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A ssumpt ion 2.1. Let and assume that SDE has a
unique strong solution which takes values in the set R, i.e.

P

A ssumpt ion 2.2. The function is continuous. Moreover,
there exists a constant R such that

for all .
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Lemma 2.3. Let Assumption 2.1 and 2.2 hold and let . Moreover set

Then for any R there exists a unique such that .

Proof.

+ +

− −

Lemma 2.4. Let and let R, N, and be given.
Moreover, assume that and , N. Then, if R,

N, satisfies and

then this sequence also satisfies



Lemma 2.5. Let and let Assumption 2.1 and 2.2 hold. Then we have

E

for all . I f additionally for some , then for all there
exist constants , which are independent of , such that

E

Proof.

+

( 1)
k

( 2)
k

E



E E

E

E E

N

A ssumpt ion 2.6. Let and . We assume that the drift coeffi cient
of SDE is twice continuously diff erentiable and satisfies

E E

T heorem 2.7. Let , , and Assumptions 2.1, 2.2 and 2.6
hold. Then, for , there exists a constant (independent of )
such that

E

Proof.
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Corol lar y 2.8. Under the assumptions of Theorem 2.7 we have

E

for all .

R emark 2.9. In [2], independently of the research in this paper, a similar
result to Theorem 2.7 is established for the case and drift functions

R, which are twice continuously diff erentiable and satisfy a monotone
condition (which is equivalent to our one-sided Lipschitz condition). Using a
continuous extension of BEM Alfonsi obtains the error bound under the
assumption

E E

for . This result is then applied to the CIR and CEV process, i.e. Propo-
sitions 3.1 and 3.3 are obtained.

Note that due to our bound on the inverse moments on the LBE, see the
subsection below, we are also able to cover SDEs like the the Heston 3/ 2-volati li ty
and the Ait-Sahlia model. Moreover, since we work under the assumption

we can also treat the Wright-Fisher SDE and similar equations.

A ssumpt ion 2.10. Let and assume that the drift coeffi cient
has the structure

1

where
2

for some and .
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1
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Lemma 2.11. Let and . Moreover, let the assumptions of Theorem
2.7 and let also Assumption 2.10 hold. Then there exists constants

such that we have

E 1 E 1

and

E 1 E 1

Proof.

E 1 1 E

2 2

Lemma 2.12. Let . Let the assumptions of Lemma 2.5 hold and in
addition let the drift of SDE satisfy Assumption 2.10. Then there exists a
constant such that we have

E E

Proof. N N
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Lamperti-backward Euler
-strongly

convergent with order one
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Proposi t ion 3.1. Let and 2 . Then, the LBE approximation
of the CIR process is -strongly convergent with order one.
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Proposi t ion 3.2. I f 1
2
3
, then the LBE approximation of the

Heston-3/ 2 process is -strongly convergent with order one.
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Proposi t ion 3.3. Let . The LBE approximation of the CEV process is
-strongly convergent with order one.
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Proposi t ion 3.4. Let 2 . Then the LBE approximation
of the Wright-Fisher process is -strongly convergent with order one.
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Proposi t ion 3.5. Let 2
2 . The LBE approximation of the Ait-

Sahalia process with and is -strongly convergent with order one.

E

Proposi t ion 3.6. Let . The LBE approximation of the Ait-Sahalia process
with is -strongly convergent with order one.



Lemma 4.1. Let 2 . Then there exists a constant such that

E

Proof.

E E E

E E

E



Proposi t ion 4.2. (i) Let 2 . Then, there exists a constant such
that

E

(ii) Let 2 . Then, there exists a constant such that

E

Proof.
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Proposi t ion 4.3. Let 2 . Then, there exists a constant such that

E

for all .
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