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Abstract 

The low energy (ϵ = ħω < 1 meV), low temperature (T = 0.05 K) spin dynamics of the s = 1/2 kagome 

candidate herbertsmithite are probed in the presence of magnetic fields up to 2.5 T. The zero-field 

spectra reveal a very weak continuum of scattering at T = 10 K and a broad inelastic peak centered at 

ϵmax = 0.2 meV at lower temperatures, T < 1 K. The broad peak is found to be strongly damped, with a 

liquid-like structure factor implying correlations at length-scales up to r = 6 Å. The field dependence 

of the peak appears to follow the Zeeman splitting of s = 1/2 excitations, consistent with the weakly 

split “doublets” observed in low temperature specific heat. A possible explanation of these 

observations is a short-range correlated state involving defect spins between the kagome planes and 

moments in the kagome layers. 

PACS numbers: 75.10.Jm, 75.10.Kt, 78.70.Nx 

 

Introduction 

Despite decades of study, the s = 1/2 kagome Heisenberg antiferromagnet model still presents one of 

the greatest experimental and theoretical challenges in quantum magnetism. While recent numerical 

work
[1]

 has shown that the ground state is most likely a gapped spin liquid (a Ƶ2 topologically ordered 

state), a large cell valence bond crystal state
[2]

 and a U (1) Dirac spinon liquid
[3, 4]

 are known to lie 

close to it in energy. In order to probe the ground state experimentally, there are thus tight constraints 

on the size of perturbing terms and amount of chemical disorder allowed in candidate realizations. 

Several such materials have been explored, including the monoclinically distorted compounds 

volborthite
[5]

 and vesignieite
[6]

, the vanadium oxyfluoride compound [NH4]2[C7H14N][V7O6F18]
[7]

, as 

well as the polymorphs kapellasite
[8]

 and herbertsmithite
[9]

, Cu3Zn(OH)6Cl2. In the former two, the 

lowering of symmetry strongly affects the isotropy of magnetic exchange
[10, 11]

, whilst the vanadium 

oxyfluoride compound contains additional V3
+
 (s = 1) between the kagome planes. In kapellasite, the 

arrangement of Cu octahedra results in a ferromagnetic nearest neighbour exchange
[12]

. The premier 

realisation of the s = 1/2 kagome Heisenberg antiferromagnet thus remains herbertsmithite, despite the 

presence of anti-site disorder between the Cu and Zn sites
[9, 13, 14, 15, 16]

 , which is thought to both dilute 

the kagome planes and result in weakly coupled interplane spins. This work, performed on a highly 

deuterated powder sample using inelastic time-of-flight neutron scattering at 50 mK and in magnetic 

fields up to 2.5 T, elucidates the low energy dynamics of these interplane spins, implying a short-

range correlated fluctuating state at low temperature. 

The crystal structure of herbertsmithite (figure 1) contains two distinct transition metal sites: the first 

makes up the kagome planes and is preferentially occupied by the Cu
2+

 ions due to the strong Jahn-
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Teller distortion of the D4h MO4Cl2 octahedra. The second is located directly above and below the 

centers of triangles in adjacent planes. This site is not Jahn-Teller distorted and is primarily occupied 

by Zn
2+

. From previous studies using a variety of techniques (specific heat, Cp, and neutron 

diffraction
[14]

, static susceptibility, χ, 
[9]

, and 
17

O NMR
[15]

), the typical amount of intersite mixing has 

been estimated at 4 − 7% in Cu, meaning that around 12 − 21% of the interplane Zn sites are 

occupied by magnetic Cu
2+

 ions. One study, using anomalous X-ray scattering, has indicated no Zn on 

the intraplane site
[17]

, but this claim has been contested on the basis of 
17

O NMR measurments
[16]

. Due 

to the nearly 90° bridge between the intraplane and interplane sites, the exchange between them is 

expected to be weak, and possibly ferromagnetic. Indeed, M (H ) and χ(T ) data suggest an energy 

scale (1) K for the coupling between intra- and interplane sites
[13]

. Further terms in the Hamiltonian 

potentially include a Dzyaloshinskii-Moriya (DM) term, the magnitude of which was estimated to be 

∼ 0.08 J on the basis of ESR data
[18]

, and an axial exchange anisotropy ∆ = −0.1 J derived from χ 

measurements on single crystals
[19]

. 

Regarding the magnetic properties of herbertsmithite, no spin freezing is observed by any technique 

down to 50 mK, despite an estimated J ∼ 17(1) meV
[20]

. The high energy spin dynamics at T < 120 K, 

as probed by neutron scattering, shows a continuum of scattering stretching between energy transfers 

2 < ϵ < 22 meV (ϵ = ħω), with a broad Q-dependence peaked at ∼ 1.4 Å
−1

 
[21]

. This response is nearly 

temperature independent in a broad range of T, implying unusual ω/T scaling of the dynamic 

susceptibility, χ"(ω). A more detailed picture of the ω/T and H/T scaling was arrived at by neutron 

measurements at smaller incident energies, and a.c. susceptibility measurements
[20]

; both χ"(ω) and 

the real part of the a.c. susceptibility, χ'(H ), were found to follow a universal scaling law χT
α
, with α 

= 0.66. These observations, as well as the low-T saturation of the intrinsic susceptibility extracted 

from 
17

O NMR, can be qualitatively reproduced assuming a valence bond glass state induced by a 

small concentration of defects on the kagome plane
[22]

. An alternative interpretation, placing less 

emphasis on the presence of antisite disorder, relates the gaplessness of spectrum, the presence of a 

Curie tail in χ(T ), and a Schottky anomaly in Cp(T) with the deconfined spinon (s = 1/2) excitations 

of the U (1) liquid proposed in
[3, 4]

. 

(turn to next page →) 
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Figure 1. A view of the structure of herbertsmithite. The Cu
2+

 kagome layer sandwiches interplane 

Zn
2+

. Distances used in the text are shown by solid and dashed lines. 

 

While the interplane spins have (naturally) not been studied as intensively as the kagome planes, a 

few attempts have been made to understand their behaviour at low T. Fits of the Schottky anomaly in 

observed at T < 5 K in Cp(T; H) imply that they are describable as s = 1/2 doublets with splittings 

narrowly distributed around ∼ 2 K= 0.18 meV in zero magnetic field, and a Zeeman-like field 

dependence beyond H = 2 T
[14]

. Furthermore, the interplane spins have been associated with a slowing 

down in spin fluctuations observed around T ∼ 1 K by µSR due to the strong correlation between the 

magnitude of this feature and the Cu occupation of the interplane site
[23]

. Both of these sets of 

experiments imply the presence of a low energy response at T < 1 K in neutron scattering 

experiments, but this has until the present study not been confirmed. 

 

2. Experimental 

The highly deuterated (∼ 98%) powder sample of herbertsmithite used in the present experiment was 

prepared by the method described by Shores et. al.
[9]

, substituting the protonated or hydrated starting 

materials with their deuterated and anhydrous counterparts, respectively. The Cu occupation of the 

interplane site was estimated at ∼ 20% from the Curie tail of the magnetic susceptibility. 10 g of 

sample was loaded in a Cu can in cylindrical geometry, and mounted on a dilution refrigerator. 

Thermalization was achieved by condensing a small volume of liquid helium in the sample can at low 

temperature via a capillary. The data was acquired on the IN5 direct geometry time- of-flight 

spectrometer at ILL using an incident energy Ei = 1.26 meV, resulting in a (Q, ϵ) window of 0.28 < Q 
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< 1.4 Å
−1

 (ϵ = 0) and −1.24 < ϵ < 1.01 meV, and an ϵ resolution of 0.01 meV, estimated by a 

Gaussian fit to the elastic line. Background due to the sample environment was partially corrected for 

by subtracting an empty can measurement from all the datasets. Finally, fields up to 2.5 T were 

achieved using a split-coil cryomagnet. 

 

 

Figure 2. S(Q, ϵ) from IN5 at T = 10 K and 0.05 K, and fields of 1.5 T and 2.5 Tfor the latter 

temperature. 

 

3. Results 

Background-subtracted S(Q, ϵ) maps at 50 mK in fields of 0, 1.5, 2.5 T, and at 10 K, are shown in 

figure 2. At 10 K, S(Q, ϵ) hints at a weak column of scattering at high Q ∼ 1.2 Å
−1

 (see also figure 

3(a)), similar to that observed at higher Ei in previous studies
[21]

. A fit of the energy transfer integrated 

data (0.15 < ϵ < 0.6 meV) to the structure factor for a spin pair, 

 

where f
2
(Q) is the form factor of Cu

2+
, results in antiferromagnetic (α < 0) correlations at r = 3.5(1) Å, 

consistent with the nearest neighbour (nn) Cu-Cu distance within the kagome planes, rp1 = 3.42 Å, as 

found in previous measurements. The Q-integrated response (0.4 < Q < 1.2 Å
−1

) was converted to the 
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dynamical susceptibility, χ"(ϵ), using the fluctuation-dissipation theorem χ"(ϵ) = (1 − e
−ϵ/k

B
T
 ) S(ϵ). By 

comparing the neutron energy gain and loss sides, it is found that detailed balance breaks down at ϵ = 

0.13 meV, below which multiple scattering from the sample environment dominates. Above this 

energy, χ"(ϵ) is flat within error bars, as also observed in
[24]

. 

 

 

Figure 3. (a) Q- and (b) ϵ-cuts of the data at all T and H . The ϵ-dependence has been converted to 

χ"(ϵ) using the fluctuation-dissipation theorem. The integration ranges used are 0.15 − 0.6 meV and 

0.4 − 1.2 Å in energy and momentum transfer, respectively. Fits in (a) include one nn for the upper 

curve (black line) and two for the lower 3 curves (red), with the second distance consistent with rp2, 

ri1, and rip1 (figure 1). The low temperature, zero-field field fit is reproduced in the 1.5 T panel to 

illustrate the slight shift of intensity towards Q = 0 in applied magnetic field. The lines in (b) 

correspond to damped harmonic oscillator fits, as described in the text. 
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As the sample is further cooled to 50 mK in zero field, an increase in spectral weight is observed at 

low energy transfers, taking the form of a broad, apparently non- dispersive feature centered at Emax ∼ 

0.25 meV, and extending up to at least 0.6 meV. The maximum in the scattering is found at a lower 

Qmax ∼ 0.8 Å
−1

 with respect to the 10 K data, indicating antiferromagnetic correlations at distances 

longer than rp1. Extending the fit with another α sin  term to include these, the observed shift 

can be accounted for assuming either correlations between an interplane spin and a next nn spin in the 

kagome plane, rip1 = 5.07 ˚A, in-plane next nearest neighbours, rp2 = 5.7 Å, or two nn interplane spins, 

ri1 = 6.1 Å (figure 2) – at 20% occupation of the interplane site, each will on average have 1.2 nearest 

neighbours. The Q-integrated ϵ dependence (at this temperature and energy range identical to χ"(ϵ)) 

appears to be independent of energy transfer, and can be described by a damped harmonic oscillator 

form 

 

centred at ϵ0 = 0.290(5) meV, and a large Γ = 0.19(1) meV. The latter value is an order of magnitude 

greater than the resolution, and could be connected with a combination of damping due to strong spin 

fluctuations, known to persist at low T in herbertsmithite, and an intrinsic width caused by, for 

example, a distribution of energy levels due to disorder. 

In an applied field of 1.5 T, the low energy (ϵ < 0.2 meV) spectral weight observed in zero field shifts 

up in energy, and the spectrum becomes more sharply peaked at ϵmax = 0.20(1) meV, which 

corresponds to the expected Zeeman splitting for s = 1/2 spins, ϵZ = ɡµBH = 0.1952 meV (ɡ = 2.25 

[18]
). Indeed, a comparison of the width of the feature in ϵ with the zero-field spectrum reveals a 

considerable narrowing, with Γ(1.5 T) = 0.12(1) meV, while still remaining broader than resolution. 

One possible source of the large Γ given the Zeeman-like field dependence is ɡ-factor anisotropy, but 

the experimental δɡ = 0.1
[18]

 only translates to an energy splitting ∼ 0.01 meV. Furthermore, the Q-

dependence indicates some flattening versus the zero field data, with slightly more intensity towards 

Q = 0. Fitting the simple model above, this may be interpreted as a weakening of antiferromagnetic 

correlations at r > rp1, with correlations at rp1 remaining similar in strength. 

A recent 
17

O NMR study revealed a transition to a frozen, possibly glassy, state of the kagome spins at 

Hc = 1.5 T
[25]

. In the Q range covered by our data, we observe no additional features corresponding to 

this state. This is not surprising, as the frozen moment is expected to be very small close to Hc. In 

addition, the measured ϵmax is considerably larger than that estimated from NMR (0.4 K= 0.034 meV). 

Increasing the field to 2.5 T, the broad feature is again found to shift in ϵ, consistent with the Zeeman 

splitting. The overall peakshape also grows more symmetric, with a similar Γ = 0.125(4) meV to the 
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j 

1.5 T data. The key parameters describing χ"(ϵ) and fits to (1) and (2) at all fields are summarised in 

Table 1. 

 

H (T) −α(3.4 Å) −α(5.4 Å) ϵmax ϵZ (meV) ϵ0 (meV) Γ (meV) 

0 0.45(2) 0.37(5) 0.25(1) 0 0.290(5) 0.19(1) 

1.5 0.42(2) 0.20(5) 0.20(1) 0.1952 0.260(5) 0.13(1) 

2.5 0.38(3) 0.25(7) 0.33(1) 0.3253 0.345(5) 0.125(7) 

 

Table 1. Field dependence of fitting parameters for equations (1) and (2) at T = 0.05 K. ϵmax , the 

observed peak maximum and ϵ0 , the centre of (2), differ in the strongly damped regime Γ ∼ ϵ0 . A ɡ-

factor of 2.25 is assumed in the calculationof the Zeeman splitting energy of s = 1/2 spins, ϵZ . 

 

4. Discussion 

The broad inelastic feature at ∼ 0.2 meV observed at T = 0.05 K in our experiments is most naturally 

associated with the interplane spins discussed in the introduction. Their involvement is inferred 

primarily from the energy scale and field dependence of the feature, which are consistent with both 

the zero-field- and Zeeman-split S = 1/2 doublets observed in the heat capacity
[14]

, as well as the 

estimates for inter- to intra- plane coupling strength derived from M (H ) and χ
[13]

. While the observed 

field dependence could also be compatible with deconfined spinons, as proposed in
[3, 4]

, neither the 

small apparent bandwidth, nor the structure factor can be accounted for in this framework. 

Two possibilities for how the zero-field splitting of the aforementioned doublets could arise are: 1) 

coupling to short range order or fluctuations in the kagome planes, or 2) oligomerisation of the 

interplane spins with neighbouring spins on the kagome plane i.e. formation of trimers or heptamers, 

as observed in materials like MgCr2O4 
[26]

. Although the Q-dependence of the feature is consistent 

with both of these possibilities, we will consider only the first here, as it most consistently accounts 

for the field dependence of the spectrum. As mentioned previously, a field-induced transition to a 

frozen state is observed in NMR at Hc = 1.5 T
[25]

; the interplane spins ought to provide a sensitive 

probe of the kagome planes going across this transition. In our experiments, two major changes are 

seen in the spectrum at Hc: the apparent collapse of the splitting regime observed at zero field and a 

large drop in Γ. The first can be explained if the spin freezing on the planes involves, at least locally, a 

120° arrangement of the spins on the kagome triangles. This appears likely from studies of pressure-

induced magnetic order in herbertsmithite, where a q = √ 3 × √3 order is adopted beyond P = 2.5 

GPa
[27]

. In this scenario, the mean exchange energy  at the interplane site vanishes, 
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effectively decoupling the interplane spins and leading to the shift of scattering towards smaller Q and 

Zeeman-like field dependence. Furthermore, the reduction in Γ observed at the transition reflects the 

reduction of the fluctuating moment accompanying the freezing, and perhaps also the narrower 

distribution of moment directions in the plane. Remaining correlations could involve e.g. defects in 

the kagome planes. 

 

5. Conclusion 

We have carried out an inelastic neutron scattering study to probe the low energy dynamics of 

herbertsmithite at low temperatures and in magnetic fields. Beyond the characteristic column of 

scattering observed in previous neutron experiments, which we find to extend down to at least 0.13 

meV, an additional broad component peaked at ϵmax = 0.25 meV appears at low T . We associate this 

mode with the higher energy level of the weakly coupled interplane spins. A possible signature of the 

magnetic ordering phase transition observed in NMR is indirectly observed through the field 

dependence of ϵmax and the damping, Γ. Further neutron scattering investigations over a broader Q- 

and ϵ-range, preferably using single crystals, are required to confirm this suggestion. 
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