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Abstract

Languages with rich inflectional morphology
pose a difficult challenge for statistical ma-
chine translation. To address the problem of
morphologically inconsistent output, we add
unification-based constraints to the target-side
of a string-to-tree model. By integrating con-
straint evaluation into the decoding process,
implausible hypotheses can be penalised or
filtered out during search. We use a sim-
ple heuristic process to extract agreement con-
straints for German and test our approach on
an English-German system trained on WMT
data, achieving a small improvement in trans-
lation accuracy as measured by BLEU.

1 Introduction

Historically, most work in statistical machine trans-
lation (SMT) has focused on translation into En-
glish. Languages with richer inflectional mor-
phologies pose additional challenges for translation
and conventional SMT approaches tend to perform
poorly when either source or target language has rich
morphology (Koehn, 2005).

For complex source inflection, a successful ap-
proach has been to cluster inflectional variants into
equivalence classes. This removes information that
is redundant for translation and can be performed as
a preprocessing step for input to a conventional sur-
face form based translation model (Nießen and Ney,
2001; Goldwater and McClosky, 2005; Talbot and
Osborne, 2006).

For complex target inflection,
Minkov et al. (2007) investigate how post-
processing can be used to generate inflection for a

system that produces uninflected output. Their ap-
proach is successfully applied to English-Arabic and
English-Russian systems by Toutanova et al. (2008).

Another promising line of research involves the
direct integration of linguistic information into SMT
models. Koehn and Hoang (2007) generalise the
phrase-based model’s representation of the word
from a string to a vector, allowing additional features
such as part-of-speech and morphology to be asso-
ciated with, or even to replace, surface forms dur-
ing search. Luong et al. (2010) decompose words
into morphemes and use this extended represen-
tation throughout the training, tuning, and testing
pipeline.

Departing further from traditional SMT mod-
els, the transfer-based systems of Riezler and
Maxwell (2006), Bojar and Hajič (2008), and Gra-
ham et al. (2009) employ rich feature structure
representations for linguistic attributes, but have
so far been limited by their dependence on non-
stochastic parsers with limited coverage. The Stat-
XFER transfer-based framework (Lavie, 2008) is
neutral with regard to the rule acquisition method
and the author describes a manually developed
Hebrew-English transfer grammar, which includes a
small number of constraints between agreement fea-
tures. In Hanneman et al. (2009) the framework is
used with a large automatically-extracted grammar,
though this does not use feature constraints.

In this paper we propose a model that retains the
use of surface forms during decoding whilst also
checking linguistic constraints defined over asso-
ciated feature structures. Specifically, we extend
a string-to-tree model by adding unification-based
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constraints to the target-side of the synchronous
grammar. We suggest that such a constraint system
can:

• improve the model by enforcing inflectional
consistency in combinations unseen by the lan-
guage model

• improve search by allowing the early elimina-
tion of morphologically-inconsistent hypothe-
ses

To evaluate the approach, we develop a system for
English-German with constraints to enforce intra-
NP/PP and subject-verb agreement, and with a sim-
ple probabilistic model for NP case.

2 Preliminaries

There is an extensive literature on constraint-based
approaches to grammar, employing a rich variety
of terminology and linguistic devices. We use only
a few of the core ideas, which we briefly describe
in this section. We borrow the terminology and
notation of PATR-II (Shieber, 1984), a minimal
constraint-based formalism that extends context-free
grammar.

Central to our model are the concepts offeature
structuresandunification. Feature structures are of
two kinds:

• atomicfeature structures are untyped, indivisi-
ble values, such asNP, nom, orsg

• complexfeature structures are partial functions
mapping features to values, the values them-
selves being feature structures.

Complex feature structures are conventionally writ-
ten as attribute-value matrices. For example, the fol-
lowing might represent lexical entries for the Ger-
man definite article,die, and the German noun,
Katze, meaningcat:

die →
















POS ART

AGR











CASE acc

DECL weak

GENDER fem

NUMBER sg



























Katze → 









POS NN

AGR







CASE acc

GENDER fem

NUMBER sg

















An equivalent representation, and the one we use
for implementation, is that of a rooted, labelled, di-
rected acyclic graph.

A value belonging to a complex feature structure
can be specified using a path notation that describes
the chain of features in enclosing feature structures.
In the examples above, the path〈 AGR GENDER 〉
specifies the atomic valuefem.

Informally, unificationis a merging operation that
given two feature structures, yields the minimal fea-
ture structure containing all information from both
inputs. A unification failure results if the input
feature structures have mutually-conflicting values.
The subject of unification, both in the context of nat-
ural language processing and more generally, is sur-
veyed in Knight (1989). In this work, we use de-
structive graph-based unification, which results in
the source feature structures sharing values upon
unification.

For example, the result of unifying the agreement
values for the feature structures above would be:

die →
















POS ART

AGR 1











CASE acc

DECL weak

GENDER fem

NUMBER sg



























Katze →
[

POS NN

AGR 1

]

The index boxes are used to indicate that a value is
shared.

3 Grammar

In this section we describe the synchronous gram-
mar used in our string-to-tree model. Rule extraction
is similar to the syntax-augmented model of Zoll-
mann and Venugopal (2006), though we do not use
extended categories in this work. We then describe
how we extend the grammar with target-side con-
straints.

3.1 Synchronous Grammar

Our translation model is based on a synchronous
context-free grammar (SCFG) learned from a par-
allel corpus. Rule extraction follows the hierarchi-
cal phrase-based algorithm of Chiang (2005; 2007).
Source non-terminals are given the undistinguished
label X, whereas the target non-terminals are given
part-of-speech and constituent labels obtained from
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a parse of the target-side of the parallel corpus.
Rules in which the target span is not covered by a
parse tree constituent are discarded.

Compared with the hierarchical phrase-based
model, the restriction to constituent target phrases
reduces the total grammar size and the addition of
linguistic labels reduces the problem of spurious am-
biguity. We therefore relax Chiang’s (2007) rule fil-
tering in the following ways:

1. Up to seven source-side terminal / non-terminal
elements are allowed.

2. Rules with scope greater than three are filtered
out (Hopkins and Langmead, 2010).

3. Consecutive source non-terminals are permit-
ted.

4. Single-word lexical phrases are allowed for hi-
erarchical subphrase subtraction.

3.2 Constraint Grammar

We extend the synchronous grammar by adding con-
straints to the target-side. A constraint is an identity
between either:

i) feature structure values belonging to two rule
elements,

ii) a feature structure value belonging to a rule el-
ement and a constant value, or

iii) a feature structure value belonging to a rule ele-
ment and a random variable with an associated
probability function

For example, the following synchronous rule:

NP-SB→ theX1 cat | die AP1 Katze

might have the target constraint rule shown in Fig-
ure 1.

The first three constraints ensure that anyAP has
agreement values consistent with the lexical items
dieandKatze. The next provides a probability based
on the resulting case value. The final two are used to
disambiguate between possible parts-of-speech.

Constraints are evaluated by attempting to unify
the specified feature structures. A rule element may
have more than one associated feature structure, so

NP-SB→ die AP Katze
〈 NP-SB AGR〉 = 〈 die AGR〉
〈 NP-SB AGR〉 = 〈 AP AGR〉
〈 NP-SB AGR〉 = 〈 KatzeAGR〉
〈 NP-SB AGR CASE〉 = C

〈 die POS〉 = ART

〈 KatzePOS〉 = NN

P (C = c) =















0.990, c = NOM

0.005, c = DAT

0.004, c = GEN

0.001, c = ACC

Figure 1: Example target constraint rule

unification is attempted between all combinations. If
no combination can be successfully unified then the
constraint fails.

Ultimately, all feature structures originate in the
lexicon, which maps a surface form word to a set of
zero or more complex feature structures.

3.3 Some Constraints for German

We now describe the German constraints that we use
in this paper. Whilst the constraint model described
above is language-independent, the actual form of
the constraints will largely be language- and corpus-
specific.

In this work, the linguistic annotation is obtained
from a statistical parser and a morphological anal-
yser. We use the BitPar parser (Schmid, 2004)
trained on the TIGER treebank (Brants et al., 2002)
and the Morphisto morphological analyser (Zielin-
ski and Simon, 2009). We find that we can extract
useful constraints for German based on a minimal
set of simple manually-developed heuristics.

Base NP/PP Agreement

German determiners and adjectives are inflected
to agree in gender and number with the nouns that
they modify. As in English, a distinction is made be-
tween singular and plural number, with most nouns
having separate forms for each. Grammatical gender
has three values: masculine, feminine, and neuter.

A noun phrase’s case is usually determined by its
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{

ADJA, ART, NN, PDAT,

PIAT, PPOSAT, PWAT

}

→ {NP, PP}

{APPR, APPRART} → {PP}
{ADJA} → {AP, CAP}
{AP} → {CAP}

{AP, CAP} → {NP, PP}

Figure 2: Propagation rules used to captureNP/PPagree-
ment relations

role in the clause. For example, nominative case
usually indicates the subject of a verb. The case of
a prepositional phrase is usually determined by the
choice of preposition.

We model these grammatical properties by i) as-
sociating, via the lexicon, a set of possible agree-
ment values with each preposition, determiner, ad-
jective, and noun, and ii) enforcingagreement rela-
tions through pairwise identities between rule ele-
ments (as in the example in Figure 1).

For constraint extraction, we first group parse tree
nodes into agreement relations. We use the parse
tree labels to determine whether a parent shares
agreement information with a child. Figure 2 shows
the rules that we used in experiments. These should
be read as saying that if a child node has a label that
appears on the left-hand side of a rule,r, and its par-
ent node has a label that appears on the right-hand
side ofr then the parent and child share agreement
information.

These rules are applied bottom-up from the
preterminal nodes of the training data trees. Agree-
ment relations are merged if they share a common
parent. Finally, relations are extended to include
child words. Figure 3 shows a sentence pair in which
the target-side tree has been annotated to show two
NP agreement relations found according to the rules
of Figure 2.

Of course, this process is not perfect and finds
many spurious relations. We guard against the most
frequent errors by:

i) Filtering out relations based on label-patterns
found during error analysis (for example, rela-
tions containing multipleNN nodes)

ii) Attempting to unify the agreement feature

structures of the words and rejecting relations
for which this fails

Having annotated the training data trees with
agreement relations, rule extraction is extended to
accept annotated trees and to generate constraint
rules of the form shown in Figure 1. Constraints are
produced where any two target-side rule elements
belong to a common agreement relation. The result-
ing constraints are grouped by relation into distinct
constraint sets.

Subject-Verb Agreement

We add limited subject-verb agreement in a sim-
ilar manner. The additional propagation rules are
given in Figure 4. To determine the subject we rely
upon the TIGER treebank’s grammatical function
labels, which the parser affixes to constituent labels.
These are otherwise ignored in all propagation rules.

Probabilistic Constraints for NP Case

We make further use of the treebank’s grammat-
ical function labels in order to define probabilistic
constraints for noun phrase case. Many of the func-
tion labels are strongly biased towards a particu-
lar case (NP-TOP uses nominative case in 91.5% of
unambiguous occurrences, for example). We esti-
mate probabilities by evaluating NP agreement rela-
tions in the training data and counting case-label co-
occurrences. Ambiguous case values are ignored.
The training data uses only 23 distinct NP labels,
most of which occur very frequently, so no smooth-
ing is applied. Table 1 shows the 10 most common
labels and their case frequencies.

4 Model

As is standard, we frame the decoding problem as a
search for the most probable target language treet̂

given a source language strings:

t̂ = argmax
t
p(t|s)

The functionp(t|s) is modelled by a log-linear
sum of weighted feature functions:

p(t|s) =
1

Z

n
∑

i=1

λihi(s, t)
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TOP

S-TOP

NP-SB

PIAT

beide

NN

Vers̈aumnisse

VAFIN

haben

VP-OC

NP-OA

ADJA

terroristische

NN

Gruppen

PP-MNR

APPR

in

NE

Pakistan

VVPP

gesẗarkt

PUNC.

.

both failures have strengthened domestic terrorist groups .

Figure 3: Sentence pair from training data. The two NP agreement relations used for constraint extraction are indicated
by the rectangular and elliptical node borders.

{VAFIN, VMFIN, VVFIN} → {S}
{NP-SB} → {S}

Figure 4: Propagation rules used to capture subject-verb
agreement relations

Label Nom Acc Gen Dat Freq
AG 0.1 0.0 99.9 0.0 308156
CJ 10.9 10.3 32.4 46.4 77198
OA 1.6 91.5 0.7 6.2 67686
SB 99.0 0.1 0.4 0.5 60245
DA 1.9 0.2 1.4 96.5 41624
PD 98.2 0.2 1.4 0.3 19736
APP 39.4 7.3 8.7 44.6 7739
MO 18.6 17.3 56.9 7.2 7591
PNC 30.6 0.0 47.4 22.0 4888
OG 0.1 0.0 97.9 2.0 2060

Table 1: The 10 most freqently occurring NP labels with
their case frequencies (shown as percentages)

4.1 String-to-Tree Features

Our feature functions include then-gram language
model probability oft’s yield, a count of the words
in t’s yield, and various scores for the synchronous
derivation. We score grammar rules according to the
following functions:

• p(RHSs|RHSt,LHS), the noisy-channel trans-
lation probability.

• p(RHSt|RHSs,LHS), the direct translation
probability, which we further condition on the
root label of the target tree fragment.

• plex (RHSt|RHSs) andplex (RHSs|RHSt), the
direct and indirect lexical weights (Koehn et al.,
2003).

• ppcfg(FRAGt), the monolingual PCFG proba-
bility of the tree fragment from which the rule
was extracted. This is defined as

∏

n

i=1
p(ri),

wherer1 . . . rn are the constituent CFG rules
of the fragment. The PCFG parameters are esti-
mated from the parse of the target-side training
data. All lexical rules are given the probabil-
ity 1. This is similar to thepcfg feature used in
Marcu et al. (2006) and is intended to encour-
age the production of syntactically well-formed
derivations.

• exp(1), a rule penalty.
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4.2 Constraint Model Features

In addition to the string-to-tree features, we add two
features related to constraint evaluation:

• exp(f), wheref is the derivation’s constraint
set failure count. This serves as a penalty fea-
ture in a soft constraint variant of the model:
for each constraint set in which a unification
failure occurs, this count is increased and an
empty feature structure is produced, permitting
decoding to continue.

•
∏

n
pcase(cn), the product of the derivation’s

case model probabilities. Where the case value
is ambiguous we take the highest possible prob-
ability.

5 Decoding

We use the Moses (Koehn et al., 2007) decoder, a
bottom-up synchronous parser that implements the
CYK+ algorithm (Chappelier and Rajman, 1998)
with cube pruning (Chiang, 2007).

The constraint model requires some changes to
decoding, which we briefly describe here:

5.1 Hypothesis State

Bottom-up constraint evaluation requires a feature
structure set for every rule element that participates
in a constraint. For lexical rule elements these are
obtained from the lexicon. For non-lexical rule ele-
ments these are obtained from predecessor hypothe-
ses. After constraint evaluation, each hypothesis
therefore stores the resulting, possibly empty, set of
feature structures corresponding to its root rule ele-
ment.

Hypothesis recombination must take these feature
structure states into account. We take the simplest
approach of requiring sets to be equal for recombi-
nation.

5.2 Cube Pruning

At each chart cell, the decoder determines which
rules can be applied to the span and which com-
binations of subspans they can cover (the applica-
tion contexts). Ann-dimensional cube is created for
each application context of a rule, wheren−1 is the
rank of the rule. Each cube has one dimension per
subspan and one for target-side translation options.

Cube pruning begins with these cubes being placed
into a priority queue ordered according to the model
score of their corner hypotheses.

With the introduction of the constraint model, the
cube pruning algorithm must also allow for con-
straint failure. For the hard constraint model, we
make the following modifications:

1. Since the corner hypothesis might fail the con-
straint check, rule cube ordering is based on
the score of the nearest hypothesis to the corner
that satisifies its constraints (if any exists). This
hypothesis is found by exploring neighbours in
order of estimated score (that is, without calcu-
lating the full language model score) starting at
the corner.

2. When a hypothesis is popped from a cube and
its neighbours created, constraint-failing neigh-
bours are added to a ‘bad neighbours’ queue.

3. If a cube cannot produce a new hypothesis be-
cause all of the neighbours fail constraints, it
starts exploring neighbours of the bad neigh-
bours.

We place an arbitrary limit of 10 on the number
of consecutive constraint-failing hypotheses to con-
sider before discarding the cube.

We anticipate that decoding for a highly in-
flected target language will result in a less mono-
tonic search space due to the increased formation of
inflectionally-inconsistent combinations.

6 Experiments

6.1 Baseline Setup

We trained a baseline system using the English-
German Europarl and News Commentary data from
the ACL 2010 Joint Fifth Workshop on Statistical
Machine Translation and Metrics MATR1.

The German-side of the parallel corpus was
parsed using the BitPar2 parser. Where a parse failed
the pair was discarded, leaving a total of 1,516,961
sentence pairs. These were aligned using GIZA++

1http://www.statmt.org/wmt10/
translation-task.html

2http://www.ims.uni-stuttgart.de/tcl/
SOFTWARE/BitPar.html
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and SCFG rules were extracted as described in sec-
tion 3.1 using the Moses toolkit. The resulting gram-
mar contained just under 140 million synchronous
rules.

We used all of the available monolingual Ger-
man data to train three 5-gram language models (one
each for the Europarl, News Commentary, and News
data sets). These were interpolated using weights
optimised against the development set and the re-
sulting language model was used in experiments.
We used the SRILM toolkit (Stolcke, 2002) with
Kneser-Ney smoothing (Chen and Goodman, 1998).

The baseline system’s feature weights were tuned
on thenews-test2008dev set (2,051 sentence pairs)
using minimum error rate training (Och, 2003).

6.2 Constraint Model Setup

A feature structure lexicon was generated by run-
ning the Morphisto3 morphological analyser over
the training vocabulary and then extracting feature
values from the output.

The constraint rules were extracted using the
agreement relation identification and filtering meth-
ods described in section 3.3.

We tested two constraint model systems, one us-
ing the rules as hard constraints and the other as soft
constraints. The former discarded all hypotheses
that failed constraints and used the modified cube
pruning search algorithm. The latter allowed con-
straint failure but used the failure count feature as a
penalty. Both systems used the NP case probabil-
ity feature. The weights for these two features were
optimised using MERT (with all baseline weights
fixed). The systems were otherwise identical to the
baseline.

6.3 Evaluation

The systems were evaluated against constrained ver-
sions of thenewstest2009, newstest2010, andnew-
stest2011test sets. We used a maximum rule span
of 20 tokens for decoding. In order that the input
could be covered without the use of glue rules (ex-
cept for unknown words), we used sentences of 20
or fewer tokens, giving test sets of 1,025, 1,054, and
1,317 sentences, respectively. We evaluated transla-
tion quality using case-sensitive BLEU-4 (Papineni

3http://code.google.com/p/morphisto/

(NP-AG der (ADJA regelm̈aßigen) (ADJA täglichen) (NN Handel))

(PP-MO nach Angaben der (ADJA örtlichen) (NN Index))

(NP-CJ die (ADJA amerikanischen) (NN Blutbad))

(PP-MNR für die (ADJA asiatischen) (NN Handel))

(TOP (NP-SB der (NN Vorsprung) des (NN razor))
(VVFIN kämpfen)
(CNP-OA : (NN MP3-Player) (KON und) (NN Mobiltelefone))
.)

Figure 5: Tree fragments containing the first five con-
straint failures found on the baseline 1-best output

et al., 2002) with a single reference.

Table 2 shows the results for the three constrained
test tests. The p-values were calculated using paired
bootstrap resampling (Koehn, 2004). We suspect
that the substantially lower baseline scores on the
newstest2011test set are largely due to recency ef-
fects (since we use 2010 data for training).

To gauge the frequency of agreement violations
in the baseline output we matched constraint rules
to the 1-best baseline derivations and performed a
bottom-up evaluation for each target-side tree. For
the three constrained test sets,newstest2009, new-
stest2010, andnewstest2011, we found that 15.5%,
14.4%, and 15.6% of sentences, respectively, con-
tained one or more constraint failures. Figure 5
shows the tree fragments for the first five failures
found innewstest2009.

In order to explore the interaction of the constraint
model with search we then repeated the experiments
for varying cube pruning pop limits. Figure 6 shows
how the mean test set BLEU score varies against pop
limit. Except at very low pop limits, the soft con-
straint system outperforms the hard constraint sys-
tem. Together with the high p-values for the hard
constraint system, this suggests that, despite filter-
ing, our simple constraint extraction heuristics may
be introducing significant numbers of spurious con-
straints. Alternatively, enforcing the hard constraint
may eliminate too many hypotheses that cannot be
satisifactorily substituted — constraint-satisfying al-
ternatives frequently differ in more than just inflec-
tion. Either way, the soft constraint model is able to
overcome some of these deficiencies by permitting
some constraint failures in the 1-best output.
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newstest2009-20 newstest2010-20 newstest2011-20
Experiment BLEU p-value BLEU p-value BLEU p-value
baseline 15.34 - 15.65 - 12.90 -
hard constraint 15.49 0.164 15.95 0.065 12.87 0.318
soft constraint 15.67 0.006 15.98 0.009 13.11 0.053

Table 2: BLEU scores and p-values for the three test sets

14.4
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14.6

14.7

14.8

14.9

15

0 500 1000 1500 2000 2500

A
vg

B
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Pop limit

baseline
soft constraint
hard constraint

Figure 6: Cube pruning pop limit vs average BLEU score

7 Conclusion

In this paper we have presented an SMT model that
allows the addition of linguistic constraints to the
target-side of a conventional string-to-tree model.
We have developed a simple heuristic method to ex-
tract constraints for German and demonstrated the
approach on a constrained translation task, achiev-
ing a small improvement in translation accuracy.

In future work we intend to investigate the de-
velopment of constraint models for target languages
with more complex inflection. Besides the require-
ment for suitable language processing tools, this re-
quires the development of reliable language-specific
constraint extraction techniques.

We also plan to investigate how the model could
be extended to generate inflection during decoding:
a complementary constraint system could curb the
overgeneration of surface form combinations that
has limited previous approaches.
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