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REPORT

A Variant in MCF2L Is Associated with Osteoarthritis

Aaron G. Day-Williams,1 Lorraine Southam,1,2 Kalliope Panoutsopoulou,1 Nigel W. Rayner,2

Tonu Esko,3,4,5 Karol Estrada,6,7 Hafdis T. Helgadottir,8 Albert Hofman,9 Throvaldur Ingvarsson,10,11

Helgi Jonsson,11,12 Aime Keis,13,14 Hanneke J.M. Kerkhof,6,7 Gudmar Thorleifsson,8 Nigel K. Arden,15,16

Andrew Carr,17 Kay Chapman,17 Panos Deloukas,1 John Loughlin,18 Andrew McCaskie,18,19

William E.R. Ollier,20 Stuart H. Ralston,21 Timothy D. Spector,22 Gillian A. Wallis,23

J. Mark Wilkinson,24,25 Nadim Aslam,26 Fraser Birell,18,27 Ian Carluke,27 John Joseph,28 Ashok Rai,29

Mike Reed,27 Kirsten Walker,27 arcOGEN Consortium, Sally A. Doherty,30 Ingileif Jonsdottir,8,11

Rose A. Maciewicz,31 Kenneth R. Muir,32 Andres Metspalu,3,4,5 Fernando Rivadeneira,6,7,9

Kari Stefansson,8,11 Unnur Styrkarsdottir,8 Andre G. Uitterlinden,6,7,9 Joyce B.J. van Meurs,6,7

Weiya Zhang,30 Ana M. Valdes,22 Michael Doherty,30 and Eleftheria Zeggini1,*

Osteoarthritis (OA) is a prevalent, heritable degenerative joint disease with a substantial public health impact.We used a 1000-Genomes-

Project-based imputation in a genome-wide association scan for osteoarthritis (3177 OA cases and 4894 controls) to detect a previously

unidentified risk locus. We discovered a small disease-associated set of variants on chromosome 13. Through large-scale replication, we

establish a robust association with SNPs in MCF2L (rs11842874, combined odds ratio [95% confidence interval] 1.17 [1.11–1.23],

p¼ 2.13 10�8) across a total of 19,041 OA cases and 24,504 controls of European descent. This risk locus represents the third established

signal for OA overall.MCF2L regulates a nerve growth factor (NGF), and treatment with a humanizedmonoclonal antibody against NGF

is associated with reduction in pain and improvement in function for knee OA patients.

Osteoarthritis (OA) is the most common form of arthritis

and is associated with a large health economic burden.1

The sibling recurrence risk (ls) for OA has been estimated

to be approximately 5 in the UK.1 Two loci (GDF5 [MIM

601146] on chromosome 20 and a signal on chromosomal

region 7q22, both with allelic odds ratios of ~1.15) have

reached genome-wide significance in European popula-

tions.2–5 This paucity of established risk loci could be

ascribed to limitations caused by insufficient sample sizes,

phenotype heterogeneity, resolution of known variation,

associations with low-frequency and/or rare variants,

interaction effects, or structural variation.6,7 We recently

carried out a large genome-wide association scan (GWAS)

restricted to knee and/or hip OA and detected no repli-

cating signals (arcOGEN GWAS).8 Imputation based on

the 1000 Genomes Project (1KGP) has been proposed as

an approach that will increase power and resolution in

genetic association studies,9 and researchers have already

applied the technique to fine map known association

signals.10,11 In this work, we applied a 1KGP-based imputa-

tion and identify a genome-wide significant locus for OA

within a gene previously unlinked to the disease.

We used 1KGP pilot 1 data of 60 CEU individuals as

a reference set and imputed 1KGP-identified variants

into the arcOGEN GWAS of 3177 cases and 4894 UK con-

trols12–14 (Figure 1). The set of 3177 OA cases are unrelated

individuals of European ancestry collected in the UK on

the basis of two criteria: (1) radiographic evidence of

disease (defined as a Kellgren-Lawrence [KL] grade R 215)

and/or (2) clinical evidence of disease requiring joint

replacement (TJR). The 4894 UK-population-based con-

trols were unrelated individuals from the 1958 British
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Birth Cohort (58BC) and the UK National Blood Donor

Service (UKBS) and were obtained from an early release

of the Wellcome Trust Case Control Consortium 2

(WTCCC2) data. The genotyping and quality control

(QC) of these individuals and their genotype data were

described previously in the initial arcOGEN GWAS.8 Our

primary 1KGP imputation was based on the April 2009

release of haplotypes for 57 individuals. After removing

rare variants (with minor allele frequency [MAF] < 0.01)

and SNPs with low imputation quality (r2 < 0.3),

7,258,070 variants were tested for association with OA.

Further quality control was applied by closely examining

all SNPs with p < 10�5 in the association test, removing

poorly clustering directly-typed SNPs in their vicinity

(up to 300 kb away), and repeating the imputation step

with the August 2009 1KGP release of haplotypes from

56 individuals and reassessing evidence for association.

We selected eight SNPs from six loci for validation in the

original arcOGEN data and for de novo genotyping in

independent follow-up sample sets (Table S1, available

online).

As part of our follow-up, we first genotyped an indepen-

dent set of 5165 arcOGEN-collected cases and 6155 popu-

lation-based controls from the 58BC and UKBS cohorts.

Seven out of the eight SNPs were successfully typed with

a Sequenom MassArray iPLEX Gold assay (Table S1) and

one SNP, rs11842874 on 13q34, replicated with p ¼
2.60 3 10�3 (allelic odds ratio [OR] 1.17 [1.06–1.30])

and with consistent effect direction as the original scan

(Figure 2, Table 1). We subsequently took this signal

forward to de novo genotyping in two further sample

sets from the UK: the Genetics of Osteoarthritis and Life-

style (GOAL) study16,17 (1686 total joint replacement

cases, 743 non-OA controls) and an additional indepen-

dent set of 2409 newly recruited arcOGEN cases and

2319 population-based controls from the 58BC and

UKBS cohorts. The combined UK meta-analysis (n ¼
12,437 cases, 14,111 controls) allelic OR was 1.22 [1.14–

1.30], p ¼ 2.24 3 10�8. We further investigated associa-

tion with this variant in four non-UK OA sample sets:

two from the Netherlands (Rotterdam Study I [RSI], 1950

cases and 3243 controls, and Rotterdam Study II [RSII],

485 cases and 1460 controls, both in silico),18–20 one

sample set from Estonia (Estonian Genome Center,

University of Tartu [EGCUT], 2617 cases and 2619

controls, de novo genotyping),21,22 and one from Iceland

(deCODE, 1552 cases and 3071 controls, de novo geno-

typing). We used a meta-analysis framework to combine

results across the follow-up studies only and across all

data. We obtained the combined estimates of ORs for

reference alleles by weighting the logORs of each study

by the inverse of their variance via a fixed effects model.

We investigated evidence of heterogeneity of ORs by using

the Cochran’s Q and I2 statistics. The meta-analysis was

performed with the GWAMA software package.23 In all

seven follow-up datasets combined, rs11842874 was asso-

ciated with OA with p ¼ 3.0 3 10�5 (allelic OR 1.13 [1.07–

1.20]). Combined with the discovery sample set, the over-

all fixed effects meta-analysis (across 19,041 cases and

24,504 controls) established association at this variant

with p ¼ 2.073 10�8 (allelic OR 1.17 [1.11–1.23]; Figure 2,

Table 1). The variant appears to be more strongly associ-

ated with knee OA (allelic OR 1.17 [1.10–1.25], p ¼
2.52 3 10�6, effective sample size of 28,987) than with

hip OA (allelic OR 1.11 [1.03–1.19], p ¼ 3.54 3 10�3,

effective sample size of 27,452). Studies contributing

data to this manuscript acquired informed consent from

all participants and were approved by the appropriate

ethics committee(s) for the respective institutions and

countries.

rs11842874 is one of several highly correlated SNPs at

13q34 and constitutes the observed association signal,

which spans 12.7 kb (Figure 3). The surrounding 1 Mb

region is characterized by low levels of linkage disequilib-

rium and contains only nine SNPs correlated with

rs11842874 at r2 > 0.7. rs11842874 was selected for repli-

cation because it is the only variant present on some

GWAS platforms. The OA risk-increasing allele is the major

allele with population frequency of 0.927 (mean over the

UK control data), and as a common variant with low OR,

it contributes little to the sibling recurrence risk (estimated

ls ¼ 1.001). All SNPs that comprise the signal reside in

intron 4 of MCF2L (MCF.2 cell-line-derived transforming

sequence-like [MIM 609499], encoding the guanine nucle-

otide exchange factor). Mcf2l studies in rat models of OA

have shown expression in articular chondrocytes.24,25 In

Impute on the basis of 1000 Genomes Project pilot 1 data

Test for associa�on in 3,177 cases 
and 4,894 UK controls across ~7.2M variants with MAF>0.01

Closely examine signals with p<10-5 and remove low quality variants

Reimpute and retest for associa�on

Replicate 6 promising signals in 5,165 cases and 6,155 UK controls

Replicate chr13 signal in 4 further European popula�ons 
of 6,604 cases and 10,393 controls

Validate 6 promising  imputed signals in the original GWAS samples

Replicate chr13 signal in 2 further sets of 4,095 cases and 3,062 UK controls 

Figure 1. Overview of Study Design
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human cells MCF2L regulates neurotrophin-3-induced

cell migration in Schwann cells.26 Neurotrophin-3 is a

member of thenerve growth factor (NGF) family. Treatment

of knee OA patients with a humanized monoclonal anti-

body that inhibits NGF was found to be associated with

joint pain reduction and an improvement in func-

tion.27,28

The MCF2L OA locus was taken forward on the basis of

evidence accrued through 1KGP-based imputation. Direct

typing of ~600,000 SNPs through GWAS resulted in

modest (p > 10�5) evidence for the association of a single

variant, rs11842874, with OA in this region and

HapMap-based imputation left the picture unchanged

(Figures 3A and 3B). Prioritization strategies for follow-up

in our published GWAS8 down-weighted lone variants

with no corroboration of association from neighboring

SNPs. The denser 1KGP reference set empowered the asso-

ciation of multiple additional correlated (i.e., noninde-

pendent), imputed variants, several of which showed

stronger evidence for association with OA, thus high-

lighting this region for validation and replication geno-

typing (Figure 3C, Table S1).

The associated variants are common, but their minor

allele frequencies are toward the lower end of the fre-

quency spectrum (at ~0.07). The identification of similar

variants withmodest effect sizes (OR 1.17) at genome-wide

significance levels will require sample sizes in the order of

~23,000 cases and an equal number of controls. Through

several rounds of cluster-plot inspection, removal of poor

quality SNPs, and reimputation, we observed that the

Figure 2. Forest Plot of OA Association and Meta-Analysis Results for rs11842874
The purple squares designate the estimated Odds Ratio (OR) for each individual study and the error bars extending out on both sides
show the 95% confidence interval for the OR estimate. The pink diamond designates the estimated OR of the fixed effects meta-analysis
of all the studies.

Table 1. OA Association and Meta-Analysis Results for rs11842874

Study Number Cases Number Controls Effect Allele MAF OR (95% Confidence Interval) p value

arcOGEN GWAS 3177 4894 A 0.0718 1.32 (1.16–1.50) 1.67 3 10�5

arcOGEN replication set 1 5165 6155 A 0.0694 1.17 (1.06–1.30) 2.60 3 10�3

GOAL 1686 743 A 0.0720 1.23 (0.99–1.56) 7.20 3 10�2

arcOGEN replication set 2 2409 2319 A 0.0636 1.16 (0.98–1.37) 7.86 3 10�2

UK meta-analysis 12437 14111 A 1.22 (1.14–1.30) 2.24 3 10�8

deCODE 1552 3071 A 0.0917 1.03 (0.88–1.20) 7.31 3 10�1

EGCUT 2617 2619 A 0.0769 1.16 (1.01–1.34) 4.01 3 10�2

RSI 1950 3243 G 0.0608 1.01 (0.86–1.20) 8.61 3 10�1

RSII 485 1460 A 0.0715 1.46 (1.07–2.00) 1.68 3 10�2

Non-UK meta-analysis 6604 10393 A 1.09 (1.00–1.19) 4.70 3 10�2

Combined meta-analysis 19041 24504 A 1.17 (1.11–1.23) 2.07 3 10�8

Meta-analysis results are denoted in bold.
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majority of signals were caused by genotyping and imputa-

tion artifacts. This fact highlights the need for imputed

signals to be scrutinized postimputation before follow-up

studies are deployed. As the field of complex trait asso-

ciation studies shifts its focus toward low-frequency

and rare variants, thorough quality control of signals

becomes highly relevant. In this study, we have restricted

1KGP-based imputation to variants with an MAF > 0.01.

As reference panel sizes become larger, imputation of lower

frequency variants will becomemore feasible, empowering

Figure 3. Comparison of Regional Association
Plots at the Chromosome 13 Association Signal
Evidence for association in the rs11842874
region for (A) arcOGEN GWAS directly typed
analysis,8 (B) arcOGEN HapMap3 imputation
analysis, and (C) arcOGEN 1KGP final pilot 1
release imputation analysis. The x axis shows
the build 36 chromosome 13 base position 5
500 kb of rs11842874. The left y axis is the
�log (p value) of SNPs in the region, and the right
y axis is the recombination rate (cM/Mb) as calcu-
lated from the pilot 1 release of the 1KGP. Each
diamond represents a variant and is colored ac-
cording to its correlation (r2) with rs11842874.
The green arrows below provide an overview of
the genes in the region and their transcriptional
direction. Imputed variants are denoted by circles
and directly typed variants are denoted by dia-
monds.

the examination of rare variation in next

generation association studies.

The genetic architecture of OA has not

been elucidated yet. By identifying this

susceptibility locus, the third one discov-

ered for OA, our study now provides a foun-

dation on which functional studies can

be based. New additions to the genetic

study toolset, including larger sample sets,

well-characterized phenotypes, and rese-

quenced reference-panel-based imputation

approaches hold the promise of providing

insights into the etiology of this common

degenerative joint disease.
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