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G. Oikonomou,* G. E. Valergakis,* G. Arsenos,* N. Roubies,† and G. Banos*1

*Department of Animal Production, and
†Department of Clinics, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Greece

ABSTRACT

The objectives of this study were to characterize the
changes of body condition score (BCS), energy content
(EC), cumulative effective energy balance (CEEB), and
blood serum concentrations of glucose, β-hydroxybuty-
rate (BHBA), and nonesterified fatty acids (NEFA)
across the first lactation of Holstein cows, and to esti-
mate variance components for these traits. Four hun-
dred ninety-seven cows kept on a commercial farm in
Greece that had calved during 2005 and 2006 were
used. Body condition score, estimated live weight, and
blood metabolic traits were recorded weekly for the first
3 mo of lactation and monthly thereafter until the end
of lactation. Body condition score and estimated live
weight records were used to calculate EC and CEEB
throughout the first lactation. Estimates of fixed curves
and genetic parameters for each trait, by week of lacta-
tion, were obtained with the use of random regression
models. The estimated fixed curves were indicative of
changes in the metabolic process and energy balance
of the cows. Significant genetic variance existed in all
studied traits, and was particularly high during the
first weeks of lactation (except for the genetic variance
of CEEB, which was not significant at the beginning of
lactation). Significant heritability estimates for BCS
ranged from 0.34 to 0.79, for EC from 0.19 to 0.87, for
CEEB from 0.58 to 0.93, for serum glucose from 0.12
to 0.39, for BHBA from 0.08 to 0.40, and for NEFA from
0.08 to 0.35. Genetic correlations between different
weeks of lactation were near unity for adjacent weeks
and decreased for weeks further apart, becoming practi-
cally zero for measurements taken more than 3 to 4 mo
apart, especially with regard to blood metabolic traits.
Significant heritability estimates were also obtained for
BCS recorded before first calving. Results suggest that
genetic evaluation and selection of dairy cows for early-
lactation body energy and blood metabolic traits is
possible.
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INTRODUCTION

Genetic selection for increased milk production has
led to an increase in the energy requirements of the
dairy cow, especially at the beginning of lactation. This
increase has not been accompanied by a proportionate
increase in DMI (van Arendonk et al., 1991). Further-
more, genetic selection for greater milk production as
well as improved dairy form or angularity may have
favored cows with greater propensity for intense lipid
mobilization (Dechow et al., 2003). Hence, the modern
Holstein cow usually experiences an extended period
of negative energy balance after calving. The magni-
tude and duration of this phenomenon has been proven,
in many studies, to be related to health and fertility
problems and is now considered one of the main prob-
lems that the dairy industry has to solve (Collard et
al., 2000; de Vries and Veerkamp, 2000). Most previous
studies focused on establishing phenotypic or environ-
mental relationships between body energy and func-
tional traits. However, there is evidence of substantial
genetic variation in the way dairy cows mobilize their
energy reserves (Coffey et al., 2003; Banos et al., 2005).
Substantial genetic correlation between energy balance
traits and reproductive performance has also been re-
ported (Veerkamp et al., 2000). Thus, there is a growing
interest to investigate the possibility to address the
negative energy balance problem through genetic se-
lection.

The direct calculation of cow energy balance from
estimates of feed intake and milk yield is quite difficult
under field conditions, usually because feed intake re-
cords at the individual cow level are mostly unavailable.
Thus, the use of various energy balance indicator traits
has been proposed for the study of negative energy bal-
ance and its effect on health and fertility.

Evaluation of body condition is a subjective yet reli-
able and widely accepted method of the assessment of
a cow’s fat tissue and body mass reserves (Edmonson
et al., 1989; Fox et al., 1999) and, therefore, BCS can
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be viewed as an indicator trait to energy balance. In
addition, total body energy content (EC) and cumula-
tive effective energy balance (CEEB), calculated from
BCS and live weight records, have been proposed for
the study of energy balance (Banos et al., 2006). Fur-
thermore, various metabolic traits have been associated
with energy balance. Blood serum concentrations of glu-
cose, BHBA, and NEFA are examples of such traits
(Reist et al., 2002; Clark et al., 2005).

Before genetic selection for any of the above men-
tioned energy balance-related traits becomes feasible,
their genetic variation and heritability must be studied.
Body condition score has already been genetically ana-
lyzed in several studies (e.g., Coffey et al., 2001; Berry
et al., 2003; Banos et al., 2005). Banos et al. (2006) also
reported genetic parameters for EC and CEEB derived
from research farm data. However, to the best of our
knowledge, the genetic profile of blood serum glucose,
BHBA, and NEFA throughout a lactation period, or
even for a part of this period, has not been reported.

The objective of this study was to obtain a deeper
understanding of the genetic variation in energy bal-
ance and metabolic regulation during lactation by a)
characterizing the systematic change of BCS, EC,
CEEB, and blood serum glucose, BHBA, and NEFA
concentrations just before first calving and throughout
the first lactation of cows kept on a commercial farm
setting and b) estimating genetic parameters for
these traits.

MATERIALS AND METHODS

Data

Data were collected on a large commercial dairy farm
located in northern Greece (41°2′ N, 25°15′ E, altitude
20 m). The cows were housed in 4 free-stall barns and
fed, twice daily, a total mixed ration to meet their en-
ergy and protein requirements. Ration formulation was
based on US National Research Council recommenda-
tions (NRC, 2001). Four hundred ninety-seven primipa-
rous Holstein cows that calved between January 2005
and July 2006 were considered in this study. Cows were
daughters of 210 sires. The average number of progeny
per sire was 2.4 with a standard deviation of 2.7 and
a range from 1 to 19. All cows had known pedigree
information. Considering all pedigree available and
tracing it for 3 generations added 2,809 ancestor ani-
mals to the data set.

Cows calved at an average age of 27.6 ± 2.6 mo. These
animals were either born on the farm or had been im-
ported as pregnant heifers from 3 other European coun-
tries. The latter is a common practice among many
commercial dairy farms in Greece.
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Body condition score of these cows was assessed after
the morning milking, by the same trained veterinarian,
weekly from calving to wk 13 of lactation and thereafter
monthly until the end of a 305-d lactation. A 5-point
scale (1 = emaciated, 5 = obese, scored in 0.25-point
intervals) and the method described by Ferguson et al.
(1994) were used. At the same time, the cows’ live
weight was estimated using a heart girth tape.

Blood was drawn from the coccygeal vein or artery in
a subset of 365 randomly selected cows. Blood samples
were left to clot at room temperature for approximately
30 min and then centrifuged at 2,000 × g. The obtained
serum samples were stored at −20°C until analyzed for
glucose, BHBA, and NEFA. Serum glucose and NEFA
were assayed colorimetrically using commercial kits
(Glucose GOD-PAP method, P. Zafiropoulos S.A., At-
tiki, Greece, and Wako NEFA C kit, Wako Chemicals
GmbH, Neuss, Germany, respectively). The serum con-
centration of BHBA was assayed with the use of an
enzymatic kinetic method based on the oxidation of β-
hydroxybutyrate to acetoacetate by β-hydroxybutyrate
dehydrogenase (Bruss, 1997):

β-hydroxybutyrate + NAD+ ←→
pH 9.5

βHBDH
acetoacetate

+ NADH + H+.

The intraassay coefficient of variation was 1 to 3% for
glucose and 1.5 to 3% for NEFA whereas the interassay
coefficient was 3 to 5% for both glucose and NEFA. For
BHBA, the intra- and interassay coefficients were 2 to
4% and 4 to 8%, respectively.

The final data set consisted of 8,094 BCS, 8,087 esti-
mated live weight, and 6,015 blood serum glucose,
BHBA, and NEFA concentration records. Some cows
did not complete the 305-d lactation because they were
involuntarily culled. However, all animals in the data
set had at least one BCS and estimated live weight
record. Body condition score and estimated live weight
records were used for the calculation of body EC and
CEEB according to the procedure described in detail
by Banos et al. (2006). Briefly, empty body weight and
total lipid and protein weights were predicted using the
method of the National Research Council (NRC, 2001)
and were then combined to calculate EC. The latter
was an estimate of the total energy in a cow’s body at
any given time of lactation. Changes in predicted lipid
and protein weights from one week of lactation to the
next were converted to effective energy as described by
Banos et al. (2006), yielding estimates of CEEB. The
latter represented body energy changes as accumulated
throughout lactation.
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Table 1. Descriptive statistics of BCS, estimated live weight (ELW), energy content (EC), cumulative
effective energy balance (CEEB), and blood serum concentration of glucose, BHBA, and NEFA measured
throughout first lactation

Item Records, n Cows, n Mean SD Minimum Maximum

BCS (1–5) 8,094 497 2.47 0.44 1.25 5.00
ELW (kg) 8,087 497 549.6 66.5 350.0 803.0
EC (MJ) 8,087 497 4,465 947 2,329 9,928
CEEB (MJ) 8,087 497 −424 974 −3,690 5,984
Glucose (mg/dL) 6,015 365 74.3 19.7 12.0 190.0
BHBA (mmol/L) 6,015 365 0.79 0.28 0.19 4.42
NEFA (mmol/L) 6,015 365 0.32 0.30 0.02 4.00

Single measurements of BCS, estimated live weight,
EC, and serum glucose, BHBA, and NEFA concentra-
tions taken approximately 2 mo before first calving were
also available for a subgroup of the studied animals.

Statistical Analysis

Repeated cow BCS, EC, CEEB, glucose, BHBA, and
NEFA records taken throughout first lactation were
analyzed with the following random regression model;
each trait was analyzed separately:

Yijkmn = YSi + Cj + a1 � age + ∑
3

n=0

bnPnWm

+ ∑
3

n=0

cknPnWm + ∑
1

n=0

dknPnWm + eijkmn,

where Yijkmn = record of cow k in week of lactation m,
YSi = fixed effect of year-season of calving i (4 levels),
Cj = fixed effect of country of origin j (4 levels), a1 =
linear regression coefficients on age at calving (age),
Wm = week of lactation m (44 levels), bn = fixed regres-
sion coefficient on week of lactation, ckn = random re-
gression coefficient on week of lactation associated with
the genetic effect of cow k including the full animal
pedigree relationship matrix, dkn = random regression
coefficient on week of lactation associated with the per-
manent environment effect of cow k, Pn = nth orthogonal
polynomial of week m (n + 1 = order of polynomial),
and eijkmn = random residual term (4 classes as de-
scribed below).

In the model the fixed regression coefficient was asso-
ciated with an overall, average lactation curve for each
trait, whereas the random regression was associated
with each individual cow’s deviation from the overall
curve. The full model was applied to the analysis of
BCS, EC, and CEEB. For the analysis of blood serum
glucose, BHBA, and NEFA concentration, the effects of
country of origin and age at calving were not included
because preliminary analyses showed that they were
not significantly different from zero (P > 0.05).
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Fourth-order orthogonal polynomial was chosen to
model the genetic effect following preliminary analyses
of different (lower) orders and comparisons between
models using the log-likelihood, until the latter stopped
changing significantly (P > 0.05) with increasing polyno-
mial order. This was true for all traits except BHBA,
where third-order was the maximum significant.

Permanent environment was modeled with second-
order orthogonal polynomial. Efforts to increase the
order were unsuccessful as they led to convergence
problems. This may be a function of the data size, al-
though the number of observations is not deemed too
small for a controlled study. Another explanation can
be that higher order regression might have actually
over fitted first-lactation permanent environment ef-
fects. For the analysis of CEEB, glucose, and NEFA, a
first-order permanent environment polynomial was the
highest significant.

Depending on lactation stage, 4 measurement error
classes were defined as follows: wk 1 to 4, 5 to 9, 10 to
21, and >21. Different residual variances were esti-
mated for each measurement error class, while covari-
ances between classes were zero.

The REML estimates of (co)variance components
from the model were used to calculate heritabilities
for each trait and week of lactation as well as genetic
correlations between different weeks of lactation. All
analyses were performed with the use of the ASREML
software package (Gilmour et al., 2002). Single records,
taken on heifers before calving, were analyzed with a
similar model that included the effect of days to calving
but excluded the fixed and random regressions on week
of lactation. Product-moment correlations among esti-
mated animal breeding values for all studied traits were
calculated to derive estimates of the relationship be-
tween these traits.

RESULTS

Descriptive statistics of the studied traits are shown
in Table 1 and Table 2. Estimated fixed curves for each
trait by week of lactation are shown in Figure 1 (BCS,
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Table 2. Descriptive statistics, genetic variance, and heritability (h2) of BCS, estimated live weight (ELW), energy content (EC), and blood
serum concentrations of glucose, BHBA, and NEFA measured on pregnant heifers

Item Heifers, n Mean SD Minimum Maximum Genetic variance h2 P-value

BCS (1–5) 192 3.24 0.47 2.25 5.00 0.19 ± 0.08 0.88 ± 0.37 0.02
ELW (kg) 143 606.0 66.8 463.0 772.0
EC (MJ) 143 5,559 951 3,752 7,720 379,300 ± 315,400 0.50 ± 0.41 0.22
Glucose (mg/dL) 174 70.6 19.8 20.0 122.0 123.9 ± 72.8 0.37 ± 0.21 0.08
BHBA (mmol/L) 175 0.55 0.19 0.24 1.57 0.010 ± 0.007 0.25 ± 0.18 0.16
NEFA (mmol/L) 142 0.49 0.41 0.05 2.50 0.018 ± 0.012 0.29 ± 0.20 0.15

EC, and CEEB) and Figure 2 (blood serum glucose,
BHBA, and NEFA concentrations). These curves illus-
trate the average value for each trait at specific times
of lactation as well as changes throughout lactation,
adjusted for all other effects included in the model.

Estimated genetic variances for BCS, EC, CEEB, and
blood concentrations of glucose, BHBA and NEFA by
week of lactation are illustrated in Figure 3 and Figure
4, respectively. Furthermore, heritability estimates for
all traits by week of lactation are presented in Figure 5.

Figure 1. Estimated fixed curves of BCS (SE = 0.009 to 0.034),
energy content (EC; SE = 19.3 to 71.7), and cumulative effective
energy balance (CEEB; SE = 24.7 to 96.3) by week of lactation.
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Genetic variance for BCS (Figure 3) was greater at
the beginning and the end of lactation. Standard errors
indicated that all genetic variances were significantly
different from zero (P < 0.05). Weekly heritabilities de-
rived from these estimates ranged from 0.34 (±0.19) to
0.79 (±0.20) (Figure 5). Genetic variance trends were
similar for EC (Figure 3). All estimates were signifi-
cantly different from zero (P < 0.05) except for wk 6 to
10 (P = 0.08 to 0.12), which were associated with the

Figure 2. Estimated fixed curves of blood serum concentrations
of glucose (SE = 0.63 to 1.80), BHBA (SE = 0.008 to 0.023), and NEFA
(SE = 0.008 to 0.023) by week of lactation.
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Figure 3. Estimated genetic variance of BCS (SE = 0.023 to 0.038),
energy content (EC; SE = 58,872 to 157,216 MJ2), and cumulative
effective energy balance (CEEB; SE = 67,683 to 122,124 MJ2) by week
of lactation.

lowest levels of EC (Figure 1). Heritability estimates
for the periods when genetic variance was significantly
different from zero ranged from 0.19 (±0.11) on wk 4 of
lactation to 0.87 (±0.19) at the end of lactation (Figure
5). Genetic variance of CEEB (Figure 3) was not signifi-
cantly different from zero (P > 0.05) during the first 6
wk of lactation, which is expected given the definition
of the trait. Thereafter, genetic variance estimates
steadily increased and were always significantly differ-
ent from zero (P < 0.05). Corresponding heritability
estimates ranged from 0.58 (±0.26) on wk 7 of lactation
to 0.93 (±0.08) at the end of lactation (Figure 5).

Estimated genetic variance of serum glucose levels
was greater at the beginning and the end of lactation
(Figure 4). All estimates were significantly different
from zero (P < 0.05) while heritability ranged from 0.12
(±0.04) on wk 38 to 0.39 (±0.11) at the end of lactation
(Figure 5). In this particular trait, there was a sharp
increase of the genetic variance estimate toward the
very end of the trajectory, which may be due to fitting a
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Figure 4. Estimated genetic variance of blood serum concentra-
tions of glucose (SE = 10.05 to 39.69 mg2/dL2), BHBA (SE = 0.002 to
0.007 mmol2/L2), and NEFA (SE = 0.001 to 0.004 mmol2/L2) by week
of lactation.

high-order polynomial. Estimates at the end of lactation
were associated with relatively greater standard errors
(0.003–0.004) compared with other lactation stages
(0.001–0.002) but were still significantly different from
zero (P < 0.05). Despite this observation, fitting a fourth-
order polynomial was justified by the significant (P <
0.05) increase in the log-likelihood.

Genetic variance estimates for BHBA serum concen-
tration were significantly greater than zero (P < 0.05)
during the first 7 wk of lactation (Figure 4). Heritability
estimates for this period ranged from 0.08 (±0.04) to
0.40 (±0.06) (Figure 5).

Estimated genetic variance of serum concentration
of NEFA was significantly different from zero (P < 0.05)
until wk 24 of lactation (Figure 4). Heritability esti-
mates for this period ranged from 0.08 (±0.04) to 0.35
(±0.05) in the beginning of lactation (Figure 5).

Genetic correlations of the above traits in different
weeks of lactation were near unity for adjacent weeks
and decreased for weeks further apart. Compared with
the onset of lactation, genetic correlations decreased
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Figure 5. Heritability estimates for BCS (SE = 0.19 to 0.30),
energy content (EC; SE = 0.20 to 0.33), cumulative effective energy
balance (CEEB; SE = 0.05 to 0.34), and blood serum concentrations
of glucose (SE = 0.03 to 0.10), BHBA (SE = 0.03 to 0.14), and NEFA
(SE = 0.02 to 0.14) by week of lactation.

most rapidly for BHBA, followed by glucose, NEFA, and
the body energy traits. This is illustrated in Figure
6 presenting genetic correlations of each studied trait
measured on wk 4 of lactation with subsequent week
measurements. Average genetic correlation of body en-
ergy traits measured in the first 4 wk and last 4 wk of
lactation was 0.25 and 0.10 for BCS and EC, respec-
tively. Also, the average genetic correlation between
the first 4 wk and all remaining weeks for the same 2
traits were 0.42 and 0.34, respectively. For CEEB,
where genetic variation in the first 6 wk was not statis-
tically significant (P > 0.05), genetic correlations of re-
cords in wk 7 to 10 with all remaining and the last 4
wk of lactation were 0.71 and 0.56, respectively. Genetic
correlations of the blood serum concentration traits in
different weeks of lactation were, in general, lower than
those of the other traits. These correlations became
practically zero for measurements taken more than 3
to 4 mo apart. For example, glucose measurements in
the first 4 wk of lactation had significant (P < 0.05)
positive genetic correlations with measurements up to
wk 16 with an average estimate of 0.54. Thereafter,
genetic correlations were not significantly different
from zero. For BHBA, serum levels in the first 4 wk
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Figure 6. Genetic correlations of BCS, energy content (EC), cumu-
lative effective energy balance (CEEB), and blood serum concentra-
tions of glucose, BHBA, and NEFA measured in the fourth week of
lactation with subsequent week measurements.

were significantly correlated with measurements until
wk 9 (average estimate 0.72) and for NEFA the corres-
ponding values were 15 wk and an average genetic
correlation of 0.58.

Genetic variance and heritability estimates were also
obtained for BCS, EC, and blood serum glucose, BHBA,
and NEFA concentrations measured on heifers once
before calving. These results are presented in Table 2.
Genetic parameters were significantly greater than
zero (P < 0.05) only for BCS.

Finally, average product-moment correlations among
animal breeding values for the studied traits are pre-
sented in Table 3. These are averages of correlations
pertaining to the first 3 mo (13 wk) of lactation.

DISCUSSION

Estimated fixed curves for the 6 studied traits are
clearly indicative of changes in the metabolic process
and energy balance of cows during lactation. The nega-
tive energy balance period in the beginning of lactation
is characterized by a decrease of BCS, EC, and CEEB.
This situation is reversed in later stages of lactation.
Furthermore, lower glucose levels and increased BHBA
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Table 3. Average product-moment correlation estimates1 between
animal breeding values for BCS, energy content (EC), cumulative
effective energy balance (CEEB), and blood serum concentrations of
glucose, BHBA, and NEFA measured in the first 13 wk of lactation

Item EC CEEB Glucose BHBA NEFA

BCS 0.81* 0.30* 0.09* 0.00 0.05
EC 0.49* 0.10* 0.02 0.06
CEEB 0.13* 0.00 −0.27*
Glucose −0.04 −0.14*
BHBA 0.44*

1SE = 0.04.
*P < 0.05.

and NEFA levels were observed during the first weeks
of lactation compared with mid or late lactation. Fixed
curves of EC and CEEB calculated in the present study
are similar to those presented by Banos et al. (2006).
Wathes et al. (2007a) investigated the phenotypic
change of BHBA and NEFA levels during the first 7
wk of lactation. Their results, although not derived from
a genetic analysis and the use of random regression
models, were still relatively comparable to results from
the present study that showed BHBA and NEFA levels
to be greater during the first weeks of lactation.

The genetic profile of BCS has been investigated in
several previous studies. Our results are quite similar
to those from studies conducted on single farms using
observations on a few hundreds cows. For example,
Coffey et al. (2001) reported heritability estimates for
BCS across the first lactation that ranged from 0.38 to
0.81, using data from an experimental research station.
In another study with similar data, Veerkamp and
Brotherstone (1997) found that the heritability esti-
mate was 0.43 for the first 26 wk of the first lactation. In
the present study, data were from a commercial rather
than a research farm, and the fact that results were
consistent with the literature suggests that the type of
farm may not be the crucial factor in a genetic analysis,
as long as all other sources of systematic variation are
properly recorded and accounted for.

Lower BCS heritability estimates have, in general,
been reported in studies conducted using large numbers
of cows raised in many different herds. This is expected
because, in single farm studies, more controlled envi-
ronmental conditions can lead to greater heritability
estimates. Body condition score heritability estimates
from large-scale studies have been reported to range
from 0.23 to 0.28 (Jones et al., 1999), 0.39 to 0.51 (Berry
et al., 2003), 0.22 to 0.38 (Banos et al., 2004), and 0.23
to 0.37 (Koenen et al., 2001).

Genetic variance and heritability estimates for EC
and CEEB were very similar to those reported by Banos
et al. (2006) using data from an experimental farm
in Scotland. Among body energy traits measured in
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pregnant heifers, only BCS had a significant heritabil-
ity estimate, suggesting possible utility in a genetic
evaluation and selection program. Its genetic correla-
tion with postpartum energy balance levels still needs
to be established.

As has already been mentioned, genetic parameters
for glucose, BHBA, and NEFA serum concentrations
throughout lactation were not found in the literature.
Therefore, no direct comparisons can be made with the
results of this study. Ingvartsen and Friggens (2005)
reported significant between-cow variation for glucose,
BHBA, and NEFA concentrations. Although not a ge-
netic analysis, this was an indication of genetic varia-
tion in these traits. Furthermore, genetic selection for
milk yield has been found to affect these traits (Veer-
kamp et al., 2003), which is another indication of the
existence of genetic variation. Such indications were
confirmed and quantified in the present study. More
comparable to our results were heritability estimates
of blood serum glucose and NEFA concentration that
were reported by Hayhurst et al. (2007) using data on
Holstein male calves that were approximately 9 mo old.
These estimates were 0.15 for both traits and were close
to the lower limit of our results. The greater heritability
values that were observed in our study during the first
week of lactation are probably related to the metabolic
challenges a dairy cow faces immediately after calving
that may be connected to a different expression of her
genetic component for the specific traits. This could also
explain the greater heritability estimates for BHBA
levels that were observed in our study during the first
week of lactation.

Heritability estimates of blood metabolic traits in
pregnant heifers were not statistically significant.
From these estimates, only glucose approached signifi-
cance (P = 0.08) and was slightly greater than the esti-
mate reported for male calves in the study by Hayhurst
et al. (2007).

Genetic correlations of the body energy traits studied
here (BCS, EC, CEEB) in different weeks of lactation
were very high for adjacent weeks and decreased for
weeks further apart. This pattern was expected and
consistent with that reported by Banos et al. (2005) for a
trait associated with body energy balance accumulated
throughout lactation. These results indicate that the
way cows start accumulating lipid and protein changes
at the first stages of lactation sets the pace for energy
changes in the remainder of lactation. The utility of
this result lies in the ability to predict future energy
balance indicators, especially CEEB, from values ob-
tained early in lactation, potentially assisting farm
management practices. Furthermore, it could enable
the estimation of CEEB at the first stages of lactation
from values obtained in mid to late lactation.
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Genetic correlations of the blood serum concentration
traits in different weeks of lactation were, in general,
lower than those of the other traits. These correlations
became practically zero for measurements taken more
than 3 to 4 mo apart. Results suggest that although
early-lactation body energy measurements are decent
genetic predictors of late lactation, this is not necessar-
ily true for blood serum concentration traits, whose
predictive capacity ends 11 to 16 wk later. For BHBA
and NEFA, this is consistent with near-zero genetic
variance levels observed at mid to late lactation. How-
ever, it is important to note that a genetic evaluation
for the early-lactation profile of these traits is possible
with a single measurement obtained at any time during
the first 2 to 3 mo of lactation.

Product-moment correlations among animal breed-
ing values for the studied traits were calculated as the
minimum values of the genetic correlation between
these traits. Average correlation estimates of the first
3 mo of lactation ranged from weak to strong. This early
stage of lactation is the period when weekly phenotypic
measurements were available. This period is also of
interest to farm management because it precedes the
onset of inseminations. Body condition score had a con-
siderable correlation with the other body energy traits
(EC and CEEB) but its correlation with metabolic traits
was very low or close to zero. This result may have
implications in the use of such traits for selection aim-
ing at improving cow health and fertility. In the pres-
ence of significant genetic correlations with the latter,
measuring only BCS will not provide as much informa-
tion as measurement of more than one of the studied
traits.

Previous studies on the genetic profile of BCS, EC,
and CEEB, and their genetic correlation with economi-
cally important traits such as fertility or somatic cell
count, have already alluded to the opportunity for ge-
netic selection of dairy cows for these traits (Pryce et
al., 2000; Banos et al., 2004, 2006). Results presented
here support this argument. Furthermore, new selec-
tion opportunities arise with the genetic characteriza-
tion of metabolic traits related to dairy cow energy bal-
ance. Genetic selection of cows that have more desirable
metabolic profiles, especially at the critical early post-
partum period, seems to be possible because the herita-
bilities of glucose, NEFA, and BHBA concentration, at
least during the first weeks of lactation, were found to
be significantly greater than zero. Heritability esti-
mates of BCS before first calving suggest that the ge-
netic evaluation of heifers could be possible, giving use-
ful information early in the animal’s life. Validation of
these data with similar studies that could also involve
observations on multiparous cows would be desirable,
while estimates of genetic correlations between these
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metabolic traits and health and fertility traits are
largely missing from the literature. On the other hand,
phenotypic relationships of metabolic energy balance
indicators with health (LeBlanc et al., 2005; Hammon
et al., 2006) and fertility (Reist et al., 2000; Westwood
et al., 2002; Reist et al., 2003; Walsh et al., 2007;
Wathes et al., 2007b) have already been reported. The
substantial genetic variation presented here for these
metabolic traits enhances the importance of an attempt
to quantify the proportion of these phenotypic relation-
ships that is due to genetic factors. If significant genetic
correlations of blood metabolic traits with health and
fertility are established, then measurements of the for-
mer can be used to facilitate genetic improvement of
health and fertility traits, which are known to have
low heritability.

Arguably, recording blood metabolic traits in a com-
mercial dairy cattle population can be difficult. It re-
quires a properly equipped laboratory, and the cost for
consumables is not negligible. In our case, the consum-
ables cost for the measurement of glucose, BHBA, and
NEFA was approximately €3.5 (US$5.20) and analysis
took 7 to 9 min per sample. An additional cost is re-
quired for the acquisition of blood samples. In this re-
gard, possible first applications of such trait recording
and monitoring may be restricted to selected herds,
where elite breeding animals are principally identified
and evaluated.

At the same time, metabolic profiles during the tran-
sition period are considered to be very useful tools for
the refinement of nutrition and health management
procedures, especially in high production herds (Herdt,
2000; Oetzel, 2004). This fact, together with the devel-
opment of more automated techniques for frequent
sampling and biochemical analyses and probably the
reduction of the cost of consumables, could present a
possibility for the introduction of metabolic profiles in
dairy herd improvement schemes and the use of these
measurements for management and selection purposes.

CONCLUSIONS

Results presented in this study show that there is
significant genetic variation in body energy and meta-
bolic traits throughout lactation and, specifically and
perhaps more importantly, in the early stages of lacta-
tion. Genetic evaluation of dairy cows for these traits,
based on records taken in the first 2 to 3 mo of lactation,
is possible. This can contribute to the selection of ani-
mals that are more capable of coping with the metabolic
stress of the postpartum period, as manifested, for ex-
ample, by their lower blood BHBA concentration during
early lactation, potentially leading to an improvement
of their health and reproductive performance.
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