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Abstract In this work we show that randomized (block) coordinate descent methods
can be accelerated by parallelization when applied to the problem of minimizing the
sum of a partially separable smooth convex function and a simple separable convex
function. The theoretical speedup, as compared to the serial method, and referring
to the number of iterations needed to approximately solve the problem with high
probability, is a simple expression depending on the number of parallel processors
and a natural and easily computable measure of separability of the smooth component
of the objective function. In the worst case, when no degree of separability is present,
there may be no speedup; in the best case, when the problem is separable, the speedup
is equal to the number of processors. Our analysis also works in the mode when the
number of blocks being updated at each iteration is random, which allows for modeling
situations with busy or unreliable processors. We show that our algorithm is able to
solve a LASSO problem involving a matrix with 20 billion nonzeros in 2 h on a large
memory node with 24 cores.
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1 Introduction

1.1 Big data optimization

Recently there has been a surge in interest in the design of algorithms suitable for solv-
ing convex optimization problems with a huge number of variables [12,15]. Indeed,
the size of problems arising in fields such as machine learning [1], network analy-
sis [29], PDEs [27], truss topology design [16] and compressed sensing [5] usually
grows with our capacity to solve them, and is projected to grow dramatically in the
next decade. In fact, much of computational science is currently facing the “big data”
challenge, and this work is aimed at developing optimization algorithms suitable for
the task.

1.2 Coordinate descent methods

Coordinate descent methods (CDM) are one of the most successful classes of algo-
rithms in the big data optimization domain. Broadly speaking, CDMs are based on the
strategy of updating a single coordinate (or a single block of coordinates) of the vector
of variables at each iteration. This often drastically reduces memory requirements as
well as the arithmetic complexity of a single iteration, making the methods easily
implementable and scalable. In certain applications, a single iteration can amount to
as few as 4 multiplications and additions only [16]! On the other hand, many more
iterations are necessary for convergence than it is usual for classical gradient methods.
Indeed, the number of iterations a CDM requires to solve a smooth convex optimiza-

tion problem is O( nL̃ R2

ε
), where ε is the error tolerance, n is the number variables (or

blocks of variables), L̃ is the average of the Lipschitz constants of the gradient of the
objective function associated with the variables (blocks of variables) and R is the dis-
tance from the starting iterate to the set of optimal solutions. On balance, as observed
by numerous authors, serial CDMs are much more efficient for big data optimization
problems than most other competing approaches, such as gradient methods [10,16].

1.3 Parallelization

We wish to point out that for truly huge-scale problems it is absolutely necessary
to parallelize. This is in line with the rise and ever increasing availability of high
performance computing systems built around multi-core processors, GPU-accelerators
and computer clusters, the success of which is rooted in massive parallelization. This
simple observation, combined with the remarkable scalability of serial CDMs, leads
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to our belief that the study of parallel coordinate descent methods (PCDMs) is a very
timely topic.

1.4 Research idea

The work presented in this paper was motivated by the desire to answer the following
question:

Under what natural and easily verifiable structural assumptions on the objective
function does parallelization of a coordinate descent method lead to acceleration?

Our starting point was the following simple observation. Assume that we wish to
minimize a separable function F of n variables (i.e., a function that can be written as
a sum of n functions each of which depends on a single variable only). For simplicity,
in this thought experiment, assume that there are no constraints. Clearly, the problem
of minimizing F can be trivially decomposed into n independent univariate problems.
Now, if we have n processors/threads/cores, each assigned with the task of solving
one of these problems, the number of parallel iterations should not depend on the
dimension of the problem. In other words, we get an n-times speedup compared to
the situation with a single processor only. Any parallel algorithm of this type can
be viewed as a parallel coordinate descent method. Hence, PCDM with n processors
should be n-times faster than a serial one. If τ processors are used instead, where
1 ≤ τ ≤ n, one would expect a τ -times speedup.

By extension, one would perhaps expect that optimization problems with objective
functions which are “close to being separable” would also be amenable to acceleration
by parallelization, where the acceleration factor τ would be reduced with the reduction
of the “degree of separability”. One of the main messages of this paper is an affirmative
answer to this. Moreover, we give explicit and simple formulae for the speedup factors.

As it turns out, and as we discuss later in this section, many real-world big data
optimization problems are, quite naturally, “close to being separable”. We believe that
this means that PCDMs is a very promising class of algorithms for structured big data
optimization problems.

1.5 Minimizing a partially separable composite objective

In this paper we study the problem

minimize
{

F(x)
def= f (x)+�(x)

}
subject to x ∈ RN , (1)

where f is a (block) partially separable smooth convex function and � is a simple
(block) separable convex function. We allow � to have values in R ∪ {∞}, and for
regularization purposes we assume � is proper and closed. While (1) is seemingly
an unconstrained problem, � can be chosen to model simple convex constraints on
individual blocks of variables. Alternatively, this function can be used to enforce a
certain structure (e.g., sparsity) in the solution. For a more detailed account we refer
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the reader to [15]. Further, we assume that this problem has a minimum (F∗ > −∞).
What we mean by “smoothness” and “simplicity” will be made precise in the next
section.

Let us now describe the key concept of partial separability. Let x ∈ RN be decom-
posed into n non-overlapping blocks of variables x (1), . . . , x (n) (this will be made
precise in Sect. 2). We assume throughout the paper that f :RN → R is partially
separable of degree ω, i.e., that it can be written in the form

f(x) =
∑
J∈J

f J (x), (2)

where J is a finite collection of nonempty subsets of [n] def= {1, 2, . . . , n} (possibly
containing identical sets multiple times), f J are differentiable convex functions such
that f J depends on blocks x (i) for i ∈ J only, and

|J | ≤ ω for all J ∈ J . (3)

Clearly, 1 ≤ ω ≤ n. The PCDM algorithms we develop and analyze in this paper only
need to know ω, they do not need to know the decomposition of f giving rise to this ω.

1.6 Examples of partially separable functions

Many objective functions naturally encountered in the big data setting are partially
separable. Here we give examples of three loss/objective functions frequently used
in the machine learning literature and also elsewhere. For simplicity, we assume all
blocks are of size 1 (i.e., N = n). Let

f (x) =
m∑

j=1

L(x, A j , y j ), (4)

where m is the number of examples, x ∈ Rn is the vector of features, (A j , y j ) ∈ Rn×R
are labeled examples and L is one of the three loss functions listed in Table 1. Let
A ∈ Rm×n with row j equal to AT

j .
Often, each example depends on a few features only; the maximum over all features

is the degree of partial separability ω. More formally, note that the j th function in the
sum (4) in all cases depends on ‖A j‖0 coordinates of x (the number of nonzeros in
the j th row of A) and hence f is partially separable of degree

Table 1 Three examples of loss
of functions Square loss 1

2 (AT
j x − y j )

2

Logistic loss log(1+ e
−y j AT

j x
)

Hinge square loss 1
2 max{0, 1− y j AT

j x}2
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ω = max
j
‖A j‖0.

All three functions of Table 1 are smooth (based on the definition of smoothness in
the next section). We refer the reader to [13] for more examples of interesting (but
nonsmooth) partially separable functions arising in graph cuts and matrix completion.

1.7 Brief literature review

Several papers were written recently studying the iteration complexity of serial CDMs
of various flavours and in various settings. We will only provide a brief summary here,
for a more detailed account we refer the reader to [15].

Classical CDMs update the coordinates in a cyclic order; the first attempt at analyz-
ing the complexity of such a method is due to [21]. Stochastic/randomized CDMs, that
is, methods where the coordinate to be updated is chosen randomly, were first analyzed
for quadratic objectives [4,24], later independently generalized to L1-regularized prob-
lems [23] and smooth block-structured problems [10], and finally unified and refined
in [15,19]. The problems considered in the above papers are either unconstrained or
have (block) separable constraints. Recently, randomized CDMs were developed for
problems with linearly coupled constraints [7,8].

A greedy CDM for L1-regularized problems was first analyzed in [16]; more work
on this topic include [2,5]. A CDM with inexact updates was first proposed and
analyzed in [26]. Partially separable problems were independently studied in [13],
where an asynchronous parallel stochastic gradient algorithm was developed to solve
them.

When writing this paper, the authors were aware only of the parallel CDM proposed
and analyzed in [1]. Several papers on the topic appeared around the time this paper
was finalized or after [6,14,22,22,28]. Further papers on various aspects of the topic
of parallel CDMs, building on the work in this paper, include [3,17,18,25].

1.8 Contents

We start in Sect. 2 by describing the block structure of the problem, establishing nota-
tion and detailing assumptions. Subsequently we propose and comment in detail on
two parallel coordinate descent methods. In Sect. 3 we summarize the main contribu-
tions of this paper. In Sect. 4 we deal with issues related to the selection of the blocks
to be updated in each iteration. It will involve the development of some elementary
random set theory. Sections 5 and 6 deal with issues related to the computation of the
update to the selected blocks and develop a theory of Expected Separable Overapprox-
imation (ESO), which is a novel tool we propose for the analysis of our algorithms. In
Sect. 7 we analyze the iteration complexity of our methods and finally, Sect. 8 reports
on promising computational results. For instance, we conduct an experiment with a
big data (cca 350GB) LASSO problem with a billion variables. We are able to solve
the problem using one of our methods on a large memory machine with 24 cores in
2 h, pushing the difference between the objective value at the starting iterate and the
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optimal point from 1022 down to 10−14. We also conduct experiments on real data
problems coming from machine learning.

2 Parallel block coordinate descent methods

In Sect. 2.1 we formalize the block structure of the problem, establish notation1 that
will be used in the rest of the paper and list assumptions. In Sect. 2.2 we propose two
parallel block coordinate descent methods and comment in some detail on the steps.

2.1 Block structure, notation and assumptions

The block structure2 of (1) is given by a decomposition of RN into n subspaces as
follows. Let U ∈ RN×N be a column permutation3 of the N × N identity matrix and
further let U = [U1, U2, . . . , Un] be a decomposition of U into n submatrices, with
Ui being of size N × Ni , where

∑
i Ni = N .

Proposition 1 (Block decomposition4) Any vector x ∈ RN can be written uniquely
as

x =
n∑

i=1

Ui x (i), (5)

where x (i) ∈ RNi . Moreover, x (i) = U T
i x.

Proof Noting that UU T = ∑
i UiU T

i is the N × N identity matrix, we have x =∑
i UiU T

i x . Let us now show uniqueness. Assume that x =∑
i Ui x (i)

1 =
∑

i Ui x (i)
2 ,

where x (i)
1 , x (i)

2 ∈ RNi . Since

U T
j Ui =

{
N j × N j identity matrix, if i = j,

N j × Ni zero matrix, otherwise,
(6)

for every j we get 0 = U T
j (x − x) = U T

j

∑
i Ui (x (i)

1 − x (i)
2 ) = x ( j)

1 − x ( j)
2 .

1 Table 8 in the appendix summarizes some of the key notation used frequently in the paper.
2 Some elements of the setup described in this section was initially used in the analysis of block coordinate
descent methods by Nesterov [10] (e.g., block structure, weighted norms and block Lipschitz constants).
3 The reason why we work with a permutation of the identity matrix, rather than with the identity itself,
as in [10], is to enable the blocks being formed by nonconsecutive coordinates of x . This way we establish
notation which makes it possible to work with (i.e., analyze the properties of) multiple block decompositions,
for the sake of picking the best one, subject to some criteria. Moreover, in some applications the coordinates
of x have a natural ordering to which the natural or efficient block structure does not correspond.
4 This is a straightforeard result; we do not claim any novelty and include it solely for the benefit of the
reader.
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In view of the above proposition, from now on we write x (i) def= U T
i x ∈ RNi ,

and refer to x (i) as the i th block of x . The definition of partial separability in the
introduction is with respect to these blocks. For simplicity, we will sometimes write
x = (x (1), . . . , x (n)).

2.1.1 Projection onto a set of blocks

For S ⊂ [n] and x ∈ RN we write

x[S]
def=

∑
i∈S

Ui x (i). (7)

That is, given x ∈ RN , x[S] is the vector in RN whose blocks i ∈ S are identical to
those of x , but whose other blocks are zeroed out. In view of Proposition 1, we can
equivalently define x[S] block-by-block as follows

(x[S])(i) =
{

x (i), i ∈ S,

0 (∈ RNi ), otherwise.
(8)

2.1.2 Inner products

The standard Euclidean inner product in spaces RN and RNi , i ∈ [n], will be denoted
by 〈·, ·〉. Letting x, y ∈ RN , the relationship between these inner products is given by

〈x, y〉 (5)=
〈

n∑
j=1

U j x ( j)
n∑

i=1

Ui y(i)

〉
=

n∑
j=1

n∑
i=1

〈U T
i U j x ( j), y(i)〉 (6)=

n∑
i=1

〈x (i), y(i)〉.

For any w ∈ Rn and x, y ∈ RN we further define

〈x, y〉w def=
n∑

i=1

wi 〈x (i), y(i)〉. (9)

For vectors z = (z1, . . . , zn)T ∈ Rn and w = (w1, . . . , wn)T ∈ Rn we write w�z
def=

(w1z1, . . . , wnzn)T .

2.1.3 Norms

Spaces RNi , i ∈ [n], are equipped with a pair of conjugate norms: ‖t‖(i) def= 〈Bi t, t〉1/2,

where Bi is an Ni × Ni positive definite matrix and ‖t‖∗(i) def= max‖s‖(i)≤1〈s, t〉 =
〈B−1

i t, t〉1/2, t ∈ RNi . For w ∈ Rn++, define a pair of conjugate norms in RN by
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‖x‖w =
[

n∑
i=1

wi‖x (i)‖2(i)
]1/2

,

‖y‖∗w def= max‖x‖w≤1
〈y, x〉 =

[
n∑

i=1

w−1
i (‖y(i)‖∗(i))2

]1/2

. (10)

Note that these norms are induced by the inner product (9) and the matrices B1, . . . , Bn .

Often we will use w = L
def= (L1, L2, . . . , Ln)T ∈ Rn , where the constants Li are

defined below.

2.1.4 Smoothness of f

We assume throughout the paper that the gradient of f is block Lipschitz, uniformly
in x , with positive constants L1, . . . , Ln , i.e., that for all x ∈ RN , i ∈ [n] and t ∈ RNi ,

‖∇i f (x +Ui t)− ∇i f (x)‖∗(i) ≤ Li‖t‖(i), (11)

where ∇i f (x)
def= (∇ f (x))(i) = U T

i ∇ f (x) ∈ RNi . An important consequence of
(11) is the following standard inequality [9]:

f (x +Ui t) ≤ f (x)+ 〈∇i f (x), t〉 + Li
2 ‖t‖2(i). (12)

2.1.5 Separability of Ω

We assume that5 � : RN → R ∪ {+∞} is (block) separable, i.e., that it can be
decomposed as follows:

�(x) =
n∑

i=1

�i (x (i)), (13)

where the functions �i : RNi → R ∪ {+∞} are convex and closed.

2.1.6 Strong convexity

In one of our two complexity results (Theorem 18) we will assume that either f or �

(or both) is strongly convex. A function φ : RN → R∪{+∞} is strongly convex with
respect to the norm ‖·‖w with convexity parameter μφ(w) ≥ 0 if for all x, y ∈ dom φ,

φ(y) ≥ φ(x)+ 〈φ′(x), y − x〉 + μφ(w)

2 ‖y − x‖2w, (14)

5 For examples of separable and block separable functions we refer the reader to [15]. For instance,
�(x) = ‖x‖1 is separable and block separable (used in sparse optimization); and �(x) =∑

i ‖x(i)‖, where
the norms are standard Euclidean norms, is block separable (used in group lasso). One can model block
constraints by setting �i (x(i)) = 0 for x ∈ Xi , where Xi is some closed convex set, and �i (x(i)) = +∞
for x /∈ Xi .
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where φ′(x) is any subgradient of φ at x . The case with μφ(w) = 0 reduces to
convexity. Strong convexity of F may come from f or � (or both); we write μ f (w)

(resp. μ�(w)) for the (strong) convexity parameter of f (resp. �). It follows from
(14) that

μF (w) ≥ μ f (w)+ μ�(w). (15)

The following characterization of strong convexity will be useful:

φ(λx + (1− λ)y) ≤ λφ(x)+ (1− λ)φ(y)− μφ(w)λ(1−λ)

2 ‖x − y‖2w,

x, y ∈ dom φ, λ ∈ [0, 1]. (16)

It can be shown using (12) and (14) that μ f (w) ≤ Li
wi

.

2.2 Algorithms

In this paper we develop and study two generic parallel coordinate descent methods.
The main method is PCDM1; PCDM2 is its “regularized” version which explicitly
enforces monotonicity. As we will see, both of these methods come in many variations,
depending on how Step 3 is performed.

Algorithm 1 Parallel Coordinate Descent Method 1 (PCDM1)
1: Choose initial point x0 ∈ RN

2: for k = 0, 1, 2, . . . do
3: Randomly generate a set of blocks Sk ⊆ {1, 2, . . . , n}
4: xk+1 ← xk + (h(xk ))[Sk ]
5: end for

Algorithm 2 Parallel Coordinate Descent Method 2 (PCDM2)
1: Choose initial point x0 ∈ RN

2: for k = 0, 1, 2, . . . do
3: Randomly generate a set of blocks Sk ⊆ {1, 2, . . . , n}
4: xk+1 ← xk + (h(xk ))[Sk ]
5: If F(xk+1) > F(xk ), then xk+1 ← xk
6: end for

Let us comment on the individual steps of the two methods.

Step 3. At the beginning of iteration k we pick a random set (Sk) of blocks to be updated
(in parallel) during that iteration. The set Sk is a realization of a random set-valued
mapping Ŝ with values in 2[n] or, more precisely, it the sets Sk are iid random sets with
the distribution of Ŝ. For brevity, in this paper we refer to such a mapping by the name
sampling. We limit our attention to uniform samplings, i.e., random sets having the
following property: P(i ∈ Ŝ) is independent of i . That is, the probability that a block
gets selected is the same for all blocks. Although we give an iteration complexity result
covering all such samplings (provided that each block has a chance to be updated, i.e.,
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P(i ∈ Ŝ) > 0), there are interesting subclasses of uniform samplings (such as doubly
uniform and nonoverlapping uniform samplings; see Sect. 4) for which we give better
results.
Step 4. For x ∈ RN we define6

h(x)
def= arg min

h∈RN
Hβ,w(x, h), (17)

where
Hβ,w(x, h)

def= f (x)+ 〈∇ f (x), h〉 + β
2 ‖h‖2w +�(x + h), (18)

and β > 0, w = (w1, . . . , wn)T ∈ Rn++ are parameters of the method that we will
comment on later. Note that in view of (5, 10) and (13), Hβ,w(x, ·) is block separable;

Hβ,w(x, h) = f (x)+
n∑

i=1

{
〈∇i f (x), h(i)〉 + βwi

2 ‖h(i)‖2(i) +�i (x (i) + h(i))
}

.

Consequently, we have h(x) = (h(1)(x), . . . , h(n)(x)) ∈ RN , where

h(i)(x) = arg min
t∈RNi
{〈∇i f (x), t〉 + βwi

2 ‖t‖2(i) +�i (x (i) + t)}.

We mentioned in the introduction that besides (block) separability, we require � to
be “simple”. By this we mean that the above optimization problem leading to h(i)(x)

is “simple” (e.g., it has a closed-form solution). Recall from (8) that (h(xk))[Sk ] is the
vector in RN identical to h(xk) except for blocks i /∈ Sk , which are zeroed out. Hence,
Step 4 of both methods can be written as follows:

In parallel for i ∈ Sk do : x (i)
k+1 ← x (i)

k + h(i)(xk).

Parameters β and w depend on f and Ŝ and stay constant throughout the algorithm.
We are not ready yet to explain why the update is computed via (17) and (18) because
we need technical tools, which will be developed in Sect. 4, to do so. Here it suffices to
say that the parameters β and w come from a separable quadratic overapproximation
of E[ f (x + h[Ŝ])], viewed as a function of h ∈ RN . Since expectation is involved,
we refer to this by the name Expected Separable Overapproximation (ESO). This
novel concept, developed in this paper, is one of the main tools of our complexity
analysis. Section 5 motivates and formalizes the concept, answers the why question,
and develops some basic ESO theory.

Section 6 is devoted to the computation of β and w for partially separable f and
various special classes of uniform samplings Ŝ. Typically we will have wi = Li ,
while β will depend on easily computable properties of f and Ŝ. For example, if Ŝ

6 A similar map was used in [10] (with � ≡ 0 and β = 1) and [15] (with β = 1) in the analysis of serial
coordinate descent methods in the smooth and composite case, respectively. In loose terms, the novelty here
is the introduction of the parameter β and in developing theory which describes what value β should have.
Maps of this type are known as composite gradient mapping in the literature, and were introduced in [11].
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is chosen as a subset of [n] of cardinality τ , with each subset chosen with the same
probability (we say that Ŝ is τ -nice) then, assuming n > 1, we may choose w = L
and β = 1 + (ω−1)(τ−1)

n−1 , where ω is the degree of partial separability of f . More

generally, if Ŝ is any uniform sampling with the property |Ŝ| = τ with probability
1, then we may choose w = L and β = min{ω, τ }. Note that in both cases w = L
and that the latter β is always larger than (or equal to) the former one. This means,
as we will see in Sect. 7, that we can give better complexity results for the former,
more specialized, sampling. We analyze several more options for Ŝ than the two just
described, and compute parameters β and w that should be used with them (for a
summary, see Table 4).

Step 5. The reason why, besides PCDM1, we also consider PCDM2, is the following:
in some situations we are not able to analyze the iteration complexity of PCDM1
(non-strongly-convex F where monotonicity of the method is not guaranteed by other
means than by directly enforcing it by inclusion of Step 5). Let us remark that this
issue arises for general � only. It does not exist for � = 0, �(·) = λ‖ · ‖1 and for �

encoding simple constraints on individual blocks; in these cases one does not need to
consider PCDM2. Even in the case of general � we sometimes get monotonicity for
free, in which case there is no need to enforce it. Let us stress, however, that we do
not recommend implementing PCDM2 as this would introduce too much overhead; in
our experience PCDM1 works well even in cases when we can only analyze PCDM2.

3 Smmary of contributions

In this section we summarize the main contributions of this paper (not in order of
significance).

1. Problem generality We give the first complexity analysis for parallel coordinate
descent methods for problem (1) in its full generality.

2. Complexity We show theoretically (Sect. 7) and numerically (Sect. 8) that PCDM
accelerates on its serial counterpart for partially separable problems. In particu-
lar, we establish two complexity theorems giving lower bounds on the number of
iterations k sufficient for one or both of the PCDM variants (for details, see the
precise statements in Sect. 7) to produce a random iterate xk for which the problem
is approximately solved with high probability, i.e., P(F(xk)− F∗ ≤ ε) ≥ 1− ρ.
The results, summarized in Table 2, hold under the standard assumptions listed in
Sect. 2.1 and the additional assumption that f, Ŝ, β and w satisfy the following

Table 2 Summary of the main complexity results for PCDM established in this paper

Setting Complexity Theorem

Convex f O
(

βn
E[|Ŝ|]

1
ε log

(
1
ρ

))
17

Strongly convex f μ f (w)+ μ�(w) > 0 n
E[|Ŝ|]

β+μ�(w)
μ f (w)+μ�(w)

log
(

F(x0)−F∗
ερ

)
18
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Table 3 New and known gradient methods obtained as special cases of our general framework

Method Parameters Comments

Gradient descent n = 1 [11]

Serial random CDM Ni = 1 for all i and P(|Ŝ| = 1) = 1 [15]

Serial block random CDM Ni ≥ 1 for all i and P(|Ŝ| = 1) = 1 [15]

Parallel random CDM P(|Ŝ| > 1) > 0 NEW

Distributed random CDM Ŝ is a distributed sampling [17]a

a Remark at revision: This work was planned as a follow-up paper at the time of submitting this paper in
Nov 2012; but has appeared in the time between than and revision

inequality for all x, h ∈ RN :

E[ f (x + h[Ŝ])] ≤ f (x)+ E[|Ŝ|]
n

(
〈∇ f (x), h〉 + β

2 ‖h‖2w
)

. (19)

This inequality, which we call Expected Separable Overapproximation (ESO), is
the main new theoretical tool that we develop in this paper for the analysis of our
methods (Sects. 4, 5 and 6 are devoted to the development of this theory).
The main observation here is that as the average number of block updates per
iteration increases (say, τ̂ = E[|Ŝ|]), enabled by the utilization of more processors,
the leading term in the complexity estimate, n/τ̂ , decreases in proportion. However,
β will generally grow with τ̂ , which has an adverse effect on the speedup. Much
of the theory in this paper goes towards producing formulas for β (and w), for
partially separable f and various classes of uniform samplings Ŝ. Naturally, the
ideal situation is when β does not grow with τ̂ at all, or if it only grows very slowly.
We show that this is the case for partially separable functions f with small ω. For
instance, in the extreme case when f is separable (ω = 1), we have β = 1 and
we obtain linear speedup in τ̂ . As ω increases, so does β, depending on the law
governing Ŝ. Formulas for β and ω for various samplings Ŝ are summarized in
Table 4.

3. Algorithm unification Depending on the choice of the block structure (as implied
by the choice of n and the matrices U1, . . . , Un) and the way blocks are selected
at every iteration (as given by the choice of Ŝ), our framework encodes a family of
known and new algorithms7 (see Table 3).
In particular, PCDM is the first method which “continuously” interpolates between
serial coordinate descent and gradient (by manipulating n and/or E[|Ŝ|]).

4. Partial separability We give the first analysis of a coordinate descent type method
dealing with a partially separable loss / objective. In order to run the method, we
need to know the Lipschitz constants Li and the degree of partial separability ω. It
is crucial that these quantities are often easily computable/predictable in the huge-
scale setting. For example, if f (x) = 1

2‖Ax − b‖2 and we choose all blocks to be
of size 1, then Li is equal to the squared Euclidean norm of the i th column of A

7 All the methods are in their proximal variants due to the inclusion of the term � in the objective.
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Ŝ

Sa
m

pl
in

g
Ŝ
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Table 5 Convex F :
Parallelization speedup factors
for DU samplings

The last four expressions are a
special case of the first
expressions since the
corresponding samplings are all
doubly uniform. Maximum
speedup is naturally obtained by
the fully parallel sampling: n

ω

Ŝ Parallelization speedup factor

Doubly uniform E[|Ŝ|]

1+
(ω−1)

(
(E[|Ŝ|2]/E[|Ŝ|])−1

)

max(1,n−1)

(τ, pb)-Binomial τ
1
pb
+ (ω−1)(τ−1)

max(1,n−1)

τ -Nice τ

1+ (ω−1)(τ−1)
max(1,n−1)

Fully parallel n
ω

Serial 1

and ω is equal to the maximum number of nonzeros in a row of A. Many problems
in the big data setting have small ω compared to n.

5. Choice of blocks To the best of our knowledge, existing randomized strategies for
paralleling gradient-type methods (e.g., [1]) assume that Ŝ (or an equivalent thereof,
based on the method) is chosen as a subset of [n] of a fixed cardinality, uniformly
at random. We refer to such Ŝ by the name nice sampling in this paper. We relax
this assumption and our treatment is hence much more general. In fact, we allow
for Ŝ to be any uniform sampling. It is possible to further consider nonuniform
samplings,8 but this is beyond the scope of this paper.
In particular, as a special case, our method allows for a variable number of blocks
to be updated throughout the iterations (this is achieved by the introduction of
doubly uniform samplings). This may be useful in some settings such as when
the problem is being solved in parallel by τ unreliable processors each of which
computes its update h(i)(xk) with probability pb and is busy/down with probability
1− pb (binomial sampling).
Uniform, doubly uniform, nice, binomial and other samplings are defined, and their
properties studied, in Sect. 4.

6. ESO and formulas for β and w. In Table 4 we list parameters β and w for which
ESO inequality (19) holds. Each row corresponds to a specific sampling Ŝ (see
Sect. 4 for the definitions). The last 5 samplings are special cases of one or more
of the first three samplings. Details such as what is ν, γ and “monotonic” ESO
are explained in appropriate sections later in the text. When a specific sampling
Ŝ is used in the algorithm to select blocks in each iteration, the corresponding
parameters β and w are to be used in the method for the computation of the update
(see Eqs. 17 and 18).
En route to proving the iteration complexity results for our algorithms, we develop
a theory of deterministic and expected separable overapproximation (Sects. 5, 6)
which we believe is of independent interest, too. For instance, methods based on
ESO can be compared favorably to the Diagonal Quadratic Approximation (DQA)
approach used in the decomposition of stochastic optimization programs [20].

7. Parallelization speedup Our complexity results can be used to derive theoretical
parallelization speedup factors. For several variants of our method, in case of a

8 Revision note: see [18].
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non-strongly convex objective, these are summarized in Table 5 (see Sect 7.1 for the
derivations). For instance, in the case when all block are updated at each iteration
(we later refer to Ŝ having this property by the name fully parallel sampling), the
speedup factor is equal to n

ω
. If the problem is separable (ω = 1), the speedup is

equal to n; if the problem is not separable (ω = n), there may be no speedup. For
strongly convex F the situation is even better; the details are given in Sect. 7.2.

8. Relationship to existing results To the best of our knowledge, there are just two
papers analyzing a parallel coordinate descent algorithm for convex optimization
problems[1,6]. In the first paper all blocks are of size 1, Ŝ corresponds to what
we call in this paper a τ -nice sampling (i.e., all sets of τ coordinates are updated
at each iteration with equal probability) and hence their algorithm is somewhat
comparable to one of the many variants of our general method. While the analysis
in [1] works for a restricted range of values of τ , our results hold for all τ ∈ [n].
Moreover, the authors consider a more restricted class of functions f and the special
case � = λ‖x‖1, which is simpler to analyze. Lastly, the theoretical speedups
obtained in [1], when compared to the serial CDM method, depend on a quantity
σ that is hard to compute in big data settings (it involves the computation of an
eigenvalue of a huge-scale matrix). Our speedups are expressed in terms of natural
and easily computable quantity: the degree ω of partial separability of f . In the
setting considered by [1], in which more structure is available, it turns out that
ω is an upper bound9 on σ . Hence, we show that one can develop the theory in
a more general setting, and that it is not necessary to compute σ (which may be
complicated in the big data setting). The parallel CDM method of the second paper
[6] only allows all blocks to be updated at each iteration. Unfortunately, the analysis
(and the method) is too coarse as it does not offer any theoretical speedup when
compared to its serial counterpart. In the special case when only a single block is
updated in each iteration, uniformly at random, our theoretical results specialize to
those established in [15].

9. Computations We demonstrate that our method is able to solve a LASSO problem
involving a matrix with a billion columns and 2 billion rows on a large memory
node with 24 cores in 2 h (Sect. 8), achieving a 20× speedup compared to the serial
variant and pushing the residual by more than 30 degrees of magnitude. While
this is done on an artificial problem under ideal conditions (controlling for small
ω), large speedups are possible in real data with ω small relative to n. We also
perform additional experiments on real machine learning data sets (e.g., training
linear SVMs) to illustrate that the predictions of our theory match reality.

10. Code The open source code with an efficient implementation of the algorithm(s)
developed in this paper is published here: http://code.google.com/p/ac-dc/.

9 Revision note requested by a reviewer: In the time since this paper was posted to arXiv, a number of
follow-up papers were written analyzing parallel coordinate descent methods and establishing connections
between a discrete quantity analogous to ω (degree of partial/Nesterov separability) and a spectral quantity
analogous to σ (largest eigenvalue of a certain matrix), most notably [3,17]. See also [25], which uses a
spectral quantity, which can be directly compared to ω.
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4 Block samplings

In Step 3 of both PCDM1 and PCDM2 we choose a random set of blocks Sk to be
updated at the current iteration. Formally, Sk is a realization of a random set-valued
mapping Ŝ with values in 2[n], the collection of subsets of [n]. For brevity, in this
paper we refer to Ŝ by the name sampling. A sampling Ŝ is uniquely characterized by
the probability mass function

P(S)
def= P(Ŝ = S), S ⊆ [n]; (20)

that is, by assigning probabilities to all subsets of [n]. Further, we let p =
(p1, . . . , pn)T , where

pi
def= P(i ∈ Ŝ). (21)

In Sect. 4.1 we describe those samplings for which we analyze our methods and in
Sect. 4.2 we prove several technical results, which will be useful in the rest of the
paper.

4.1 Uniform, doubly uniform and nonoverlapping uniform samplings

A sampling is proper if pi > 0 for all blocks i . That is, from the perspective of
PCDM, under a proper sampling each block gets updated with a positive probability
at each iteration. Clearly, PCDM can not converge for a sampling that is not proper.
A sampling Ŝ is uniform if all blocks get updated with the same probability, i.e., if

pi = p j for all i, j . We show in (33) that, necessarily, pi = E[|Ŝ|]
n . Further, we say Ŝ

is nil if P(∅) = 1. Note that a uniform sampling is proper if and only if it is not nil.

All complexity results of this paper are formulated for proper uniform samplings.
We give a complexity result covering all such samplings. However, the family
of proper uniform samplings is large, with several interesting subfamilies for
which we can give better results. We now define these families.

All our iteration complexity results in this paper are for PCDM used with a proper
uniform sampling (see Theorems 17 and 18) for which we can compute β and w giving
rise to an inequality (we we call “expected separable overapproximation”) of the form
(43). We derive such inequalities for all proper uniform samplings (Theorem 10) as
well as refined results for two special subclasses thereof: doubly uniform samplings
(Theorem 13) and nonoverlapping uniform samplings (Theorem 11). We will now
give the definitions:

1. Doubly Uniform (DU) samplings A DU sampling is one which generates all sets
of equal cardinality with equal probability. That is, P(S′) = P(S′′) whenever
|S′| = |S′′|. The name comes from the fact that this definition postulates a different
uniformity property, “standard” uniformity is a consequence. Indeed, let us show
that a DU sampling is necessarily uniform. Let q j = P(|Ŝ| = j) for j = 0, 1, . . . , n
and note that from the definition we know that whenever S is of cardinality j , we
have P(S) = q j/

(n
j

)
. Finally, using this we obtain
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pi =
∑
S:i∈S

P(S) =
n∑

j=1

∑
S:i∈S|S|= j

P(S) =
n∑

j=1

∑
S:i∈S|S|= j

q j

(n
j)
=

n∑
j=1

(n−1
j−1)

(n
j)

q j

= 1
n

n∑
j=1

q j j = E[|Ŝ|]
n .

It is clear that each DU sampling is uniquely characterized by the vector of prob-
abilities q; its density function is given by

P(S) = q|S|/
(

n

|S|
)

, S ⊆ [n]. (22)

2. Nonoverlapping Uniform (NU) samplings A NU sampling is one which is uniform
and which assigns positive probabilities only to sets forming a partition of [n]. Let
S1, S2, . . . , Sl be a partition of [n], with |S j | > 0 for all j . The density function
of a NU sampling corresponding to this partition is given by

P(S) =
{

1
l , if S ∈ {S1, S2, . . . , Sl},
0, otherwise.

(23)

Note that E[|Ŝ|] = n
l .

Let us now describe several interesting special cases of DU and NU samplings:

3. Nice sampling Fix 1 ≤ τ ≤ n. A τ -nice sampling is a DU sampling with qτ = 1.
Interpretation: There are τ processors/threads/cores available. At the beginning
of each iteration we choose a set of blocks using a τ -nice sampling (i.e., each
subset of τ blocks is chosen with the same probability), and assign each block to a
dedicated processor/thread/core. Processor assigned with block i would compute
and apply the update h(i)(xk). This is the sampling we use in our computational
experiments.

4. Independent sampling Fix 1 ≤ τ ≤ n. A τ -independent sampling is a DU sampling
with

qk =
{(n

k

)
ck, k = 1, 2, . . . , τ,

0, k = τ + 1, . . . , n,

where c1 =
( 1

n

)τ
and ck =

( k
n

)τ −∑k−1
i=1

(k
i

)
ci for k ≥ 2.

Interpretation: There are τ processors/threads/cores available. Each processor
chooses one of the n blocks, uniformly at random and independently of the other
processors. It turns out that the set Ŝ of blocks selected this way is DU with q
as given above. Since in one parallel iteration of our methods each block in Ŝ is
updated exactly once, this means that if two or more processors pick the same
block, all but one will be idle. On the other hand, this sampling can be generated
extremely easily and in parallel! For τ � n this sampling is a good (and fast)
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approximation of the τ -nice sampling. For instance, for n = 103 and τ = 8 we
have q8 = 0.9723, q7 = 0.0274, q6 = 0.0003 and qk ≈ 0 for k = 1, . . . , 5.

5. Binomial sampling Fix 1 ≤ τ ≤ n and 0 < pb ≤ 1. A (τ, pb)-binomial sampling
is defined as a DU sampling with

qk =
(

τ

k

)
pk

b(1− pb)
k, k = 0, 1, . . . , τ. (24)

Notice that E[|Ŝ|] = τpb and E[|Ŝ|2] = τpb(1+ τpb − pb).
Interpretation: Consider the following situation with independent equally unreliable
processors. We have τ processors, each of which is at any given moment available
with probability pb and busy with probability 1− pb, independently of the availability
of the other processors. Hence, the number of available processors (and hence blocks
that can be updated in parallel) at each iteration is a binomial random variable with
parameters τ and pb. That is, the number of available processors is equal to k with
probability qk .

– Case 1 (explicit selection of blocks): We learn that k processors are available at
the beginning of each iteration. Subsequently, we choose k blocks using a k-nice
sampling and “assign one block” to each of the k available processors.

– Case 2 (implicit selection of blocks): We choose τ blocks using a τ -nice sampling
and assign one to each of the τ processors (we do not know which will be available at
the beginning of the iteration). With probability qk , k of these will send their updates.
It is easy to check that the resulting effective sampling of blocks is (τ, pb)-binomial.

6. Serial sampling This is a DU sampling with q1 = 1. Also, this is a NU sampling with
l = n and S j = { j} for j = 1, 2, . . . , l. That is, at each iteration we update a single
block, uniformly at random. This was studied in [15].

7. Fully parallel sampling This is a DU sampling with qn = 1. Also, this is a NU
sampling with l = 1 and S1 = [n]. That is, at each iteration we update all blocks.

Example 2 (Examples of Samplings) Let n = 3.

• Sampling Ŝ defined by P(Ŝ = {1}) = 0.5, P(Ŝ = {2}) = 0.4 and P(Ŝ = {3}) = 0.1
is not uniform.
• Sampling Ŝ defined by P(Ŝ = {1, 2}) = 2/3 and P(Ŝ = {3}) = 1/3 is uniform and

NU, but it is not DU (and, particular, it is not τ -nice for any τ ).
• Sampling Ŝ defined by P(Ŝ = {1, 2}) = 1/3, P(Ŝ = {2, 3}) = 1/3 and P(Ŝ =
{3, 1}) = 1/3 is 2-nice. Since all τ -nice samplings are DU, it is DU. Since all DU
samplings are uniform, it is uniform.
• Sampling Ŝ defined by P(Ŝ = {1, 2, 3}) = 1 is 3-nice. This is the fully parallel

sampling. It is both DU and NU.

The following simple result says that the intersection between the class of DU and
NU samplings is very thin. A sampling is called vacuous if P(∅) > 0.
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Proposition 3 There are precisely two nonvacuous samplings which are both DU and
NU: i) the serial sampling and ii) the fully parallel sampling.

Proof Assume Ŝ is nonvacuous, NU and DU. Since Ŝ is nonvacuous, P(Ŝ = ∅) = 0.
Let S ⊂ [n] be any set for which P(Ŝ = S) > 0. If 1 < |S| < n, then there exists
S′ �= S of the same cardinality as S having a nonempty intersection with S. Since
Ŝ is doubly uniform, we must have P(Ŝ = S′) = P(Ŝ = S′) > 0. However, this
contradicts the fact that Ŝ is non-overlapping. Hence, Ŝ can only generate sets of
cardinalities 1 or n with positive probability, but not both. One option leads to the
fully parallel sampling, the other one leads to the serial sampling.

4.2 Technical results

For a given sampling Ŝ and i, j ∈ [n] we let

pi j
def= P(i ∈ Ŝ, j ∈ Ŝ) =

∑
S:{i, j}⊂S

P(S). (25)

The following simple result has several consequences which will be used throughout
the paper.

Lemma 4 (Sum over a random index set) Let ∅ �= J ⊂ [n] and Ŝ be any sampling.
If θi , i ∈ [n], and θi j , for (i, j) ∈ [n] × [n] are real constants, then10

E

⎡
⎣ ∑

i∈J∩Ŝ

θi

⎤
⎦ =

∑
i∈J

piθi ,

E

⎡
⎣ ∑

i∈J∩Ŝ

θi | |J ∩ Ŝ| = k

⎤
⎦ =

∑
i∈J

P(i ∈ Ŝ | |J ∩ Ŝ| = k)θi , (26)

E

⎡
⎣ ∑

i∈J∩Ŝ

∑

j∈J∩Ŝ

θi j

⎤
⎦ =

∑
i∈J

∑
j∈J

pi jθi j . (27)

Proof We prove the first statement, proof of the remaining statements is essentially
identical:

E

⎡
⎣ ∑

i∈J∩Ŝ

θi

⎤
⎦ (20)=

∑
S⊂[n]

( ∑
i∈J∩S

θi

)
P(S) =

∑
i∈J

∑
S:i∈S

θi P(S)

=
∑
i∈J

θi

∑
S:i∈S

P(S) =
∑
i∈J

piθi .

��
10 Sum over an empty index set will, for convenience, be defined to be zero.
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The consequences are summarized in the next theorem and the discussion that
follows.

Theorem 5 Let ∅ �= J ⊂ [n] and Ŝ be an arbitrary sampling. Further, let a, h ∈ RN ,
w ∈ Rn+ and let g be a block separable function, i.e., g(x) =∑

i gi (x (i)). Then

E
[
|J ∩ Ŝ|

]
=

∑
i∈J

pi , (28)

E
[
|J ∩ Ŝ|2

]
=

∑
i∈J

∑
j∈J

pi j , (29)

E
[
〈a, h[Ŝ]〉w

]
= 〈a, h〉p�w, (30)

E
[
‖h[Ŝ]‖2w

]
= ‖h‖2p�w, (31)

E
[
g(x + h[Ŝ])

]
=

n∑
i=1

[
pi gi (x (i) + h(i))+ (1− pi )gi (x (i))

]
. (32)

Moreover, the matrix P
def= (pi j ) is positive semidefinite.

Proof Noting that |J∩Ŝ| =∑
i∈J∩Ŝ 1, |J∩Ŝ|2=(

∑
i∈J∩Ŝ 1)2 =∑

i∈J∩Ŝ

∑
j∈J∩Ŝ 1,

〈a, h[Ŝ]〉w=
∑

i∈Ŝ wi 〈a(i), h(i)〉, ‖h[Ŝ]‖2w =
∑

i∈Ŝ wi‖h(i)‖2(i) and

g(x+h[Ŝ]) =
∑

i∈Ŝ

gi (x (i) + h(i))+
∑

i /∈Ŝ

gi (x (i)) =
∑

i∈Ŝ

gi (x (i) + h(i))

+
n∑

i=1

gi (x (i))−
∑

i∈Ŝ

gi (x (i)),

all five identities follow directly by applying Lemma 4. Finally, for any θ =
(θ1, . . . , θn)T ∈ Rn ,

θT Pθ =
n∑

i=1

n∑
j=1

pi jθiθ j
(27)= E

⎡
⎢⎣
⎛
⎝∑

i∈Ŝ

θi

⎞
⎠

2
⎤
⎥⎦ ≥ 0.

��
The above results hold for arbitrary samplings. Let us specialize them, in order of

decreasing generality, to uniform, doubly uniform and nice samplings.

• Uniform samplings. If Ŝ is uniform, then from (28) using J = [n] we get

pi =
E
[
|Ŝ|

]

n , i ∈ [n]. (33)

Plugging (33) into (28, 30, 31) and (32) yields
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E
[
|J ∩ Ŝ|

]
= |J |n E[|Ŝ|], (34)

E
[
〈a, h[Ŝ]〉w

]
= E

[
|Ŝ|

]

n 〈a, h〉w, (35)

E
[
‖h[Ŝ]‖2w

]
= E

[
|Ŝ|

]

n ‖h‖2w, (36)

E
[
g(x + h[Ŝ])

]
= E[|Ŝ|]

n g(x + h)+
(

1− E[|Ŝ|]
n

)
g(x). (37)

• Doubly uniform samplings. Consider the case n > 1; the case n = 1 is trivial. For
doubly uniform Ŝ, pi j is constant for i �= j :

pi j = E[|Ŝ|2−|Ŝ|]
n(n−1)

. (38)

Indeed, this follows from

pi j =
n∑

k=1

P({i, j} ⊆ Ŝ | |Ŝ| = k)P(|Ŝ| = k) =
n∑

k=1

k(k−1)
n(n−1)

P(|Ŝ| = k).

Substituting (38) and (33) into (29) then gives

E[|J ∩ Ŝ|2] = (|J |2 − |J |) E[|Ŝ|2−|Ŝ|]
n max{1,n−1} + |J | |Ŝ|n . (39)

• Nice samplings. Finally, if Ŝ is τ -nice (and τ �= 0), then E[|Ŝ|] = τ and E[|Ŝ|2] =
τ 2, which used in (39) gives

E[|J ∩ Ŝ|2] = |J |τn

(
1+ (|J |−1)(τ−1)

max{1,n−1}
)

. (40)

Moreover, assume that P(|J ∩ Ŝ| = k) �= 0 (this happens precisely when 0 ≤ k ≤
|J | and k ≤ τ ≤ n − |J | + k). Then for all i ∈ J ,

P(i ∈ Ŝ | |J ∩ Ŝ| = k) =
(|J |−1

k−1

)(n−|J |
τ−k

)
(|J |

k

)(n−|J |
τ−k

) = k

|J | .

Substituting this into (26) yields

E

⎡
⎣ ∑

i∈J∩Ŝ

θi | |J ∩ Ŝ| = k

⎤
⎦ = k

|J |
∑
i∈J

θi . (41)
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5 Expected separable overapproximation

Recall that given xk , in PCDM1 the next iterate is the random vector xk+1 = xk+h[Ŝ]
for a particular choice of h ∈ RN . Further recall that in PCDM2,

xk+1 =
{

xk + h[Ŝ], if F(xk + h[Ŝ]) ≤ F(xk),

xk, otherwise,

again for a particular choice of h. While in Sect. 2 we mentioned how h is computed,
i.e., that h is the minimizer of Hβ,w(x, ·) (see Eqs. 17 and 18), we did not explain why
is h computed this way. The reason for this is that the tools needed for this were not
yet developed at that point (as we will see, some results from Sect. 4 are needed). In
this section we give an answer to this why question.

Given xk ∈ RN , after one step of PCDM1 performed with update h we get
E[F(xk+1) | xk] = E[F(xk + h[Ŝ]) | xk]. On the the other hand, after one step
of PCDM2 we have

E[F(xk+1) | xk] = E[min{F(xk + h[Ŝ]), F(xk)} | xk]
≤ min{E[F(xk + h[Ŝ]) | xk], F(xk)}.

So, for both PCDM1 and PCDM2 the following estimate holds,

E[F(xk+1) | xk] ≤ E[F(xk + h[Ŝ]) | xk]. (42)

A good choice for h to be used in the algorithms would be one minimizing the right
hand side of inequality (42). At the same time, we would like the minimization process
to be decomposable so that the updates h(i), i ∈ Ŝ, could be computed in parallel.
However, the problem of finding such h is intractable in general even if we do not
require parallelizability. Instead, we propose to construct/compute a “simple” sepa-
rable overapproximation of the right-hand side of (42). Since the overapproximation
will be separable, parallelizability is guaranteed; “simplicity” means that the updates
h(i) can be computed easily (e.g., in closed form).

From now on we replace, for simplicity and w.l.o.g., the random vector xk by a fixed
deterministic vector x ∈ RN . We can thus remove conditioning in (42) and instead
study the quantity E[F(x+h[Ŝ])]. Further, fix h ∈ RN . Note that if we can find β > 0
and w ∈ Rn++ such that

E
[

f
(

x + h[Ŝ]
)]
≤ f (x)+ E[|Ŝ|]

n

(
〈∇ f (x), h〉 + β

2 ‖h‖2w
)

, (43)

we indeed find a simple separable overapproximation of E[F(x + h[Ŝ])]:
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E[F(x + h[Ŝ])]
(1)= E[ f (x + h[Ŝ])+�(x + h[Ŝ])]

(43),(37)≤ f (x)+ E[|Ŝ|]
n

(
〈∇ f (x), h〉 + β

2 ‖h‖2w
)
+

(
1− E[|Ŝ|]

n

)
�(x)

+E[|Ŝ|]
n �(x + h)

=
(

1− E[|Ŝ|]
n

)
F(x)+ E[|Ŝ|]

n Hβ,w(x, h), (44)

where we recall from (18) that Hβ,w(x, h) = f (x)+〈∇ f (x), h〉+ β
2 ‖h‖2w+�(x+h).

That is, (44) says that the expected objective value after one parallel step of our
methods, if block i ∈ Ŝ is updated by h(i), is bounded above by a convex combination
of F(x) and Hβ,w(x, h). The natural choice of h is to set

h(x) = arg min
h∈RN

Hβ,w(x, h). (45)

Note that this is precisely the choice we make in our methods. Since Hβ,w(x, 0) =
F(x), both PCDM1 and PCDM2 are monotonic in expectation.

The above discussion leads to the following definition.

Definition 6 (Expected Separable Overapproximation (ESO)) Let β > 0, w ∈ Rn++
and let Ŝ be a proper uniform sampling. We say that f : RN → R admits a (β,w)-
ESO with respect to Ŝ if inequality (43) holds for all x, h ∈ RN . For simplicity, we
write ( f, Ŝ) ∼ E SO(β,w).

A few remarks:

1. Inflation If ( f, Ŝ) ∼ E SO(β,w), then for β ′ ≥ β and w′ ≥ w, ( f, Ŝ) ∼
E SO(β ′, w′).

2. Reshuffling Since for any c > 0 we have ‖h‖2cw = c‖h‖2w, one can “shuffle”
constants between β and w as follows:

( f, Ŝ) ∼ E SO(cβ,w)⇔ ( f, Ŝ) ∼ E SO(β, cw), c > 0. (46)

3. Strong convexity If ( f, Ŝ) ∼ E SO(β,w), then

β ≥ μ f (w). (47)

Indeed, it suffices to take expectation in (14) with y replaced by x+h[Ŝ] and compare

the resulting inequality with (43) (this gives β‖h‖2w ≥ μ f (w)‖h‖2w, which must
hold for all h).

Recall that Step 5 of PCDM2 was introduced so as to explicitly enforce monotonic-
ity into the method as in some situations, as we will see in Sect. 7, we can only analyze
a monotonic algorithm. However, sometimes even PCDM1 behaves monotonically
(without enforcing this behavior externally as in PCDM2). The following definition
captures this.
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Definition 7 (Monotonic ESO) Assume ( f, Ŝ) ∼ E SO(β,w) and let h(x) be as in
(45). We say that the ESO is monotonic if F(x + (h(x))[Ŝ]) ≤ F(x), with probability
1, for all x ∈ dom F .

5.1 Deterministic separable overapproximation (DSO) of partially separable
functions

The following theorem will be useful in deriving ESO for uniform samplings (Sect. 6.1)
and nonoverlapping uniform samplings (Sect. 6.2). It will also be useful in establishing
monotonicity of some ESOs (Theorems 10 and 11).

Theorem 8 (DSO) Assume f is partially separable (i.e., it can be written in the form

(2)). Letting Supp(h)
def= {i ∈ [n] : h(i) �= 0}, for all x, h ∈ RN we have

f (x + h) ≤ f (x)+ 〈∇ f (x), h〉 + maxJ∈J |J ∩ Supp(h)|
2

‖h‖2L . (48)

Proof Let us fix x and define φ(h)
def= f (x + h)− f (x)− 〈∇ f (x), h〉. Fixing h, we

need to show that φ(h) ≤ θ
2‖h‖2L for θ = maxJ∈J θ J , where θ J def= |J ∩ Supp(h)|.

One can define functions φ J in an analogous fashion from the constituent functions
f J , which satisfy

φ(h) =
∑
J∈J

φ J (h), (49)

φ J (0) = 0, J ∈ J . (50)

Note that (12) can be written as

φ(Ui h
(i)) ≤ Li

2 ‖h(i)‖2(i), i = 1, 2, . . . , n. (51)

Now, since φ J depends on the intersection of J and the support of its argument only,
we have

φ(h)
(49)=

∑
J∈J

φ J (h) =
∑
J∈J

φ J

(
n∑

i=1

Ui h
(i)

)
=

∑
J∈J

φ J

⎛
⎝ ∑

i∈J∩Supp(h)

Ui h
(i)

⎞
⎠ .

(52)
The argument in the last expression can be written as a convex combination of

1+ θ J vectors: the zero vector (with weight θ−θ J

θ
) and the θ J vectors {θUi h(i) : i ∈

J ∩ Supp(h)} (with weights 1
θ

):

∑
i∈J∩Supp(h)

Ui h
(i) =

(
θ−θ J

θ
× 0

)
+

⎛
⎝ 1

θ
×

∑
i∈J∩Supp(h)

θUi h
(i)

⎞
⎠ . (53)
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Finally, we plug (53) into (52) and use convexity and some simple algebra:

φ(h) ≤
∑
J∈J

⎡
⎣ θ−θ J

θ
φ J (0)+ 1

θ

∑
i∈J∩Supp(h)

φ J (θUi h
(i))

⎤
⎦

(50)= 1
θ

∑
J∈J

∑
i∈J∩Supp(h)

φ J (θUi h
(i))

= 1
θ

∑
J∈J

n∑
i=1

φ J (θUi h
(i)) = 1

θ

n∑
i=1

∑
J∈J

φ J (θUi h
(i))

(49)= 1
θ

n∑
i=1

φ(θUi h
(i))

(51)≤ 1
θ

n∑
i=1

Li
2 ‖θh(i)‖2(i) = θ

2‖h‖2L .

��
Besides the usefulness of the above result in deriving ESO inequalities, it is inter-

esting on its own for the following reasons.

1. Block Lipschitz continuity of ∇ f The DSO inequality (48) is a generalization of
(12) since (12) can be recovered from (48) by choosing h with Supp(h) = {i} for
i ∈ [n].

2. Global Lipschitz continuity of ∇ f The DSO inequality also says that the gradient
of f is Lipschitz with Lipschitz constant ω with respect to the norm ‖ · ‖L :

f (x + h) ≤ f (x)+ 〈∇ f (x), h〉 + ω
2 ‖h‖2L . (54)

Indeed, this follows from (48) via maxJ∈J |J ∩ Supp(h)| ≤ maxJ∈J |J | = ω.
For ω = n this has been shown in [10]; our result for partially separable functions
appears to be new.

3. Tightness of the global Lipschitz constant The Lipschitz constant ω is “tight” in
the following sense: there are functions for which ω cannot be replaced in (54) by
any smaller number. We will show this on a simple example. Let f (x) = 1

2‖Ax‖2
with A ∈ Rm×n (blocks are of size 1). Note that we can write f (x + h) = f (x)+
〈∇ f (x), h〉 + 1

2 hT AT Ah, and that L = (L1, . . . , Ln) = diag(AT A). Let D =
Diag(L). We need to argue that there exists A for which σ

def= maxh �=0
hT AT Ah
‖h‖2L

= ω.

Since we know that σ ≤ ω (otherwise (54) would not hold), all we need to show
is that there is A and h for which

hT AT Ah = ωhT Dh. (55)

Since f (x) = ∑m
i=1(AT

j x)2, where A j is the j th row of A, we assume that each
row of A has at most ω nonzeros (i.e., f is partially separable of degree ω). Let
us pick A with the following further properties: a) A is a 0-1 matrix, b) all rows of
A have exactly ω ones, c) all columns of A have exactly the same number (k) of
ones. Immediate consequences: Li = k for all i , D = k In and ωm = kn. If we let
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em be the m × 1 vector of all ones and en be the n × 1 vector of all ones, and set
h = k−1/2en , then

hT AT Ah = 1
k eT

n AT Aen = 1
k (ωem)T (ωem)

= ω2m
k = ωn = ω 1

k eT
n k Inen = ωhT Dh,

establishing (55). Using similar techniques one can easily prove the following more
general result: Tightness also occurs for matrices A which in each row contain ω

identical nonzero elements (but which can vary from row to row).

6 Expected separable overapproximation (ESO) of partially separable
functions

Here we derive ESO inequalities for partially separable smooth functions f and
(proper) uniform (Sect. 6.1), nonoverlapping uniform (Sect. 6.2), nice (Sect. 6.3) and
doubly uniform (Sect. 6.4) samplings.

6.1 Uniform samplings

Consider an arbitrary proper sampling Ŝ and let ν = (ν1, . . . , νn)T be defined by

νi
def= E

[
min{ω, |Ŝ|} | i ∈ Ŝ

]
= 1

pi

∑
S:i∈S

P(S) min{ω, |S|}, i ∈ [n].

Lemma 9 If Ŝ is proper, then

E
[

f (x + h[Ŝ])
]
≤ f (x)+ 〈∇ f (x), h〉p + 1

2‖h‖2p�ν�L . (56)

Proof Let us use Theorem 8 with h replaced by h[Ŝ]. Note that maxJ∈J |J ∩
Supp(h[Ŝ])| ≤ maxJ∈J |J ∩ Ŝ| ≤ min{ω, |Ŝ|}. Taking expectations of both sides
of (48) we therefore get

E
[

f (x + h[Ŝ])
] (48)≤ f (x)+ E

[
〈∇ f (x), h[Ŝ]〉

]
+ 1

2 E
[
min{ω, |Ŝ|}‖h[Ŝ]‖2L

]

(30)= f (x)+ 〈∇ f (x), h〉p + 1
2 E

[
min{ω, |Ŝ|}‖h[Ŝ]‖2L

]
. (57)

It remains to bound the last term in the expression above. Letting θi = Li‖h(i)‖2(i),
we have
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E
[
min{ω, |Ŝ|}‖h[Ŝ]‖2L

]
= E

⎡
⎣∑

i∈Ŝ

min{ω, |Ŝ|}Li‖h(i)‖2(i)
⎤
⎦

=
∑

S⊂[n]
P(S)

∑
i∈S

min{ω, |S|}θi

=
n∑

i=1

θi

∑
S:i∈S

min{ω, |S|}P(S)

=
n∑

i=1

θi pi E
[
min{ω, |Ŝ|} | i ∈ Ŝ

]

=
n∑

i=1

θi piνi = ‖h‖2p�ν�L .

��

The above lemma will now be used to establish ESO for arbitrary (proper) uniform
samplings.

Theorem 10 If Ŝ is proper and uniform, then

( f, Ŝ) ∼ E SO(1, ν � L). (58)

If, in addition, P(|Ŝ| = τ) = 1 (we say that Ŝ is τ -uniform), then

( f, Ŝ) ∼ E SO(min{ω, τ }, L). (59)

Moreover, ESO (59) is monotonic.

Proof First, (58) follows from (56) since for a uniform sampling one has pi =
E[|Ŝ|]/n for all i . If P(|Ŝ| = τ) = 1, we get νi = min{ω, τ } for all i ; (59) there-
fore follows from (58). Let us now establish monotonicity. Using the deterministic
separable overapproximation (48) with h = h[Ŝ],

F(x + h[Ŝ]) ≤ f (x)+ 〈∇ f (x), h[Ŝ]〉 +max
J∈J

|J∩Ŝ|
2 ‖h[Ŝ]‖2L +�(x + h[Ŝ])

≤ f (x)+ 〈∇ f (x), h[Ŝ]〉 + β
2 ‖h[Ŝ]‖2w +�(x + h[Ŝ]) (60)

= f (x)+
∑

i∈Ŝ

(
〈∇ f (x), Ui h

(i)〉 + βwi
2 ‖h(i)‖2(i) +�i (x (i) + h(i))

)
︸ ︷︷ ︸

def=κi (h(i))

+
∑

i /∈Ŝ

�i (x (i)). (61)
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Now let h(x) = arg minh Hβ,w(x, h) and recall that

Hβ,w(x, h) = f (x)+ 〈∇ f (x), h〉 + β
2 ‖h‖2w +�(x + h)

= f (x)+
n∑

i=1

(
〈∇ f (x), Ui h

(i)〉 + βwi
2 ‖h(i)‖2(i) +�i (x (i) + h(i))

)

= f (x)+
n∑

i=1

κi (h
(i)).

So, by definition, (h(x))(i) minimizes κi (t) and hence, (h(x))[Ŝ] (recall (7)) minimizes
the upper bound (61). In particular, (h(x))[Ŝ] is better than a nil update, which imme-

diately gives F(x + (h(x))[Ŝ]) ≤ f (x)+∑
i∈Ŝ κi (0)+∑

i /∈Ŝ �i (x (i)) = F(x). ��
Besides establishing an ESO result, we have just shown that, in the case of τ -

uniform samplings with a conservative estimate for β, PCDM1 is monotonic, i.e.,
F(xk+1) ≤ F(xk). In particular, PCDM1 and PCDM2 coincide. We call the estimate
β = min{ω, τ } “conservative” because it can be improved (made smaller) in special
cases; e.g., for the τ -nice sampling. Indeed, Theorem 12 establishes an ESO for the
τ -nice sampling with the same w (w = L), but with β = 1 + (ω−1)(τ−1)

n−1 , which
is better (and can be much better than) min{ω, τ }. Other things equal, smaller β

directly translates into better complexity. The price for the small β in the case of the
τ -nice sampling is the loss of monotonicity. This is not a problem for strongly convex
objective, but for merely convex objective this is an issue as the analysis techniques we
developed are only applicable to the monotonic method PCDM2 (see Theorem 17).

6.2 Nonoverlapping uniform samplings

Let Ŝ be a (proper) nonoverlapping uniform sampling as defined in (23). If i ∈ S j ,
for some j ∈ {1, 2, . . . , l}, define

γi
def= max

J∈J
|J ∩ S j |, (62)

and let γ = (γ1, . . . , γn)T . Note that, for example, if Ŝ is the serial uniform sampling,
then l = n and S j = { j} for j = 1, 2, . . . , l, whence γi = 1 for all i ∈ [n]. For the
fully parallel sampling we have l = 1 and S1 = {1, 2, . . . , n}, whence γi = ω for all
i ∈ [n].
Theorem 11 If Ŝ a nonoverlapping uniform sampling, then

( f, Ŝ) ∼ E SO(1, γ � L). (63)

Moreover, this ESO is monotonic.
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Proof By Theorem 8, used with h replaced by h[S j ] for j = 1, 2, . . . , l, we get

f (x + h[S j ]) ≤ f (x)+ 〈∇ f (x), h[S j ]〉 +max
J∈J

|J∩S j |
2 ‖h[S j ]‖2L . (64)

Since Ŝ = S j with probability 1
l ,

E
[

f (x + h[Ŝ])
] (64)≤ 1

l

l∑
j=1

(
f (x)+ 〈∇ f (x), h[S j ]〉 +max

J∈J
|J∩S j |

2 ‖h[S j ]‖2L
)

(62)= f (x)+ 1
l

⎛
⎝〈∇ f (x), h〉 + 1

2

l∑
j=1

∑

i∈S j

γi Li‖h(i)‖2(i)
⎞
⎠

= f (x)+ 1
l

(
〈∇ f (x), h〉 + 1

2‖h‖2γ�L

)
,

which establishes (63). It now only remains to establish monotonicity. Adding �(x +
h[Ŝ]) to (64) with S j replaced by Ŝ, we get F(x + h[Ŝ]) ≤ f (x) + 〈∇ f (x), h[Ŝ]〉 +
β
2 ‖h[Ŝ]‖2w+�(x+h[Ŝ]). From this point on the proof is identical to that in Theorem 10,
following Eq. (60).

6.3 Nice samplings

In this section we establish an ESO for nice samplings.

Theorem 12 If Ŝ is the τ -nice sampling and τ �= 0, then

( f, Ŝ) ∼ E SO

(
1+ (ω − 1)(τ − 1)

max(1, n − 1)
, L

)
. (65)

Proof Let us fix x and define φ and φ J as in the proof of Theorem 8. Since

E
[
φ(h[Ŝ])

]
= E

[
f (x + h[Ŝ])− f (x)− 〈∇ f (x), h[Ŝ]〉

]

(35)= E
[

f (x + h[Ŝ])
]
− f (x)− τ

n 〈∇ f (x), h〉,

it now only remains to show that

E
[
φ(h[Ŝ])

]
≤ τ

2n

(
1+ (ω−1)(τ−1)

max(1,n−1)

)
‖h‖2L . (66)

Let us now adopt the convention that expectation conditional on an event which hap-

pens with probability 0 is equal to 0. Letting ηJ
def= |J ∩ Ŝ|, and using this convention,

we can write
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E
[
φ(h[Ŝ])

]
=

∑
J∈J

E
[
φ J (h[Ŝ])

]
=

n∑
k=0

∑
J∈J

E
[
φ J (h[Ŝ]) | ηJ = k

]
P(ηJ = k)

=
n∑

k=0

P(ηJ = k)
∑
J∈J

E
[
φ J (h[Ŝ]) | ηJ = k

]
.

(67)

Note that the last identity follows if we assume, without loss of generality, that all
sets J have the same cardinality ω (this can be achieved by introducing “dummy”
dependencies). Indeed, in such a case P(ηJ = k) does not depend on J . Now, for any
k ≥ 1 for which P(ηJ = k) > 0 (for some J and hence for all), using convexity of
φ J , we can now estimate

E
[
φ J (h[Ŝ]) | ηJ = k

]
= E

⎡
⎣φ J

⎛
⎝ 1

k

∑

i∈J∩Ŝ

kUi h
(i)

⎞
⎠ | ηJ = k

⎤
⎦

≤ E

⎡
⎣ 1

k

∑

i∈J∩Ŝ

φ J
(

kUi h
(i)
)
| ηJ = k

⎤
⎦

(41)= 1
ω

∑
i∈J

φ J
(

kUi h
(i)
)

. (68)

If we now sum the inequalities (68) for all J ∈ J , we get

∑
J∈J

E
[
φ J (h[Ŝ]) | ηJ = k

] (68)≤ 1
ω

∑
J∈J

∑
i∈J

φ J
(

kUi h
(i)
)
= 1

ω

∑
J∈J

n∑
i=1

φ J
(

kUi h
(i)
)

= 1
ω

n∑
i=1

∑
J∈J

φ J
(

kUi h
(i)
)
= 1

ω

n∑
i=1

φ
(

kUi h
(i)
)

(51)≤ 1
ω

n∑
i=1

Li
2 ‖kh(i)‖2(i) = k2

2ω
‖h‖2L . (69)

Finally, (66) follows after plugging (69) into (67):

E
[
φ(h[Ŝ])

]
≤

∑
k

P(ηJ = k) k2

2ω
‖h‖2L = 1

2ω
‖h‖2LE[|J ∩ Ŝ|2]

(40)= τ
2n

(
1+ (ω−1)(τ−1)

max(1,n−1)

)
‖h‖2L .

��

6.4 Doubly uniform samplings

We are now ready, using a bootstrapping argument, to formulate and prove a result
covering all doubly uniform samplings.
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Theorem 13 If Ŝ is a (proper) doubly uniform sampling, then

( f, Ŝ) ∼ E SO

⎛
⎜⎝1+

(ω − 1)
(

E[|Ŝ|2]
E[|Ŝ|] − 1

)

max(1, n − 1)
, L

⎞
⎟⎠ . (70)

Proof Letting qk = P(|Ŝ| = k) and d = max{1, n − 1}, we have

E
[

f (x + h[Ŝ])
]
= E

[
E
[

f (x + h[Ŝ]) | |Ŝ|
]]
=

n∑
k=0

qk E
[

f (x + h[Ŝ]) | |Ŝ| = k
]

(65)≤
n∑

k=0

qk

[
f (x)+ k

n

(
〈∇ f (x), h〉 + 1

2

(
1+ (ω−1)(k−1)

d

)
‖h‖2L

)]

= f (x)+ 1
n

n∑
k=0

qkk〈∇ f (x), h〉

+ 1
2n

n∑
k=1

qk

[
k
(
1− ω−1

d

)+ k2 ω−1
d

]
‖h‖2L

= f (x)+ E[|Ŝ|]
n 〈∇ f (x), h〉

+ 1
2n

(
E[|Ŝ|] (1− ω−1

d

)+ E[|Ŝ|2]ω−1
d

)
‖h‖2L .

This theorem could have alternatively been proved by writing Ŝ as a convex combi-
nation of nice samplings and applying Theorem 20.

Note that Theorem 13 reduces to that of Theorem 12 in the special case of a nice
sampling, and gives the same result as Theorem 11 in the case of the serial and fully
parallel samplings.

7 Iteration complexity

In this section we prove two iteration complexity theorems.11 The first result (The-
orem 17) is for non-strongly-convex F and covers PCDM2 with no restrictions and
PCDM1 only in the case when a monotonic ESO is used. The second result (The-
orem 18) is for strongly convex F and covers PCDM1 without any monotonicity
restrictions. Let us first establish two auxiliary results.

Lemma 14 For all x ∈ dom F, Hβ,w(x, h(x)) ≤ miny∈RN {F(y) + β−μ f (w)

2 ‖y −
x‖2w}.

11 The development is similar to that in [15] for the serial block coordinate descent method, in the composite
case. However, the results are vastly different.
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Proof

Hβ,w(x, h(x))
(17)= min

y∈RN
Hβ,w(x, y − x)

= min
y∈RN

f (x)+ 〈∇ f (x), y − x〉

+�(y)+ β
2 ‖y − x‖2w

(14)≤ min
y∈RN

f (y)− μ f (w)

2 ‖y − x‖2w +�(y)+ β
2 ‖y − x‖2w.

��
Lemma 15 (i) Let x∗ be an optimal solution of (1), x ∈ dom F and let R = ‖x −

x∗‖w. Then

Hβ,w(x, h(x))− F∗ ≤
{(

1− F(x)−F∗
2β R2

)
(F(x)− F∗), if F(x)− F∗ ≤ β R2,

1
2β R2 < 1

2 (F(x)− F∗), otherwise.
(71)

(ii) If μ f (w)+ μ�(w) > 0 and β ≥ μ f (w), then for all x ∈ dom F,

Hβ,w(x, h(x))− F∗ ≤ β − μ f (w)

β + μ�(w)
(F(x)− F∗). (72)

Proof Part (i): Since we do not assume strong convexity, we have μ f (w) = 0, and
hence

Hβ,w(x, h(x))
(Lemma 14)≤ min

y∈RN

{
F(y)+ β

2 ‖y − x‖2w
}

≤ min
λ∈[0,1]

{
F(λx∗ + (1− λ)x)+ βλ2

2 ‖x − x∗‖2w
}

≤ min
λ∈[0,1]

{
F(x)− λ(F(x)− F∗)+ βλ2

2 R2
}

.

Minimizing the last expression in λ gives λ∗ = min
{
1, (F(x)− F∗)/(β R2)

}
; the

result follows. Part (ii): Letting μ f = μ f (w), μ� = μ�(w) and λ∗ = (μ f +
μ�)/(β + μ�) ≤ 1, we have

Hβ,w(x, h(x))
(Lemma 14)≤ min

y∈RN

{
F(y)+ β−μ f

2 ‖y − x‖2w
}

≤ min
λ∈[0,1]

{
F(λx∗ + (1− λ)x)+ (β−μ f )λ

2

2 ‖x − x∗‖2w
}

(16)+(15)≤ min
λ∈[0,1]

{
λF∗ + (1− λ)F(x)

− (μ f+μ�)λ(1−λ)−(β−μ f )λ
2

2 ‖x − x∗‖2w
}

≤ F(x)− λ∗(F(x)− F∗).
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The last inequality follows from the identity (μ f +μ�)(1− λ∗)− (β −μ f )λ
∗=0.��

We could have formulated part (ii) of the above result using the weaker assump-
tion μF (w) > 0, leading to a slightly stronger result. However, we prefer the above
treatment as it gives more insight.

7.1 Iteration complexity: convex case

The following lemma will be used to finish off the proof of the complexity result of
this section.

Lemma 16 (Theorem 1 in [15]) Fix x0 ∈ RN and let {xk}k≥0 be a sequence of random
vectors in RN with xk+1 depending on xk only. Let φ : RN → R be a nonnegative
function and define ξk = φ(xk). Lastly, choose accuracy level 0 < ε < ξ0, confidence
level 0 < ρ < 1, and assume that the sequence of random variables {ξk}k≥0 is
nonincreasing and has one of the following properties:

(i) E[ξk+1 | xk] ≤ (1− ξk
c1

)ξk , for all k, where c1 > ε is a constant,

(ii) E[ξk+1 | xk] ≤ (1− 1
c2

)ξk , for all k such that ξk ≥ ε, where c2 > 1 is a constant.

If property (i) holds and we choose K ≥ 2+ c1
ε
(1− ε

ξ0
+ log( 1

ρ
)), or if property (ii)

holds, and we choose K ≥ c2 log(
ξ0
ερ

), then P(ξK ≤ ε) ≥ 1− ρ.

This lemma was recently extended in [26] so as to aid the analysis of a serial coor-
dinate descent method with inexact updates, i.e., with h(x) chosen as an approximate
rather than exact minimizer of H1,L(x, ·) (see (17)). While in this paper we deal with
exact updates only, the results can be extended to the inexact case.

Theorem 17 Assume that ( f, Ŝ) ∼ E SO(β,w), where Ŝ is a proper uniform sam-

pling, and let α = E[|Ŝ|]
n . Choose x0 ∈ dom F satisfying

Rw(x0, x∗) def= max
x
{‖x − x∗‖w : F(x) ≤ F(x0)} < +∞, (73)

where x∗ is an optimal point of (1). Further, choose target confidence level 0 < ρ < 1,
target accuracy level ε > 0 and iteration counter K in any of the following two ways:

(i) ε < F(x0)− F∗ and

K ≥ 2+
2
(

β
α

)
max

{
R2

w(x0, x∗), F(x0)−F∗
β

}

ε

(
1− ε

F(x0)− F∗
+ log

(
1

ρ

))
,

(74)

(ii) ε < min{2
(

β
α

)
R2

w(x0, x∗), F(x0)− F∗} and

K ≥
2
(

β
α

)
R2

w(x0, x∗)

ε
log

(
F(x0)− F∗

ερ

)
. (75)
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If {xk}, k ≥ 0, are the random iterates of PCDM (use PCDM1 if the ESO is monotonic,
otherwise use PCDM2), then P(F(xK )− F∗ ≤ ε) ≥ 1− ρ.

Proof Since either PCDM2 is used (which is monotonic) or otherwise the ESO is
monotonic, we must have F(xk) ≤ F(x0) for all k. In particular, in view of (73) this
implies that ‖xk − x∗‖w ≤ Rw(x0, x∗). Letting ξk = F(xk)− F∗, we have

E[ξk+1 | xk]
(44)≤ (1− α)ξk + α(Hβ,w(xk, h(xk))− F∗)
(71)≤ (1− α)ξk + α max

{
1− ξk

2β‖xk − x∗‖2w
,

1

2

}
ξk

= max

{
1− αξk

2β‖xk − x∗‖2w
, 1− α

2

}
ξk

≤ max

{
1− αξk

2βR2
w(x0, x∗)

, 1− α

2

}
ξk . (76)

Consider case (i) and let c1 = 2β
α

max{R2
w(x0, x∗), ξ0

β
}. Continuing with (76), we

then get

E[ξk+1 | xk] ≤ (1− ξk
c1

)ξk

for all k ≥ 0. Since ε < ξ0 < c1, it suffices to apply Lemma 16(i). Consider now case

(ii) and let c2 = 2β
α

R2
w(x0,x∗)

ε
. Observe now that whenever ξk ≥ ε, from (76) we get

E[ξk+1 | xk] ≤ (1 − 1
c2

)ξk . By assumption, c2 > 1, and hence it remains to apply
Lemma 16(ii). ��

The important message of the above theorem is that the iteration complexity of our
methods in the convex case is O(

β
α

1
ε
). Note that for the serial method (PCDM1 used

with Ŝ being the serial sampling) we have α = 1
n and β = 1 (see Table 4), and hence

β
α
= n. It will be interesting to study the parallelization speedup factor defined by

Parallelization speedup factor =
β
α

of the serial method
β
α

of a parallel method
= n

β
α

of a parallel method
.

(77)
Table 5, computed from the data in Table 4, gives expressions for the parallelization

speedup factors for PCDM based on a DU sampling (expressions for 4 special cases
are given as well).

The speedup of the serial sampling (i.e., of the algorithm based on it) is 1 as we are
comparing it to itself. On the other end of the spectrum is the fully parallel sampling
with a speedup of n

ω
. If the degree of partial separability is small, then this factor

will be high — especially so if n is huge, which is the domain we are interested in.
This provides an affirmative answer to the research question stated in italics in the
introduction.
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Fig. 1 Parallelization speedup factor of PCDM1/PCDM2 used with τ -nice sampling as a function of the
normalized/relative degree of partial separability r

Let us now look at the speedup factor in the case of a τ -nice sampling. Letting
r = ω−1

max(1,n−1)
∈ [0, 1] (degree of partial separability normalized), the speedup factor

can be written as

s(r) = τ

1+ r(τ − 1)
.

Note that as long as r ≤ k−1
τ−1 ≈ k

τ
, the speedup factor will be at least τ

k . Also note
that max{1, τ

ω
} ≤ s(r) ≤ min{τ, n

ω
}. Finally, if a speedup of at least s is desired,

where s ∈ [0, n
ω
], one needs to use at least 1−r

1/s−r processors. For illustration, in Fig. 1
we plotted s(r) for a few values of τ . Note that for small values of τ , the speedup is
significant and can be as large as the number of processors (in the separable case). We
wish to stress that in many applications ω will be a constant independent of n, which
means that r will indeed be very small in the huge-scale optimization setting.

7.2 Iteration complexity: strongly convex case

In this section we assume that F is strongly convex with respect to the norm ‖ · ‖w
and show that F(xk) converges to F∗ linearly, with high probability.

Theorem 18 Assume F is strongly convex with μ f (w)+μ�(w) > 0. Further, assume

( f, Ŝ) ∼ E SO(β,w), where Ŝ is a proper uniform sampling and let α = E[|Ŝ|]
n .

Choose initial point x0 ∈ dom F, target confidence level 0 < ρ < 1, target accuracy
level 0 < ε < F(x0)− F∗ and
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K ≥ 1

α

β + μ�(w)

μ f (w)+ μ�(w)
log

(
F(x0)− F∗

ερ

)
. (78)

If {xk} are the random points generated by PCDM1 or PCDM2, then P(F(xK )−F∗ ≤
ε) ≥ 1− ρ.

Proof Letting ξk = F(xk)− F∗, we have

E[ξk+1 | xk]
(44)≤ (1− α)ξk + α(Hβ,w(xk, h(xk))− F∗)
(72)≤

(
1− α

μ f (w)+μ�(w)

β+μ�(w)

)
ξk

def= (1− γ )ξk .

Note that 0 < γ ≤ 1 since 0 < α ≤ 1 and β ≥ μ f (w) by (47). By taking expectation
in xk , we obtain E[ξk] ≤ (1− γ )kξ0. Finally, it remains to use Markov inequality:

P(ξK > ε) ≤ E[ξK ]
ε
≤ (1− γ )K ξ0

ε

(78)≤ ρ.

��
Instead of doing a direct calculation, we could have finished the proof of Theorem 18

by applying Lemma 16(ii) to the inequality E[ξk+1 | xk] ≤ (1 − γ )ξk . However, in
order to be able to use Lemma 16, we would have to first establish monotonicity of the
sequence {ξk}, k ≥ 0. This is not necessary using the direct approach of Theorem 18.
Hence, in the strongly convex case we can analyze PCDM1 and are not forced to resort
to PCDM2. Consider now the following situations:

1. μ f (w) = 0. Then the leading term in (78) is 1+β/μ�(w)
α

.

2. μ�(w) = 0. Then the leading term in (78) is
β/μ f (w)

α
.

3. μ�(w) is “large enough”. Then β+μ�(w)
μ f (w)+μ�(w)

≈ 1 and the leading term in (78) is
1
α

.

In a similar way as in the non-strongly convex case, define the parallelization speedup
factor as the ratio of the leading term in (78) for the serial method (which has α = 1

n
and β = 1) and the leading term for a parallel method:

Parallelization speedup factor =
n 1+μ�(w)

μ f (w)+μ�(w)

1
α

β+μ�(w)
μ f (w)+μ�(w)

= n
β+μ�(w)

α(1+μ�(w))

. (79)

First, note that the speedup factor is independent of μ f . Further, note that as
μ�(w)→ 0, the speedup factor approaches the factor we obtained in the non-strongly
convex case (see (77) and also Table 5). That is, for large values of μ�(w), the speedup
factor is approximately equal αn = E[|Ŝ|], which is the average number of blocks
updated in a single parallel iteration. Note that thuis quantity does not depend on the
degree of partial separability of f .
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Fig. 2 Histogram of the
cardinalities of the rows of A
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8 Numerical experiments

In Sect. 8.1 we present preliminary but very encouraging results showing that PCDM1
run on a system with 24 cores can solve huge-scale partially-separable LASSO prob-
lems with a billion variables in 2 h, compared with 41 h on a single core. In Sect. 8.2
we demonstrate that our analysis is in some sense tight. In particular, we show that the
speedup predicted by the theory can be matched almost exactly by actual wall time
speedup for a particular problem.

8.1 A LASSO problem with 1 billion variables

In this experiment we solve a single randomly generated huge-scale LASSO instance,
i.e., (1) with

f (x) = 1
2‖Ax − b‖22, �(x) = ‖x‖1,

where A = [a1, . . . , an] has 2× 109 rows and N = n = 109 columns. We generated
the problem using a modified primal-dual generator [15] enabling us to choose the
optimal solution x∗ (and hence, indirectly, F∗) and thus to control its cardinality
‖x∗‖0, as well as the sparsity level of A. In particular, we made the following choices:
‖x∗‖0 = 105, each column of A has exactly 20 nonzeros and the maximum cardinality
of a row of A is ω = 35 (the degree of partial separability of f ). The histogram of
cardinalities is displayed in Fig. 2.

We solved the problem using PCDM1 with τ -nice sampling Ŝ, β = 1+ (ω−1)(τ−1)
n−1

and w = L = (‖a1‖22, . . . , ‖an‖22), for τ = 1, 2, 4, 8, 16, 24, on a single large-
memory computer utilizing τ of its 24 cores. The problem description took around
350GB of memory space. In fact, in our implementation we departed from the just
described setup in two ways. First, we implemented an asynchronous version of the
method; i.e., one in which cores do not wait for others to update the current iterate
within an iteration before reading xk+1 and proceeding to another update step. Instead,
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each core reads the current iterate whenever it is ready with the previous update step
and applies the new update as soon as it is computed. Second, as mentioned in Sect. 4,
the τ -independent sampling is for τ � n a very good approximation of the τ -nice
sampling. We therefore allowed each processor to pick a block uniformly at random,
independently from the other processors.

Choice of the first column of Table 6 In Table 6 we show the development of the gap
F(xk)− F∗ as well as the elapsed time. The choice and meaning of the first column
of the table, τk

n , needs some commentary. Note that exactly τk coordinate updates
are performed after k iterations. Hence, the first column denotes the total number of
coordinate updates normalized by the number of coordinates n. As an example, let
τ1 = 1 and τ2 = 24. Then if the serial method is run for k1 = 24 iterations and
the parallel one for k2 = 1 iteration, both methods would have updated the same
number (τ1k1 = τ2k2 = 24) of coordinates; that is, they would “be” in the same row
of Table 6. In summary, each row of the table represents, in the sense described above,
the “same amount of work done” for each choice of τ . We have highlighted in bold
elapsed time after 13 and 26 passes over data for τ = 1, 2, 4, 8, 16. Note that for
any fixed τ , the elapsed time has approximately doubled, as one would expect. More
importantly, note that we can clearly observe close to linear speedup in the number of
processors τ .

8.1.1 Progress to solving the problem

One can conjecture that the above meaning of the phrase “same amount of work done”
would perhaps be roughly equivalent to a different one: “same progress to solving the
problem”. Indeed, it turns out, as can be seen from the table and also from Fig. 3a, that
in each row for all algorithms the value of F(xk)− F∗ is roughly of the same order of
magnitude. This is not a trivial finding since, with increasing τ , older information is
used to update the coordinates, and hence one would expect that convergence would
be slower. It does seem to be slower—the gap F(xk)− F∗ is generally higher if more
processors are used—but the slowdown is limited. Looking at Table 6 and/or Fig. 3a,
we see that for all choices of τ , PCDM1 managed to push the gap below 10−13 after
34n to 37n coordinate updates.

The progress to solving the problem during the final 1 billion coordinate updates
(i.e., when moving from the last-but-one to the last nonempty line in each of the
columns of Table 6 showing F(xk) − F∗ ) is remarkable. The method managed to
push the optimality gap by 9-12 degrees of magnitude. We do not have an explanation
for this phenomenon; we do not give local convergence estimates in this paper. It is
certainly the case though that once the method managed to find the nonzero places of
x∗, fast local convergence comes in.

8.1.2 Parallelization speedup

Since a parallel method utilizing τ cores manages to do the same number of coordinate
updates as the serial one τ times faster, a direct consequence of the above observation is
that doubling the number of cores corresponds to roughly halving the number of itera-
tions (see Fig. 3b. This is due to the fact that ω � n and τ � n. It turns out that the num-
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Fig. 3 Computational insights into the workings of PCDM1. a For each τ , PCDM1 needs roughly the
same number of coordinate updates to solve the problem, b doubling the number of cores corresponds to
roughly halving the number of iterations, c doubling the number of cores corresponds to roughly halving
the wall time

Fig. 4 Theoretical speedup
factor predicts the actual
speedup almost exactly for a
carefully constructed problem
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100

101
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sp
ee
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ber of iterations is an excellent predictor of wall time; this can be seen by comparing
Fig. 3b, c. Finally, it follows from the above, and can be seen in Fig. 3d, that the speedup
of PCDM1 utilizing τ cores is roughly equal to τ . Note that this is caused by the fact
that the problem is, relative to its dimension, partially separable to a very high degree.

8.2 Theory versus reality

In our second experiment we demonstrate numerically that our parallelization speedup
estimates are in some sense tight. For this purpose it is not necessary to reach for
complicated problems and high dimensions; we hence minimize the function 1

2‖Ax−
b‖22 with A ∈ R3000×1000. Matrix A was generated so that its every row contains
exactly ω non-zero values all of which are equal (recall the construction in point 3 at
the end of Sect. 5.1).

We generated 4 matrices with ω = 5, 10, 50 and 100 and measured the number of
iterations needed for PCDM1 used with τ -nice sampling to get within ε = 10−6 of
the optimal value. The experiment was done for a range of values of τ (between 1 core
and 1000 cores).
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The solid lines in Fig. 4 present the theoretical speedup factor for the τ -nice sam-
pling, as presented in Table 5. The markers in each case correspond to empirical
speedup factor defined as

# of iterations till ε-solution is found by PCDM1 used with serial sampling

# of iterations till ε-solution is found by PCDM1 used with τ -nice sampling
.

As can be seen in Fig. 4, the match between theoretical prediction and reality is
remarkable! A partial explanation of this phenomenon lies in the fact that we have
carefully designed the problem so as to ensure that the degree of partial separability is
equal to the Lipschitz constant σ of ∇ f (i.e., that it is not a gross overestimation of it;
see Sect. 5.1). This fact is useful since it is possible to prove complexity results with ω

replaced by σ . However, this answer is far from satisfying, and a deeper understanding
of the phenomenon remains an open problem.

8.3 Training linear SVMs with bad data for PCDM

In this experiment we test PCDM on the problem of training a linear Support Vector
Machine (SVM) based on n labeled training examples: (yi , Ai ) ∈ {+1,−1} × Rd ,
i = 1, 2, . . . , n. In particular, we consider the primal problem of minimizing L2-
regularized average hinge-loss,

min
w∈Rd

{
g(w)

def= 1
n

n∑
i=1

[1− yi 〈w, ai 〉]+ + λ
2‖w‖22

}
,

and the dual problem of maximizing a concave quadratic subject to zero-one box
constraints,

max
x∈Rn , 0≤x (i)≤1

{
− f (x)

def= − 1
2λn2 xT Z x + 1

n

n∑
i=1

x (i)

}
,

where Z ∈ Rn×n with Zii = yi y j 〈Ai , A j 〉. It is a standard practice to apply serial
coordinate descent to the dual. Here we apply parallel coordinate descent (PCDM;
with τ -nice sampling of coordinates) to the dual; i.e., minimize the convex function
f subject to box constraints. In this setting all blocks are of size Ni = 1. The dual can
be written in the form (1), i.e.,

min
x∈Rn
{F(x) = f (x)+�(x)},

where �(x) = 0 whenever x (i) ∈ [0, 1] for all i = 1, 2, . . . , n, and �(x) = +∞
otherwise.
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We consider the rcv1.binary dataset.12 The training data has n = 677, 399
examples, d = 47, 236 features, 49, 556, 258 nonzero elements and requires cca
1GB of RAM for storage. Hence, this is a small-scale problem. The degree of partial
separability of f is ω = 291, 516 (i.e., the maximum number of examples sharing
a given feature). This is a very large number relative to n, and hence our theory
would predict rather bad behavior for PCDM. We use PCDM1 with τ -nice sampling
( approximating it by τ -independent sampling for added efficiency) with β following
Theorem 12: β = 1+ (τ−1)(ω−1)

n−1 .
The results of our experiments are summarized in Fig. 5. Each column corresponds

to a different level of regularization: λ ∈ {1, 10−3, 10−5}. The rows show the (1)
duality gap, (2) dual suboptimality, (3) train error and (4) test error; each for 1,4 and
16 processors (τ = 1, 4, 16). Observe that the plots in the first two rows are nearly
identical; which means that the method is able to solve the primal problem at about
the same speed as it can solve the dual problem.13

Observe also that in all cases, duality gap of around 0.01 is sufficient for training
as training error (classification performance of the SVM on the train data) does not
decrease further after this point. Also observe the effect of λ on training accuracy:
accuracy increases from about 92 % for λ = 1, through 95.3 % for λ = 10−3 to above
97.8 % with λ = 10−5. In our case, choosing smaller λ does not lead to overfitting;
the test error on test dataset (# features =677,399, # examples = 20,242) increases as
λ decreases, quickly reaching about 95 % (after 2 seconds of training) for λ = 0.001
and for the smallest λ going beyond 97 %.

Note that PCDM with τ = 16 is about 2.5× faster than PCDM with τ = 1. This
is much less than linear speedup, but is fully in line with our theoretical predictions.
Indeed, for τ = 16 we get β = 7.46. Consulting Table 5, we see that the theory
says that with τ = 16 processors we should expect the parallelization speedup to be
P SF = τ/β = 2.15.

8.4 L2-regularized logistic regression with good data for PCDM

In our last experiment we solve a problem of the form (1) with f being a sum of
logistic losses and � being an L2 regularizer,

min
x∈Rn

⎧⎨
⎩

d∑
j=1

log(1+ e−y j AT
j x

)+ λ‖x‖22

⎫⎬
⎭ ,

where (y j , A j ) ∈ {+1,−1}×Rn , j = 1, 2, . . . , d, are labeled examples. We have used
the theKDDBdataset from the same source as thercv1.binarydataset considered in
the previous experiment. The data contains n = 29, 890, 095 features and is divided
into two parts: a training set with d = 19, 264, 097 examples (and 566, 345, 888
nonzeros; cca 8.5 GB) and a testing with d = 748, 401 examples (and 21, 965, 075
nonzeros; cca 0.32 GB). This training dataset is good for PCDM as each example

12 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary.
13 Revision comment: We did not propose primal-dual versions of PCDM in this paper, but we do so in the
follow up work [25]. In this paper, for the SVM problem, our methods and theory apply to the dual only.

123

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#rcv1.binary


P. Richtárik, M. Takáč
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Fig. 5 The performance of PCDM on the rcv1 dataset (this dataset is not good for the method)

depends on at most 75 features (ω = 75 � n). As before, we will use PCDM1 with
τ -nice sampling (approximated by τ -independent sampling) for τ = 1, 2, 4, 8 and set
λ = 1.
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Fig. 6 PCDM accelerates well
with more processors on a
dataset with small ω
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Table 7 PCDM accelerates linearly in τ on a good dataset

Epoch F(x0)/F(xk ) Time

τ = 1 τ = 2 τ = 4 τ = 8 τ = 1 τ = 2 τ = 4 τ = 8

1 3.96490 3.93909 3.94578 3.99407 17.83 9.57 5.20 2.78

2 5.73498 5.72452 5.74053 5.74427 73.00 39.77 21.11 11.54

3 6.12115 6.11850 6.12106 6.12488 127.35 70.13 37.03 20.29

Figure 6 depicts the evolution of the regularized loss F(xk) throughout the run of
the 4 versions of PCDM (starting with x0 for which F(x0) = 13, 352, 855). Each
marker corresponds to approximately n/3 coordinate updates (n coordinate updates
will be referred to as an “epoch”). Observe that as more processors are used, it takes
less time to achieve any given level of loss; nearly in exact proportion to the increase
in the number of processors.

Table 7 offers an alternative view of the same experiment. In the first 4 columns
(F(x0)/F(xk)) we can see that no matter how many processors are used, the methods
produce similar loss values after working through the same number of coordinates.
However, since the method utilizing τ = 8 processors updates 8 coordinates in parallel,
it does the job approximately 8 times faster.

Let us remark that the training and testing accuracy stopped increasing after hav-
ing trained the classifier for 1 epoch; they were 86.07 and 88.77 %, respectively.
This is in agreement with the common wisdom in machine learning that training
beyond a single pass through the data rarely improves testing accuracy (as it may
lead to overfitting). This is also the reason behind the success of light-touch meth-
ods, such as coordinate descent and stochastic gradient descent, in machine learning
applications.
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9 Appendix 1: Notation glossary

See Table 8.

10 Appendix 2: More ESO theory

In this section we establish certain ESO results which do not play a key role in the
main development of the paper, but which are nevertheless fundamental.

10.1 ESO for a convex combination of samplings

Let Ŝ1, Ŝ2, . . . , Ŝm be a collection of samplings and let q ∈ Rm be a probability vector.
By

∑
j q j Ŝ j we denote the sampling Ŝ given by

P
(

Ŝ = S
)
=

m∑
j=1

q j P(Ŝ j = S). (80)

This procedure allows us to build new samplings from existing ones. A natural inter-
pretation of Ŝ is that it arises from a two stage process as follows. Generating a set via
Ŝ is equivalent to first choosing j with probability q j , and then generating a set via Ŝ j .

Lemma 19 Let Ŝ1, Ŝ2, . . . , Ŝm be arbitrary samplings, q ∈ Rm a probability vector
and κ : 2[n] → R any function mapping subsets of [n] to reals. If we let Ŝ =∑

j q j Ŝ j ,
then

(i) E[κ(Ŝ)] =∑m
j=1 q j E[κ(Ŝ j )],

(ii) E[|Ŝ|] =∑m
j=1 q j E[|Ŝ j |],

(iii) P(i ∈ Ŝ) =∑m
j=1 q j P(i ∈ Ŝ j ), for any i = 1, 2, . . . , n,

(iv) If Ŝ1, . . . , Ŝm are uniform (resp. doubly uniform), so is Ŝ.

Proof Statement (i) follows by writing E[κ(Ŝ)] as

∑
S

P(Ŝ = S)κ(S)
(80)=

∑
S

m∑
j=1

q j P(Ŝ j = S)κ(S) =
m∑

j=1

q j

∑
S

P(Ŝ j = S)κ(S)

=
m∑

j=1

q j E[κ(Ŝ j )].

Statement (ii) follows from (i) by choosing κ(S) = |S|, and (iii) follows from (i) by
choosing κ as follows: κ(S) = 1 if i ∈ S and κ(S) = 0 otherwise. Finally, if the
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Ta
bl

e
8

co
nt

in
ue

d

B
lo

ck
sa

m
pl

in
gs

(S
ec

t.
4)

S,
J

Su
bs

et
s

of
{1,

2,
..

.,
n}

Ŝ,
S k

B
lo

ck
sa

m
pl

in
gs

(r
an

do
m

su
bs

et
s

of
{1,

2,
..

.,
n})

x [
S]

V
ec

to
r

in
R

N
fo

rm
ed

fr
om

x
by

ze
ro

in
g

ou
tb

lo
ck

s
x(

i)
fo

r
i

/∈
S

(7
),

(8
)

τ
#

of
bl

oc
ks

up
da

te
d

in
1

ite
ra

tio
n

(w
he

n
P
(|Ŝ
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samplings Ŝ j are uniform, from (33) we know that P(i ∈ Ŝ j ) = E[|Ŝ j |]/n for all i
and j . Plugging this into identity (iii) shows that P(i ∈ Ŝ) is independent of i , which
shows that Ŝ is uniform. Now assume that Ŝ j are doubly uniform. Fixing arbitrary
τ ∈ {0} ∪ [n], for every S ⊂ [n] such that |S| = τ we have

P(Ŝ = S)
(80)=

m∑
j=1

q j P(Ŝ j = S) =
m∑

j=1

q j
P(|Ŝ j | = τ)(n

τ

) .

As the last expression depends on S via |S| only, Ŝ is doubly uniform. ��

Remark 1. If we fix S ⊂ [n] and define k(S′) = 1 if S′ = S and k(S′) = 0 otherwise,
then statement (i) of Lemma19 reduces to (80).

2. All samplings arise as a combination of elementary samplings, i.e., samplings
whose all weight is on one set only. Indeed, let Ŝ be an arbitrary sampling. For all
subsets S j of [n] define Ŝ j by P(Ŝ j = S j ) = 1 and let q j = P(Ŝ = S j ). Then
clearly, Ŝ =∑

j q j Ŝ j .
3. All doubly uniform samplings arise as convex combinations of nice samplings.

Often it is easier to establish ESO for a simple class of samplings (e.g., nice sam-
plings) and then use it to obtain an ESO for a more complicated class (e.g., doubly
uniform samplings as they arise as convex combinations of nice samplings). The fol-
lowing result is helpful in this regard.

Theorem 20 (Convex Combination of Uniform Samplings) Let Ŝ1, . . . , Ŝm be uni-
form samplings satisfying ( f, Ŝ j ) ∼ E SO(β j , w j ) and let q ∈ Rm be a probability
vector. If

∑
j q j Ŝ j is not nil, then

⎛
⎝ f,

m∑
j=1

q j Ŝ j

⎞
⎠ ∼ E SO

⎛
⎝ 1∑m

j=1 q j E[|Ŝ j |]
,

m∑
j=1

q j E[|Ŝ j |]β jw j

⎞
⎠ .

Proof First note that from part (iv) of Lemma 19 we know that Ŝ
def= ∑

j q j Ŝ j is
uniform and hence it makes sense to speak about ESO involving this sampling. Next,
we can write

E
[

f (x + h[Ŝ])
]
=

∑
S

P(Ŝ = S) f (x + h[S])
(80)=

∑
S

∑
j

q j P(Ŝ j = S) f (x + h[S])

=
∑

j

q j

∑
S

P(Ŝ j = S) f (x + h[S]) =
∑

j

q j E
[

f (x + h[Ŝ j ])
]
.

It now remains to use (43) and part (ii) of Lemma 19:
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m∑
j=1

q j E
[

f (x + h[Ŝ j ])
]

(43)≤
m∑

j=1

q j

(
f (x)+ E[|Ŝ j |]

n

(
〈∇ f (x), h〉 + β j

2 ‖h‖2w j

))

= f (x)+
∑

j q j E[|Ŝ j |]
n 〈∇ f (x), h〉

+ 1
2n

∑
j

q j E[|Ŝ j |]β j‖h‖2w j

(Lemma(19) (ii))= f (x)+ E[|Ŝ|]
n

(
〈∇ f (x), h〉 +

∑
j q j E[|Ŝ j |]β j‖h‖2w j

2
∑

j q j E[|Ŝ j |]

)

= f (x)+ E[|Ŝ|]
n

(
〈∇ f (x), h〉 + 1

2
∑

j q j E[|Ŝ j |] ‖h‖
2
w

)
,

where w = ∑
j q j E[|Ŝ j |]β jw j . In the third step we have also used the fact that

E[|Ŝ|] > 0 which follows from the assumption that Ŝ is not nil. ��

10.2 ESO for a conic combination of functions

We now establish an ESO for a conic combination of functions each of which is already
equipped with an ESO. It offers a complementary result to Theorem 20.

Theorem 21 (Conic Combination of Functions) If ( f j , Ŝ) ∼ E SO(β j , w j ) for j =
1, . . . , m, then for any c1, . . . , cm ≥ 0 we have

⎛
⎝

m∑
j=1

c j f j , Ŝ

⎞
⎠ ∼ E SO

⎛
⎝1,

m∑
j=1

c jβ jw j

⎞
⎠ .

Proof Letting f =∑
j c j f j , we get

E

⎡
⎣∑

j

c j f j

(
x + h[Ŝ]

)⎤⎦ =
∑

j

c j E
[

f j

(
x + h[Ŝ]

)]

≤
∑

j

c j

(
f j (x)+ E[|Ŝ|]

n

(
〈∇ f j (x), h〉 + β j

2 ‖h‖2w j

))

=
∑

j

c j f j (x)+ E[|Ŝ|]
n

(∑
j

c j 〈∇ f j (x), h〉

+
∑

j

c j β j
2 ‖h‖2w j

)

= f (x)+ E[|Ŝ|]
n

(
〈∇ f (x), h〉 + 1

2‖h‖2∑ j c j β j w j

)
. ��
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