclassical wave packet
into Gaussians. This process should be aided by the fact that the mean momentum
of the initial wave packet is zero, and hence we do not need to fit highly oscillatory
phases.

From now on, we assume that we have decomposed the initial wave packet into
Gaussians. We now evolve each Gaussian using Hagedorn dynamics [16] on the upper
level until the mean position of the wave packet coincides with the crossing point
(which we choose without loss of generality to be at x = 0). We then transform into
Fourier space (which can be done analytically), giving a wave packet of the form

(5.1)
N∑
j=1

Aj exp
(− (p−pi)

2

σ2
j ε

)
exp

(
i
pxj

ε

)
,

where in position space xj is the offset from the crossing point.
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We now need to deal with the fact that the Gaussians reach the crossing point
at different times. We first note that, for small ε, this should be a small effect for
semiclassical wave packets: Since the wave packet is localized in a

√
ε neighborhood

of zero in position space, we have xj = O(
√
ε). As discussed in section 3.2, on a√

ε neighborhood of the origin and for times of order
√
ε, the dynamics are well

approximated by the explicit propagators (3.9). Since the wave packets move with
the speed of order one, this is still the region of interest and we may simply insert the
complex Gaussian into (3.11).

Applying the rescaling as described in section 4.2 gives an extra term in the
exponent in (4.5) of the form ixj(η

∗ + ε1/2η)/ε. The η∗ term combines with the
Gaussian term in η∗ to give the wave packet evaluated at η∗ as before. The remaining
term provides a contribution of the form ixj/ε

1/2 to α1,0 in (2.5).
It is now easy to see that in the small ε limit this term is negligible. Since

xj = O(
√
ε) we see that the new term in α1,0 is order one. In contrast, the dominant

terms in α1,0 are of order ε−1/2 and one may apply (4.9) directly to the complex
Gaussian.

We note that for the values of ε under consideration in the numerics, ignoring this
correction increases the relative error by the order of 0.1%, which is quite significant
given the high accuracy of the final formula. In the implementation of the non-
Gaussian wave packet below, we therefore included the additional term ixj/ε

1/2 in
the expression for α0,1.

The above analysis suggests a simple and efficient algorithm for calculating the
form of the transmitted wave packet, even if not of Gaussian form, given an initial
wave packet ψ−∞ located well away from the transition point in position space.

1. Decompose the initial wave packet into a linear combination of Gaussians, as
described above.

2. Evolve the initial wave packet on the upper BO level using Hagedorn dynamics
until its center of mass reaches the transition point. This can either be pre-
determined by finding the point at which the two energy levels are closest,
or, as would be required in higher dimensions, by monitoring the energy gap
at the center of mass over time and determine its minimum.

3. Transform the resulting wave packet into momentum space, giving a linear
combination of complex Gaussians as in (5.1).

4. Apply formula (2.4) to each complex Gaussian in turn and take the corre-
sponding linear combination.

5. Evolve the resulting transmitted wave packet using the BO dynamics on the
lower level, until the center of mass reaches the scattering region.

Assuming that the energy levels become constant in the scattering regime, the
computed wave packet will agree up to small errors with that computed using the full
coupled dynamics.

In practice the formula is more accurate for narrow Gaussians (since this improves
a number of the approximations including the choice of fixed n0 and the heuristic phase
shift) and thus it may be worth constraining the variances of the Gaussians. Since
the application of the formula is cheap (simply multiplications in Fourier space over
a region in which the modulus of the wave packet is significant—comparable to one
time step in uncoupled BO dynamics) and steps (2–4) scale linearly with the number
of Gaussians, increasing the number of Gaussians whilst decreasing their variances
would be a reasonable approach to increase accuracy.

It is important to realize that, although this algorithm performs a molecular dy-
namics calculation using Gaussian wave packets, it does not share the obstructions of
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most Gaussian-based methods (see, e.g., [22]). These occur mainly due to the Gaus-
sians being not orthogonal, and the resulting ill-conditioning of various matrices under
time evolution. Since our Gaussians are evolved independently, transmitted at the
crossing point, and resummed on the lower level, we do not encounter such problems.
In higher dimensions, the use of Hagedorn dynamics rather than simple grid-based
methods is almost compulsory, as such näıve methods are computationally intractable.

6. Numerics. We now compare the results of formula (2.4) to those of high-
precision fully coupled numerics. For ease of demonstration, we set the transition
point to be at x = 0 and t = 0 and choose to specify the wave packet φ as a linear
combination of complex Gaussians in momentum space at the crossing time. This
simplifies the implementation of the above algorithm, as φ̂ε is already in the required
form. Further, we set ε = 1/50, which gives reasonably small transition probabili-
ties, whilst still enabling the “exact” calculations to be performed. Note that, when
transformed to position space, both examples have mean position zero.

To begin both the full numerics and the implementation of the above algorithm,
we evolve φ on the upper BO surface to large negative time (i.e., to a position where
the potentials are essentially flat) to give a good approximation φ−T ≈ ψ−∞.

The full numerics were performed using a symmetric Strang splitting in MATLAB
with initial condition φ−T , which is run to a time t∗ > 0, where once again the
potentials are essentially flat. In particular, for times t > t∗, the lower component
‖ψ−

0 (t)‖ is constant. We then evolve ψ−
0 (t∗) backwards in time to t = 0 and compare

its Fourier transform to formula (2.4). The calculation was performed on a grid
with 16,384 points in both the position ([−40, 40]) and corresponding momentum
([−12.87, 12.87]) spaces, with T = t∗ = 4 and 1,000 time steps. Doubling both the
number of space and time gridpoints produces a wave function which differs from
this computation by around 0.01% in the L2 norm, and hence we take the numerical
simulation to be “exact.”

We choose Z = α tanh(x) + βx2/ cosh(x), X = δ, and d = λ tanh(x). For
these choices, δ and λ correspond to their earlier use, the ratio α2/δ determines the
second derivative of ρ at the transition point, and β primarily affects the asymmetry
of the potential. In particular, β = 0 gives τr = 0. We set α = 0.5, β = −0.4,
δ = 0.5, and λ = 1. This leads to the two potential surfaces given in Figure 1, with
τδ = −0.16611 + 0.53772i, which can be easily calculated numerically.

The first wave packet we treat is given by the complex Gaussian A exp
(−c(p −

p0)
2/(2ε)

)
, with p0=5, c = 1/(2σ2), σ =

√
2, and A chosen such that the wave packet

is normalized in L2. The second case we consider is a linear combination of three
complex Gaussians of the form (5.1) where |Aj | = A, j = 1, 2, 3, which, in turn,
is chosen to normalize the wave packet. The remaining parameters are given, with
c = 1/(2σ2), by

Aj pj σj xj
A 5.00 1.414 −0.0238
A 5.15 1.664 0.0186
−A 4.90 0.714 0.0328

Results of the numerical calculations, and comparison with the results obtained
via formula (2.4), are given in Figure 2 for the Gaussian case, and Figure 3 for the
non-Gaussian case. In both cases, the relative error is less than 2% over the full
interval where the transmitted wave function is essentially supported. The transition
probability ‖ψ−‖2 in both cases is of the order 10−5 (3.03×10−5 and 3.48×10−5 for the
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−10 −5 0 5 10
−3

−2

−1

0

1

2

x

V
±

Fig. 1. The two adiabatic energy surfaces V± = ±ρ(x) + d(x) with ρ(x) =
√
X2(x) + Z2(x).

Z = α tanh(x) + βx2/ cosh(x), X = δ, d = λ tanh(x), with the parameters α = 0.5, β = −0.4,
δ = 0.5, and λ = 1. Note that the avoided crossing (minimum of the energy gap) is at x = 0.

Gaussian and non-Gaussian cases, respectively). In addition to these two examples,
we have tested a wide range of parameters for both the potentials and semiclassical
wave functions, and all results are good to within a few percent. They deteriorate only
when ε (and thus also ‖ψ−‖) becomes too large and we leave the adiabatic regime, or
when p0 (and thus also ‖ψ−‖) gets too small and our many approximations requiring
that p0 is suitably large break down. In particular, the relative error is less than a
few percent when the transition probability is in the range 10−2–10−15.

Appendix A. Rigorous asymptotic estimates for high incoming mo-
menta. In this section we show rigorously that when p � ε−1/3, the off-diagonal
element κ±n (p, q) of the superadiabatic Hamiltonian is dominated by its highest order
in p, i.e., the term pnκ±n,0(q). We will also restrict our attention to the case where
ρ(q) is constant.

We introduce a family of norms, first used in [5], that will be useful in what
follows. For τc > 0 and I ⊂ R, we define

(A.1) ‖f‖(I,α,τc) := sup
t∈I

sup
k � 0

∣∣∂kf(t)∣∣ τα+k
c

Γ(α+ k)
� ∞

for a function f ∈ C∞ on the real line. We also define

Fα,τc(I) =
{
f ∈ C∞(I) : ‖f‖(I,α,τc) <∞

}
.

When τc and I are fixed, we will simply write ‖·‖(α) and Fα. In [4] we prove

sup
q∈I

∣∣∂kf(q)∣∣ � Γ(α+ k)

τα+k
c

‖f‖(I,α,τc) ∀k � 0,(A.2)

‖f ′‖(I,α+1,τc)
� ‖f‖(I,α,τc) ,(A.3) ∥∥∥∥∫ t

s

f(r) dr

∥∥∥∥
(I,α−1,τc)

� max

{
(α − 1)|t− s|

τc
, 1

}
‖f‖(α) ,(A.4)

‖fg‖(I,α+β,τc)
� B(α, β) ‖f‖(I,α,τc) ‖g‖(I,β,τc) ,(A.5)

where B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the Beta function.
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Fig. 2. Top: The absolute value of the transmitted wave packet ψ̂−ε
as given by (2.4) (solid,

left axis) and the error as compared to the numerical solution φ̂−
ε
computed as described using the

fully coupled dynamics (dashed, right axis). Inset is the initial Gaussian wave packet in momentum
space at the transition time. Bottom: As in the top plot but showing the argument (phase) of the
wave packets.

We will now estimate the n-norm of the κ±n,m. Without further loss of generality
we take ρ = 1/2.

Proposition A.1. Assume ρ = 1/2. For an interval I ⊂ R, assume θ′ ∈ F1(I)
and c1 = d′ ∈ F1(I). Let xmn , ymn , zmn , and wm

n be defined by the recursion given in
Theorem 3.2. Then we have the following.

(a) xmn ∈ Fn(I) for any interval I, and the same holds for the other coefficients.

(b) Assume further that |I| � min{τc/ ‖θ′‖(1) , τc/ ‖θ′‖2(1)}. Then, for every α >

1/2 there exists Cα > 0 such that for all m,n we have

‖xmn ‖(I,n,τc) , ‖ymn ‖(I,n,τc) � Cα
Γ(n+ αm)

Γ(n)

and

‖zmn ‖(I,n,τc) , ‖wm
n ‖(I,n,τc) � 2Cα

‖θ′‖(1)
Γ(n+ αm)

Γ(n)
.

Proof. We will proceed inductively. First, consider an, bn as given in Lemma 3.1.
We claim that an and bn are in Fn, with ‖an‖(n), ‖bn‖(n) � ‖θ′‖(1) (n+1)/2. Indeed,
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Fig. 3. As Figure 2 but for the non-Gaussian wave packet described in the text.

let An = an + ibn. Then (3.3) implies An+1 = A′
n + iθ′An, and since both an and

bn are real valued, we have ‖an‖(n) � ‖An‖(n) and ‖bn‖(n) � ‖An‖(n). Now using

(A.3) and (A.5) above, we find

‖An+1‖(n+1) � ‖An‖(n)
(
1 +

1

n
‖θ′‖(1)

)
� · · · �

n∏
j=1

(
1 +

1

j

)
‖A1‖(1) .

Now ‖A1‖(1) = 1
2 ‖θ′‖(1) < ∞, and

∏n
j=1(1 + 1/j) =

∏n
j=1(j + 1)/j = n + 1, which

proves the claim. Trivially, we also have ‖cn‖(n) � ‖c1‖(1). From the recursions in
Theorem 3.2 it now follows that xmn ∈ Fn for all n and m, and also for all other
coefficients. It remains to give bounds on the actual size of the norms. For m = 0,
the bounds claimed in (b) were given in [5, cf. Theorem 2]. Now let us assume that
the claim (b) holds up to m − 2 (remember that for odd m everything is zero), and
up to n. Let us write

Sm
n :=

�m/2�∑
j=1

1

(2i)j

(
n+ 1−m+ j

j

)
(bjy

m−2j
n+1−j − ajw

m−2j
n+1−j + cjz

m−2j
n+1−j).
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Then

‖Sm
n ‖(n+1) �

�m/2�∑
j=1

1

2j
Γ(n+ 2−m+ j)

Γ(n+ 2−m)Γ(j + 1)

Γ(n+ 1− j)Γ(j)

Γ(n+ 1)

×
(
‖bj‖(j)

∥∥∥ym−2j
n+1−j

∥∥∥
(n+1−j)

+ ‖aj‖(j)
∥∥∥wm−2j

n+1−j

∥∥∥
(n+1−j)

+ ‖cj‖(j)
∥∥∥zm−2j

n+1−j

∥∥∥
(n+1−j)

)
� Cαc0

(
1 +

4

‖θ′‖(1)

) �m/2�∑
j=1

1

2j
j + 1

j

Γ(n+ 2−m+ j)Γ(n+ 1− j)Γ(n+ 1 + αm− (1 + 2α)j)

Γ(n+ 2−m)Γ(n+ 1)Γ(n+ 1− j)
.

Here, c0 = max{‖θ′‖(1) /2, ‖d′‖(1)}. Clearly, the fraction of Gamma functions with

j = 1 is the largest of all, and thus the factor 1/2j allows us to estimate the sum
through twice its first term, giving

‖Sm
n ‖(n+1) � CαC̃

(n+ 2−m)Γ(n+ αm− 2α)

Γ(n+ 1)
,

where C̃ does not depend on n or m. The same holds for all the other sums appearing
in Theorem 3.2. Using the recurrence relation there, we have∥∥ymn+1

∥∥
(n+1)

� ‖xmn ‖(n) +
‖θ′‖(1)
n

‖zmn ‖(n) + CαC̃
(n+ 2−m)Γ(n+ αm− 2α)

Γ(n+ 1)

� Cα

(
Γ(n+ αm)

Γ(n)
+ 2

Γ(n+ αm)

Γ(n+ 1)
+ C̃

(n+ 2−m)Γ(n+ αm− 2α)

Γ(n+ 1)

)
= Cα

Γ(n+ 1 + αm)

Γ(n+ 1)

(
n+ 2

n+ 1 + αm
+ C̃

(n+ 2−m)Γ(n+ αm− 2α)

Γ(n+ 1 + αm)

)
.

The last term in the bracket above is O((n + αm)−2α), and as α > 1/2, it van-
ishes faster than 1/n. The first term in the bracket, on the other hand, is at most

n+2
n+2+(2α−1) � 1 − 2α−1

n , as m � 2. Thus the bracket becomes smaller than one for

large enough n. By choosing Cα so large that the induction hypothesis holds up to
this n, we have shown the induction step for ymn+1. The argument for xmn is similar
and simpler. As for zmn , we have∥∥zmn ′∥∥

(n+1)
� 1

n
‖θ′‖(1) ‖xmn ‖(n) + CαC̃

(n+ 2−m)Γ(n+ αm− 2α)

Γ(n+ 1)
,

and using (A.4), we see that

‖zmn ‖(n) � Cα
|I|
qc

(
‖θ′‖(1) ‖xmn ‖(n) + C̃

(n+ 2−m)Γ(n+ αm− 2α)

Γ(n)

)
� Cα

Γ(n+ αm)

Γ(n)

(
1 + C̃

(n+ 2−m)Γ(n+ αm− 2α)

Γ(n+ αm)

)
.

The last bracket will be bounded by 2 for large enough n, and so the same rea-
soning as above shows the induction step for zmn . The proof for wm

n is similar and
simpler.
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By piecing together intervals as given in Proposition A.1(b), and using (A.2), we
obtain the following.

Corollary A.2. For any compact interval I and any α > 1/2, there exists a
constant C such that

sup
q∈I

|xmn (q)| � C
Γ(n+ αm)

τnc
,

and the same for zmn .
We can now give asymptotic shape of the coupling functions κ0,±n for high mo-

menta. It is clear that choosing p large enough will suffice to counter the growth of
the coefficients as given in Corollary A.2. To obtain precise statements, let us first
note that by choosing

(A.6) n =
τc
εp
,

we obtain

(A.7) εnpnx0n(q) = 2i
√
2επτc sin(πγ/2) e

− τc
εp e−

q2

2εpτc e
i

εp q (1 +O((εp)1/2−δ)).

This follows directly from the results in [4, 5]. Recall also that under the assumptions

θ′ ∈ F1 and ρ = 1/2, we have pnx0n ∼ pn (n−1)!
τn
c

at its maximum. We will now specify

the regime of p for which this is also the leading order behavior.
Proposition A.3. Assume ρ = 1/2, θ ∈ F1, d

′ ∈ F1, and I ⊂ R is compact.
Assume further that p = ε−β, with 1/3 < β < 1. Then there exists δ > 0 such that
for all n � τc

pε , we have

εn
n∑

m=1

pn−mxmn (q) = εnpn
(n− 1)!

τnc
O(εδ).

Proof. By Corollary A.2 and Stirlings formula, we have∣∣∣∣∣ τnc
pn(n− 1)!

n∑
m=1

pn−mxmn (q)

∣∣∣∣∣ �
n∑

m=1

Γ(n+ αm)

Γ(n)pm
� c

n∑
m=1

(n+ αm)n+αm e−αm

nnpm

for any α > 1/2. Clearly, this is largest for the maximal value n = τc
pε , so it suffices

to treat this case. Inserting ε = p−1/β into n = τc
pε gives

p = τ
− β

1−β
c n

β
1−β .

Thus

(n+ αm)n+αm

nnpm
� (n+ αm)n+αm

nn+ β
1−βm

τ
β

1−βm
c

= exp

(
(n+ αm) ln(n+ αm)−

(
n+

β

1− β
m

)
ln(n) +m

β

1− β
ln τc

)
.

Now when β > 1/3, we can pick α > 1/2 such that β/(1− β) > α, and the exponent
becomes negative for large enough n, and all m < n. The factor e−αm in the sum
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above then guarantees summability up to m = n without losing more than a constant,
and the proof is finished.

Together with (A.7), the previous result immediately gives the following.
Corollary A.4. We make the same assumptions as in Proposition A.3, and

put n = τc
pε . Then

(A.8) κ0,±n (p, q) = ∓2i
√
2επτc sin(πγ/2) e

− τc
εp e−

q2

2εpτc e
i

εp q (1 +O(εδ)),

for some δ > 0.
This result, even if only derived for the special case ρ = 1/2, strongly suggests

that for p� ε−1/3 the asymptotic transitions should be governed by the off-diagonal
elements of the form given in (A.8). We want to reemphasize, however, that ultimately
it is not the asymptotic shape of the coupling functions we are interested in, but
rather the shape of the time-dependent transmitted wave function. To obtain the
latter rigorously, many further error estimates are necessary; these are not easy and
constitute current work in progress. Curiously, the neat form (A.8) does not seem
well suited for this task: Namely, in order to obtain the transmitted wave function,
we will either need to solve the Wigner equation, or translate back into the language
of operators using the Weyl quantization. In both cases, it is inconvenient that (A.8)

contains terms of the form e−q2/(εp) , since these are in none of the usual symbol
classes. There is no theory, and worse, no calculus for dealing with such symbols. This
is why for our numerical approach we chose not to apply optimal truncation until the
very end. Instead we did a Weyl quantization for finite n, solved the corresponding
PDE, and decided in the end how large n should be. It is likely that any rigorous error
estimates on the transmitted wave function would need to use the same strategy.
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[17] A. Martinez and V. Sordoni, A general reduction scheme for the time-dependent Born-
Oppenheimer approximation, C. R. Math. Acad. Sci. Paris, 334 (2002), pp. 185–188.

[18] H. Nakamura, Nonadiabatic Transition, World Scientific Publishing, Singapore, 2002.
[19] G. Nenciu and V. Sordoni, Semiclassical limit for multistate Klein-Gordon systems: Almost

invariant subspaces, and scattering theory, J. Math. Phys., 45 (2004), pp. 3676–3696.
[20] T. S. Rose, M. J. Rosker, and A. H. Zewail, Femtosecond real-time probing of reactions.

IV. The reactions of alkali halides, J. Chem. Phys., 91 (1989), pp. 7415–7436.
[21] V. Rousse, Landau-Zener transitions for eigenvalue avoided crossings in the adiabatic and

Born-Oppenheimer approximations, Asymptot. Anal., 37 (2004), pp. 293–328.
[22] S.-I. Sawada, R. Heather, B. Jackson, and H. Metiu, A strategy for time dependent quan-

tum mechanical calculations using a Gaussian wave packet representation of the wave
function, J. Chem. Phys., 83 (1985), pp. 3009–3027.

[23] S. Teufel, Adiabatic Perturbation Theory in Quantum Dynamics, Lecture Notes in Math.
1821, Springer-Verlag, Berlin, 2003.

[24] J. C. Tully, Molecular dynamics with electronic transitions, J. Chem. Phys., 93 (1990),
pp. 1061–1071.

[25] A. I. Voronin, J. M. C. Marques, and A. J. C. Varandas, Trajectory surface hopping study
of the li + li2(x1σ

+
g ) dissociation reaction, J. Phys. Chem. A, 102 (1998), pp. 6057–6062.
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