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RATE OF CONVERGENCE OF THE CONFIGURATION
INTERACTION MODEL FOR THE HELIUM GROUND STATE∗

BENJAMIN D. GODDARD†

Abstract. The rate of convergence of a CI calculation on the ground state of the helium atom
is rigorously derived under suitable assumptions on the regularity of the exact wavefunction. For
bases consisting of all partial waves with angular momentum less than or equal to L, the large L
asymptotic energies are found to obey the well-known formula EL − E = CL−3 + o(L−3), where C
is an explicit constant defined in terms of the exact wavefunction.
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1. Introduction.

1.1. History and discussion of the problem. One of the principal aims of
atomic and molecular quantum chemistry is to solve the time-independent Schrödinger
equation [22]

(1.1) Hψ = Eψ,

where, in the Born–Oppenheimer [2] (infinite nuclear mass limit) nonrelativistic ap-
proximation for an atomic system with N electrons and nuclear charge Z,

H :=
N∑

i=1

−1
2
Δri −

Z

|ri| +
∑

1≤i<j≤N

1
|ri − rj | ,

where the positions of the electrons are denoted by ri, and H is in atomic units. ψ
is known as the wavefunction and E the corresponding energy. Unfortunately, except
in the simplest case N = 1, (1.1) is not exactly soluble, and thus the focus turns to
finding accurate approximate solutions.

Perhaps the simplest approximation is to replace the electron-electron repulsion
term

∑
1/|ri − rj | by an “average” repulsion, leading to the Hartree–Fock [10, 6, 24]

model. The energy is then minimized over all antisymmetrized products of N one-
electron orbitals (functions ϕ : R

3 × Z2 → C, taking as inputs the position and spin
of a single electron). These products are known as Slater determinants. However,
ignoring the exact correlation leads to poor results for most systems of interest.

In more complicated quantum chemistry models, the wavefunction is expanded
as a linear combination of Slater determinants. The major limitation is the slow
convergence of this wavefunction expansion, and thus also the energy. This results
primarily from the cusp behavior of the exact wavefunction at singularities of the
Coulomb potential, i.e., at points at which two or more interparticle distances are
zero, and in particular from the inability of the one-electron orbitals to accurately
model these cusps [24, 14].
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78 BENJAMIN D. GODDARD

Although it is possible to determine highly accurate energies, at least for very
small atoms (see, e.g., [18] and references therein), this is much less practical for even
moderately sized atoms (N ≥ 5) [9]. The slow rate of convergence, along with the
high cost of such calculations with respect to basis size (the number of N -electron
wavefunctions grows exponentially with the number of one-electron orbitals), makes
it highly desirable to derive an extrapolation scheme for the energy, allowing accurate
theoretical predictions with low computational cost (see, for example, the recent work
[3]). For this application it is necessary not only to derive the leading order of the
error, but also the corresponding leading coefficient.

Furthermore, and perhaps most importantly, the question of the rate of conver-
gence is of fundamental theoretical interest, and an analysis of such errors may suggest
areas of improvement for the corresponding model.

The configuration interaction (CI) (see, e.g., [24]) model minimizes the energy
over the span of a fixed set of Slater determinants. For computational reasons this
set is taken to be finite, although theoretical formulations utilize infinite sets. Math-
ematically this is analogous to a Ritz–Galerkin method on the space spanned by the
Slater determinants, and the analysis of the energy error is equivalent to analysis of
the error of the corresponding Rayleigh–Ritz calculation.

Historically, the spaces of interest have been the subspaces VL of wavefunctions
with angular momentum less than or equal to L, and the analysis has been predom-
inantly limited to two-electron atomic and ionic systems. The radial parts of these
subspaces are infinite dimensional, and hence this does not correspond to a computa-
tionally feasible CI calculation. However, the radial part is easily well-approximated
(see below) and the main error results from the angular-momentum truncation. Ex-
panding the angular component of the wavefunction, the �th term in the partial wave
expansion of a two-electron wavefunction with electron positions r1 and r2,

ψ(r1, r2) =
∞∑

�=0

ψ�(r1, r2)P�(cos θ),

where ri = |ri|, θ is the planar angle between r1 and r2, and P�(x) are the Legendre
polynomials. This is equivalent to the contribution of one-electron functions with
angular quantum number � in an infinite-dimensional CI expansion of ψ, which can
be seen by rewriting [15]

ψ�(r1, r2)P�(cos θ) =
4π

2�+ 1

∑
i,j

cijφ�,i(r1)φ�,j(r2)
�∑

m=−�

Y m
� (θ1, φ1)Y m

�
∗(θ2, φ2),

where Y m
� are the spherical harmonics. It is notable that this expansion is also slowly

convergent and, due to the increasing number of terms, more slowly convergent as
� increases. While its rate of convergence has been discussed [17, 3, 5], there are
no rigorous results, which, when combined with the results of this paper, would give
a rate of convergence in terms of one-electron orbitals. We note however that the
expansion of the radial part in r< := min{r1, r2} and r> := max{r1, r2} converges
rapidly [4, 21].

The first such analysis for classical orthogonal basis functions in the perturbation
theoretic problem was given by Schwartz [23], who found for the 1/Z perturbation
theory expansion that

EL − EL−1 = − 45
256

(L+ 1/2)−4 +
225
1024

(L+ 1/2)−6 + O ((L+ 1/2)−8
)
,
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where EL denotes the energy obtained by including all angular momenta less than
or equal to L. A heuristic argument that the asymptotic formula EL − EL−1 ∼
(L+ 1/2)−4 should hold for the partial wave expansion (and hence for the CI model)
was given by Lakin [16]. This behavior was demonstrated numerically for the ground
state of helium by Carroll, Silverstone, and Metzger [5].

The first attempt at a rigorous mathematical proof of such a result for a CI
calculation was given by Hill [11] who built upon work by Klahn and Morgan [14],
and claimed that EL −E = C1(L+ 1/2)−3 +C2(L+ 1/2)−4 +O(L−5) where C1 and
C2 are given explicitly in terms of the exact ground state wavefunction. Note that
this agrees with the asymptotic result EL − EL−1 = 3C1(L + 1/2)−4. However, not
only is the proof of this result very difficult to follow, especially that of the L−4 term,
but it contains a number of typographical mistakes and is not entirely mathematically
rigorous. For this reason we present a new proof, the main differences of which will
be outlined below.

The above results hold only for the ground state of two-electron systems (i.e.,
He-like ions), but were extended to all states of two-electron systems for the 1/Z per-
turbation theoretic model by Kutzelnigg and Morgan [15]. However, such extensions
for CI-like methods seem more difficult.

Apart from the increased rigor, the principle differences from Hill’s method con-
cern the formulation of the expression for the energy error (Hill’s (3.22)), which result
in the need to analyze derivatives in r< and r> of ψ� rather than �-projections of
r−1
12 ψ(r1, r2, r12), where r12 := |r1 − r2|. A further difference in our analysis is that

we construct an explicit form of fk
� (r<, r>), the �-projections of r2k−1

12 , whereas Hill
uses a recursion formula to obtain an asymptotic result; this is necessary for the anal-
ysis of the derivatives of fk

� (r<, r>) in r< and r>. The analysis of the remainder
terms Rj,�(r<, r>) is similar to that of Hill but we produce a more detailed version
of his Appendix C, the necessary conditions seem optimal in this formulation of the
problem.

One noteworthy point is that, in order to obtain the resulting asymptotic behav-
ior, the wavefunction is required to be three times differentiable in r12. The validity
of this assumption will be discussed in section 3.

1.2. Overview of the paper. In section 2 we formulate the problem and in-
troduce the necessary basic notation. In section 3 we state our main result, the proof
of which is outlined in section 4. This section also contains a statement of two, more
general, results required for the proof (Theorems 4.2 and 4.3). In section 5 we prove
the main result using these two theorems, along with a number of preliminary lem-
mas, given in section 5.1. The remainder of the paper, section 6, is concerned with
the proofs of Theorems 4.2 and 4.3, which are outlined at the start of the section.

2. Preliminaries and notation. Let ψ be the actual ground state solution to
the Schrödinger equation for the Helium atom, Hψ = Eψ where

(2.1) H := −1
2
Δ1 − 1

2
Δ2 − 2

|r1| −
2

|r2| +
1

|r1 − r2| ,

where r1, r2 ∈ R
3 are the positions of the two electrons and we later use the notation

|r1 − r2| =: r12.
The ground state of the Helium atom has angular momentum zero (see for example

the experimental data of [19]) and is therefore invariant under simultaneous rotation
of r1 and r2. Hence the ground state may be described by the lengths of the two
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vectors r1 and r2 and the angle between them, denoted, respectively, r1, r2, and θ.
Equivalently, θ may be written in terms of r1, r2, and r12, giving ψ = ψ(r<, r>, r12)
where

r< := min{r1, r2}, r> := max{r1, r2}
and

(2.2) r12 := |r1 − r2| =
(
r2< + r2> − 2r<r> cos θ

)1/2
.

We wish to investigate the energy of the approximate ground state wavefunction
given by projection of ψ onto the space spanned by functions with angular momentum
less than or equal to L. It is well known [1] that the Legendre polynomials

P�(x) :=
1

2��!
d�

dx�

(
x2 − 1

)�
are orthogonal with respect to the weighted inner product on L2 given by

(2.3) (f, g) :=
∫ π

0

f(θ)g(θ) sin θdθ.

It follows from the normalization formula [1]∫ π

0

Pm(cos θ)Pn(cos θ) sin θdθ = δm,n
2

2n+ 1

that the corresponding orthonormal wavefunctions are given by

(2.4) Φ�(θ)(x) :=
(
l + 1

2

)1/2
P�(cos θ),

which form a complete basis under the inner product (2.3). These Φ�(θ) are eigen-
functions of the angular momentum operator with eigenvalues −�(�+ 1) and we are
interested in the projection onto the span of the first L of these, i.e.,

PL :=
L∑

�=1

( · ,Φ�)Φ�.

We denote the expansion coefficients by ψ�(r<, r>):

(2.5) ψ�(r<, r>) =
∫ π

0

ψ(r<, r>, r12)Φ�(θ) sin θdθ,

and hence have

PLψ(r<, r>, r12) =
L∑

�=0

ψ�(r<, r>)Φ�(θ).

By the completeness of the Φ�(θ) we denote the part of the wavefunction whose
angular part does not lie in the span of the first L Legendre polynomials by

ψ⊥
L := ψ − PLψ,

with an analogous expansion:

(2.6) ψ⊥
L (r<, r>, r12) =

∞∑
�=L+1

ψ�(r<, r>)Φ�(θ).
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We now wish to investigate the error in the energy in terms of ψ⊥
L . In particular,

for the space

SL := Span{Φ�(θ), � = 0, . . . , L},

we are interested in the quantity

(2.7) EL := inf
φ∈SL\{0}

〈φ,Hφ〉
‖φ‖2

.

Throughout the paper, we denote the standard L2 norm of a function ψ ∈ L2 by
‖ψ‖ and, for functions in ψ ∈ H1, we denote the “energy norm,” which is simply the
H1 norm, by ‖ψ‖e := ‖∇ψ‖.

Finally, since the major assumptions on the wavefunction are with regards to its
regularity in r12, we find it convenient to define, for sufficiently regular functions, the
explicit functions

(2.8) ξj
� (r<, r>) :=

∫ π

0

(r12 − (r> − r<))j

j!
Φ�(θ) sin θdθ,

and coefficients

(2.9) Aj(r<, r>) :=

[
∂j

∂rj
12

ψ(r<, r>, r12)

]
r12=r>−r<

, j = 0, . . . , J − 1,

as well as a “remainder term”

(2.10) RJ(r<, r>, r12) :=
∫ r12

r>−r<

(r12 − t)J

J !
∂J+1

∂rJ+1
12

ψ(r<, r>, t)dt,

and its projection onto Φ�(θ) as

(2.11) RJ,�(r<, r>) :=
∫ π

0

RJ(r<, r>, r12)Φ�(θ) sin θdθ.

As will be seen in Lemma 5.1, these definitions are motivated by the Taylor expansion
of the wavefunction.

We also find it convenient to define

(2.12) Ij(r<, r>) :=
∫ r<+r>

r>−r<

∣∣∣∣ ∂j

∂rj
12

ψ(r<, r>, t)
∣∣∣∣
2

dt

and norms on the set of symmetric functions f : R+ × R+ → C by

(2.13) ‖f‖a,b :=
(∫ ∞

0

∫ r>

0

|f(r<, r>)|2ra
<r

b
> dr<dr>

)1/2

.

3. Statement of the result.
Theorem 3.1. Let ψ be the ground state solution of the helium atom Schrödinger

equation Hψ = Eψ, with H given by (2.1), and ψ⊥
L be as in (2.6). Suppose that

∂j

∂rj
12
ψ(r<, r>, r12) exist for r> − r< ≤ r12 ≤ r< + r>, j = 0, . . . , 4. Let A :=
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{Aj(r<, r>), ∂
∂rγ

Aj(r<, r>), j = 0, . . . , 4, rγ ∈ {r<, r>}} and suppose that all A ∈ A
satisfy the condition A( · , r>) ∈ CN (R+), and there exists Ã : R+ → R such that

Ã(r>) ≥
∣∣∣∣∣
[
∂n

∂rn
<

|A(r<, r>)|2
]

r<=s

∣∣∣∣∣ , ∀ s ∈ R
+, n ∈ {0, 1}, A ∈ A.

Suppose, further, that∫ ∞

0

r5|ψ(r, r, 0)|2 dr <∞, and
∫ ∞

0

r7|ψ(r, r, 0)|2 dr <∞,

and, for Ij as in (2.12), I3(r<, r>), I4(r<, r>) <∞ for a.e. 0 ≤ r< ≤ r>, and∫ ∞

0

∫ r>

0

(
r3<I3(r<, r>) + r7<I4(r<, r>)

)
r2<r

2
> dr<dr> <∞.

Then

‖ψ⊥
L ‖2 = 5π2

∞∑
�=L+1

(
�−6

∫ ∞

0

r7|ψ(r, r, 0)|2 dr + O (�−7
))

,(3.1)

‖ψ⊥
L ‖2

e = 6π2
∞∑

�=L+1

(
�−4

∫ ∞

0

r5|ψ(r, r, 0)|2 dr + o
(
�−4
))

, and(3.2)

EL − E = 2π2L−3

∫ ∞

0

r5|ψ(r, r, 0)|2 dr + o
(
L−3
)
.(3.3)

Before we prove the result we note that the existence of the fourth derivative is
only necessary for the decay of ‖ψ⊥

L ‖2 given in (3.1), and in particular it is required so
that the remainder term decays faster than the first term in the expansion. If we are
only interested in the error in the energy, then the existence of the third derivative is
sufficient to show (3.2).

The validity of this assumption has, as far as we know, not been investigated
mathematically beyond the results of [7]. This result shows that electronic wave
functions ψ of atoms and molecules have a representation ψ = Fφ, where F is an
explicit universal factor, locally Lipschitz, and independent of the eigenvalue and
the solution ψ itself, and φ has second derivatives which are locally in L∞. This
representation is shown to be sharp in the case of Hydrogen, where the solutions to
(1.1) are known explicitly. However, there are no known sharpness results concerning
atoms with more than one electron, for which (1.1) is not exactly soluble. Hence we
proceed with the proof of the theorem, making the relevant assumptions. Due to the
complexity of the proof of [7], and the lack of similar results, one would assume that
it is very difficult to prove such a result mathematically.

In addition, it is possible that the decay rate is the same even if the wavefunction
is less regular, although a significantly different method of proof would be required.
The similar results of [23] and [15] (both of which use a perturbation expansion in
1/Z), along with the numerical simulations such as [3], suggest that the derived decay
rate is, indeed, correct.

4. Outline of the proof. The foundation of the proof of Theorem 3.1 is the
following lemma, which is a special case of a result by Friesecke [8].
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Lemma 4.1. Let E be the lowest eigenvalue of H given in (2.1). For ψ⊥
L and EL

as in (2.6) and (2.7) the following bound on the energy error holds:

0 ≤ EL − E ≤ ‖ψ⊥
L ‖2

e + C1‖ψ⊥
L‖ ‖ψ⊥

L‖e + C2

(‖ψ⊥
L ‖2 + ‖ψ⊥

L ‖4
e

)
,

for some C1, C2 > 0.
The proof of Theorem 3.1 proceeds in a number of stages. First we Taylor

expand a suitably regular wavefunction (Lemma 5.1). We then expand the norms
‖ψ⊥

L ‖2 and ‖ψ⊥
L‖2

e of Theorem 3.1 in terms of ‖ψ�(r<, r>)‖a,b and ‖ ∂
∂rγ

ψ�(r<, r>)‖a,b

(Lemma 5.2). We then estimate these norms in the same norms of products of
Aj(r<, r>) and ξj

� (r<, r>) and their derivatives (Lemma 5.3). The necessary decay
estimates of these norms are then given by the following two theorems.

Theorem 4.2. Let ψ(r<, r>, r12) be a function such that ∂j

∂rj
12
ψ(r<, r>, r12) exist

for r> − r< ≤ r12 ≤ r< + r>, 0 ≤ j ≤ 2J . Then for ξj
� (r<, r>), Aj(r<, r>), and

Rj,�(r<, r>) as given in (2.8), (2.9), and (2.11), the large � behavior of ψ� (see (2.5))
is given by

(4.1) ψ�(r<, r>) =
2J−1∑
j=1

Aj(r<, r>)ξj
� (r<, r>) +R2J−1,�(r<, r>).

Furthermore, suppose that A(r<, r>) satisfies A( · , r>) ∈ CN (R+), and there ex-
ists Ã : R+ → R such that

Ã(r>) ≥
∣∣∣∣∣
[
∂n

∂rn
<

|A(r<, r>)|2
]

r<=s

∣∣∣∣∣ , ∀ s ∈ R
+, n = 0, . . . , N.

Then, for any M < N , and recalling the norms defined in (2.13),

‖A(r<, r>)ξj
� (r<, r>)‖2

a,b

= O (�−2j−4
) [ M∑

m=0

∫ ∞

0

r2j+1+a+b
>

(r< − r>)m

m!

[
∂m

∂rm
<

|A(r<, r>)|2
]

r<=r>

dr>

+
N∑

n=M+1

O(�−n)
∫ ∞

0

r2j+1+a+b+n
> Ã(r>)dr>

]
.(4.2)

Suppose that I2J , as given in (2.12), is finite. Then

(4.3) lim
�→∞

�2JR2J−1,�(r<, r>) = 0.

If, in addition, ∫ ∞

0

∫ r>

0

r4J−1
< I2J (r<, r>)r2<r

2
> dr<dr> <∞,

then

(4.4) lim
�→∞

�4J

∫ ∞

0

∫ r>

0

|R2J−1,�(r<, r>)|2r2<r2> dr<dr> = 0.

Theorem 4.3. Let ψ(r<, r>, r12) be a function such that ∂j

∂rj
12
ψ(r<, r>, r12) exist

for r> − r< ≤ r12 ≤ r< + r>, 0 ≤ j ≤ 2J + 1, and let rγ ∈ {r<, r>}. Suppose
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∂
∂rγ

ψ�(r<, r>) exist, then, with the same notation as in Theorem 4.2, the large-� be-
havior of ∂

∂rγ
ψ�(r<, r>) is given by

(4.5)
∂

∂rγ
ψ�(r<, r>) =

2J∑
j=1

∂

∂rγ

(
Aj(r<, r>)ξj

� (r<, r>)
)

+
∂

∂rγ
R2J,�(r<, r>).

Furthermore, for A(r<, r>) and Ã(r>) as in Theorem 4.2, for any M < N ,

∥∥∥∥A(r<, r>)
∂

∂rγ
ξj
� (r<, r>)

∥∥∥∥
2

a,b

= O (�−2j−2
) [ M∑

m=0

∫ ∞

0

r2j−1+a+b
> (r< − r>)m

[
∂m

∂rm
<

|A(r<, r>)|2
]

r<=r>

dr>

+
N∑

n=M+1

O(�−n)
∫ ∞

0

r2j+1+a+b
> Ã(r>)dr>

]
.(4.6)

If I2J+1 <∞, then

(4.7) lim
�→∞

�2J ∂

∂rγ
R2J,�(r<, r>) = 0.

If, in addition, ∫ ∞

0

∫ r>

0

r4J−1
< I2J+1(r<, r>)r2<r

2
> dr<dr> <∞,

then

(4.8) lim
�→∞

�4J

∫ ∞

0

∫ r>

0

∣∣∣∣ ∂∂rγR2J,�(r<, r>)
∣∣∣∣
2

r2<r
2
> dr<dr> = 0.

These two results are analogous to Theorems 2 and 3 of [11], although formulated
in a slightly different way.

5. Proof of Theorem 3.1 using Theorems 4.2 and 4.3.

5.1. Preliminary lemmas. Before we prove the our main result using Theo-
rems 4.2 and 4.3, we require a few preliminary lemmas. The first of these is simply a
Taylor expansion of a general, sufficiently regular, wavefunction.

Lemma 5.1. Let ψ(r<, r>, r12) be a general wavefunction and suppose that
∂j

∂rj
12
ψ(r<, r>, r12) exist for r> − r< ≤ r12 ≤ r< + r>, 0 ≤ j ≤ J . Then ψ(r<, r>, r12)

can be expanded as

ψ(r<, r>, r12) =
J−1∑
j=0

(r12 − (r> − r<))j

j!

[
∂j

∂rj
12

ψ(r<, r>, r12)

]
r12=r>−r<

+
∫ r12

r>−r<

(r12 − t)J−1

(J − 1)!
∂J

∂rJ
12

ψ(r<, r>, t)dt.
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Furthermore, for � > 0,

(5.1) ψ�(r<, r>) =
J−1∑
j=1

ξj
� (r<, r>)Aj(r<, r>) +RJ−1,�(r<, r>).

Proof. The first part is simply the application of Taylor’s theorem about θ = 0
(which is equivalent to r12 = r> − r<) with the Cauchy form of the remainder.

The second part follows by projecting each term of the finite expansion onto
Φ�(θ) to obtain the expression for ψ�(r<, r>) in terms of (2.8), (2.9), and (2.11). In
addition, we use that, for � > 0, the term [ ∂j

∂rj
12
ψ(r<, r>, r12)]r12=r>−r< is simply a

multiplicative factor as it is independent of θ. For the same reason, for � > 0, the
term corresponding to j = 0 contributes zero.

Note that it is this result which motivates the definitions (2.8)–(2.11).
Lemma 5.2. Let ψ ∈ H1 be a general wavefunction. The following identities

hold:

∥∥ψ⊥
L

∥∥2 = 16π2
∞∑

�=L+1

∫ ∞

0

∫ r>

0

|ψ�(r<, r>)|2r2<r2>dr<dr>,

(5.2)

∥∥ψ⊥
L

∥∥2
e

= 8π2
∞∑

�=L+1

∫ ∞

0

∫ r>

0

(∣∣∣∣ ∂∂r<ψ�(r<, r>)
∣∣∣∣
2

+
∣∣∣ ∂
∂r>

ψ�(r<, r>)
∣∣∣2
)
r2<r

2
>dr<dr>

+ 8π2
∞∑

�=L+1

∫ ∞

0

∫ r>

0

�(�+ 1)
(
r2< + r2>

) |ψ�(r<, r>)|2dr<dr>.(5.3)

Proof. Noting that
∫ π

0 |ψ⊥
L |2 sin θdθ =

∑∞
�=L+1 |ψ�|2, using spherical polar coor-

dinates and integrating over the three angles that are independent of θ (essentially
φ1, φ2, and θ1, leaving θ1 − θ2 =: θ) gives a factor of 8π2. We are hence left with only
the radial integrals, and using the dominated convergence theorem gives

∥∥ψ⊥
L

∥∥2 = 8π2
∞∑

�=L+1

∫ ∞

0

∫ ∞

0

|ψ�(r1, r2)|2r21r22dr1dr2.

Using the general identity

(5.4)
∫ ∞

0

∫ ∞

0

f(r1, r2)dr1dr2 =
∫ ∞

0

∫ r>

0

(f(r<, r>) + f(r>, r<)) dr<dr>

and the fact that |ψ�(r1, r2)|2r21r22 is symmetric in r1 and r2, gives the first result.
For the second case we use that, for symmetric functions f(r<, r>, θ), H0 :=

− 1
2 (Δ1 + Δ2) may be rewritten [13] as − 1

2 (Δ′
1 + Δ′

2) where

(5.5) Δ′
i :=

1
r2i

∂

∂ri
r2i

∂

∂ri
+

1
r2i sin θ

∂

∂θ
sin θ

∂

∂θ

along with

(5.6)
1

sin θ
∂

∂θ
sin θ

∂

∂θ
Φ�(θ) = −�(�+ 1)Φ�(θ)
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to give

H0ψ
⊥
L = −1

2

∞∑
�=L+1

2∑
i=1

(
1
r2i

∂

∂ri
r2i

∂

∂ri
− �(�+ 1)

r2i

)
ψ�(r1, r2)Φ�(θ),

and, as with the previous case, we find

‖ψ⊥
L ‖2

e = − 4π2

∫ ∞

0

∫ ∞

0

∞∑
�=L+1

2∑
i=1

ψ�(r1, r2)
(

1
r2i

∂

∂ri
r2i

∂

∂ri
− �(�+ 1)

r2i

)
ψ�(r1, r2)∗

× r21r
2
2dr1dr2.

Again, using the dominated convergence theorem, and integrating the first term by
parts, gives

∥∥ψ⊥
L

∥∥2
e

= 4π2
∞∑

�=L+1

∫ ∞

0

∫ ∞

0

2∑
i=1

(∣∣∣∣ ∂∂riψ�(r1, r2)
∣∣∣∣
2

+
�(�+ 1)
r2i

|ψ�(r1, r2)|2
)
r21r

2
2dr1dr2.

Noting that the integrand is once again symmetric in r1 and r2 and using (5.4) gives
the result.

Lemma 5.3. Let ψ be a general wavefunction and suppose that ∂j

∂rj
12
ψ(r<, r>, r12)

exist for r> − r< ≤ r12 ≤ r< + r>, 0 ≤ j ≤ J , and that ∂
∂rγ

ψ�(r<, r>) exist for
rγ ∈ {r<, r>}. Then, using the notation of (2.8)–(2.11) the norms (2.13) of the
partial waves (2.5) and their derivatives satisfy

‖ψ�(r<, r>)‖2
a,b ≤

J−1∑
i,j=1

∥∥Ai(r<, r>)ξi
�(r<, r>)

∥∥
a,b

∥∥∥Aj(r<, r>)ξj
� (r<, r>)

∥∥∥
a,b

(5.7)

+ 2
J−1∑
k=1

∥∥Ak(r<, r>)ξk
� (r<, r>)

∥∥
a,b

‖RJ−1,�(r<, r>)‖a,b + ‖RJ−1,�(r<, r>)‖2
a,b

and
∥∥∥∥ ∂

∂rγ
ψ�(r<, r>)

∥∥∥∥
2

a,b

(5.8)

≤
J−1∑
i,j=1

[∥∥∥∥ξi
�(r<, r>)

∂

∂rγ
Ai(r<, r>)

∥∥∥∥
a,b

∥∥∥∥ξj
� (r<, r>)

∂

∂rγ
Aj(r<, r>)

∥∥∥∥
a,b

+ 2
∥∥∥∥ξi

�(r<, r>)
∂

∂rγ
Ai(r<, r>)

∥∥∥∥
a,b

∥∥∥∥Aj(r<, r>)
∂

∂rγ
ξj
� (r<, r>)

∥∥∥∥
a,b

+
∥∥∥∥Ai(r<, r>)

∂

∂rγ
ξi
�(r<, r>)

∥∥∥∥
a,b

∥∥∥∥Aj(r<, r>)
∂

∂rγ
ξj
� (r<, r>)

∥∥∥∥
a,b

]

+ 2
∥∥∥∥ ∂

∂rγ
RJ−1,�(r<, r>)

∥∥∥∥
a,b

J−1∑
k=1

∥∥∥∥Ak(r<, r>)
∂

∂rγ
ξk
� (r<, r>)

∥∥∥∥
a,b

+ 2
∥∥∥∥ ∂

∂rγ
RJ−1,�(r<, r>)

∥∥∥∥
a,b

J−1∑
k=1

∥∥∥∥ξk
� (r<, r>)

∂

∂rγ
Ak(r<, r>)

∥∥∥∥
a,b

+
∥∥∥∥ ∂

∂rγ
RJ−1,�(r<, r>)

∥∥∥∥
2

a,b

.
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Proof. It is immediately clear from (5.1) that, for � > 0, we have

|ψ�(r<, r>)|2 =
J−1∑
i,j=1

Ai(r<, r>)ξi
�(r<, r>)Aj(r<, r>)∗ξj

� (r<, r>)∗

(5.9)

+ 2Re

(
RJ−1,�(r<, r>)∗

J−1∑
k=1

Ak(r<, r>)ξk
� (r<, r>)

)

+ |RJ−1,�(r<, r>)|2, and

∣∣∣∣ ∂∂rγ ψ�(r<, r>)
∣∣∣∣
2

=
J−1∑
i,j=1

∂

∂rγ

(
Ai(r<, r>)ξi

�(r<, r>)
) ∂

∂rγ

(
Aj(r<, r>)ξj

� (r<, r>)
)∗(5.10)

+ 2Re

(
∂

∂rγ
RJ−1,�(r<, r>)∗

2J−1∑
k=1

∂

∂rγ

(
Ak(r<, r>)ξk

� (r<, r>)
))

+
∣∣∣∣ ∂∂rγRJ−1,�(r<, r>)

∣∣∣∣
2

.

The results then follow by inserting these expressions into the norms (2.13), using
the linearity of the integrals, and applying Cauchy–Schwarz. In addition, the second
expression uses the product rule for differentiation.

5.2. Proof of Theorem 3.1. We prove our main result using the lemmas from
the previous section, along with Theorems 4.2 and 4.3.

Proof. We begin with the case of ‖ψ⊥
L‖2 and by (5.2) we see that ‖ψ⊥

L ‖2 =
16π2

∑∞
�=L+1 ‖ψ�(r<, r>)‖2

2,2. Lemma 5.3 with J = 4 gives

‖ψ�(r<, r>)‖2
2,2 ≤

3∑
i,j=1

∥∥Ai(r<, r>)ξi
�(r<, r>)

∥∥
2,2

∥∥∥Aj(r<, r>)ξj
� (r<, r>)

∥∥∥
2,2

+ 2
3∑

k=1

∥∥Ak(r<, r>)ξk
� (r<, r>)

∥∥
2,2

‖R3,�(r<, r>)‖2,2

+ ‖R3,�(r<, r>)‖2
2,2 .(5.11)

By Theorem 4.2 with J = 2, and in particular by (4.4), we have that

lim
�→∞

�8‖R3,�(r<, r>)‖2
2,2 = lim

�→∞
�8
∫ ∞

0

∫ r>

0

|R3,�(r<, r>)|2r2<r2> dr<dr> = 0

and hence lim�→∞ �4‖R3,�(r<, r>)‖2,2 = 0; i.e., ‖R3,�(r<, r>)‖2,2 = o(l−4).
The same theorem shows (choosing A(r<, r>) = Aj(r<, r>) and a = b = 2 in

(4.2)) that ‖Aj(r<, r>)ξj
� (r<, r>)‖2,2 = O(�−j−2), and it is therefore clear that the

slowest decaying term comes from the i = j = 1 term in the first sum of (5.11), with
all other terms decaying at least one order of � faster. Theorem 4.2 also shows that
(choosing A(r<, r>) = A1(r<, r>), M = 0, a = b = 2 and j = 1 in (4.2))

∥∥A1(r<, r>)ξ1� (r<, r>)
∥∥2

2,2
= O (�−6

) ∫ ∞

0

r7>
[|A1(r<, r>)|2]

r<=r>
dr> + O (�−7

)
.
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By the definition of Aj(r<, r>) in (2.9), we have that

[|A1(r<, r>)|2]
r<=r>

=
[ [

∂

∂r12
ψ(r<, r>, r12)

]
r12=r>−r<

]
r<=r>

=
[ ∂

∂r12
ψ(r>, r>, r12)

]
r12=0

.

Using the Kato cusp condition without spherical averaging [12] (see also Appendix E
of [11]),

(5.12)
[
∂

∂r12
ψ(r>, r>, r12)

]
r12=0

=
1
2
ψ(r>, r>, 0)

gives (3.1) up to a constant, which will be computed later.
The proof of (3.2) is analogous, noting that (5.3) shows that

∥∥ψ⊥
L

∥∥2
e

= 8π2
∞∑

�=L+1

(∥∥∥∥ ∂

∂r<
ψ�(r<, r>)

∥∥∥∥
2,2

+
∥∥∥∥ ∂

∂r>
ψ�(r<, r>)

∥∥∥∥
2,2

(5.13)

+ �(�+ 1) [‖ψ�(r<, r>)‖2,0 + ‖ψ�(r<, r>)‖0,2]

)
.

For the terms involving ψ�(r<, r>) we use Theorem 4.2 with J = 2 and in particular
(4.2) with M = 0, A(r<, r>) = A1(r<, r>), j = 1 and either a = 2, b = 0 or a = 0, b =
2, giving

∥∥A1(r<, r>)ξ1� (r<, r>)
∥∥2

2,0
= O (�−6

) ∫ ∞

0

r5>
[|A1(r<, r>)|2]

r<=r>
dr> + O (�−7

)
,

(5.14)

∥∥A1(r<, r>)ξ1� (r<, r>)
∥∥2

0,2
= O (�−6

) ∫ ∞

0

r5>
[|A1(r<, r>)|2]

r<=r>
dr> + O (�−7

)
.

(5.15)

For the other terms in (5.13), we use Lemma 5.3 with J = 3 to obtain∥∥∥∥ ∂

∂rγ
ψ�(r<, r>)

∥∥∥∥
2

2,2

(5.16)

≤
2∑

i,j=1

[ ∥∥∥∥ξi
�(r<, r>)

∂

∂rγ
Ai(r<, r>)

∥∥∥∥
2,2

∥∥∥∥ξj
� (r<, r>)

∂

∂rγ
Aj(r<, r>)

∥∥∥∥
2,2

+ 2
∥∥∥∥ξi

�(r<, r>)
∂

∂rγ
Ai(r<, r>)

∥∥∥∥
2,2

∥∥∥∥Aj(r<, r>)
∂

∂rγ
ξj
� (r<, r>)

∥∥∥∥
2,2

+
∥∥∥∥Ai(r<, r>)

∂

∂rγ
ξi
�(r<, r>)

∥∥∥∥
2,2

∥∥∥∥Aj(r<, r>)
∂

∂rγ
ξj
� (r<, r>)

∥∥∥∥
2,2

]

+ 2
∥∥∥∥ ∂

∂rγ
RJ−1,�(r<, r>)

∥∥∥∥
2,2

2∑
k=1

∥∥∥∥Ak(r<, r>)
∂

∂rγ
ξk
� (r<, r>)

∥∥∥∥
2,2

+ 2
∥∥∥∥ ∂

∂rγ
RJ−1,�(r<, r>)

∥∥∥∥
2,2

2J−1∑
k=1

∥∥∥∥ξk
� (r<, r>)

∂

∂rγ
Ak(r<, r>)

∥∥∥∥
2,2

+
∥∥∥∥ ∂

∂rγ
R2,�(r<, r>)

∥∥∥∥
2

2,2

.
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By Theorem 4.3 with J = 1 (and in particular (4.8)) we find ‖ ∂
∂rγ

R2,�(r<, r>)‖2
2,2 =

o(�−4). Furthermore, Theorem 4.2 shows that, for J = 2, A(r<, r>) = ∂
∂rγ

Aj(r<, r>),
a = b = 2, and j = 1, 2 in (4.2),

∥∥∥∥ξ1� (r<, r>)
∂

∂rγ
A1(r<, r>)

∥∥∥∥
2

2,2

= O (�−6
)
, and

∥∥∥∥ξ2� (r<, r>)
∂

∂rγ
A2(r<, r>)

∥∥∥∥
2

2,2

= O (�−8
)
.

Using (4.6) of Theorem 4.3 with J = 1, A(r<, r>) = A2(r<, r>), j = 2, and
a = b = 2 gives

∥∥∥∥A2(r<, r>)
∂

∂rγ
ξ2� (r<, r>)

∥∥∥∥
2

2,2

= O (�−6
)
.

Hence it is only necessary to consider the term ‖A1(r<, r>) ∂
∂rγ

ξ1� (r<, r>)‖2,2 in (5.16).
Once again using (4.6) with J = 1, A(r<, r>) = A1(r<, r>), j = 1, a = b = 2, and
M = 0 gives

∥∥∥∥A1(r<, r>)
∂

∂rγ
ξ1� (r<, r>)

∥∥∥∥
2

2,2

= O (�−6
) ∫ ∞

0

r5>
[|A1(r<, r>)|2]

r<=r>
dr> +O (�−7

)
.

As before, using the definition of Aj(r<, r>) and the cusp condition gives (3.2) up to
a constant.

Calculation of constants. We begin by noting that, for � > 0, ξ1� (r<, r>) =∫ π

0 (r12 − (r> − r<))Φ�(θ) sin θdθ is given by

ξ1� (r<, r>) =
(
�+

1
2

)−1/2

f1
� (r<, r>) =

(
�+

1
2

)−1/2

r�
<r

−�−1
<

(
r2<

2�+ 3
− r2>

2�− 1

)
.

Hence

∂
∂r<

ξ1� (r<, r>) =
(
�+

1
2

)−1/2

r−�−1
>

(
r�+1
< (�+ 2)
2�+ 3

− r2>r
�−1
< �

2�− 1

)
, and

∂
∂r>

ξ1� (r<, r>) =
(
�+

1
2

)−1/2

r�
<

(
r2<r

−�−2
> (−�− 1)

2�+ 3
− r−�

> (−�+ 1)
2�− 1

)
.

It follows that∫ r>

0

ra
<

∣∣ξ1� (r<, r>)
∣∣2 dr<

= r2�+5+a
>

16(20�2 + (44 + 12a)�+ 2a2 + 14a+ 21)
(2�+ 3)2(2�− 1)2(2�+ 5 + a)(2�+ 3 + a)(2�+ 1 + a)(2�+ 1)
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and so, setting Bn :=
∫∞
0
rn
>|A1(r<, r>)|2 dr>,

∥∥A1(r<, r>)ξ1� (r<, r>)
∥∥2

2,2
=

16(10�+ 19)
(2�+ 3)2(2�− 1)2(2�+ 7)(2�+ 5)(2�+ 1)

B7

∥∥A1(r<, r>)ξ1� (r<, r>)
∥∥2

2,0
=

16(10�+ 19)
(2�+ 3)2(2�− 1)2(2�+ 7)(2�+ 5)(2�+ 1)

B5

∥∥A1(r<, r>)ξ1� (r<, r>)
∥∥2

0,2
=

16(10�+ 7)
(2�+ 3)2(2�− 1)2(2�+ 5)(2�+ 1)2

B5.

In a similar fashion, we find that
∥∥∥∥A1(r<, r>)

∂

∂r<
ξ1� (r<, r>)

∥∥∥∥
2

2,2

=
8(4�3 + 10�2 + 4�+ 1)

(2�+ 3)2(2�− 1)2(2�+ 5)(2�+ 1)2
B5

∥∥∥∥A1(r<, r>)
∂

∂r>
ξ1� (r<, r>)

∥∥∥∥
2

2,2

=
8(4�3 − 6�2 − 8�+ 17)

(2�+ 3)2(2�− 1)2(2�+ 5)(2�+ 1)2
B5.

The leading term in ‖ψ⊥
L‖2 is 16π2‖A1(r<, r>)ξ1� (r<, r>)‖2

2,2, and hence the coef-
ficient of the leading order term is

�−616π2 160
27

∫ ∞

0

r7>|A1(r<, r>)|2 dr> = 5π2�−6

∫ ∞

0

r7|ψ(r, r, 0)|2dr,

where we have used the cusp condition (5.12). Similarly, the leading term in ‖ψ⊥
L‖2

e

is

8π2

(∥∥A1(r<, r>)ξ1� (r<, r>)
∥∥2

2,2
+
∥∥∥∥A1(r<, r>)

∂

∂r>
ξ1� (r<, r>)

∥∥∥∥
2

2,2

+ �(�+ 1)
[∥∥A1(r<, r>)ξ1� (r<, r>)

∥∥2
2,0

+
∥∥A1(r<, r>)ξ1� (r<, r>)

∥∥2
0,2

])
,

which, combining the above, is given by

8π2 192(2�3 + 7�2 + 6�+ 1)
(2�+ 3)2(2�− 1)2(2�+ 7)(2�+ 5)(2�+ 1)

∫ ∞

0

r5>|A1(r<, r>)|2 dr>,

and the leading order term is thus

8π2�−4 192 · 2
27

∫ ∞

0

r5>|A1(r<, r>)|2 dr> = 6π2�−4

∫ ∞

0

r5|ψ(r, r, 0)|2dr,

where we have once again used the cusp condition (5.12). We have therefore shown
(3.1) and (3.2) and it remains to show (3.3). For this we note that

1
n

(L+ 1)−n+1 =
∫ ∞

L+1

�−n ≤
∞∑

�=L+1

�−n ≤
∫ ∞

L+1

(�− 1)−n =
1
n
L−n+1

and applying this to the leading term of EL, which by Lemma 4.1 and the above
decay rate estimates is given by the leading term of ‖ψ⊥

L ‖2
e, gives the result.

Note that Theorem 3.1 gives the same leading order result as [11].
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6. Proof of Theorems 4.2 and 4.3. It remains to prove Theorems 4.2 and 4.3.
We begin by noting that (4.1) and (4.5) follow directly from (5.1) and term-by-term
differentiation.

The remainder of the proof proceeds as follows: First we expand ξj
� (r<, r>) and

its derivatives in fk
� (r<, r>), projections of r2k−1

12 , for which we derive an explicit form
(Lemma 6.1). This form allows us to determine a bound on the decay rates of the
norms in (4.2) and (4.6) in terms of norms involving fk

� (r<, r>) and its derivatives
(see (6.21)–(6.23)). We then use the fact that the fk

� (r<, r>) are strongly peaked
on the line r< = r> (Lemma 6.5) and an expansion of the remaining terms in the
integrals (Lemma 6.6) to make the r< integral explicit. Finally, we use these explicit
forms (Lemma 6.7) to derive the required decay rates (Corollary 6.10).

The rest of the section is devoted to proof of a bound on the remainder terms
RJ,�(r<, r>). Firstly we state the result under assumptions on the boundedness of θ
derivatives of RJ (r<, r>, r12) (Lemmas 6.12 and 6.13). We then prove the validity of
these assumptions by solving a recursion relation (see Lemma 6.14) explicitly enough
to obtain the required bounds.

6.1. Expansion of ξj
�(r<, r>). For this section we follow the proof of Hill’s

Theorem 2 (specifically [11, p. 1180]) by noting that

ξj
� (r<, r>) =

1
j!

j∑
k=0

∫ π

0

(
j

k

)
(−1)k(r> − r<)j−krk

12Φ�(θ) sin θdθ.

Since the Legendre polynomial expansion of r2k
12 terminates at � = k, taking � > j/2

gives
(6.1)

ξj
� (r<, r>) =

1
j!


(j+1)/2�∑
k=0

(
j

2k − 1

)
(−1)j−2k+1(r> − r<)j−2k+1

∫ π

0

r2k−1
12 Φ�(θ) sin θdθ,

where the notation n� means the greatest integer m ≤ n. We would now like to show
that all terms in this sum decay at the same rate, i.e., that the rate is independent
of k.

The first stage of this is to write the Legendre polynomial expansions of odd
powers of r12 as

(6.2) r2k−1
12 =:

∞∑
�=0

(
�+

1
2

)−1/2

fk
� (r<, r>)Φ�(θ),

from which it immediately follows (using the orthonormality of Φ�(θ)) that∫ π

0

r2k−1
12 Φ�(θ) sin θdθ =

(
�+

1
2

)−1/2

fk
� (r<, r>).

We would therefore like to find an explicit form for the fk
� (r<, r>), which will allow

us to estimate the necessary decay rates.

6.2. An explicit form for fk
� (r<, r>). We begin by considering the form of

fk
� (r<, r>), the (up to a multiplicative constant) projection of r2k−1

12 onto the �th
angular momentum eigenstate Φ�(θ). Note that this step is not performed in [11],
where an estimate on the decay is used instead. For our purposes an explicit form is
much more useful, especially regarding the derivatives of fk

� (r<, r>).
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Lemma 6.1. With the convention that an empty product takes the value 1,

fk
� (r<, r>) = r�

<r
−�−1
>

k∑
j=0

ak
j r

2(k−j)
< r2j

>

k−j∏
m=1

(2�+ 2m+ 1)
j∏

n=1
(2�− 2n+ 1)

,(6.3)

where ak
j ∈ Z are given by

ak
0 =

k∏
i=1

(2k − 2i+ 1), ak
j = (−1)j

(
k

j

)
ak
0 , j = 1, . . . , k.

We prove Lemma 6.1 in a number of stages. Firstly we show that
Lemma 6.2.

(6.4) fk
� (r<, r>) = r�

<r
−�−1
>

k∑
j=0

ck,�
j r

2(k−j)
< r2j

> ,

where ck,�
j is given by the recursion relation

(6.5) ck+1,�
j = ck,�

j + ck,�
j−1 −

2�
2�− 1

ck,�−1
j−1 − 2(�+ 1)

2�+ 3
ck,�+1
j

and the initial condition c0,�
0 = 1.

We then derive a suitable expression for ck,�
j which proves Lemma 6.1.

Proof. Note that, by (2.2) and (6.2),

(6.6) r2k+1
12 =

(
r2< + r2> − 2r<r> cos θ

) ∞∑
�=0

(
�+

1
2

)−1/2

fk
� (r<, r>)Φ�(θ).

In order to determine the action of cos θ on Φ�(θ), we recall the definition (2.4)
of Φ�(θ) and the recursion relation for the Legendre polynomials [1]

(6.7) (�+ 1)P�+1(cos θ) = (2�+ 1) cos θP�(cos θ) − �P�−1(cos θ).

It follows from (6.7) that

cos θ
(
�+

1
2

)1/2

P� =
�+ 1
2�+ 1

(
�+

1
2

)1/2

P�+1 +
�

2�+ 1

(
�+

1
2

)1/2

P�−1

and hence by (2.4)

(6.8) cos θΦ�(θ) =
�+ 1

[(2�+ 1)(2�+ 3)]1/2
Φ�+1(θ) +

�

[(2�+ 1)(2�− 1)]1/2
Φ�−1(θ).

Inserting (6.8) into (6.6) and comparing coefficients of Φ�(θ) with (6.2) gives the
recursion relation

fk+1
� (r<, r>) =

(
r2< + r2>

)
fk

� (r<, r>) − r<r>
2�

2�− 1
fk

�−1(r<, r>)

− r<r>
2(�+ 1)
2�+ 3

fk
�+1(r<, r>).(6.9)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RATE OF CONVERGENCE FOR CONFIGURATION INTERACTION 93

It is clear from the standard form r−1
12 =

∑∞
l=0(� + 1

2 )−1/2 r�
<

r�+1
>

Φ�(θ) that the

expansion (6.4) holds for n = 0. Assuming the expansion (6.4) for fk
� (r<, r>) and

inserting it into (6.9) we have

fk+1
� (r<, r>) = r�

<r
−�−1
>

[
k∑

j=0

ck,�
j r

2(k−j+1)
< r2j

> +
k∑

j=0

ck,�
j r

2(k−j)
< r

2(j+1)
>

−
k∑

j=0

2�
2�− 1

ck,�−1
j r

2(k−j)
< r

2(j+1)
>

−
k∑

j=0

2(�+ 1)
2�+ 3

ck,�+1
j r

2(k−j+1)
< r2j

>

]

and equating powers of r< and r> with (6.4) gives (6.5).
We now wish to show that ck,�

j is of the required form.
Lemma 6.3. The constants ck,�

j are given by

(6.10) ck,�
j =

ak
j

k−j∏
m=1

(2�+ 2m+ 1)
j∏

n=1
(2�− 2n+ 1)

=:
ak

j

P k
j (�)

,

where

ak
0 =

k∏
i=1

(2k − 2i+ 1), and(6.11)

ak
j = (−1)j

(
k

j

)
ak
0 , j = 1, . . . , k,(6.12)

with the convention throughout that an empty product takes the value 1.
Proof. We start with the case j = 0, k = 0 which is clearly of the correct form as

a0
0 = 1. Assuming (6.10) and substituting into (6.5) gives

ak+1
j

P k+1
j (�)

=
ak

j

P k
j (�)

+
ak

j−1

P k
j−1(�)

− 2�
2�− 1

ak
j−1

P k
j−1(�− 1)

− 2(�+ 1)
2�+ 3

ak
j

P k
j (�+ 1)

.

Which, multiplying by P k+1
j (�), and simplifying gives

(6.13) ak+1
j =

4k�+ 2�+ 2k + 2j + 1
2�+ 1

ak
j +

−4k�− 2�− 2j + 1
2�+ 1

ak
j−1.

For j = 0, using (6.11) and ak
−1 = 0, this gives

ak+1
0 =

4k�+ 2�+ 2k + 1
2�+ 1

ak
0 = (2k + 1)ak

0 =
k+1∏
i=1

(2(k + 1) − 2i+ 1),

showing that (6.11) holds for k + 1. Noting now that (6.12) implies, for 1 ≤ j ≤ k,

(6.14) ak
j−1 = − j

k − j + 1
ak

j
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and hence, for 1 ≤ j ≤ k, inserting (6.14) into (6.13) gives

(6.15) ak+1
j =

(k + 1)(2�+ 4k�+ 2k + 1)
(2�+ 1)(k − j + 1)

ak
j =

(k + 1)(1 + 2k)
(k − j + 1)

ak
j .

It remains to show (6.12) holds for ak+1
j , which is equivalent to

(6.16) ak+1
j−1 = − j

k − j + 2
ak+1

j , 1 ≤ j ≤ k + 1.

Using (6.15) for ak+1
j−1 and applying (6.14) we get

ak+1
j−1 =

(k + 1)(1 + 2k)
(k − j + 2)

ak
j−1 = − (k + 1)(1 + 2k)

(k − j + 2)
j

(k − j + 1)
ak

j ,

which holds for 1 ≤ j ≤ k. Using (6.15) gives (6.16), showing that (6.12) holds for
k + 1, j = 1, . . . , k.

The final case is j = k + 1. By (6.13) and the fact that ak
k+1 = 0 we have

ak+1
k+1 = ak

k

(−4k�− 2k − 2(k + 1) + 1
2�+ 1

)
= −(2k + 1)ak

k.

Using (6.12) for j = k and (6.11) for k + 1 this gives

ak+1
k+1 = (−1)k+1(2k + 1)ak

0 = (−1)k+1ak+1
0 ,

and since
(
k+1
k+1

)
= 1 this gives the result.

Proof of Lemma 6.1. This is a direct consequence of Lemmas 6.2 and 6.3.
In addition, we require an explicit form for ∂

∂rγ
fk

� (r<, r>).
Lemma 6.4. The derivatives of fk

l (r<, r>) are given by

∂

∂r<
fk

� (r<, r>) = r�−1
< r−�−1

>

k∑
j=0

ak
j r

2(k−j)
< r2j

> (�+ 2(k − j))
k−j∏
m=1

(2�+ 2m+ 1)
j∏

n=1
(2�− 2n+ 1)

(6.17)

∂

∂r>
fk

� (r<, r>) = r�
<r

−�−2
>

k∑
j=0

ak
j r

2(k−j)
< r2j

> (−�− 1 + 2j)
k−j∏
m=1

(2�+ 2m+ 1)
j∏

n=1
(2�− 2n+ 1)

.(6.18)

Proof. This follows trivially from differentiating (6.3) term by term.

6.3. Decay of ξj
�(r<, r>). We now wish to use the explicit form of fk

� (r<, r>)
given in Lemma 6.1 along with the expansion (6.1) to derive the decay rate of the
ξj
� (r<, r>) in terms of the decay rates of the fk

� (r<, r>). Following the ideas of Hill,
we write

(r> − r<)j−2k+1 = rj−2k+1
>

(
1 − r<

r>

)j−2k+1

,

and hence, up to a constant, (6.3) shows that the term in the summand of (6.1) may
be written as

rj−2k
>

(
1 − r<

r>

)j−2k+1(
r<
r>

)� k∑
i=0

ak
i r

2(k−i)
< r2i

>

P k
i (�)

.
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We now investigate a general function of the form hp,n(x) = (1−x)pxn, x ∈ [0, 1],
n, p ∈ R \ {0}, where x will correspond to r</r>, and in particular we would like to
find a bound for hp,n(x) in terms of p and n. It is clear that

d

dx
hp,n(x) = n(1 − x)pxn−1 − p(1 − x)p−1xn,

from which it follows that hp,n(x) is maximized at x = n
n+p , and the maximum value

of hp,n can be bounded from above by ( p
n )p.

In our case, we see that p = j − 2k + 1 and that we may take n = �/m with
m > 0. This gives that

(r> − r<)j−2k+1

(
r<
r>

)�/m

= rj−2k+1
>

(
1 − r<

r>

)j−2k+1 (
r<
r>

)�/m

≤ rj−2k+1
> (m(j − 2k + 1))j−2k+1

�−j+2k−1,(6.19)

which shows that the decay rate in � is independent of the choice of m. Inserting this
bound into (6.1), and using that 1/(�+ 1/2) < 1/�, we see that

∣∣∣ξj
� (r<, r>)

∣∣∣2 ≤ �−2j−3

(
1
j!

)2 
(j+1)/2�∑
k=0


(j+1)/2�∑
k′=0

�2(k+k′)
(

j

2k − 1

)(
j

2k′ − 1

)

× r
2j−2(k+k′)+2
> (m(j − 2k + 1))j−2k+1 (m(j − 2k′ + 1))j−2k′+1

×
∣∣∣∣∣
(
r<
r>

)−2�/m

fk
� (r<, r>)fk′

� (r<, r>)

∣∣∣∣∣ .
(6.20)

Similarly, differentiating (6.1) and using (6.19) and the analogous version for lower
powers of (r> − r<) gives

∣∣∣∣ ∂∂rγ ξj
� (r<, r>)

∣∣∣∣
2

≤ �−2j−1

(
1
j!

)2 
(j+1)/2�∑
k=0


(j+1)/2�∑
k′=0

�2(k+k′)
(

j

2k − 1

)(
j

2k′ − 1

)
r
2j−2(k+k′)
>

×
[
(j − 2k + 1)(j − 2k′ + 1) (m(j − 2k))j−2k (m(j − 2k′))j−2k′

×
∣∣∣∣∣
(
r<
r>

)−2�/m

fk
� (r<, r>)fk′

� (r<, r>)

∣∣∣∣∣
+ 2�−1r>(j − 2k + 1) (m(j − 2k))j−2k (m(j − 2k′ + 1))j−2k′+1

×
∣∣∣∣∣
(
r<
r>

)−2�/m

fk
� (r<, r>)

∂

∂rγ
fk′

� (r<, r>)

∣∣∣∣∣
+ �−2r2> (m(j − 2k + 1))j−2k+1 (m(j − 2k′ + 1))j−2k′+1

×
∣∣∣∣∣
(
r<
r>

)−2�/m
∂

∂rγ
fk

� (r<, r>)
∂

∂rγ
fk′

� (r<, r>)

∣∣∣∣∣
]
.(6.21)
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The remaining step is to determine the decay rates of integrals of products of
two of fk

� (r<, r>) and ∂
∂rγ

fk
� (r<, r>) with a general function of r< and r>, which will

later to be chosen to be products of the Aj(r<, r>) or their derivatives. Again, by
Cauchy–Schwarz it is necessary only to consider integrals of the forms

(6.22)
∫ ∞

0

∫ r>

0

rα
<r

β
>g(r<, r>)

(
r<
r>

)−2�/m ∣∣∣fk
� (r<, r>)fk′

� (r<, r>)
∣∣∣ dr<dr>

and
(6.23) ∫ ∞

0

∫ r>

0

rα
<r

β
>g(r<, r>)

(
r<
r>

)−2�/m ∣∣∣∣ ∂∂rγ fk
� (r<, r>)

∂

∂rγ
fk′

� (r<, r>)
∣∣∣∣ dr<dr>,

where α, β ∈ N ∪ {0} and rγ ∈ {r<, r>}.
6.4. Results on the integrals. The evaluation of (6.22) and (6.23) is obviously

highly dependent on the form of g(r<, r>) and, while we have an explicit form for
fk

� (r<, r>), we do not have an explicit form for g(r<, r>). We begin by noting the
following result on fk

� (r<, r>) and ∂
∂rγ

fk
� (r<, r>).

Lemma 6.5. For m > 1 and � � k, the functions (r</r>)−�/mfk
� (r<, r>) and

(r</r>)−�/m ∂
∂rγ

fk
� (r<, r>) for rγ ∈ {r<, r>} are strongly peaked on the line r< = r>.

Proof. From (6.3), (6.17), and (6.18) we see that a general term in r< and r> is
of the form r�̃+a

< /r�̃+b
> where a, b ∈ {−2, . . . , 2k} and �̃ = (m− 1)�/m > 0. Rewriting

this and using that r< = r> − x where x ∈ [0, r>] we have that

r�̃+a
<

r�̃+b
>

= ra−b
>

(
r<
r>

)�̃+a

= ra−b
>

(
1 − x

r>

)�̃+b

.

For � � k we have �̃ + b � 1 and this expression is strongly peaked when x = 0,
giving the result.

For suitably smooth g(r<, r>), this result implies that it is sensible to Taylor
expand g(r<, r>) around r< = r>.

Lemma 6.6. Let g( · , r>) ∈ CN (R) be such that |g(n)(s, r>)| ≤ g̃(r>) for all
s ∈ R+ and for n = 0, . . . , N . Then, for M < N , p > 0, and f(r<, r>) an arbitrary
function,

∫ r>

0

g(r<, r>)|f(r<, r>)|dr< =
M∑

m=0

g(m)(r>, r>)
∫ r>

0

(r< − r>)m

m!
|f(r<, r>)|dr<

+
N∑

n=M+1

O(�−n)g̃(r>)
∫ r>

0

rn
<

(
r<
r>

)−�/p

|f(r<, r>)|dr<.(6.24)

Proof. We begin by noting that we may Taylor expand g(r<, r>) in r< about r>
and, since g(N) is continuous, we may use the Lagrange form of the remainder, i.e.,

g(r<, r>) =
N−1∑
n=0

(r< − r>)n

n!
g(n)(r>, r>) +

(r< − r>)N

N !
g(N)(s, r>)

for some point s ∈ (r<, r>). It is clear that the first M terms of this expansion
contribute the terms in the sum in (6.24). We now note that, in a similar way to the
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derivation of (6.19),

(r< − r>)n

(
r<
r>

)�/p

≤ crn
>�

−n,

for any p > 0 and for some c > 0 (which depends on p). Hence, since |g(n)(r, r>)| ≤
g̃(r>) for all r, the result follows.

Applying this result to the integrals (6.22) and (6.23), we find the general integrals
are now of the form

(6.25)
∫ ∞

0

∫ r>

0

rα
<r

β
>g(r>)

(
r<
r>

)−2�/m ∣∣∣fk
� (r<, r>)fk′

� (r<, r>)
∣∣∣ dr<dr>

and

(6.26)
∫ ∞

0

∫ r>

0

rα
<r

β
>g(r>)

(
r<
r>

)−2�/m ∣∣∣ ∂
∂rγ

fk
� (r<, r>) ∂

∂rγ
fk′

� (r<, r>)
∣∣∣ dr<dr>.

The advantage of this form of the integrals is that, since the unknown function g is
no longer dependent on r<, we may explicitly evaluate the r< integral. We now move
on to discuss the decay rates of integrals of the types (6.25) and (6.26).

6.5. Decay rates of the integrals. From Hill’s result we expect the norms
(5.2) and (5.3) to decay at least as O(�−4). In fact, since the norm in (5.2) is
the L2 norm and that in (5.3) is a higher Sobolev norm, we expect the slowest de-
cay to come from the energy norm. Recall that we have factors of �−2j−3+2(k+k′),
�−2j−1+2(k+k′), and �−2j−3+2(k+k′) for terms involving fk

� (r<, r>)fk′
� (r<, r>) from

(6.20), fk
� (r<, r>)fk′

� (r<, r>) from (6.21), and ∂
∂rα

fk
� (r<, r>) ∂

∂rα
fk′

� (r<, r>) from
(6.21), respectively.

The main aim of this section is to remove the dependence on k and k′ from the
decay rates of |ξj

� (r<, r>)|2 and | ∂
∂rγ

ξj
� (r<, r>)|. We begin by finding the k-dependence

of integrals of the forms (6.25) and (6.26).
Lemma 6.7. For k, k′ ≥ 1, α ∈ N ∪ {0}, rγ ∈ {r<, r>}, and m > 1, let �̃ :=

(m− 1)�/m, then

∫ r>

0

rα
<

(
r<
r>

)−2�/m ∣∣∣fk
� (r<, r>)fk′

� (r<, r>)
∣∣∣ dr<

(6.27)

=
r
2(k+k′)+α−1
>

P k(�)P k′ (�)Qk,k′(�̃;α)

k∑
j=0

k′∑
j′=0

ak
j a

k′
j′R

k,k′
j,j′

(
�, �̃;α

)
,

∫ r>

0

rα
<

(
r<
r>

)−2�/m ∣∣∣∣ ∂∂r< fk
� (r<, r>)

∂

∂r<
fk′

� (r<, r>)
∣∣∣∣ dr<

(6.28)

=
r
2(k+k′)+α−3
>

P k(�)P k′(�)Qk,k′(�̃− 1;α)

×
k∑

j=0

k′∑
j′=0

ak
j a

k′
j′R

k,k′
j,j′

(
�, �̃− 1;α

)
(�+ 2(k − j))(�+ 2(k′ − j′)), and
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∫ r>

0

rα
<

(
r<
r>

)−2�/m ∣∣∣∣ ∂∂r> fk
� (r<, r>)

∂

∂r>
fk′

� (r<, r>)
∣∣∣∣ dr<

(6.29)

=
r
2(k+k′)+α−3
>

P k(�)P k′(�)Qk,k′ (�̃;α)

k∑
j=0

k′∑
j′=0

ak
j a

k′
j′R

k,k′
j,j′

(
�, �̃;α

)
(�− 2j)(�− 2j′),

where P k(�) is a polynomial in � of degree 2k, given explicitly in (6.30), Qk,k′
(�̃;α) is

a polynomial in �̃ of degree k+k′ +1 with coefficients parameterized by α and is given
explicitly in (6.32). The remaining term Rk,k′

j,j′ (�, �̃;α) is the product of a polynomial
in � with a polynomial in �̃ (both of degree k + k′), with coefficients parameterized by
α and is given explicitly in (6.33).

Proof. We prove the result for fk
� (r<, r>), the proofs for ∂

∂rγ
fk

� (r<, r>) are anal-
ogous. By (6.3) we have that(

r<
r>

)−2�/m

fk
� (r<, r>)fk′

� (r<, r>) =
r2�̃
<

r2�̃+2
>

k∑
j=0

k′∑
j′=0

ak
j a

k′
j′ r

2(k+k′−j−j′)
< r

2(j+j′)
>

P k
j (�)P k′

j′ (�)
,

and hence∫ r>

0

rα
<

(
r<
r>

)−2�/m

fk
� (r<, r>)fk′

� (r<, r>)dr<

=
∫ r>

0

r2�̃+α
< r−2�̃−2

>

k∑
j=0

k′∑
j′=0

ak
j a

k′
j′ r

2(k+k′−j−j′)
< r

2(j+j′)
>

P k
j (�)P k′

j′ (�)
dr<

= r
2(k+k′)+α−1
>

k∑
j=0

k′∑
j′=0

ak
j a

k′
j′

P k
j (�)P k′

j′ (�)
(
2�̃+ 2(k + k′ − j − j′) + α+ 1

) .
We now define the polynomial

(6.30) P k(�) :=
k∏

m=1

(2�+ 2m+ 1)
k∏

n=1

(2�− 2n+ 1),

which is the product of all distinct terms in the denominators of (6.3) over all j. We
also note that the terms given by the integration are

(6.31)
{(

2�̃+ 2(k + k′ − j − j′) + α+ 1
)}k+k′

j+j′=0
=
{(

2�̃+ 2i+ α− 1
)}k+k′+1

i=1
,

and we therefore define

(6.32) Qk,k′ (
�̃;α
)

=
k+k′+1∏

i=1

(
2�̃+ 2i+ α− 1

)
.

It follows that∫ r>

0

rα
<

(
r<
r>

)−2�/m ∣∣∣fk
� (r<, r>)fk′

� (r<, r>)
∣∣∣ dr<

=
r
2(k+k′)+α−1
>

P k(�)P k′(�)Qk,k′
(
�̃;α
)
∣∣∣∣∣∣

k∑
j=0

k′∑
j′=0

ak
j a

k′
j′R

k,k′
j,j′

(
�, �̃;α

)∣∣∣∣∣∣ ,
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where

Rk,k′
j,j′

(
�, �̃;α

)
=

k∏
m=k−j+1

(2�+ 2m+ 1)
k∏

n=j+1

(2�− 2n+ 1)

×
k′∏

m′=k′−j′+1

(2�+ 2m′ + 1)
k′∏

n′=j′+1

(2�− 2n′ + 1)

×
k+k′+1∏

i=1
i�=(k+k′−j−j′+1)

(
2�̃+ 2i+ α− 1

)
.(6.33)

For ∂
∂r>

fk
� (r<, r>) the power of r< is unchanged, leading to the same coefficients

from the integration but a reduced power of r>. The extra two terms in � come from
the initial differentiation as given in (6.18). For ∂

∂r<
fk

� (r<, r>) the initial power of r<
is reduced by two, and we once again gain two factors from the initial differentiation
as shown in (6.17).

The results of Lemma 6.7 show (noting that O(�̃) = O(�)) that the integral (6.27)
is of order �−(k+k′)−1 and the integrals (6.28) and (6.29) are of order �−(k+k′)+1.
However, this is not strong enough to counter the �2(k+k′) in the summands of (6.20)
and (6.21). We would therefore like to show that the summation over j and j′ in
(6.27)–(6.29) causes an increase in order.

The first step is to note that Rk,k′
j,j′ (�, �̃;α) and the (� + β) terms in these sums

contribute powers of j and j′. The terms in (6.31), i.e., those in the final product of
Rk,k′

j,j′ (�, �̃;α) in (6.33), may be written in the form (2�̃ + γi − (j + j′)) where the γi

depend on k, k′, and α but are independent of j, j′, and �. There are k + k′ of these
terms, and this product may be expanded as

k+k′+1∏
i=1

i�=(k+k′−j−j′+1)

(
2�̃+ 2i+ α− 1

)
=

k+k′∑
n=0

cn�̃
n(j + j′)k+k′−n

=
k+k′∑
n=0

�̃n
k+k′−n∑

m=0

dn,mj
mj′k+k′−n−m,

where cn and dn,m depend on k, k′, and α. Similarly, we see that the extra two terms
in (6.28) and (6.29) lead to sums of the form

k+k′∑
n=0

cn�̃
n(j + j′)k+k′−njxj′y�2−x−y =

k+k′∑
n=0

�̃n�2−x−y
k+k′−n∑

m=0

dn,mj
m+xj′k+k′−n+y,

where x, y ∈ {0, 1}.
From these expansions and the explicit form of Rk,k′

j,j′ (�, �̃;α) given in (6.33) we see
that, for fixed n and m, the double sum over j and j′ in (6.27) is, up to a constant,
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of the form

k∑
j=0

k′∑
j′=0

ak
j a

k′
j′ �̃

njmj′k+k′−n−m
k∏

μ=k−j+1

(2�+ 2μ+ 1)
k∏

ν=j+1

(2�− 2ν + 1)

×
k′∏

μ′=k′−j′+1

(2�+ 2μ′ + 1)
k′∏

ν′=j′+1

(2�− 2ν′ + 1).(6.34)

= �̃n
k∑

j=0

ak
j j

m
k∏

μ=k−j+1

(2�+ 2μ+ 1)
k∏

ν=j+1

(2�− 2ν + 1)

×
k′∑

j′=0

ak′
j′ j

′k+k′−n−m
k′∏

μ′=k′−j′+1

(2�+ 2μ′ + 1)
k′∏

ν′=j′+1

(2�− 2ν′ + 1).(6.35)

The sums in (6.28) and (6.29) are of the same form but the sum over j contains
either an extra power of � or an extra power of j and analogously for j′. We now wish
to show.

Lemma 6.8. For ak
j = (−1)j

(
k
j

)
ak
0 , and p ∈ N ∪ {0}, the sum

Sk,p :=
k∑

j=0

ak
j j

p
k∏

m=k−j+1

(2�+ 2m+ 1)
k∏

n=j+1

(2�− 2n+ 1)

is O(�p).
Proof. We first note that if p ≥ k, then the result is trivial as the highest order of

� possible is k. Hence we need only consider 0 ≤ p < k and begin by dividing through
by 2k, letting α := (� + 1

2 ), using the explicit form (6.12) for ak
j , and rearranging to

give

cSk,p =
k∑

j=0

(−1)j

(
k

j

)
jp

k∏
m=k−j+1

(α+m)
k∏

n=j+1

(α− n),

for some constant c.
Recall the Gamma functions [1], which satisfy

(6.36) Γ(x) = (x− 1)Γ(x− 1), x ∈ R.

This gives that

k∏
m=k−j+1

(α+m) =
Γ(α+ k + 1)

Γ(α+ k + 1 − j)
,

k∏
n=j+1

(α− n) = (−1)k−j Γ(k + 1 − α)
Γ(j + 1 − α)

,

and the standard form of the binomial coefficient is

(6.37)
(
k

j

)
=

Γ(k + 1)
Γ(j + 1)Γ(k − j + 1)

.

It follows that

cSk,p = (−1)k
k∑

j=0

jp Γ(k + 1)
Γ(j + 1)Γ(k − j)

Γ(α+ k + 1)
Γ(α+ k + 1 − j)

Γ(k + 1 − α)
Γ(j + 1 − α)

.
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We will prove the cases 0 ≤ p < k by induction on p and begin with the case p = 0.
Using the identity

(6.38)
Γ(z)
Γ(w)

= Γ(z − w + 1)
Γ(z)

Γ(z − w + 1)Γ(w)
= (z − w)!

(
z − 1
z − w

)

and the Vandermonde identity [1] for the sum of binomial coefficients

(6.39)
k∑

j=0

(
n

j

)(
m

k − j

)
=
(
n+m

k

)

gives

Γ(α+ k + 1)
Γ(α + k + 1 − j)

= j!
(
α+ k

j

)
and

Γ(k + 1 − α)
Γ(j + 1 − α)

= (k − j)!
(
k − α

k − j

)
.

Hence, using (6.39) and (6.37),

cSk,0 = (−1)kΓ(k + 1)
k∑

j=0

(
α+ k

j

)(
k − α

k − j

)
= (−1)kΓ(k + 1)

(
2k
k

)

= (−1)k Γ(2k + 1)
Γ(k + 1)

= O(1),

which shows the result holds for p = 0. For 0 < p < k we consider the sum

Tk,p : = (−1)k
k∑

j=0

j(j − 1) . . . (j − (p− 1))
Γ(k + 1)

Γ(j + 1)Γ(k − j + 1)

× Γ(α+ k + 1)
Γ(α+ k + 1 − j)

Γ(k + 1 − α)
Γ(j + 1 − α)

,

which is clearly zero when j ∈ {0, . . . , (p− 1)} and thus

Tk,p = (−1)k
k∑

j=p

Γ(j + 1)
Γ(j − p+ 1)

Γ(k + 1)
Γ(j + 1)Γ(k − j + 1)

Γ(α+ k + 1)
Γ(α + k + 1 − j)

Γ(k + 1 − α)
Γ(j + 1 − α)

= (−1)k

k−p∑
j=0

Γ(k + 1)Γ(α+ k + 1)
Γ(α+ k − p+ 1)

Γ(α+ k − p+ 1)
Γ(j + 1)Γ(α+ k − p− j + 1)

× Γ(k − α+ 1)
Γ(k − j − p+ 1)Γ(p+ j − α+ 1)

,

We now apply (6.37) to the last two terms, and apply (6.39) to obtain

Tk,p = (−1)kΓ(k + 1)
Γ(α+ k + 1)

Γ(α+ k − p+ 1)

(
2k − p

k − p

)
.

It is clear from (6.36) that Γ(α + k + 1)/Γ(α + k − p + 1) is O(αp), which is
equivalent to O(�p). Finally noting that j(j−1) . . . (j− (p−1)) = jp +

∑p−1
i=0 cij

i and
using the inductive hypothesis gives the result.
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We are now in a position to determine the decay rates of the integrals (6.27)–
(6.29).

Lemma 6.9. Let m > 1, then, for rγ ∈ {r<, r>},

∫ r>

0

rα
<

(
r<
r>

)−2�/m ∣∣∣fk
� (r<, r>)fk′

� (r<, r>)
∣∣∣ dr< = r

2(k+k′)+α−1
> O

(
�−2(k+k′)−1

)
,

∫ r>

0

rα
<

(
r<
r>

)−2�/m ∣∣∣∣ ∂∂rγ fk
� (r<, r>)

∂

∂rγ
fk′

� (r<, r>)
∣∣∣∣ dr< = r

2(k+k′)+α−3
> O

(
�−2(k+k′)+1

)
.

Proof. Lemma 6.8 and (6.35) show that the sums in (6.34) are overall of order
O(�k+k) and the analogous sums for the derivative cases given in (6.28) and (6.29) are
of the form O(�k+k′+2). Combining this order with that of the polynomials outside
the sum in (6.27)–(6.29), which are of order �−3(k+k′)−1, gives the result for the order.
The result for the power of r> follow directly from the results of Lemma 6.7.

By (6.20) and (6.21), along with Cauchy–Schwarz, we obtain

∫∫
rα
<r

β
<g(r>)

∣∣∣ξj
� (r<, r>)

∣∣∣2 dr<dr> ≤ �−2j−3


(j+1)/2�∑
k=0


(j+1)/2�∑
k′=0

�2(k+k′)c
(1)
j,k,k′,m

×
∫∫

rα
<r

2j−2(k+k′)+β+2
> g(r>)

(
r<
r>

)−2�/m ∣∣∣fk
� (r<, r>)fk′

� (r<, r>)
∣∣∣ dr<dr>,

∫∫
rα
<r

β
>g(r>)

∣∣∣∣ ∂∂rγ ξj
� (r<, r>)

∣∣∣∣
2

dr<dr> ≤ �−2j−1


(j+1)/2�∑
k=0


(j+1)/2�∑
k′=0

�2(k+k′)

×
[
c
(2)
j,k,k′,m

∫∫
rα
<r

2j−2(k+k′)+β
>

(
r<
r>

)−2�/m ∣∣∣fk
� (r<, r>)fk′

� (r<, r>)
∣∣∣ dr<dr>

+ �−2c
(3)
j,k,k′,m

∫∫
rα
<r

2j−2(k+k′)+2+β
>

(
r<
r>

)−2�/m

×
∣∣∣∣ ∂∂rγ fk

� (r<, r>)
∂

∂rγ
fk′

� (r<, r>)
∣∣∣∣ dr<dr>

]
,

for some constants c(i)j,k,k′,m, i = 1, 2, 3.
This holds for any m > 1 and the bounds in Lemma 6.9 are independent of the

choice of m and so, noting that O(�) = O(�̃), we find

∫∫
rα
<r

β
<g(r>)

∣∣∣ξj
� (r<, r>)

∣∣∣2 dr<dr> = O (�−2j−4
) ∫

r2j+1+α+β
> g(r>)dr>,(6.40)

∫∫
rα
<r

β
>g(r>)

∣∣∣ ∂
∂rγ

ξj
� (r<, r>)

∣∣∣2 dr<dr> = O (�−2j−2
) ∫

r2j−1+α+β
> g(r>)dr>.

(6.41)

These bounds lead to the following result about the decay rates of the norms of
ψ�(r<, r>) and ∂

∂rγ
ψ�(r<, r>) given in (5.7) and (5.8).
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Corollary 6.10. Let g( · , r>) ∈ CN (R) be such that |g(n)(s, r>)| ≤ g̃(r>) for
some g̃(r>), all s ∈ R and n = 0, . . . , N . Then, for any M < N , and rγ ∈ {r<, r>},∥∥∥g(r<, r>)ξj

� (r<, r>)
∥∥∥2

a,b

= O (�−2j−4
) [ M∑

m=0

∫ ∞

0

r2j+1+a+b
>

(r< − r>)m

m!

[
∂m

∂rm
<
|g(r<, r>)|2

]
r<=r>

dr>

+
N∑

n=M+1

O(�−n)
∫ ∞

0

r2j+1+a+b+n
> g̃(r>)dr>

]
(6.42)

and ‖g(r<, r>)
∂

∂rγ
ξj
� (r<, r>)‖2

a,b

= O (�−2j−2
) [ M∑

m=0

∫ ∞

0

r2j−1+a+b
>

(r< − r>)m

m!

[ ∂m

∂rm
<

|g(r<, r>)|2
]

r<=r>

dr>

+
N∑

n=M+1

O(�−n)
∫ ∞

0

r2j−1+a+b+n
> g̃(r>)dr>

]
.(6.43)

Proof. We first insert the expansions given in (6.20) and (6.21), with m = 2 into
‖g(r<, r>)ξj

� (r<, r>)‖2
a,b and ‖g(r<, r>) ∂

∂rγ
ξj
� (r<, r>)‖2

a,b, respectively.
Next we apply Lemma 6.6 with p = 2, g(r<, r>) = |g(r<, r>)|2, and f(r<, r>) =

ra
<r

b
>f

k
� (r<, r>)fk′

� (r<, r>) or ra
<r

b
>

∂
∂rγ

fk
� (r<, r>) ∂

∂rγ
fk′

� (r<, r>) to each of the r< in-
tegrals, resulting in the sums over m and n in the above.

The final stage is to apply Lemma 6.9 to each of the r< integrals, where, by the
choice m = p = 2 for the preceding lemmas, the coefficient m in Lemma 6.9 is either
2 or 4/3, both of which are greater than 1.

Hence all powers of � in terms of k and k′ cancel. The calculation of the powers
of � and r> is trivial by following the application of the above lemmas.

We will later choose g(r<, r>) to be Aj(r<, r>) or ∂
∂rγ

Aj(r<, r>). It remains to
estimate the decay rate of the norm of the remainder and its derivatives in (5.7) and
(5.8).

6.6. Remainder decay rates with assumptions. We now wish to determine
the rate of decay of the remainder terms R2J−1,�(r<, r>) and ∂

∂rγ
R2J,�(r<, r>) in

Theorems 4.2 and 4.3. In particular, from (5.7) and (5.8), we see that we are interested
in the integrals∫∫

|R2J−1,�(r<, r>)|2r2<r2>dr<dr> and
∫∫ ∣∣∣∣ ∂∂rγR2J,�(r<, r>)

∣∣∣∣
2

r2<r
2
>dr<dr>.

For much of this section we follow the method used by Hill, starting with the
definition of the differential operators Lj ([11, p. 1181]), which are chosen so that
L2n is equivalent to n applications of the angular Laplacian. We have the recursive
definitions

(6.44) L1 :=
∂

∂θ
, L2n :=

(
∂

∂θ
+

cos θ
sin θ

)
L2n−1, L2n+1 :=

∂

∂θ
L2n,

and it is clear that L2nΦ�(θ) = [−�(� + 1)]nΦ�(θ). Consider now an integral of the
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form

I :=
∫ π

0

f(θ)Φ�(θ) sin θdθ,

(where f(θ) will be R2J−1(r<, r>, r12) or ∂
∂rγ

R2J (r<, r>, r12)), for which we have

(6.45) [−�(�+ 1)]JI =
∫ π

0

f(θ)
(L2JΦ�(θ)

)
sin θdθ.

We now wish to rewrite this integral so that the operators Lj apply to f(θ) rather
than to Φ�(θ).

Lemma 6.11. For a general 2J-times differentiable function f(θ) and operators
Lj defined in (6.44) we have

∫ π

0

f(θ) (L2JΦ�(θ)) sin θdθ =

⎡
⎣sin θ

2J−1∑
j=0

(−1)j (Ljf(θ)) (L2J−1−jΦ�(θ))

⎤
⎦

π

0

+
∫ π

0

(L2Jf(θ))Φ�(θ) sin θdθ.

Proof. This follows trivially by induction on J , using integration by parts and
(6.44).

We now note that as long as (Ljf(θ))(L2J−1−jΦ�(θ)) is bounded for all j =
0, . . . , 2J − 1, then the boundary terms in Lemma 6.11 are zero. We now have the
following lemmas.

Lemma 6.12. Suppose that

(6.46) |(LjR2J−1(r<, r>, r12)) (L2J−1−jΦ�(θ))| <∞
for j = 0, . . . , 2J − 1, then

(6.47)
∞∑

�=0

�4J |R2J−1,�(r<, r>)|2 ≤
∫ r>+r<

r>−r<

|L2JR2J−1(r<, r>, r12)|2 r12
r<r>

dr12.

Further, if the integral on the right-hand side is finite, then

lim
�→∞

�2JR2J−1,�(r<, r>) = 0

and if, in addition,

(6.48)
∫ ∞

0

∫ r>

0

∫ r>+r<

r>−r<

|L2JR2J−1(r<, r>, r12)|2 r12
r<r>

dr12r
2
<r

2
>dr<dr> <∞,

then

lim
�→∞

�4J

∫ ∞

0

∫ r>

0

|R2J−1,�(r<, r>)|2r2<r2>dr<dr> = 0.

Proof. Using (6.45) with f(θ) = R2J−1(r<, r>, r12) (i.e., I = R2J−1,�(r<, r>)),
along with (6.46), Lemma 6.11 shows that

(6.49) [−�(�+ 1)]JR2J−1,�(r<, r>) =
∫ π

0

(L2JR2J−1(r<, r>, r12))Φ�(θ) sin θdθ.
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Since L2JR2J−1(r<, r>, r12) is a function of r<, r> and θ, it may be expanded as

L2JR2J−1(r<, r>, r12) =
∞∑

i=0

αi(r<, r>)Φi(θ).

Hence, by (6.49), [�(�+ 1)]2J |R2J−1,�(r<, r>)|2 = |α�(r<, r>)|2. Summing over � gives

(6.50)
∞∑

�=0

[�(�+ 1)]2J |R2J−1,�(r<, r>)|2 =
∞∑

�=0

|α�(r<, r>)|2.

By definition, and since the Φ�(θ) are real,

|L2JR2J−1(r<, r>, r12)|2 =
∞∑

i,j=1

αi(r<, r>)α∗
j (r<, r>)Φi(θ)Φj(θ).

Using the orthonormality of the Φi(θ) and the dominated convergence theorem, we
have that, if the integral of the left-hand side is bounded,

(6.51)
∫ π

0

|L2JR2J−1(r<, r>, r12)|2 sin θdθ =
∞∑

�=0

|α�(r<, r>)|2.

Since �4J ≤ [�(�+ 1)]2J , (6.47) follows from (6.50) and (6.51), along with the identity

∫ π

0

f sin θdθ =
∫ r<+r>

r>−r<

f
∂θ

∂r12
sin θdr12 =

∫ r<+r>

r>−r<

f
r12
r<r>

dr12.

The second part follows trivially as, if the sum is bounded, the summand must
tend to zero and hence lim�→∞ �2R2J−1,�(r<, r>) = 0.

For the final part, let fn =
∑n

�=0 �
4|R2J−1,�(r<, r>)|2 then it is trivial that fn →

f :=
∑∞

�=0 �
4|R2J−1,�(r<, r>)|2 pointwise as n→ ∞. Further, by the positivity of the

summand,

|fn| ≤ f ≤
∫ π

0

|L2JR2J−1(r<, r>, r12)|2 sin θdθ =: g.

By assumption
∫∞
0

∫ r>

0 g r2<r
2
>dr<dr> <∞ and, hence, by the dominated convergence

theorem, we may exchange the order of summation and integration in

∫ ∞

0

∫ r>

0

∞∑
�=0

�4J |R2J−1,�(r<, r>)|2r2<r2>dr<dr> <∞,

which gives the final part of the result.
Lemma 6.13. Suppose that

|(LjR2J (r<, r>, r12)) (L2J−jΦ�(θ))| <∞

for j = 0, . . . , 2J − 1, that ∂
∂rγ

R2J,�(r<, r>) and ∂
∂rγ

(L2JR2J(r<, r>, r12)) exist for
rγ ∈ {r<, r>}, and that ∂

∂rγ
(L2JR2J (r<, r>, r12)) is a continuous function of rγ .
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Then

(6.52)
∞∑

�=0

�4J

∣∣∣∣ ∂∂rγR2J,�(r<, r>)
∣∣∣∣
2

≤
∫ r>+r<

r>−r<

∣∣∣∣ ∂∂rγ (L2JR2J(r<, r>, r12))
∣∣∣∣
2
r12
r<r>

dr12.

Further, if the integral on the right-hand side is finite, then

lim
�→∞

�2J ∂

∂rγ
R2J,�(r<, r>) = 0

and if, in addition,

(6.53)
∫ ∞

0

∫ r>

0

∫ r>+r<

r>−r<

∣∣∣∣ ∂∂rγ (L2JR2J (r<, r>, r12))
∣∣∣∣
2
r12
r<r>

dr12r
2
<r

2
>dr<dr> <∞,

then

lim
�→∞

�4J

∫ ∞

0

∫ r>

0

∣∣ ∂
∂rγ

R2J,�(r<, r>)
∣∣2r2<r2>dr<dr> = 0.

Proof. As in the proof of Lemma 6.12 we find

[−�(�+ 1)]JR2J,�(r<, r>) =
∫ π

0

(L2JR2J(r<, r>, r12)) Φ�(θ) sin θ dθ.

Differentiating both sides with respect to rγ and, by the continuity of
L2JR2J(r<, r>, r12) and ∂

∂rγ
(L2JR2J(r<, r>, r12)), using Leibniz’s rule [1] to take the

derivative inside the integral gives

[−�(�+ 1)]J
∂

∂rγ
R2J,�(r<, r>) =

∫ π

0

[
∂

∂rγ
(L2JR2J(r<, r>, r12))

]
Φ�(θ) sin θ dθ.

The rest of the proof is analogous to that of Lemma 6.12.

6.7. Validity of assumptions. It is clear from the statements of Lemmas 6.12
and 6.13 that we wish to show that (6.46) holds and that the integrals in (6.47) and
(6.52) are finite. The other necessary assumptions will turn out to be more technical
assumptions on the wavefunction.

For convenience we follow Hill in defining the more general function

(6.54) hn
m(r<, r>, r12) :=

∫ r12

r>−r<

(r12 − t)m

m!
∂n

∂rn
12

ψ(r<, r>, t)dt, m ≥ 0

where, in particular, RJ (r<, r>, r12) = hJ+1
J (r<, r>, r12). Using Leibniz’s rule,

(6.55)
∂

∂r12
hn

m(r<, r>, r12) = hn
m−1(r<, r>, r12),

and so we also define

(6.56) hn
−1(r<, r>, r12) :=

∂n

∂rn
12

ψ(r<, r>, r12).
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The aim of the next step is to write the operator Lj , which is in terms of ∂
∂θ , in

terms of ∂
∂r12

, allowing us to make use of (6.55). The following lemma follows Hill’s
Appendix C.

Lemma 6.14. The operator Lj , as defined recursively in (6.44), may be rewritten

(6.57) Lj =
j∑

k=1

uj
k(r<, r>, r12)

∂k

∂rk
12

,

where the uj
k(r<, r>, r12) are given recursively by

uj
k(r<, r>, r12) := 0, if k < 1 or k > j,

u1
1(r<, r>, r12) :=

∂r12
∂θ

,

u2j
k (r<, r>, r12) :=

(
∂

∂θ
+

cos θ
sin θ

)
u2j−1

k (r<, r>, r12) +
∂r12
∂θ

u2j−1
k−1 (r<, r>, r12),(6.58)

u2j+1
k (r<, r>, r12) :=

∂

∂θ
u2j

k (r<, r>, r12) +
∂r12
∂θ

u2j
k−1(r<, r>, r12).

(6.59)

Proof. The proof follows trivially by induction and the definitions (6.44).
It follows directly from this lemma that we may write

(6.60) Ljh
n
m(r<, r>, r12) =

j∑
k=1

hn
m−k(r<, r>, r12)u

j
k(r<, r>, r12),

and hence we are interested in the boundedness of the uj
k(r<, r>, r12). At present we

have an expression for uj
k(r<, r>, r12) with terms in both r12 and θ, which can be

related in terms of r< and r>. Our next step is therefore to write uj
k(r<, r>, r12) in

only r<, r> and r12; this again follows Appendix C of [11].
Lemma 6.15. The uj

k(r<, r>, r12) defined in Lemma 6.14 are given by

(6.61) uj
k(r<, r>, r12) =

j−k∑
i=0

(r<r>)k+i

rk+2i
12

vj
k,i(θ),

where the vj
k,i(θ) are given recursively by

vj
k,i(θ) = 0, if i < 0 or i > j − k,

v1
1,0(θ) = sin θ,

v2j
k,i(θ) =

(
∂

∂θ
+

cos θ
sin θ

)
v2j−1

k,i (θ) + sin θ
[
v2j−1

k−1,i(θ) − (k + 2i− 2)v2j−1
k,i−1(θ)

]
,(6.62)

v2j+1
k,i (θ) =

∂

∂θ
v2j

k,i(θ) + sin θ
[
v2j

k−1,i(θ) − (k + 2i− 2)v2j−1
k,i (θ)

]
.(6.63)

Proof. The result follows trivially by induction and ∂r12
∂θ = r<r> sin θ/r12.

The final stage necessary to prove the boundedness of Ljh
n
m(r<, r>, r12) is to

derive a more explicit form for vj
k,i(θ). For this stage of the proof we deviate somewhat

from [11] and derive the minimal degree of the vj
k,i(θ) as polynomials in sin θ more

directly. In particular we wish to show the following.
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Lemma 6.16. Let

μ2j
k,i := max{0, 2(k + i− j)},

μ2j+1
k,i := max{1, 2(k + i− j) − 1},

and then for 1 ≤ k ≤ j and 0 ≤ i ≤ j − k, vj
k,i(θ) are of the form

(6.64) vj
k,i(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 (k+i−μj

k,i)∑
n=0

aj
k,i,n(sin θ)2n+μj

k,i if j + k + i even
1
2 (k+i−1−μj

k,i)∑
n=0

aj
k,i,n(sin θ)2n+μj

k,i cos θ if j + k + i odd,

where aj
k,i,n ∈ R, and else vj

k,i(θ) = 0.
Proof. The cases where vj

k,i(θ) = 0 follow immediately from their definition in
Lemma 6.15. It is also worth noting that the upper limits of the sums are integers
since μj

k,i is of the same parity as j.
For the other cases, proceeding by induction, for j = 1 we need only consider the

case v1
1,0(θ) = sin θ where μ1

1,0 = 1, j + k + i = 2, k + i− μ1
1,0 = 0, and so the result

holds with a1
1,0,0 = 1.

Now, assuming that the result holds up to 2j − 1, we see from (6.62) that

(6.65) v2j
k,i(θ) =

(
∂

∂θ
+

cos θ
sin θ

)
v2j−1

k,i (θ) + sin θ
[
v2j−1

k−1,i(θ) − (k + 2i− 2)v2j−1
k,i−1(θ)

]
,

so to construct v2j
k,i(θ) we require v2j−1

k,i (θ), v2j−1
k−1,i(θ), and v2j−1

k,i−1(θ). It is useful at this
stage to compare

μ2j−1
k,i = max{1, 2(k + i− j) + 1},

μ2j−1
k−1,i = μ2j−1

k,i−1 = max{1, 2(k + i− j) − 1}, and

μ2j
k,i = max{0, 2(k + i− j)} = μ2j−1

k,i − 1.

We now consider two cases, firstly, if μ2j−1
k,i = 1, then we have

(6.66) μ2j−1
k,i = μ2j−1

k−1,i = μ2j−1
k,i−1 = 1, μ2j

k,i = 0.

Secondly, if μ2j−1
k,i > 1, then, by its oddness, μ2j−1

k,i ≥ 3 and hence 2(k+ i− j)−1 ≥ 1,
giving

(6.67) μ2j−1
k,i = μ2j

k,i + 1, μ2j−1
k−1,i = μ2j−1

k,i−1 = μ2j−1
k,i − 2 = μ2j

k,i − 1.

Recalling that we are constructing v2j
k,i(θ) from v2j−1

k,i (θ), there are two cases to
consider depending on whether 2j − 1 + k + i is odd or even. Suppose first that
2j − 1 + k + i is odd (so 2j − k + i − 2 is even). Using (6.64) for v2j−1

k,i (θ), the first
term of (6.65) is, up to a constant,(

∂

∂θ
+

cos θ
sin θ

)
(sin θ)2n+μ2j−1

k,i cos θ

=
(
2n+ μ2j−1

k,i + 1
)

(sin θ)2n+μ2j−1
k,i −1 −

(
2n+ μ2j−1

k,i + 2
)

(sin θ)2n+μ2j−1
k,i +1.
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Using that μ2j−1
k−1,i = μ2j−1

k,i−1 and (6.64) for v2j−1
k−1,i(θ) and v2j−1

k,i−1(θ), the second term of

(6.65) contributes, up to a constant, (sin θ)2n+μ2j−1
k−1,i

+1. These two results lead to an
expression for v2j

k,i(θ) of the form

v2j
k,i(θ) =

1
2 (k+i−1−μ2j−1

k,i )∑
n=0

αn(sin θ)2n+μ2j−1
k,i −1 + βn(sin θ)2n+μ2j−1

k,i +1

+

1
2 (k+i−1−μ2j−1

k−1,i)∑
n=0

γn(sin θ)2n+μ2j−1
k−1,i+1.

Considering separately the cases μ2j−1
k,i = 1 (using (6.66), and μ2j

k,i = 0) and μ2j−1
k,i > 1

(using (6.67)), we see that, for some aj
k,i,n, this becomes

v2j
k,i(θ) =

1
2 (k+i−μ2j

k,i)∑
n=0

a2j
k,i,n(sin θ)2n+μ2j

k,i .

This proves the case for 2j − 1 → 2j with 2j − 1 + k + i odd. The other results
follow with almost identical proofs and the use of (6.63).

The important point of Lemma 6.16 is that it shows that the lowest power of
sin θ in vj

k,i(θ) is given by μj
k,i. Writing μ2j

k,i = max{0, 2(k + i) − 2j} and μ2j+1
k,i =

max{1, 2(k + i) − (2j + 1)} it is clear that, for some positive constants Cj
k,i,

(6.68) vj
k,i(θ) ≤

{
Cj

k,i if 2k + 2i− j ≤ 0
Cj

k,i(sin θ)
2k+2i−j if 2k + 2i− j > 0.

We wish to use this result to prove a bound on uj
k(r<, r>, r12).

Lemma 6.17. For uj
k(r<, r>, r12) as defined in Lemma 6.14 and positive constants

Cj
k,i as defined in (6.68), and defining Cj

k =
∑j−k

i=0 C
j
k,i,

(6.69)
∣∣∣uj

k(r<, r>, r12)
∣∣∣ ≤ Cj

k

(
r<r>
r12

)1/2

(r< + r>)j−1r
k−j+1/2
12 .

Proof. Consider first the case 2k + 2i− j ≤ 0. Inserting the bound in (6.68) into
(6.61), and using the trivial inequality r12 ≤ r> + r<, we see that∣∣∣∣(r<r>)k+i

rk+2i
12

vj
k,i(θ)

∣∣∣∣ ≤ Cj
k,i

(r<r>)k+i

rk+2i
12

(
r< + r>
r12

)j−2k−2i

= Cj
k,i(r<r>)k+i(r< + r>)j−2k−2irk−j

12 .

By the arithmetic-geometric inequality

(6.70) (r<r>)1/2 ≤ r< + r>,

we have

(6.71)
∣∣∣∣ (r<r>)k+i

rk+2i
12

vj
k,i(θ)

∣∣∣∣ ≤ Cj
k,i

(
r<r>
r12

)1/2

(r< + r>)j−1r
k−j+1/2
12 ,

where (r<r>/r12)1/2 is kept so as to cancel with the analogous term in (6.47).
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For the case where 2k + 2i− j > 0 we use the inequality

(6.72) sin θ ≤ r12(r<r>)−1/2

(which is easily derived from the sine rule) along with (6.70) to give∣∣∣∣(r<r>)k+i

rk+2i
12

vj
k,i(θ)

∣∣∣∣ ≤ Cj
k,i

(r<r>)k+i

rk+2i
12

(sin θ)2k+2i−j

≤ Cj
k,i

(r<r>)k+i

rk+2i
12

r2k+2i−j
12

(r<r>)k+i−j/2
= Cj

k,i(r<r>)j/2rk−j
12 .

≤ Cj
k,i

(
r<r>
r12

)1/2

(r< + r>)j−1r
k−j+1/2
12 ,

which is identical to (6.71). Noting that this bound is independent of i and using
(6.61) we have

|uj
k(r<, r>, r12)| ≤ Cj

k

(
r<r>
r12

)1/2

(r< + r>)j−1r
k−j+1/2
12 ,

where Cj
k =

∑j−k
i=0 C

j
k,i, proving the result.

We now prove an analogous result for the derivatives of uj
k(r<, r>, r12).

Lemma 6.18. For ∂
∂rγ

uj
k(r<, r>, r12) with uj

k(r<, r>, r12), as defined in Lemma

6.14 and rγ ∈ {r<, r>}, there exist positive constants C̃j
k,γ such that

∣∣∣∣ ∂∂rγ uj
k(r<, r>, r12)

∣∣∣∣ ≤ C̃j
k,γ

(
r<r>
r12

)1/2

(r< + r>)j−1r
k−j− 1

2
12 .

Proof. We start with the case rγ = r<. From (6.61) we see that

∂

∂r<
uj

k(r<, r>, r12) =
j−k∑
i=0

[
∂r12
∂r<

(−k − 2i)
(r<r>)k+i

rk+2i+1
12

+ (k + i)r>
(r<r>)k+i−1

rk+2i
12

]
vj

k,i(θ)

=
j−k∑
i=0

[
(−k − 2i)

∂r12
∂r<

r<r> + (k + i)r12r>

]
(r<r>)k+i−1

rk+2i+1
12

vj
k,i(θ).

Now note that |∂r12/∂r<| ≤ 1, which follows trivially from the geometric inter-
pretation of r12, the triangle inequality and the definition of the derivative (or from
considering the algebraic form of (∂r12/∂r<)2).

Using the inequalities r> ≤ r< + r>, r12 ≤ r< + r>, and (r<r>)1/2 ≤ r> + r<,
we therefore have that∣∣∣∣ ∂∂r< uj

k(r<, r>, r12)
∣∣∣∣ ≤

j−k∑
i=0

C̃j
k,i

∣∣∣∣ (r<r>)k+i−1

rk+2i+1
12

(r< + r>)2
∣∣∣∣
∣∣∣vj

k,i(θ)
∣∣∣

for some positive constants C̃j
k,i. The rest of the proof is virtually identical to that of

Lemma 6.17. The proof for rγ = r> is analogous.
These bounds on uj

k(r<, r>, r12) and ∂
∂rγ

uj
k(r<, r>, r12) are sufficient to show that

the assumptions necessary for Lemma 6.12 hold, namely that.
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Lemma 6.19. For j = 0, . . . ,m there exist constants 0 < Cj <∞ such that

|Ljh
n
m(r<, r>, r12)| ≤ CjI1/2

n

(
r<r>
r12

)1/2

(r< + r>)j−1rm+1−j
12 ,

where In are given by (2.12), and 0 < C <∞ such that

(6.73)
∫ r>+r<

r>−r<

|Lm+1h
n
m(r<, r>, r12)|2 r12

r<r>
dr12 ≤ Cr2m+1

> In.

Furthermore, there exists 0 < C̃ <∞ such that

(6.74)
∫ r>+r<

r>−r<

∣∣∣∣ ∂∂rγ (Lmh
n
m(r<, r>, r12))

∣∣∣∣
2
r12
r<r>

dr12 ≤ C̃r2m−1
> In.

Proof. We begin by using the identity (6.60) which implies

(6.75) |Ljh
n
m(r<, r>, r12)| ≤

j∑
k=1

∣∣∣hn
m−k(r<, r>, r12)u

j
k(r<, r>, r12)

∣∣∣ ,
and hence the bound on uj

k(r<, r>, r12) given in (6.69) shows that

|Ljh
n
m(r<, r>, r12)| ≤

j∑
k=1

|hn
m−k(r<, r>, r12)|

(
r<r>
r12

)1/2

(r< + r>)j−1r
k−j+1/2
12 .

Recalling the definition of hn
m(r<, r>, r12) from (6.54) and using the Cauchy–

Schwarz inequality we have, for m ≥ 0,

|hn
m(r<, r>, r12)| ≤

(∫ r12

r>−r<

∣∣∣∣ (r12 − t)m

m!

∣∣∣∣
2

dt

∫ r12

r>−r<

∣∣∣∣ ∂n

∂rn
12

ψ(r<, r>, t)
∣∣∣∣
2

dt

)1/2

=
(r12 − (r> − r<))m+1/2

m!
√

2m+ 1

(∫ r<+r>

r>−r<

∣∣∣∣ ∂n

∂rn
12

ψ(r<, r>, t)
∣∣∣∣
2

dt

)1/2

≤ r
m+1/2
12

m!
√

2m+ 1

(∫ r<+r>

r>−r<

∣∣∣∣ ∂n

∂rn
12

ψ(r<, r>, t)
∣∣∣∣
2

dt

)1/2

.(6.76)

Hence, for 1 ≤ k ≤ 2J − 1,∣∣∣hn
m−k(r<, r>, r12)u

j
k(r<, r>, r12)

∣∣∣
≤ I1/2

n

Cj
k

(m− k)!
√

2m− 2k + 1
(r<r>)1/2(r< + r>)j−1r

m−j+1/2
12 .(6.77)

We note that, since j ≤ m, the power of r12 is positive, preventing a singularity
at r12 = 0. The first part of the result, the bound on Ljh

n
m(r<, r>, r12) for 1 ≤ j ≤

m, follows from the expansion (6.75) and the bound (6.77) (which, apart from the
constant, is independent of k). In particular,

(6.78) Cj :=
j∑

k=1

Cj
k

(m− k)!
√

2m− 2k + 1
.
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The case j = 0 follows directly from the bound (6.76). This proves the first part of
the result.

The above bound does not apply for k = m+ 1 as the Cauchy–Schwarz estimate
is not valid. However, since u1

1(r<, r>, r12) = ∂r12
∂θ and uj

j+1(r<, r>, r12) = 0, using
(6.58) and (6.59), we have uj

j(r<, r>, r12) = (∂r12
∂θ )j . Hence, using the definition of

hn−1(r<, r>, r12) in (6.56), and dr12/dθ = r<r> sin θr−1
12 ,

∣∣hn
−1(r<, r>, r12)u

m+1
m+1(r<, r>, r12)

∣∣ = ∣∣∣∣ ∂n

∂rn
12

ψ(r<, r>, t)
∣∣∣∣
(
∂r12
∂θ

)m+1

≤
∣∣∣∣ ∂n

∂rn
12

ψ(r<, r>, t)
∣∣∣∣ (r<r>)(2m+1)/4

(
r<r>
r12

)1/2

,(6.79)

where the inequality uses (6.72) and | sin θ| ≤ 1.
To obtain the bound on the integral we use the identity

Lm+1h
n
m(r<, r>, r12) =

m+1∑
k=1

hn
m−k(r<, r>, r12)um+1

k (r<, r>, r12)

and the bounds (6.77) and (6.79) to obtain

|Lm+1h
n
m(r<, r>, r12)| ≤

m∑
k=1

I1/2
n

Cm+1
k

(m− k)!
√

2m− 2k + 1

(
r<r>
r12

)1/2

(r< + r>)m

+
∣∣∣∣ ∂n

∂rn
12

ψ(r<, r>, r12)
∣∣∣∣ (r<r>)(2m+1)/4

(
r<r>
r12

)1/2

≤
(
r<r>
r12

)1/2 [
I1/2
n C̃rm

> +
∣∣∣∣ ∂n

∂rn
12

ψ(r<, r>, r12)
∣∣∣∣ r(2m+1)/2

>

]
,

where the second inequality uses that r< ≤ r> and the constant C̃ is given by

C̃ := 2m
m∑

k=1

Cm+1
k

(m− k)!
√

2m− 2k + 1
.

Hence we see that∫ r>+r<

r>−r<

|Lm+1h
n
m(r<, r>, r12)|2 r12

r<r>
dr12

≤
∫ r>+r<

r>−r<

[
I1/2
n C̃rm

> +
∣∣∣∣ ∂n

∂rn
12

ψ(r<, r>, r12)
∣∣∣∣ r(2m+1)/2

>

]2
dr12

≤ InC̃
2r2m

>

∫ r>+r<

r>−r<

dr12 + 2InC̃r
2m+1/2
>

(∫ r>+r<

r>−r<

dr12

)1/2

+ r2m+1
> In

≤ CInr
2m+1
> ,

where we have used the Cauchy–Schwarz inequality, the definition of In from (2.12),
the fact that

∫ r>+r<

r>−r<
dr12 = 2r< ≤ 2r>, and the definition C := 2C̃2 + 2

√
2C̃ + 1 =

(
√

2C̃ + 1)2.
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Finally we move on to consider the derivatives of Lmh
n
m(r<, r>, r12) and using

(6.60) for j = m, we see that

∂

∂rγ
(Lmh

n
m(r<, r>, r12)) =

m∑
k=1

[
hn

m−k(r<, r>, r12)
∂

∂rγ
um

k (r<, r>, r12)

+ um
k (r<, r>, r12)

∂

∂rγ
hn

m−k(r<, r>, r12)
]
.

We also have that∣∣∣∣ ∂∂rγ hn
m(r<, r>, r12)

∣∣∣∣ =
∣∣∣∣∂r12∂rγ

∂

∂r12
hn

m(r<, r>, r12)
∣∣∣∣ ≤ |hn

m−1(r<, r>, r12)|,

where we have once again used that |∂r12/∂rγ | ≤ 1. The bounds on |hn
m(r<, r>, r12)|,

uj
k(r<, r>, r12), and ∂

∂rγ
uj

k(r<, r>, r12), from (6.76), and Lemmas 6.17 and 6.18, re-
spectively, give

∣∣∣∣ ∂∂rγ Lmh
n
m(r<, r>, r12)

∣∣∣∣ ≤ CI1/2
n (r< + r>)m−1

(
r<r>
r12

)1/2

,

for some positive constant C. Hence∫ r>+r<

r>−r<

∣∣ ∂
∂rγ

Lmh
n
m(r<, r>, r12)

∣∣2 r12
r<r>

dr12 ≤ C2In(r< + r>)2m−2

∫ r>+r<

r>−r<

dr12

≤ C̃r2m−1
> In,

giving the result.

6.8. Remainder decay rates. We now have the following result for the re-
mainder terms.

Corollary 6.20. Suppose that

(6.80)
∫ r<+r>

r>−r<

∣∣∣∣ ∂2J

∂r2J
12

ψ(r<, r>, t)
∣∣∣∣
2

dt <∞,

then R2J−1,�(r<, r>) as given in (2.11) satisfies

lim
�→∞

�2JR2J−1,�(r<, r>) = 0.

If, in addition,

(6.81)
∫ ∞

0

∫ r>

0

r4J−1
<

∫ r<+r>

r>−r<

∣∣∣∣ ∂2J

∂r2J
12

ψ(r<, r>, t)
∣∣∣∣
2

dtr2<r
2
>dr<dr> <∞,

then

lim
�→∞

�4J

∫ ∞

0

∫ r>

0

|R2J−1,�(r<, r>)|2r2<r2>dr<dr> = 0.

Proof. We begin by recalling that R2J−1(r<, r>, r12) = h2J
2J−1(r<, r>, r12) and

so, using (6.73) with m = 2J − 1 and n = 2J shows that (6.80) and (6.81) are
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stronger than the assumption on the right-hand side of (6.47) and the assumption
(6.48), respectively.

Furthermore, Lemma 6.19 and the fact that LjΦ�(θ) < ∞ for all j removes the
need for the assumption on the boundedness of |LjR2J(r<, r>, r12)| in Lemma 6.12.

Hence all assumptions in Lemma 6.12 are satisfied and the result holds.
Corollary 6.21. Suppose that

(6.82)
∫ r<+r>

r>−r<

∣∣∣∣ ∂2J+1

∂r2J+1
12

ψ(r<, r>, t)
∣∣∣∣
2

dt <∞,

then, for rγ ∈ {r<, r>}, ∂
∂rγ

R2J,�(r<, r>) (with R2J,�(r<, r>) from (2.11)) satisfies

lim
�→∞

�2J ∂
∂rγ

R2J,�(r<, r>) = 0.

If, in addition,

(6.83)
∫ ∞

0

∫ r>

0

r4J−1
<

∫ r<+r>

r>−r<

∣∣∣∣ ∂2J+1

∂r2J+1
12

ψ(r<, r>, t)
∣∣∣∣
2

dtr2<r
2
>dr<dr> <∞,

then

lim
�→∞

�4J

∫ ∞

0

∫ r>

0

| ∂
∂rγ

R2J,�(r<, r>)|2r2<r2>dr<dr> = 0.

Proof. As for the previous result, we have R2J(r<, r>, r12) = h2J+1
2J (r<, r>, r12)

and so using (6.74) with m = 2J and n = 2J + 1 shows that (6.82) and (6.83) are
stronger than the assumption on the right-hand side of (6.52) and the assumption of
(6.53), respectively.

Furthermore, Lemma 6.19 removes the need for the assumption on the bounded-
ness of |LjR2J (r<, r>, r12)| in Lemma 6.13. The continuity assumption in Lemma 6.13
is shown to be true by the explicit forms derived above.

Hence all assumptions in Lemma 6.13 are satisfied and the result holds.
We are now in a position to prove Theorems 4.2 and 4.3.
Proof of Theorem 4.2. The expansion of ψ�(r<, r>) given in (4.1) follows from

(5.1) for J → 2J . The decay rates of the norms given in (4.2) follow from the bound
(6.42) in Corollary 6.10 with g = A(r<, r>). Finally the results on the decay of the
remainder in (4.3) and (4.4) follow directly from Corollary 6.20.

Proof of Theorem 4.3. The expansion of ∂
∂rγ

ψ�(r<, r>) given in (4.5) follows
directly from (5.1) for J → 2J +1. The decay rates of the norms given in (4.6) follow
from the bound (6.43) in Corollary 6.10 with g = A(r<, r>). Finally the results on
the decay of the remainder in (4.7) and (4.8) follow directly from Corollary 6.21.

7. Open problems. The obvious extension to this work would be to mathe-
matically prove the required regularity of the helium ground state wavefunction. As
discussed in section 3, this seems to be a formidable task.

However, there are a number of obvious generalizations of this work which would
be of interest. Firstly is the extension to other symmetries of two-electron atoms, i.e.,
nonspherically symmetric cases. Although this has been investigated for the pertur-
bation theoretic case [15], it seems highly nontrivial to extend the current method to
such cases. Another interesting case is that of the relativistic atomic Hamiltonian,
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for which there is evidence [20] that the relativistic corrections have partial wave
increments (�+ 1/2)−2 rather than (�+ 1/2)−4 for the nonrelativistic terms.

A related topic of interest is the rate of convergence with respect to the radial
basis. The cases of a Laguerre basis and the natural orbital basis for a CI calculation of
the � = 0 part of the ground state of helium have been investigated numerically [17]. A
similar rigorous analysis of these asymptotics could lead to insight into the important
terms of the expansion, as well as providing rigorous extrapolation formulas.

Finally, the ultimate aim would be to extend such results to more general atoms,
and, indeed, molecules, but the route by which this is possible seems unclear at
present.
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