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Multi-species dynamical density functional theory

B. D. Goddard,? A. Nold, and S. Kalliadasis?

Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
(Received 16 January 2013; accepted 22 March 2013; published online 12 April 2013)

We study the dynamics of a multi-species colloidal fluid in the full position-momentum phase space.
We include both inertia and hydrodynamic interactions, which strongly influence the non-equilibrium
properties of the system. Under minimal assumptions, we derive a dynamical density functional
theory (DDFT), and, using an efficient numerical scheme based on spectral methods for integro-
differential equations, demonstrate its excellent agreement with the full underlying Langevin equa-
tions. We utilise the DDFT formalism to elucidate the crucial effects of hydrodynamic interactions
in multi-species systems. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4800109]

. INTRODUCTION

We consider the dynamics of colloidal fluids, where
mesoscopic particles (of typical size 1 nm—1 pum) are sus-
pended in a bath of many more, much smaller, and much
lighter particles. In such systems, interest lies in the dynam-
ics on a wide range of lengthscales from the size of the par-
ticles to the macroscale.! Hence, due to the multiscale na-
ture of the problem, standard continuum models such as the
Navier-Stokes equation are unsuitable. The alternative is re-
duced models which correctly capture the full range of both
microscopic and macroscopic dynamics, obtained by using el-
ements from the statistical mechanics of liquids.

Of particular interest here are systems containing mul-
tiple species of colloidal particles. Typical examples include
biological systems such as blood flow, where there are multi-
ple types of cells, possibly along with artificially introduced
species such as nanoparticles used in drug delivery, or mi-
crofluidic devices with differently shaped, sized, or charged
colloidal particles. These examples are linked to recent ad-
vances in biophysics’ and microfluidics>> which in turn
have led to a growing interest in the behaviour of multi-
species colloidal systems. Such systems also lead to rich dy-
namics such as phase separation, frustrated crystallization,®
and, as we will see later, complicated indirect inter-species
interactions.

Their full dynamics are described by the deterministic
Newton’s equations for the positions and momenta of both the
colloidal and bath particles. However, due to the large number
of particles involved in the corresponding physical systems,
this leads to very high-dimensional problems which are com-
putationally intractable. One way in which to reduce the di-
mension is to use the intrinsic timescales of the systems. Due
to their much smaller masses, the bath particles typically have
much higher velocities than the colloidal particles. Hence, for
timescales significantly larger than the typical time between
collisions of the bath particles (around 10~ s), one may av-
erage out the rapid fluctuations of the bath particles, leading to
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a coarse-grained stochastic (Langevin) description containing
only the positions and momenta of the colloidal particles.

In such a model, it is necessary to include the interac-
tions of the bath and colloidal particles. These take two forms:
(a) the random collisions of the bath particles with the col-
loidal particles, and (b) the forces on the colloidal particles
due to flows induced in the bath by their motion, known as
hydrodynamic interactions (HI). Figure 1 depicts an exam-
ple of these induced flows. Whilst HI include crucial physics,
their inclusion complicate the numerical implementation of
the Langevin dynamics. For example, for N particles and a
standard timestepping algorithm, including HI (rather than a
simple self-friction term) transforms the problem from O(N)
to order O(N?) at each timestep. Due to this high computa-
tional cost, especially for physically relevant numbers of par-
ticles, we require a reduced model which captures the multi-
scale dynamics of the problem.

One such class of reduced models are dynamical den-
sity functional theories (DDFTs), a number of which have
been developed. A DDFT is a statistical mechanical approach
which aims to reduce the full dynamics to closed equations
for the dynamics of the one-body position distribution. For a
single species of colloidal particle, a typical DDFT is a con-
tinuity equation for the density p(r, ), with r a single posi-
tion coordinate, i.e., 3, p(r, t) + V. - J([p], r, t) = 0, where J,
a functional of p, remains to be determined. The main compu-
tational benefit of a DDFT is that the dimension is fixed at the
physical dimension of the system (plus one time dimension),
independently of the number of particles.

Although it has been shown rigorously that such DDFT's
exist,” the functional form of J is unknown. In contrast,
for practical implementations, this functional, or a good ap-
proximation to it, needs to be given explicitly. Due to the
widespread success of equilibrium density functional theory
(DFT) for classical fluids (see, e.g., the pioneering works in
Refs. 8 and 9 and more recent reviews in Refs. 10 and 11),
this functional is usually based on the free energy of a re-
lated equilibrium system. This approach also ensures that the
DDFT agrees with the static DFT at equilibrium.

Most existing DDFTs neglect either the momenta of
the colloidal particles,12 or the HL,'*'8 or both, as in the

© 2013 AIP Publishing LLC
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FIG. 1. A schematic of the flows induced in the bath (blue arrows) by the
motion of two differently sized species of colloidal particles (red and green
spheres/arrows).

pioneering work of Marconi and Tarazona.'” In recent
work,?*2! we have systematically derived and implemented
an accurate and efficient DDFT which includes all of these
effects for one species of colloidal particle. In this work, we
extend our DDFT formalism to multiple species, demonstrat-
ing the very good agreement with the full underlying stochas-
tic dynamics, as well as the importance of both HI and in-
ertia in multi-species systems. Examples of physical systems
in which HI and inertia are expected to play crucial roles are
wetting phenomena®>* (and confined systems in general),
aerosol deposition and cloud formation,”~?° and the trans-
port of colloidal particles in oscillatory flows such as in the
cardiovascular system and oscillatory flow mixing.>* In con-
trast, previous work on multi-species DDFT>'~** has utilised
the most basic DDFT in which both inertia and HI are ne-
glected and as such it is unclear that existing approaches are
sufficiently accurate to describe problems such as the above.

The manuscript is laid out as follows. In Sec. II we out-
line our DDFT formalism for multiple particle species, in-
cluding both inertia and HI. In Sec. III we describe the nu-
merical validation of our DDFT and demonstrate the crucial
influence of HI. Finally, in Sec. IV we summarize our results
and discuss some open problems and future work.

Il. DDFT FORMALISM

Consider a system containing v species of colloidal par-
ticles suspended in a bath of many more, much smaller, and
much lighter particles. As discussed in the Introduction, these
species may differ in a wide range of physical properties. Here
we treat the masses of the particles directly and encapsulate
all other properties via an external potential for each species
(which may differ, for example, if an electric field is applied
to species with different charges) and interparticle poten-
tials (which again may differ in both intra- and inter-species
interactions).

For systems with a fixed number N, particles of each
species o = 1, ... v, we are interested in the positions r,_ ; and
momenta p,,; of the colloidal particles (where ry ; (Pg,;) 1S
position (momentum) of the ith particle of species «). From
now on we consider timescales significantly larger than the
typical collision time of bath particles, but smaller than the
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typical timescale on which the colloidal particles move a dis-
tance the order of their size. As such, we may consider a
bath of constant temperature, which interacts with the col-
loidal particles through two terms in the Langevin equations.
For ease of notation we define the total number of particles
N = Z;:] N, and construct length 3N vectors rV = (To. i)
and p¥ = (p..;) of all colloidal particle positions and mo-
menta. We then have

drV

- =M—] N

dt P

o (1)
% — —VaVaEN, = TaV)pY + ACHE ().

Here M is the diagonal mass matrix and V is the potential,
which we will generally consider as the sum of an exter-
nal potential and two-body inter-particle potentials. The ef-
fects of the bath are modelled by two terms. First, the motion
of the colloidal particles causes flows in the bath, which in
turn cause forces on the colloidal particles. The coupling be-
tween the momenta of the colloidal particles and their result-
ing forces, already referred to as HI, is described by the 3N
x 3N positive definite friction tensor I'. Second, the random
collisions of the bath particles with the colloidal particles are
modelled by the final stochastic term where the strength of the
noise is related to I' via a generalized fluctuation-dissipation
theorem A = /kgTMTI, where the square root exists as
kgTMT is positive definite.’ Here T is the (constant)
temperature and kp is Boltzmann’s constant. The random
forces are given by mean zero, uncorrelated Gaussian white
noise such that f¥ = (f.(f)) with (fu(r)) = 0 and (fu()fe(?))
= 28/{,@5(1‘ —1).

The friction tensor I' may be decomposed into 3
x 3 blocks (' = (Fa,i;ﬁ,_j)) with I'a,,-;ﬁyj(rN) = 8(1,,35,"]']/&1
+ f'a,,-;ﬁ, j(rN ). Here, 1 is the 3 x 3 identity matrix determin-
ing the (diagonal) self-friction term for each particle and the
terms f‘a,,’;ﬂ, ;(r™) contain all the HI. The fluctuation dissipa-
tion theorem ensures that the HI have no influence at equilib-
rium. However, they are typically long-range (decaying only
as the inverse of particle separations) and are vital in correctly
describing the dynamic behaviour of many systems.

After averaging over the noise and initial particle distri-
bution, the Langevin equations can be rewritten as a Fokker-
Planck equation, which is a (6N + 1)-dimensional partial dif-
ferential equation (PDE) for the evolution of the N-body dis-
tribution function f™ (", p¥, £). As such, for large numbers
of particles the only computationally tractable approach re-
quires Monte-Carlo methods, which are of the same complex-
ity as solving the Langevin equations. As mentioned, in the
presence of HI, these scale as N> (due to requiring the square
root of I'), which prevents direct simulation for even moderate
numbers of particles.

In order to obtain a computationally tractable reduced
model, we turn to statistical mechanics. Analogously to
the Runge-Gross theorem for quantum systems,>® Chan and
Finken’ showed (for a one-species system) the existence
of a DDFT for the time evolution of the one-body den-
sity p(ry, 1) = N [drjdp" fM N, p", 1), where dr} indi-
cates integration over all positions except r;. The obvious ex-
tension to multi-species systems is to determine a DDFT for
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the one-body densities pu(ry,1.1) = N [dr), dp" fM (",
pN ,1), « = 1,...v. However, while the existence of such
DDFTs shows that all information in the full N-body distri-
bution is contained in the one-body densities, the proof is
non-constructive and it remains to determine a multi-species
DDFT of the form 0;04(ry,1) = =V, - Jo(re1, 1, [{0p}]).
That is, it remains to determine the functional form of the
currents J,, which depend on the one-body densities of all
species.

Recently, we have derived a general DDFT containing
both inertia and HI**2! for a single species of colloidal par-
ticle. We now outline the extension of the derivation to an
arbitrary number of species (see our earlier work?! for de-
tails). The overall strategy is to take momentum moments of
the Fokker-Planck equation, which leads to an infinite hier-
archy of equations which must be closed to obtain a compu-
tational scheme. Here, as plreviously,21 we choose to truncate
at the momentum level (analogous to the Navier-Stokes equa-
tion). The issue is then that, for N-body potentials or HI, these
equations still contain the full N-body distribution and we re-
quire an approximate closure scheme which we then verify
numerically.

The first of these approximations, known as the adiabatic
approximation, is common to all DDFTs and was originally
suggested by Marconi and Tarazona.' This approximates the
non-equilibrium Helmholtz free energy by the correspond-
ing functional for an equilibrium system with the same one-
body densities. Although this is an uncontrolled approxima-
tion, it has a number of advantages. First, it ensures that the
DDFT equilibrates to the static DFT solution. Second, whilst
the exact form of the Helmholtz free energy is not known ex-
plicitly, various approximations such as fundamental measure
theory*’* for hard spheres and mean field theory for densely
packed soft particles*’ have been used successfully for a wide
range of equilibrium systems.

The second approximation is that the one-body distri-
butions,  f{V(re.1, pa,1.1) = N [dr) dp , fN@N, pN, 1),
o =1, ...v, are at local equilibrium. That is, we take

My N = Pe(Ta 1, 1)
fa ( 15 Pa,1s ) (2nm—akBT)3/2
% ex _|po¢,l _mava(ra,lat)|2
P 2makBT ’

where v, (ry, 1, ) is the local velocity for species . Although
this approximation is also uncontrolled, it is widely used in
the literature.*! In our recent study in Ref. 21, we have dis-
cussed the new effects and difficulties introduced by going
beyond this approximation.

The third approximation, which is included for ease of
presentation and is straightforward to generalize, is that the
HI tensors are two-body:

Lo (0N) = 8458 Z Z\) (roi. e
(k. O)F(a, 1)

+ (1 = 84 58: VL, (i 15 1)

0.p0ij) Ly p(Tais Tpj)-

We note that there exists a two-body expansion for the full
friction tensor for hard spheres of different sizes at arbitrary
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separations.*? To close the two-body HI term, we also assume
that we may write the two-body distributions as

Fup T Pas T, Pps 1) = [ (s Pas D f5 (85, g 1)
X 8o p(ra, Tg, [{0c}]),

for some known correlation functionals g, g. Such an approx-
imation is standard**** and can be justified through a maxi-
mum entropy closure.** In addition, although we assume that
these correlation functionals introduce no explicit momentum
correlation (the corresponding equation with g, g(ry, rg, Po,
Ps. [{ o« }]) is known to hold), as described previously,”! this
does not prevent the resulting DDFT from capturing non-local
velocity correlations. Since this approximation neglects terms
of the same order in p as the local equilibrium approxima-
tion, we expect these two approximations to be valid in simi-
lar regimes.

These assumptions lead to a DDFT which consists of a
continuity equation for the density of each species,

3 0a(r) = =V - (pa(r)Ve(r)), )
and an evolution equation for the velocity of each species,

3 Va(r) + (Vo (r, 1) - Vo)V (r, 1)

s er: [{op}]
Mg 34

— VaVo(r, 1)

—Z/df‘p,g(f‘, 1)8a,p(r, F, [{pc}])
B=1

x [Z35(r, Vo (r, 1) + 23, (r Bvs . 0], (3)

where F is the (equilibrium) Helmbholtz free energy.

This equation shows that the material derivative of the
velocity is given by a pressure-like term that depends on the
Helmholtz free energy functional, a standard friction term,
and two non-local terms that depend on the HI. The first of
these, involving Zg)ﬂ combines with the standard friction
term to give a density-dependent effective friction. The sec-
ond, involving ij)ﬂ, non-locally couples the velocities of all
species.

As for the one-species case,?! neglecting the HI terms
reduces this general DDFT to the multiple-species ana-
logue of the DDFT derived by Archer:'® 8,v,(r) + (v(r, 1) -
Vove(r, t) = —%Vr% — YuVo(r, t). If, along with ne-
glecting these terms, we consider the overdamped (high-
friction) limit, the terms on the left-hand side are negligible
and inserting the resulting expression for v, into the continu-
ity equation gives the standard overdamped DDFT,

8F[{pp}] )

B pa(r) = L2V, . (pa(r)vr
m 80

o
as used in previous work on multi-species DDFT.>!-** This
passage to the high friction or overdamped regime can be
made rigorous (at least in the one-species case),* but it is im-
portant to note that in the case of a non-trivial friction tensor,
the rigorous derivation leads to a different definition of the
diffusion tensor than in the standard DDFT'? obtained from
the Smoluchowski equation.
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lll. NUMERICAL VERIFICATION AND EXPERIMENTS

In this section we will first validate the DDFT (2) and
(3) against the full underlying Langevin dynamics (1). This is
necessary as the derivation of the DDFT requires a number of
uncontrolled approximations. Second, we will demonstrate an
efficient numerical implementation of our DDFT for systems
with an arbitrary number of particles, in particular, the effects
of HI in a multi-species system.

We now summarize our choice of Helmholtz free energy
for the DDFT and HI for both the DDFT and Langevin dy-
namics. The Helmholtz free energy has the form,

Ul = ka3, [ vt (108321 1) = 1)
a=1

+ 3 [V o) + Pl
a=1

where the first two terms correspond to a mixture of v ideal
gases with de Broglie wavelengths A, (which turn out to
be irrelevant) subject to external potentials V{". The final
term, called the excess over ideal gas free energy is generally
unknown.

We first consider hard sphere systems for which we use
Rosenfeld’s fundamental measure theory (FMT)>”> approx-
imation to Fex.[{0}]. This defines a number N,, of explicit,
geometrically derived weights wS and an explicit function @,
which give

Ny
Foullp N =kaT 3., [ @in, @) vt
a=1

HOEDY f d o (Fywj (r — ).
a=1

Note that the FMT formalism can treat mixtures of hard
spheres of different sizes, but we will concentrate on mixtures
of spheres with the same diameter but with different responses
to an external potential.

In modelling the HI, we take different approaches for the
DDFT and Langevin dynamics. In the DDFT we take the 11-
term two-body expansion of Jeffrey and Onishi.*> We note
that this is expected to be accurate for widely separated parti-
cles and that it may be extended to include lubrication effects
which become important when particles are not well sepa-
rated. For the Langevin dynamics we require that I is positive
definite (both physically, so that the system is dissipative, and
numerically, so that JT exists). As arbitrary truncations of the
two-body expansion are not necessarily positive-definite, we
choose T = kzTM~'D~!, where D is the (positive-definite)
Rotne-Prager diffusion tensor*® D = (D)) with

N
D™y =y~ | 8148 ZDll(ri —Ty)
£

+ (1 =6;)Dp2(r; — 1)) | . 4

J. Chem. Phys. 138, 144904 (2013)

We expect these two approximations to agree for systems
in which the particles are on average well separated. How-
ever, irrespective of the other approximations in the DDFT,
we should not expect exact agreement, but rather qualitative
agreement and an understanding and elucidation of the effects
of HI.

Here, and in the corresponding two-body expansion we
introduce a hydrodynamic diameter oy < o increasing the
accuracy of the two-body approximation. Such an effective
diameter is appropriate for many commonly studied colloidal
particles which consist of a hard core with a layer of polymer®
and has been used in previous DDFTs with HI.'>20-2! We will
choose oy = 0.50, but good agreement was found between
the DDFTs and stochastic calculations containing HI for o
< 0.75. Our choice for the diffusion tensor is therefore

_3 oy ror 1 [on 3 rer
D”<“)—§<m) [H e }+E(E> [1_3 |r|2}
5)

and Dy; = O(1/r*), which is negligible for diffuse systems.
As stated previously, in this work we consider systems in
which all species of hard particles have the same diameter
(and also the same oy). However, the two-body expansion
used in the DDFT was originally formulated for differently-
sized spheres,*? and thus the method is straightforward to gen-
eralize. One further requirement when including HI is the de-
termination of the correlation functional g,, g in (3). Whilst
it is theoretically possible to determine g as a functional
derivative of the free energy through the Ornstein-Zernike
relation,® as in the one-species case, we find it sufficient to
use the most basic hard sphere excluded volume approxima-
tion, g(r, ¥) = 1 for [r — ¥| > 1 and zero elsewhere. The main
advantage of such an approximation is that, although not en-
tirely consistent with FMT, it significantly reduces the compu-
tational complexity of the problem with little loss of accuracy.

We solve the Langevin dynamics using a standard Euler-
Maruyama time-stepping routine,*’ where the hard-sphere in-
terparticle potential is slightly softened to produce a differ-
entiable potential Vo(|r; — rp]) = [r; — ry| ™ — |1} —rp| ™2
+1/4 for [r; — r2] < 2Y** and zero otherwise. The time
step is chosen such that halving it produces no appreciable
difference in the dynamics. The initial condition is found
by slice-sampling®® the (unnormalized) equilibrium N-body
distribution.

In order to reduce the complexity of the DDFT com-
putations, we consider systems in which the external poten-
tials are spherically symmetric, i.e., V{V(r) = V{V(r). This
reduces the full three-dimensional densities and velocities to
one-dimensional functions of only the radial distance, i.e.,
Pa(r) = pu(r) and v, (r) = vy (r). We use one-dimensional
Chebyshev spectral methods* appropriately extended to
integro-differential equations®” and a Runge-Kutta solver.>"
Such methods are exponentially convergent and require few
grid points, typically around 100 for the systems presented
here. We obtain the initial condition via the simultaneous
solution of the Euler-Lagrange equations for each species,
SFllephl 1y = 0. In order to increase the efficiency of the
numerical scheme, we rewrite the DDFT for y, = log p,

3pa
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FIG. 2. External potentials for the two species (red and blue lines, respec-
tively) at = O (solid lines) and 7 > 0 (dashed lines).

+ VI with y, (00) = 0, which captures the exponential decay
of the system. We also treat the singularity in the divergence
at the origin by mirroring the solution and solving on (—oo,
00) rather than on [0, 00).

We have previously?®?! validated a range of DDFTs
for single species colloidal particle against the underlying
stochastic dynamics, and have also demonstrated the ef-
fects of including inertia and HI. We shall demonstrate
the agreement between the DDFT (2) and (3) and the
Langevin dynamics (1) to be similarly very good for mul-
tiple species of particles. We first consider a system with
two species, which differ in their response to the exter-
nal potential. From now on we will set o4, m,, and kgT
to unity, which define the units of length, time, and en-

J. Chem. Phys. 138, 144904 (2013)

ergy. We define an external potential for each species
by VIV(r;r9) = Vo(1 — h)r? — Zy expl—(r — r)* /4], where
h(r, ro) = lerf((r + ro)/4) — erf((r — r9)/4)]/2 is a smooth
cutoff function. Here the external potentials for the two
species depend only upon the values of Z,. For our first ex-
ample, we take Ny =N, =25,y =2, Vo =0.1,rg =4 for ¢
=0,rg=3fort>0,Z; =2.5, and Z, = 1.25. These poten-
tials are shown in Fig. 2. We note here that the precise choice
of these parameters is unimportant; equally good results were
obtained for a wide range of parameters and other forms of
external potentials.

In Fig. 3, we show snapshots of the radial particle dis-
tributions (number of particles in an infinitesimal shell at ra-
dius r, given by 47 2 p(r)) and velocities for both the DDFT
and Langevin calculations. As can be seen, the agreement is
very good. We note here that the DDFT calculations typically
take around 10 s on a standard desktop computer, compared to
around 10° s for the Langevin simulations. Whilst the effects
of HI are visible in the velocity plots, and also in the mean
positions and velocities in Fig. 4, they are not large. However,
this system contains a relatively small number of particles. We
now move on to consider a system with ten times as many par-
ticles, setting Ny = N, =250, y =2, Vo, = 0.03, 9 = 10 for ¢
=0,rp=5fort>0,Z; = 1.5, and Z, = 0.75. These param-
eters ensure that the maximum density of particles is approx-
imately the same as in the previous example. As can be seen
in Fig. 5, the inclusion of HI now leads to qualitatively differ-
ent dynamics, emphasising the importance of such effects in
systems with macroscopic numbers of particles.

We now consider an example in which the effect of HI is
crucial in understanding the dynamics of the system. We again
consider two species, but now exert very different external

472 p(r)

0.4
t =0.0
0.2
0—01"34';*.-\'0'3"00!'%-';.-'—
-0.2

FIG. 3. Snapshots of radial particle distributions and velocities at various times for 25 particles of each species. Species 1 in red, species 2 in blue. Lines show
DDFT calculations, symbols Langevin simulations for systems both with (solid/circles) and without (dashed/crosses) HI.
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FIG. 4. Mean radial positions and velocities for 25 particles of each species; lines and symbols as in Fig. 3.
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FIG. 5. Snapshots of radial particle distributions and velocities at various times for 250 particles of each species. Lines as in Fig. 3.
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25

0 5 10 15

FIG. 6. External potentials (6) for species 1 (red line) and (7) for species 2
(blue lines; solid for r,(#) = 7, dashed for r,(f) = 8).

potentials on each species:

Vi = —0.25exp(—(r — ri(1))*/16), (6)

VY = —0.25 exp(—(r — r2(1))?/16) + 20 exp(—r2/64),
@)

where r{(f) = 2 and r,(¢) is either 7 for t = 0 and 8 for ¢ > 0, or
vice versa. These potentials are shown in Fig. 6. The first term
in each potential localises the particles around r;(¢), whilst the
second term for the second species excludes those particles
from a region around the origin, effectively separating the two
species so there are no direct interactions. We fix N, = 10
and will vary N;. A typical equilibrium configuration with N,
= 150 is shown in Fig. 7, along with the equilibrium particle
distributions.

In Fig. 8 we show the mean radial velocity of species
2 for varying N;. It is clear that if HI are neglected, the dy-
namics (red, dashed lines) are essentially independent of Ny,
which is due to the lack of direct interactions. However, when
including HI, there is a strong dependence on N;; as N; in-
creases the dynamics become more strongly damped. That is,

50
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the HI due to the presence of the first species inhibit the move-
ment of the second species, in much the same way as would
be expected by the presence of a wall. Hence, we find that
the inclusion of the non-local HI terms is essential in deter-
mining the correct physics of such systems. In addition, the
monotonic behaviour of the mean velocity of species 2 sug-
gests that it should be possible to measure properties of small
numbers of particles of one species to determine properties
(such as the number of particles) of another species, even if
there is no direct interaction.

As an additional example of the effectiveness of our
multi-species DDFT, we consider a case that demonstrates
size-mediated phase separation. In this case we use a mean-
field approximation to the excess free energy Fexc[{0q}]. In
particular, we choose, for a pairwise inter-particle potential
Vo,

1 v
Feelloall =5 3 / drodrg o (ra)pp(rg) V@ (ry, rp).
o, =1

This approximation is expected to be accurate for soft parti-
cles at high densities. For the interparticle potential we choose
a Gaussian repulsion between particles of species o and g,
V(o 1) = 0.5 exp(—ry — rg|?/al 4), where a;, | = 0.2,
a = l, and a2 =daz |1 = (al,l + 6112)/2 = 0.6. This mod-
els two species of soft particles of different diameters, with
species 1 smaller than species 2.

The two species are subject to the same external poten-
tial, given by

0.017% — 10exp(—r2/80) fort =0

V(@ 1) =
0.01r> — 10exp(—r?/16) fort > 0.

We consider a system with 25 particles of each species and y
= 2. As shown in Fig. 9, this changes from a weakly confin-
ing potential to a more strongly confining one, resulting in a
phase separation with the smaller particles preferentially lo-
cated nearer the origin. For the case of soft particles, there is
no standard method of including HI, and we instead choose
to neglect these effects and concentrate on the difference be-
tween the inertial and overdamped DDFTs. As can be seen in
Fig. 10, there is very good agreement between both DDFTs

FIG. 7. Left plot shows the equilibrium particle distributions for N; = 150 particles of species 1 in red and Ny = 10 particles of species 2 in blue. Solid lines
correspond to 15 = 7 and dashed lines to , = 8. Note that the curves for species 1 are indistinguishable. Right plot shows a typical equilibrium configuration
for the same system. We show only the case 1, = 7; the case for 1, = 8 is similar and differences between particular realizations are uninformative.
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FIG. 8. Mean radial velocity for the 10 particles of species 2 as a function of time for various number of particles Ni of species 1. Left plot shows the system
with 72(0) = 7 and r,(t > 0) = 8, right plot shows the system with 7(0) = 8 and (¢ > 0) = 7. Red dashed lines show the DDFT neglecting HI, the results of
which are essentially independent of Ny due to the lack of direct interactions between the systems. Blue lines include HI and show a strong dependence on Nj.

25 14
4 P
y \
20 P 120
‘ A
. [N
, [N
15 p 1of 1
’ ;0
. 1 W
‘ ! [y
10 y N TR
i ' \
= R =Y P A
= L ™ ! A
-~ P E !
5 e < 6 ,l' \
i [N v
L 1, ' “
' \
0 "' 4 1,' [
. 1, \ “
‘ " ‘o
e 1 A
-5 . 2F ) A
o 1y RN
. 't A
10 P 0’/ S~ Tama
Si=camae
0 5 10 15 0 2 4 6 8
T

FIG. 9. Left plot shows the external potential for both species of soft particles at = 0 (solid line) and 7 > 0 (dashed line). Right plot shows the initial (solid
line) and final (dashed line) equilibrium particle distributions for the smaller species (red) and larger species (blue).

FIG. 10. Snapshots of radial particle distributions and velocities at various times for 25 particles of each species of soft particle. Species 1 in red and species 2
in blue. Lines show DDFT calculations, symbols stochastic dynamics for systems with (solid/crosses) and without (dashed/circles) inertia.
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and the corresponding stochastic dynamics. However, the in-
clusion of inertia strongly modifies the dynamics, especially
at early times.

IV. DISCUSSION

We have derived a general DDFT, including inertia and
HI, for systems with an arbitrary number of species of col-
loidal particles. We have shown the very good qualitative and
quantitative agreement between the DDFT and the full un-
derlying Langevin dynamics for systems of 3D hard spheres
in a spherically-symmetric external potential. We have also
demonstrated the importance of including HI in multi-species
systems, as well as an efficient and accurate numerical scheme
based on spectral methods for integro-differential equations.

The derivation of the multi-species DDFT presented here
requires three approximations. The first, the adiabatic approx-
imation, is common to all DDFTs. However, it is an open
problem to determine both the validity of this approxima-
tion and how to go beyond it. The second approximation is
that of local equilibrium, which is again standard (and in-
deed also required by the analogous one-species phase space
DDFTs'32%21) but lacks in a systematic validation away from
the high-friction limit. In particular, whilst it is formally pos-
sible to obtain a DDFT for molecular fluids by setting I' = 0,
it is expected that this approximation breaks down in such a
regime. In contrast to the adiabatic approximation, it is clear
that one way in which to extend the formalism beyond this
approximation is to consider higher momentum moments,>!
although this leads to significantly more complicated nu-
merical schemes. Finally, we have implemented a two-body
approximation to the HI terms, the extension of which is
straightforward.

There are a number of promising extensions to the DDFT
approach described here, including the effects of anisotropic
particles, self-propelled particles, confined geometries, and
external flows. Such extensions would allow the study of
many systems of physical interest including cloud formation,
wetting phenomena, and nanoparticle transport in the circula-
tory system. It is expected that both inertia and HI play im-
portant roles in the dynamics of these and many other related
systems. In addition, we plan to extend our spectral-methods-
based numerical implementation of DDFT to two dimensions,
allowing the study of the effects of inertia and HI in a much
wider range of systems.
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