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Comment on “Solitons in highly nonlocal nematic liquid crystals: Variational approach”
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1Nonlinear Optics and OptoElectronics Lab (NooEL), University of Rome “Roma Tre,” Via della Vasca Navale 84, 00146 Rome, Italy
2School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,

Edinburgh EH9 3JZ, Scotland, United Kingdom
(Received 2 November 2012; published 17 April 2013)

In their recent paper [N. B. Aleksić, M. S. Petrović, A. I. Strinić, and M. R. Belić, Phys. Rev. A 85, 033826
(2012)], Aleksić et al. numerically study the propagation of spatial solitary waves in nematic liquid crystals in
the presence of noise. As expected, and reported earlier in their previous work on the same topic, the authors find
that optical solitary waves in the presence of perturbations are no longer stationary, oscillate in amplitude and
width as they propagate, and eventually decay to linear waves. Surprisingly, they conclude that spatial solitary
waves are difficult to observe in nematic liquid crystals, in contrast to numerous experimental reports and the
vast literature on the topic. We argue with such a conclusion in light of the behavior of wave-packet solutions of
nonlinear Schrödinger-type equations.

DOI: 10.1103/PhysRevA.87.047801 PACS number(s): 42.65.Tg, 42.65.Jx, 42.70.Df

The recent paper [1] derives numerical steady-state solitary
wave solutions, known also as nematicons [2,3], of the
coupled system of equations governing nonlinear optical beam
propagation in nematic liquid crystals in the presence of an
external bias [4]. The simplified model governing a nonlinear
optical beam in reorientational nematic liquid crystals consists
of a coupled system of a nonlinear-Schrödinger (NLS)-type
equation for the light beam envelope and an elliptic equation
for the medium response, that is the field-induced rotation
of the molecular director [4,5]. In addition, a variational
approach, based on a chirped Gaussian trial function for the
beam [6], is used to derive analytical approximations to the
exact nematicon solution. As known from previous reports on
the theoretical model, as well as numerics and experiments in
nematic liquid crystals [5,7], they find that when a beam which
is not an exact solitary wave is launched, it oscillates in width
and intensity [5]. The main conclusion the authors of Ref. [1]
draw from this is that nematicons, i.e., optical solitary waves in
space, are difficult to observe in nematic liquid crystals, a claim
which is in sharp contrast to the existing literature [8]. This
conclusion has a number of problems in light of the behavior
of wave-packet solutions of NLS-type equations.

The standard (1 + 1)-D NLS equation is

i
∂u

∂z
+ 1

2

∂2u

∂x2
+ |u|2u = 0, (1)

which has the soliton solution

u = a sech ax e
1
2 a2z. (2)

If the input wave packet is not an exact soliton, then the
beam oscillates in amplitude and width, shedding diffractive
radiation, in order to reach the exact soliton solution [9]. This
behavior is guaranteed by the inverse scattering solution of
the NLS equation, as any initial beam must evolve to a fixed
number of solitons plus diffractive radiation [10–12]. This
oscillatory evolution is in contrast to the exponential evolution
to the steady state for the Korteweg–de Vries (KdV) model,
which is another equation with an inverse scattering solution
[10–12]. This oscillatory behavior of initial nonsolitary wave
beams holds for any NLS-type equation, as has been shown
for perturbed NLS equations [12] and coupled systems of NLS

equations [13,14]. So, general results for NLS-type equations
show that the oscillations seen in [1] for non-nematicon input
beams are due to an excitation adjusting to become an exact
solitary wave. It is not evidence that exact nematicons do not
exist or that they are difficult to observe. In experiments, for
large nonlocality, the evolution to the steady state is slow [15]
and so the typical Gaussian input does not have enough
propagation distance to evolve to a steady state over the usual
millimeter lengths [4]. In addition, the width oscillations are
not evidence that a steady breather has formed [1], as over
longer length scales, the oscillations decay in amplitude [15].
These oscillations are not the same as those shown by exact
breathers of the sine-Gordon equation [12], which are solitary
waves oscillating in a periodic fashion on any length scale and
shedding no radiation: they are steady, apart from the breathing
amplitude. The same comments apply to the evolution of a
beam in a cell in which noise is introduced as a perturbation [1].
The beam oscillations are the usual behavior for an NLS-
type solitary wave adjusting to local changes. Although the
linear, highly nonlocal (in fact, infinitely nonlocal) model of
Snyder and Mitchell [16] has steadily oscillating solitary-wave
solutions, this is an artifact of the approximation. The infinite
nonlocality approximation reduces the nematic response to an
infinite parabolic potential which traps all waves, so that the
solitary wave cannot shed radiation to evolve to a steady state.
Without this linear approximation, the “nematic potential” is
finite, so that the solitary wave can shed radiation and evolve
to a steady state.

Reference [1] concludes that steady nematicons are difficult
to observe experimentally based on numerical solutions of the
standard scalar system of equations governing such beams.
Such a conclusion could simply be recast as follows: Exact
solitary waves (i.e., mathematical solutions) do not exist in
any medium whose response is real, i.e., whose response
cannot be reduced to ideal equations neglecting losses, noise,
perturbations, etc. The main point about any such equations
governing a real phenomenon is that they are always an
approximation to a complicated physical process: assumptions
and approximations are made as to which physical effects
can be ignored to lead to a tractable system of govern-
ing equations. Experimental measurements and observations

047801-11050-2947/2013/87(4)/047801(2) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.033826
http://dx.doi.org/10.1103/PhysRevA.85.033826
http://dx.doi.org/10.1103/PhysRevA.87.047801


COMMENTS PHYSICAL REVIEW A 87, 047801 (2013)

reflect the physical reality. Hence, making strong predictions
from the results of simplified mathematical models should
be treated with caution. Solitary waves have been observed
and reported in many physical systems, e.g., internal waves in
the ocean and atmosphere, surface waves in fluids, plasmas,
and optics [10,17–21]. Indeed, this work dates back to the
pioneering solitary-wave studies of Russell [22]. In all of
these cases, these waves are neither steady nor exact solutions
of some simplified governing equation, but the existence of
solitary waves in such systems is accepted, as the observed

solitary waves are, to a good approximation, governed by the
simplified equations when effects not included in them are
acknowledged.

In conclusion, the oscillatory beam behavior reported in [1]
is expected due to the general form of the governing equations.
This behavior is not evidence that solitary waves cannot be
observed in nematic liquid crystals or other nonlinear media.

This work was supported by the Royal Society of London
under Grant No. IE111560.
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