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a  b  s  t  r  a  c  t

Background and purpose: The objective of brain perfusion quantification is to generate para-

metric maps of relevant hemodynamic quantities such as cerebral blood flow (CBF), cerebral

blood volume (CBV) and mean transit time (MTT) that can be used in diagnosis of acute

stroke. These calculations involve deconvolution operations that can be very computation-

ally  expensive when using local Arterial Input Functions (AIF). As time is vitally important

in  the case of acute stroke, reducing the analysis time will reduce the number of brain cells

damaged and increase the potential for recovery.

Methods: GPUs originated as graphics generation dedicated co-processors, but modern GPUs

have  evolved to become a more general processor capable of executing scientific compu-

tations. It provides a highly parallel computing environment due to its large number of

computing cores and constitutes an affordable high performance computing method. In

this  paper, we will present the implementation of a deconvolution algorithm for brain per-

fusion quantification on GPGPU (General Purpose Graphics Processor Units) using the CUDA

programming model. We  present the serial and parallel implementations of such algorithms

and  the evaluation of the performance gains using GPUs.

Results: Our method has gained a 5.56 and 3.75 speedup for CT and MR images respectively.

Conclusions: It seems that using GPGPU is a desirable approach in perfusion imaging analysis,

which does not harm the quality of cerebral hemodynamic maps but delivers results faster

than the traditional computation.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1.  Introduction

With the development of computed tomography (CT) [1,2]
and magnetic resonance (MR) imaging [3,4], perfusion imaging
becomes a very powerful clinical tool for evaluation of brain
physiology. They can be used to evaluate brain function via
assessment of cerebral perfusion parameters.

The main applications of brain perfusion imaging are
acute stroke and brain tumors. In the case of acute stroke,
the information obtained from brain perfusion imaging can
be used to evaluate the appropriateness of administering
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thrombolytic treatment, which can help to reduce the final
volume of dead tissue, but has some risks such as hemor-
rhages. The results are used to evaluate the possible benefits.
In the case of tumors, they are used to distinguish tumor char-
acteristics and follow tumor development, possibly also after
treatment to see whether it has been effective.

Evaluating tissue time–concentration curve of a contrast
agent intensity after its injection, has become possible on
time scales comparable with the mean transit time (MTT).
To achieve this, deconvolution is used in perfusion imaging
to obtain the Impulse Response Function (IRF) that is then
used to create parametric maps of relevant hemodynamic
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quantities such as cerebral blood flow (CBF), cerebral blood
volume (CBV) and mean transmit time [5–7]. Cerebral blood
flow indicates the volume of blood flowing through a given
voxel in a given time. Cerebral blood volume refers to the vol-
ume  of blood in a given voxel of brain tissue. Mean transit
time designates the average time blood takes to flow through
a given voxel of brain tissue, it is commonly measured in sec-
onds. Time To Peak (TTP) and Time of Arrival (TA) are two
other parameters often be measured [8].  TA refers to the time
of arrival of the contrast agent in the voxel after injecting
contrast agent. TTP refers to corresponding time of the max-
imum contrast concentration. In previous studies, singular
value decomposition (SVD) and its variants were proved to be
applicable to perform deconvolution in perfusion imaging [9].
As the raw data obtained from CT or MR  scanners is not noise
free and as deconvolution is very sensitive to noise, truncated
SVD is used to minimize the noise impact [10–13].

In clinical practice, a global AIF for the entire brain can be
determined from voxels near a major artery feeding the brain.
However, the global AIF technique is based on the assump-
tion that the contrast agent reaches every voxel of the brain
at the same time. In the case of acute stroke, the contrast
arrival time can be different and the assumption is not sat-
isfied. As a result, using a global AIF for the entire brain is not
very accurate [14,15].

The other solution is to use local AIFs [16–19].  Instead of
using a global AIF generated from voxels near the major artery
for whole brain, different local AIFs are used for a single scan.
Each local AIF is generated by measuring a small set of blood
vessels in a specified area near the voxel of interest. Lorenz
et al. [16] had shown that localized AIFs are feasible and pro-
vide more  useful perfusion results.

However, using local AIFs leads to fairly slow performance,
in the worst case, the perfusion-imaging analysis takes more
than half an hour compared with the running time of global
AIFs based methods which is a couple of minutes. According
to Saver’s experiment in 2006 [20], during 30 min, 57.6 million
neurons die. In the same minutes, your brain loses 41.4 billion
synapses and 360 km of axonal fibers. Since a stroke is a med-
ical emergency and every second counts, the sooner results
are delivered in diagnosis, the less damage will be caused to
a patient’s brain. Obviously, half an hour is not a reasonable
option for clinical diagnosis. Therefore, a parallel implementa-
tion of perfusion-imaging analysis which brings performance
speedup without quality lose is very promising to help using
local AIFs in perfusion imaging.

In this paper, we  present a GPGPU-based brain perfusion
imaging analysis implementation using the CUDA program-
ming model. We  also compared the performance of the serial
and parallel perfusion imaging analysis methods.

2.  Background  and  methods

2.1.  Perfusion  imaging  algorithm

Ostergarrd et al. [11,12] and Wurestan et al. [13] have shown
that an accurate CBF can be determinated using deconvolu-
tion of a tissue time–concentration curve and an AIF. From a
CT or MR  scanner, we  get a series of brain images at different

sampling times. For each voxel, we collect data at specific time
intervals to build a tissue time–concentration curve of con-
trast agent intensity, which is also called volume of fluid (VOF)
curve. This curve will be referred to as Ct.

A local AIF matrix is created from the local AIF vector as
follows:

Ca = �t

⎛
⎜⎜⎜⎜⎜⎝

Ca(t1) 0 · · · 0

Ca(t2) Ca(t1) · · · 0

...
...

. . .
...

Ca(tN) Ca(tN−1) · · · Ca(t1)

⎞
⎟⎟⎟⎟⎟⎠

(1)

where (t1, t2, . . .,  tN) is the sampling time, (Ca(t1), Ca(t2), . . .,
Ca(tN)) is an arterial input function given as an input and �t  is
time scale.

In perfusion imaging, the output we want to obtain is
Impulse Response Function (IRF), which is referred to as h.

The volume of fluid, Ct, the Ca, and IRF h satisfies the fol-
lowing equation:

Ct = Ca ⊗ h + � (2)

where ⊗ denotes convolution and � is the noise.
Finally, the CBF, CBV and MTT for each voxel are calculated

as follows:

CBF = Max(h) (3)

CBV =
∫ ∞

0

h(t) dt (4)

MTT  = CBF

CBV
(5)

Singular value decomposition (SVD) is one of the most popu-
lar techniques to solve deconvolution problems in perfusion
imaging. Suppose Ca from Eq. (1) is an m-by-m matrix, there
exists a factorization such that:

Ca = U · W · VT (6)

where U is an m × m unitary matrix, W is m × n diagonal matrix
and V* is the transpose of an n × n unitary matrix V. A common
convention is to order the diagonal matrix W in a decreas-
ing order and these diagonal entries of W are known as the
singular values of original matrix Ca.

The C−1
a can then be written as:

C−1
a = V · W−1 · (UT) (7)

To solve the deconvolution problem in Eq. (2),  the solution
can be simply delivered after applying SVD:

h = V ·W−1 · (UT · Ct) (8)

Furthermore, as rows in Ca in Eq. (2) are close to linear com-
binations, the deconvolution is an ill-posed problem, hence, it
is very sensitive to noise. Truncated SVD is introduced to mini-
mize the effect of noise. In truncated SVD, a threshold is added
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Fig. 1 – CUDA data and control flow. This figure indicates
the four steps of a CUDA data and control flow.

and elements of the diagonal matrix W whose value is smaller
than this threshold will be set to zero [11,12].

2.2. CUDA  for  GPGPU

GPUs are especially well suited to address data parallel compu-
tation problems that the same program is executed on a large
number of data elements in parallel especially for those tasks
which can be split into single instruction, multiple data (SIMD)
subtasks. For example, GPUs are good at handling matrix oper-
ations since the same transformation is executed on every
element within the matrix and there is almost no dependence
between different elements.

Compute Unified Device Architecture (CUDA) is a parallel
computing architecture developed by NVIDIA in 2006 [21] with
an associated software toolkit. It is the entry point for develop-
ers who prefer high-level computer programming, compared
with Open Computing Language (OpenCL), which is the entry
point for developers who want low-level Application Program-
ming Interfaces (APIs). The CUDA programming architecture
is very well suited to expose the parallel capabilities of GPUs.

C for CUDA offers programmers a simple way to write C-
like programs for GPGPUs. It consists of a set of extensions
to the C language for code running on CPUs and a runtime
library for code running on GPUs. It significantly reduces the
runtime overhead of GPGPU applications. As a result, CUDA
has become one of the most popular programming languages
for GPU programming. In addition, although it access GPUs
via high-level APIs compared to other architecture such as
OpenCL, it also allows programmers to access use low-level
APIs to avoid the overhead common with graphics APIs.

2.2.1.  CUDA  data  and  control  flow
Fig. 1 is a typical example of GPU function execution in CUDA:

1. Copy data from main memory  to GPU memory.
2. CPU instructs the GPU to start processing.
3. GPU executes in parallel on each core.

3.* Wait for completion. This step happens the same time as
step 3.

4. Copy the result from GPU memory  to main memory.
5. CPU acts on result, and may return to step 1 in order to

execute another GPU function.

Table 1 – Computation time for SVD (in seconds).

Matrix size MATLAB MKL GPGPU

64 × 64 0.01 0.003 0.054
128 × 128 0.03 0.014 0.077
256 × 256 0.210 0.082 0.265
1K × 1K 72 11.255 3.725
2K × 2K 758.6 114.625 19.6
4K × 4K 6780 898.23 133.68

The column on the left indicates the size of each matrices; the sec-
ond column is the result for MATLAB and third one is the result for
Intel math kernel library LAPACK. The column on the right are the
results of Lahabar’s work that using GPGPU to decomposition.

3.  Algorithm

Truncated singular value decomposition mentioned above is
used to calculate the IRF. The following defines the variables
in the pseudo code.

Input: 4D MR or CT image  data stored in Nifti format [22]
file.
Output: A set of CBF, CBV and MTT colored maps.
Time: the number of time intervals.
Dim1, Dim2, Dim3: the size of each dimension.
Size: the size of each 3D brain image  which equals to
Dim1 × Dim2 × Dim3.
A(): a 4D array used to store data directly read from brain
images.
A′(): a 4D array used to store data after reorganization.
A′′(): a 4D array used to store data after denoising.
IRF: a 1D array used to temporary store the result of
deconvolution.
CBF(),CBV(),MTT(): 3D arrays used to store the analyzed
result.
CPU.A:  Parameter A is stored on the CPU.
GPU.A: Parameter A is stored on the GPU.
GPU A ← B: Operation A ← B is executed on the GPU.
GPU.A ← CPU.A:  Copy data from CPU to GPU.
CPU.A ← GPU.A:  Copy data from GPU to CPU.

3.1.  Using  GPGPU  to  decomposite  a  matrix

GPGPUs can be used in matrix decomposition problems
[23,24].  Lahabar et al. [24] compared the performance in
terms of speed of SVD in MATLAB, SVD in Intel Math Ker-
nel Library (MKL) 10.0.4 LAPACK and his implementation on
GPU using CUDA. Their test environment was an Intel Dual
Core 2.66 GHz PC and NVIDIA GTX 280 graphics processor. Their
study focuses on evaluating the performance of parallel and
serial versions of the SVD algorithms rather than some specific
application of SVD. In their method, they divided the decom-
position into small tasks so that each GPU thread will only
handle the calculation corresponding to one element of the
matrix a time.

As the largest data set in our case is a 80 × 80
matrix, using GPGPU to split the matrix decomposition
is not suitable according to the results in Table 1 from
[24]. From this table, SVD using GPU will improve the
performance only if the matrices are larger than 1K × 1K but

dx.doi.org/10.1016/j.cmpb.2012.06.004
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will impair the performance for smaller matrices. In our case,
the matrices we want to decompose range from 44 × 44 to
80 × 80 which are too small to obtain improvement. As a result,
using GPGPU for individual matrix decomposition will not
show performance improvement in our case. Therefore, the
deconvolution task is not parallelized using lower level paral-
lelism.

Algorithm 1. Serial perfusion imaging analysis

1 A(1 : Time, 1 : Size)← 4D MR  or CT image  data
2 if DoImageDenoising = true
3 then A′(1 : Size, 1 : Time)← reorganise A(1 : Time,

1 : Size)
4 else A′′(1 : Size, 1 : Time)← Denoise and reorganise

A′(1 : Size, 1 : Time)
5 for i ← 1 to dim
6 do Generate localAIF(1 : Time)
7 IRF(1 : Time)← Deconvolution result (A”(i,1:Time)

&localAIF(1:Time))
8 CBF(i) ← Max(IRF(1 : Time))
9 CBV(i) ← Sum(IRF(1 : Time))

10 MTT(i) ← CBV(i)/CBF(i)
11 CBF colored map  ← CBF(1:Size)
12 CBV colored map  ← CBV(1:Size)
13 MTT  colored map  ← MTT(1:Size)

3.2.  Serial  perfusion  imaging  analysis

The algorithm for perfusion-imaging analysis without paral-
lelization can then be written as Algorithm 1.

Source image  loading: The first step (Line 1) is to load
MR or CT imaging data stored in neuroimaging informatics
technology initiative (NIfTI) format file. The computational
complexity of step one is O(time × Dim1 × Dim2 × Dim3).

Data reorganization: For each voxel, to generate tissue
time-concentration curves in deconvoluting step (Line 3)
requires data from all of the time intervals. However, images
are originally stored in another way where all of the vox-
els at a given time interval are grouped together (Fig. 2(a)
corresponding to the order in which data arrives from a
scanner. This organization of data will dramatically increase
cache swap overhead. So the second step is to reorga-
nize data from the form of [time][Dim3][Dim2][Dim1] into the
form of [Dim3][Dim2][Dim1][time]  (Fig. 2b) to maximal data
localization. The computational complexity of this step is
O(time ×Dim1 × Dim2 × Dim3).

Denoising (optional):  As blood always flows from one cell
to its neighbors, the intensity values should be continu-
ous. This allow us to use an image-level denoising method
(Line 4) such as applying 2D, 3D and 4D weighted mean
filters. The computational complexity of this step is also
O(time × Dim1 × Dim2 × Dim3).

Deconvolution:  Lines 6–10 perform the deconvolution. This
operation runs voxel by voxel. The most expensive part in
the deconvolution is to decompose local AIF matrices, a time2

matrix composed from given AIF vector to solve deconvolu-
tion problem [11], using singular value decomposition whose
computational complexity is O(time3) for each AIF matrix

according to our implementation. The computational com-
plexity of deconvolution can be roughly considered as the
same as decomposition: O(time3).

Furthermore, as voxel-based deconvolution in Line 5–10
needs to be repeated Dim1 × Dim2 × Dim3 times, the overall
computational complexity is O(Dim1 × Dim2 × Dim3 × time3).
This is the most expensive part of the whole workflow, more
details can also be found in Section 4.2.

Result generation: The last step (Lines 11–13) is to write
parametric maps using the results generated from decon-
volution. The computational complexity of this step is
O(Dim1 × Dim2 × Dim3).

Overall:  The steps source imaging loading, data reorgani-
zation, denoising and result generation can be assumed to
be small compared to the deconvolution step provided that
time > 2. This assumption is always true in perfusion imaging
where time is on the order of 101−102. Hence, the overall
computational complexity for perfusion-imaging analysis is
O(2 × Dim1 × Dim2 × Dim3 × time + Dim1 × Dim2 × Dim3 × time3)
which can be considered as O(Dim1 ×Dim2 × Dim3 × time3)
which is the same as the computational complexity of
deconvolution step.

Algorithm 2. Parallel perfusion imaging analysis

1 CPU . A(1 : Time, 1 : Size)← 4D MR or CT image  data
2 GPU . A(1 : Time, 1 : Size) ← CPU . A(1 : Time, 1 : Size)
3 GPU: Parallel do, shared(A, A′, A′′)
4 if DoImageDenoising = true
5 then GPU . A′(1 : Size, 1 : Time)← reorganise

GPU . A(1 : Time, 1 : Size)
6 GPU . A′′(1 : Size, 1 : Time) = GPU . A′(1 : Size, 1 : Time)
7 else GPU . A′′(1 : Size, 1 : Time)← Denoise and

reorganise GPU . A(1 : Time, 1 : Size)
8 GPU: Parallel do, private(localAIF, i, IRF), shared(A, CBF,

CBV, MTT)
9 for n ← 1 to Dim3
10 do for i ← 1 to Dim1 × Dim2
11 do Generate localAIF(1 : Time)
12 IRF← Deconvolution result (GPU.A”(i+n × Dim1

× Dim2,1:Time) &localAIF(1:Time))
13 GPU . CBF(i + n × Dim1 × Dim2) ← Max(IRF)
14 GPU . CBV(i + n × Dim1 × Dim2) ← Sum(IRF)
15

GPU . MTT(i + n × Dim1 × Dim2) ← GPU . CBV/GPU . CBF
16 CPU . CBF(slice n) ← GPU . CBF(slice n)
17 CPU . CBV(slice n) ← GPU . CBV(slice n)
18 CPU . MTT(slice n) ← GPU . MTT(slice n)
19 CBF colored map  ←CPU . CBF(slice n)
20 CBV colored map  ←CPU . CBV(slice n)
21 MTT colored map  ←CPU . MTT(slice n)

3.3.  Parallel  perfusion  imaging  analysis

As GPGPUs is an ideal solution for matrix operations; it can
be expected to improve the performance of Data reorganization
and Denoising steps. In the deconvolution step, the deconvolu-
tion of different voxels are ideally parallel tasks, so that there is
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Fig. 2 – Data structure. (a) How data are structured in the source file. (b) The data structure to which it is transformed to
maximize localization.

little effort required to separate the problem into parallel tasks
and there is no dependency or communication between those
parallel tasks, parallel implementation can be easily achieved.
The parallel algorithm for the whole workflow can then be
written as Algorithm 2.

Source image  loading: For the serial algorithm, the first
step in the parallel implementation is to load images into CPU
memory  (Line 1). The implementation of this step is exactly
the same as before, so its computational complexity remains
O(time × Dim1 × Dim2 × Dim3).

GPU memory copy in:  Line 2 is an extra step, as men-
tioned in Section 2.2.1, data which will be used in the
following step will be copied from CPU memory  to GPU
memory.  The computational complexity of this step is
O(time × Dim1 × Dim2 × Dim3).

Reorganization and denoising The Data reorganization (Line
5) and Denoising (Line 7) steps can be considered as matrix
transformations, which CUDA is good at handling, with 4D
input array. Each GPU thread is responsible for one element
in the input array. To put it differently, each GPU thread is
in charge of one and only one element which presents the
intensity value of one voxel at one time interval. The thread
read the intensity value and then stores it to right place in
reconstructed array. The task for each thread is light and the
number of threads is production of the number of voxels and
number of time intervals.

Deconvolution: Lines 7–15 are the most expensive part of
the whole workflow. The main part of deconvolution, decom-
position of each local AIF matrix, whose size is 80 × 80, is not
large enough to be parallelized (Section 3.1). Consequently,
we simply assign each decomposition to a different GPU
thread. As illustrated in Fig. 3, each GPU thread corresponds to
the deconvolution of one pixel. Therefore, hundreds of voxel
deconvolutions can be performed concurrently.

GPU memory copy out:  Lines 16–18 is another extra step
from serial version. In this step, results of deconvolution will

be copied back from GPU memory  to CPU memory.  The com-
putational complexity of this step is O(Dim1 × Dim2 × Dim3).

Result generation: The last step, Drawing parametric maps,
is also the same as in the serial version. The computational
complexity is also O(time × Dim1 × Dim2 × Dim3).

Overall: The parametric maps produced by serial and
parallel implementations are identical. In other words,
the quality of the results is not compromised. The com-
putational complexity of the parallel implementation is
O(Dim1 × Dim2 × Dim3 × time3), which is the same as the com-
putational complexity of serial implementation. However, in
parallel programming, computational complexity is not the
only factor affecting the performance. Performance is highly
related to how well the code is parallelized.

3.4. Space  complexity  for  deconvolution

In principle, the amount of data transferred between the CPU
memory  and GPU memory  should be kept as low as possible.
Intermediate data structures should be created in GPU mem-
ory and freed after use without being copied to CPU memory.

Using SVD, three time2 local arrays and one time array are
required for each voxel to store the input and output matrices.
Furthermore, four time2 arrays are required when calculating
the inverse matrix in SVD. The memory  of the input matrix
can be re-used in inverse matrix calculation and the output
matrices re-use the memory  that was allocated to calculat-
ing the inverse matrix. So the space complexity is (time2) for
each voxel and (time2× number of voxels) for each scan. Due
to the large number of voxels, the whole process requires a
large amount of memory.

Taking a typical MR image  size (dim1 × dim2 × dim3
× number of time intervals) to be 128 × 128 × 22 × 80, with
each intensity value stored in a float variable as an example,

dx.doi.org/10.1016/j.cmpb.2012.06.004


c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 1012–1021 1017

Fig. 3 – GPGPU parallelization workflow.

about 200 KB1 memory  is required for each voxel. Unfortu-
nately, that exceeds CUDA local memory  limitation which is
16 KB per GPU function. As a result, these arrays have to be
declared in global memory  which leads to another problem
that 80 GB2 memory  is required if local arrays for the whole
image  are declared simultaneously. This exceeds the overall
memory  (4.0 GB) available on current GPUs. Considering that
local arrays are temporarily used in the deconvolution within
each voxel, its space can be reused by another voxel after
its deconvolution is finished. Therefore, the solution to the
memory  problem is to declared a certain size of memory  in
global memory  exclusively for local arrays to use, and assign
the memory  to one voxel’s deconvolution and recycle it when
that deconvolution is complete.

Choosing the size of memory  is a compromise between
memory  management cost and memory  usage. On the one
hand, declaring more  memory  can enable more  deconvolu-
tions to execute at the same time but it requires a large amount
of memory.  That reduces the effort to manage local memory
but dramatically reduces the overall memory  available for rest
of the processes. On the other hand, if the size of memory  for
local arrays to use is too small, some of the GPU cores have to
be idle as they are not able to obtain memory  to execute.

In our experiment, the size of local arrays’ memory  has
been set to 128× 128 × 4 ×802× size of (float) which means 3 GB
memory  is declared to cover arrays for 128 × 128 voxels. Mem-
ory management costs can be kept at a low level as memory
only needs to be re-used fewer than thirty times during the
analysis. Furthermore, it leaves enough memory  for the rest
of the analysis.

1 4 × 802× 8 bytes = 204, 800 bytes.
2 128 × 128 × 22 × 200 KB = 68.75 GB.

3.5.  Memory  bandwidth  analysis

The size of input data is 55 MB3; for output, taking bitmap
file format as an example, each voxel requires three unsigned
char type of variables to store the RGB color information, it
only costs about 1 MB4 for one type of hemodynamic quantity
map.

As the peak memory  bandwidth for GPUs exceeds 180 GB/s
(since 2010), which is very fast compared to the memory  band-
width for CPUs (less than 40 GB/s), programs based on GPUs
are less sensitive to data transfer rates than CPU programs.
The GPU used in our experiment has a memory bandwidth
of 102.4 GB/s. The cost of read/write memory  can be kept as
low as a few milliseconds, which only contributes a little to
the overall running time. Therefore, this experiment does not
make use of the shared memory  to reduce memory  bandwidth
bottleneck.

3.6.  Other  parallel  implementations  used  as
comparison

Two other parallel approaches using OpenMP (shared mem-
ory parallel architecture) and MPI  (message passing parallel
architecture) are also implemented in the experiment. Simi-
lar to the implementation using GPGPU, these two  approaches
use upper-level parallelism which focuses on the deconvolu-
tion step. Unlike our GPGPU implementation, which assigns
one voxel to one GPU thread, our OpenMP and MPI  implemen-
tations divide all of the voxels in to several groups and assign
one group to one CPU thread. This is because of the cost of CPU

3 128 × 128 × 22 × 80 × 2 Byte (short data type) = 55 MB.
4 3 × 128 × 128 × 22 × 1 Byte = 1.03125 MB.
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Fig. 4 – GPU kernel program fragment.

scheduling is heavier than it is for GPU’s, this arrangement
reduces that overhead.

3.7.  GPU  kernel  program  fragment

Fig. 4 shows a GPU kernel code fragment for the deconvolu-
tion step. The deconvolution task for each voxel is processed
by one GPU thread. So the number of GPU threads equals to
the number of voxels. Within each deconvolution, the task is
much heavier than it is in the matrix transformation, there is
a matrix decomposition and several other matrix operations.
Different threads operate on different voxels and there is no
data dependency between different threads. As a result, no
synchronization is required in the GPU threads.

For the reason stated in Section 3.4,  the first step in
deconvolution is to request a chunk of memory  from the pre-
allocated global memory  and use it as local memory,  which
only gets used inside the current thread. After that, matrix
decomposition and other matrix operations can be processed
in the same way as they are in the regular deconvolutions. The
last step is to release the chunk of local memory  back to the
global pool for reuse.

4. Performance

4.1. Experimental  environment

In our experiment, the worker node we use contains two
Intel(R)Xeon(R) CPU cores and connects to a Tesla C1060 GPU
which provide 240 GPU cores in total. The frequency of each
CPU core is 3.0 GHz and the frequency of GPU core is 1.44 GHz.
The overall CPUs memory  is 8.0 GB and their cache size is 4 MB
each. The GPU’s single precision floating point performance
(peak) is 933.12 GFLOPS and it has 2.0 GB of global memory  and
8 KB of shared memory.  CUDA 4.0.2.1221 by NVIDIA released
in May 2011 has been used as the programming language.
Furthermore, OpenMPI 1.4.2 has been used for MPI  program-
ming [26] and Intel compilers (version 11.0) has been used for
OpenMP programming [27]. Furthermore, since there are only
four cores in total, the number of threads are set to four in
both of the OpenMP and MPI  implementations.

One of the test data we used is simulated images each con-
taining 128 × 128 × 22 voxels and the number of time intervals
is 80, which is one of the size of MR  images. Another test
data in the experiment consists of 128 × 128 × 11 voxels with
44 time intervals, which is one of the size of CT images. Input
data is stored using short data type, which requires 2 Bytes for
each element. The results showed below are the arithmetic
mean of ten repeated tests. There is almost no connection

between the processing time and the features of the patients.
The only factor that matters is the size of the images.

4.2. Performance  for  each  step

Table 2 indicates our measurement of the performance for
each step in the whole workflow.

The steps Brain data load and Draw parametric maps are not
suitable for parallelization and their running time in parallel
version can be considered as the same as in the serial version.

In parallel deconvolution, the first step of parallel work-
flow is to copy data from CPU memory  to GPU memory.  The
input data is about 220 MB, which is mainly an array with
128 × 128 × 22 × 80 short elements. The copying takes 0.17 s.
The result size to be moved back from GPU memory  to CPU
memory  is much smaller and only takes 0.01 s to perform the
copy back operation.

In serial deconvolution, the Reorganization & Denoising step,
prior to deconvolution, takes 4.3 s compared to the 1.1 s for
reorganization only. After applying parallelization to these
steps, the performance dramatically increased to 0.01 s. The
speedup factors are 430 and 110, respectively.

The running time of the Deconvolution step, the most
expensive one, reduced from 2108 s to 564 s after applying par-
allelization. The speedup factor is 3.74.

This result supports the computational complexity analy-
sis mentioned in Sections 3.2 and 3.3.

4.3.  Overall  performance

Table 3 shows the overall speedup improvement gained from
GPGPU. As the running time is dominated by Deconvolution
step, although other steps can be improved by large speedup
factors, the overall running time can be roughly considered as
the same as the running time of deconvolution step which can
be also found in Table 2. In other words, the final performance
depends on Deconvolution step and the overall speedup factor
is 3.74, which is very close to 3.75 from Deconvolution.

Lorenz et al. [16] did experiments on deconvolution using
local AIFs. They did performance experiments on a small data
set size, which was 128 × 128 voxels per slice, 11 slices and the
number of time intervals was 44, one of the CT image  sizes.
The overall running time to finish their deconvolution is still
6 min  (the same as in our experiments) with a speedup factor
of 5.56. This is reduced to 1 min  and 5 s after applying par-
allelism. However, in MR images, the data size has increased
to 128 × 128 voxels per slice, 22 slices and the number of time
intervals is now 80, approximately four times as much data. It
costs about 35 min  in our serial implementation.5

The use of four threads in OpenMP parallelization provides
speedup factors of 2.21 and 2.26 for the MR  image  size data
and CT image  size data, respectively. Parallelization using MPI
leads to a better performance compared with OpenMP, which

5 It will cost around 40 min using Lorenz’s methods by
computational complexity estimation.
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Table 2 – Performance of each step.

Step Serial running time Parallel running time (s) Speedup factor

Brain data load 0.10 0.10 –
Data copying (CPU to GPU) Not applied 0.17 –
Data reorganization 1.1 0.01 110
Reorganization and denoising 4.3 0.01 430
Deconvolution 2108 564 3.74
Data copying (GPU to CPU) Not applied 0.01 –
Draw parametric maps 0.20 0.20  –
Overall 2114 564 3.75

This table indicates the processing time of both serial and parallel algorithms for each individual step. Because of Brain data load and draw
parametric maps steps are the same in both serial and parallel algorithm and Data copying steps only happen in parallel algorithm, speedup
factors are not calculated for these steps.

Table 3 – Overall performance.

Data size (Dim1 × Dim2 × Dim3 × time) Serial running
time (s)

GPGPU running
time (s)

OpenMP
running time

MPI  running
time (s)

128 × 128 × 22 × 80 2114 564 956 619
(MR image size) Speedup factor = 3.75 Speedup factor = 2.21 Speedup factor = 3.42
128 × 128 × 11 × 44 360 65 159 94
(CT image size) Speedup factor = 5.56 Speedup factor = 2.26 Speedup factor = 3.84

This table indicates the overall running time and speedup factor for all of the serial and parallel implementations.
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Fig. 5 – Threads per block. This figure shows the
relationship between the parameter Threads Per Block and
processing time. Note that the X-axis is in logarithmic
(base 2) scale.

results in speedup factors of 3.42 and 3.84, respectively.6 For
MR image  size data, the GPGPU approach takes 59% of the time
of OpenMP approach and 91% of the time of MPI  approach.
For CT image  size data, our GPGPU approach has more  than
double the performance of the OpenMP method and has 1.45
times performance of the MPI  method. Thus, for both of the
MR image  size data and CT image  size data, our GPGPU parallel
implementation shows a better performance than paralleliz-
ing over four CPUs.

4.4.  GPGPU  parameters

Fig. 5 shows that performance changes with the number of
threads per block. According to the design of CUDA, all threads

6 Considering that the number of CPU cores in the experiments
is four, the theoretical upper boundary of performance
improvement is 4.

of a block should assigned to a same processor core. As the
total number of threads is stationary, if the number of threads
per block is too small, it will also lead to a large number of
blocks and therefore lead to extra scheduling overhead. On the
other hand, the tasks for each thread are very heavy, the best
performance is not achieved at 128 or 256 threads per block but
with a smaller number. This is because each thread is heavy,
if there are too many  threads in one block, the performance is
restricted to the limited memory  resources of a processor core.
As a result, increasing the number of threads per block further
cannot gain more  speed up. As shown in Fig. 5, we  achieve the
peak performance when setting the number of threads per
block to eight.

Furthermore, since the workload of each thread is very
small compared to the whole task, load balance is not an
important performance factor when changing the number of
threads per block parameter.

5.  Conclusion

In this paper, we introduced an implementation of perfusion-
imaging analysis which provides considerable speed improve-
ment and equivalent quality of results compared with current
serial implementations. We have analyzed every individual
step in the perfusion imaging processing. The Deconvolution
step is the bottleneck for perfusion-imaging analysis, although
the speedup factor is more  than a hundred for both the Data
reorganization and Denoising steps, the overall performance
speedup factor is limited by this bottleneck. The overall pro-
cessing time is reduced from 6 min  to 65 s for CT images,
from 35 min  to less than 10 min  for MR images. The perfor-
mance speedup factors are 5.56 and 3.75, for CT and MR  images
respectively. Meanwhile, the quality of serial and parallel out-
put images is unchanged. The speedup also depends on the
CUDA configuration parameters which determine how tasks
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are assigned to GPU cores. In clinical diagnosis, time is vitally
important especially for acute stroke cases, the earlier we
deliver the result for diagnosis, the less damage will be caused
by stokes and the higher the possibility that treatment will be
effective. Therefore, performance is as important as accuracy
in perfusion imaging, and our implementation can be used to
help clinical diagnosis.

Our implementation using GPGPU can significantly
reduced analysis processing time based on local AIFs, which
makes it possible to use local AIFs in clinical diagnosis.
Our experiment also shows that GPGPU implementation is
superior to four cores CPU implementations. In conclusion,
using GPGPU has several advantages for perfusion-imaging
analysis.

Furthermore, with the improvement of CT and MR  imaging,
the size of input images are likely to expand. Thus the pro-
cessing time of perfusion weighted image  analysis will tend
to rise which will definitely increase the demand for speedup
by exploiting parallel hardware.
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