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Abstract

Thirty-one new bulk-sediment U-Th dates are presented, together with an

improved δ18O stratigraphy, for ODP Site 1008A on the slopes of the Bahamas

Banks.  These ages supplement and extend those from previous studies and provide

constraints on the timing of sealevel highstands associated with marine isotope stages

(MIS) 7 and 9.  Ages are screened for reliability based on their initial U and Th

isotope ratios, and on the aragonite fraction of the sediment.  Twelve ‘reliable’ dates

for MIS 7 suggest that its start is concordant with that predicted if climate is forced by

northern-hemisphere summer insolation following the theory of Milankovitch.  But

U-Th and δ18O data indicate the presence of an additional highstand which post-dates

the expected end of MIS 7 by up to 10 kyr.  This event is also seen in coral

reconstructions of sealevel.  It suggests that sealevel is not responding in any simple

way to northern-hemisphere summer insolation, and that tuned chronologies which

make such an assumption are in error by ≈10 kyr at this time.  U-Th dates for MIS 9

also suggest a potential mismatch between the actual timing of sealevel and that

predicted by simple mid-latitude northern-hemisphere forcing.  Four dates are earlier

than that predicted for the start of MIS 9.  Although the most extreme of these dates

may not be reliable (based on the low-aragonite content of the sediment) the other

three appear robust and suggest that full MIS 9 interglacial conditions were

established at 343 ka.  This is ≈8 kyr prior to the date expected if this warm period

were driven by northern-hemisphere summer insolation.
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1.0 Absolute dating of Pleistocene sealevel changes

Sealevel represents a first-order feature of the surface earth environment

with significant implications for global climate (Shackleton, 1987).  It both responds

to climate, through processes such as temperature, precipitation and seasonality, and

influences it, through processes including ocean circulation and moisture supply

(Lambeck et al., 2002).  The global nature of sealevel change also makes it a powerful

stratigraphic tool, allowing correlation between distant records if they contain an

imprint of past sealevel.

For several decades, the assumption has been that sealevel during the

Pleistocene is closely related to summer insolation at 65oN, following the theory of

(Milankovitch, 1930).  To test this assumption, and to assess the mechanisms driving

climate change, requires development of a history of sealevel changes with an

absolute chronology independent of any climate model.  Prior to about 40 ka, when

the 14C chronometer no longer provides information, such independent chronology

comes exclusively from U/Th dating.  Other indicators have the potential to tell us

about the amplitude of change, including sedimentology (Murray-Wallace 2002) and

oxygen isotopes in the Red Sea (Siddall et al., 2003) but only material that can be

reliably U/Th dated provides information about the timing of these changes.

Corals and cave carbonates (speleothems) have provided the best U/Th

constraints on Pleistocene sealevel.  Corals grow in seawater and so constrain the

minimum sealevel.  Some species are known to have growth restricted to the upper 5

to 10 meters, thus providing a sealevel datum with some precision.  Corals are

dateable with U/Th techniques, but older samples become progressively prone to

alteration, particularly when subject to sub-aerial exposure.  The difficulty of finding

pristine examples of appropriate coral species has limited the application of U/Th
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dating, but corals have, nevertheless, formed the major tool on which Pleistocene

sealevel has been established (e.g. Bard et al., 1996; Gallup et al., 1994; Mesolella et

al., 1969; Stirling et al., 1998; Stirling et al., 2001).  The recent development of an

alpha-recoil model to correct for some diagenetic alteration somewhat alleviates this

limitation (Thompson and Goldstein, 2005).  But coral data can still be difficult to

interpret because of the nature of reef development.  Corals do not grow continuously

upward, as sediment cores do, but respond in a complex way to changes in sealevel.

Careful field work is required to put the corals in context, and to assure that they are

found in situ, rather than above their formation location in a storm deposit, or below

in a fall.  Corals are also prone to dissolution and erosion.  Powerful examples of this

have been seen recently in the Pacific after El Niño warming bleached coral reefs.

Huge volumes of these reefs subsequently eroded within only a few years (Eakin,

1996; Reake-Kudla et al., 1996).  The corals left for us to date therefore represent a

preservationally biased sample of those that have escaped erosion and dissolution.

Corals provide powerful sealevel constraints, but they are not perfect.

Most forms of speleothem grow in air so their presence indicates that

sealevel was below them when they formed.  Investigating diagenesis of speleothem

carbonate is more difficult than for corals because of the lack of knowledge about the

expected (234U/238U) value at the time of their formation.  But speleothems frequently

consist of dense calcite with large crystals and are expected to be diagenetically

robust.  The presence of dated speleothem therefore provides an upper bound on

sealevel.  Absence of speleothem, on the other hand, does not provide sealevel

information because their formation can be prevented by other variables (e.g.

moisture levels or CO2 degassing).
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The application of both coral and speleothem records to constrain past sea

level also requires detailed knowledge of the uplift/subsidence history of the region in

which the samples are found.  This is especially important in tectonically active

regions.

The δ18O record captured in deep-sea cores contains a significant sealevel

signal.  Chronology of this record could therefore provide information about sealevel

change, particularly if other controls on δ18O (temperature and local salinity changes)

could be deconvolved.  Such a chronology would have the significant advantage that

δ18O records in the deep ocean form continuously, without the sporadic formation and

preservation seen for coral and speleothems.  Sadly, techniques to date most marine

cores with sufficient precision have not yet been established.  Early attempts to use

231Pa/230Th (Broecker and Van Donk, 1970) provided ages, but with uncertainties that

were large and difficult to assess.  More recent application of the 230Th excess method

(Francois et al., 2004) provides information about sediment accumulation rate, but

cannot directly date past events.  In general, it is this excess of 230Th in marine

sediments which prevents their dating with U/Th techniques.  Sediments are, in effect,

the exact opposite of corals and speleothems.  The insoluble nature of Th means that,

while carbonates precipitating from water have very low 230Th, sediment underlying

seawaters have high 230Th.  Variations in the amount of excess 230Th with time prevent

the precise use of this tool to assess past ages.

Carbonate platform settings, such as the Bahamas, provide a compromise

between the advantages of corals and deep-sea cores.  A large fraction of the sediment

formed in these areas is carbonate, directly precipitated from seawater and therefore

with very low initial Th concentrations.  This sediment accumulates at least semi-

continuously, providing more stratigraphy than either corals or speleothems.  The first
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work on this material demonstrated that it had sufficiently low initial 230Th,

particularly during highstand periods, to allow dating of the bulk sediment from the

last interglacial (Slowey et al., 1996).  Further work explored the use of isochrons to

date the material, and established some limits on the application of the technique to

Bahamas sediments (Henderson and Slowey, 2000; Henderson et al., 2001).  That

work indicated that the penultimate deglaciation (Termination 2) occurred earlier than

suggested by traditional Milankovitch models of climate change, thereby challenging

our understanding of the mechanisms driving glacial-interglacial cycles.  Recovery of

longer cores during ODP Leg 166 allowed the first application of these dating

techniques to earlier highstands with age constraints on Marine Isotope Stage (MIS) 7

(Robinson et al., 2002).  This paper continues that work, providing additional

constraints on the timing of MIS 7 and new information about the timing of

highstands associated with MIS 9.

2.0 Sedimentary setting and samples

Samples for this study were taken from ODP Leg 166, Site 1008A.  This

Site was drilled on the leeward (SW) slope of the Great Bahama Bank (GBB) at

23o36.64’ N, 79o5.01’W in 437 m of water.  Mineralogical data indicate clear glacial-

interglacial cycles in the aragonite fraction of the sediment (Malone, 2000).  These are

caused by flooding of the GBB during interglacial periods providing a large area for

growth of aragonite-precipitating organisms such as Halimeda algae.  During glacial

periods, the banks are exposed, aragonite formation rates decrease, and the

sedimentation rate of cores also reduce dramatically.  Sediment aragonite percentages

during highstands are typically 70-80%, with the remainder consisting of high-Mg

and low-Mg calcite (and typically <1% detrital material).  At depths in the core
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greater than 50 metres below sea floor (mbsf), corresponding to MIS 11, dolomite

also starts to be seen (Malone, 2000), indicating the presence of diagenetic alteration

of carbonate minerals at this depth.

Sedimentalogical changes associated with glacial-interglacial cycles are

more extreme at this site than those seen on the leeward slopes of the Little Bahama

Bank (LBB).  Initial U/Th dating of Bahamas sediment was conducted on those LBB

cores (Henderson et al., 2001; Slowey et al., 1996) which contain a smooth record of

glacial to interglacial change.  By contrast, Site 1008A demonstrates abrupt changes

from glacials to interglacials, with glacial portions typically having sedimentation

rates >10 times slower than those in the interglacials.  This makes the GBB cores less

appropriate for the dating of glacial periods or intermediate climate states.

Sedimentation rates during interglacial periods, however, can be extremely rapid (up

to 60 cm/kyr) so these GBB cores are well suited to assessing the duration and timing

of sealevel highstands.

Foraminiferal oxygen isotope records recovered from ODP Leg 166

sediments show glacial-interglacial amplitudes of up to 2.5‰ (e.g. Robinson et al.,

2002).  This amplitude of change reflects the effects of sealevel, temperature, and the

diagenesis of glacial-age sediment.  Sealevel change causes a global change of ≈1‰

in δ 18O (Schrag et al., 2002).  Glacial-interglacial temperature changes in the

Caribbean are thought to be ≈2.5oC (Schmidt et al., 2004), and therefore could be

responsible for an additional 0.6‰ of the observed δ18O change.

The timing of this temperature change in the Caribbean relative to sealevel

change is not completely clear, but probably does not differ by more than a couple of

thousand years.  Early work as part of the CLIMAP project (CLIMAP, 1984)

suggested that temperature lagged sealevel in the North Atlantic, and led it in the
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South, with the Caribbean at the hinge and not showing a significant phase difference.

More recent Mg/Ca work (Schmidt et al., 2004) has again indicated a slight

temperature lead for Terminations 1 and 2, 10o south of the Bahamas in the

Columbian basin.  Paleothermometry on the Bahamas cores themselves is confounded

by the presence of calcite overgrowths on foraminifera leading to high Mg/Ca during

glacial periods (Rosenthal et al., 1997), and by very low alkenone concentrations.  In

the absence of such direct assessment, we assume that changes in sealevel and

temperature at this site are within 2 kyr of one another.

The remainder of the δ18O signal (≈0.9‰) is caused by addition of

isotopically heavy oxygen to glacial sediments by seafloor diagenesis (Malone et al.,

2001).  This process is directly related to the rate of sedimentation, and therefore to

sealevel and climate.  When sealevel is high and the climate warm, greater areas of

the Bahamas banks are exposed and aragonite productivity is high, leading to high

sedimentation rates and minimal cementation.  When sealevel is low, particularly

during glacial conditions, sedimentation rates fall and cementation occurs leading to a

higher δ18O value.  In summary, although control of δ18O in these GBB sediments is

complex, the major changes are synchronous with sealevel change.

Existing G. sacculifer and bulk-carbonate δ18O stratigraphies for Hole

1008A (Robinson et al., 2002) were augmented by 28 new measurements on G.

sacculifer (300-355 micron fraction) to increase resolution, particularly during the

MIS 9 interval.  For U/Th chronology, a total of 31 bulk sediment samples were

selected spanning MIS 7 and MIS 9, with emphasis on the latter.  These are in

addition to 22 previously dated samples from 1008A which focused on the MIS 7

interval (Robinson et al., 2002).
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3.0 Analytical techniques

Bulk sediment samples (≈1 g) were processed following techniques of

Henderson et al. (2001) and analysed by multi-collector ICP mass spectrometry

following Robinson et al. (2002).  Briefly, samples were dissolved in 7.5N HNO3, U

and Th separated using a single anion-exchange column.  Typical blanks for this

procedure were 3x10-10 g 238U, and 3x10-11 g 232Th and are small compared to sample

U and Th masses.

U and Th isotopes were analysed on a Nu Instrument MC-ICP-MS using a

standard bracketing technique against the international U standard, CRM-145, and an

in-house Th standard (ABC-2).  In each case, small beams (234U, 230Th, 229Th) were

analysed in an ion-counter, while other beams (238U, 235U, 236U, 232Th) were analysed

synchronously in Faraday collectors.  This analytical technique yields precision in the

critical 230Th/229Th isotope ratio typically better than 1‰, and final 230Th

concentrations (incorporating weighing errors and uncertainty in the spike

concentration) of ≈2‰.

Calculated ages are corrected for the presence of initial 230Th using the

measured 232Th concentrations.  An initial 232Th/230Th atom ratio of 20,000 is assumed

(equivalent to a 230Th/232Th activity ratio of 9.3).  The initial Th is therefore assumed

to be richer in 230Th than typical crustal Th by approximately a factor of ten.  This

reflects the fact that most of the initial 230Th in these sediments is derived from

seawater, which gains 230Th from decay of U.  This leads to a 232Th/230Th atom ratio

of seawater in the Bahamas at ≈400m water depth of ≈15,000 (Robinson et al., 2004).

An uncertainty to the correction for initial 230Th of ±50% is assumed and combined

with analytical error to give the final uncertainty on the corrected ages.
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4.0 Results

4.1 Stratigraphy

Interglacial portions of the δ18O record are significantly expanded relative to

glacial portions (Fig. 1).  Interglacial portions are characterized by G. sacculifer

values of ≈-1‰, and bulk sediment values of ≈0‰, while glacial portions are ≈2‰

heavier.  The upper 12 m of the record is at relatively low resolution but clearly shows

the Holocene (0-6 mbsf) and MIS 5 (7-10 mbsf).

MIS 7 falls in the interval 12 to 20 mbsf where the δ18O curve features four

pronounced lows in both the G. sacculifer and bulk carbonate records (seen as highs

in the inverted scale of Figs 1 and 2).  The shallowest of these (≈12.5 mbsf) features

less extreme δ18O values (particularly in the bulk carbonate record) and is probably

equivalent to MIS 6.5 (Martinson et al., 1987).  The other three lows have

approximately equal δ18O, at values typical of full interglacial conditions for this site.

These are assumed to represent the highstand associated with MIS 7 which therefore

covers the depth interval 12.8 to 20.0 mbsf.  Termination 3, at the start of MIS 7, is

difficult to identify on the basis of the G. sacculifer record alone, but the first change

to low foraminiferal δ18O values corresponds to the clear change in bulk sediment

values which makes selection of this event at 20.0 m a reasonable choice (Fig. 2).

A similar pattern is seen for the MIS 9 section of the core.  Low δ18O values

from 21-23 mbsf (seen only in the G. sacculifer record) are probably equivalent to

MIS 8.5 (Martinson et al., 1987).  Low δ18O values seen in both records from 22.6 to

27.2 mbsf are assumed to represent the highstand corresponding to MIS 9.  And

Termination 4 is defined by an abrupt change in both the G. sacculifer and bulk-

sediment records at ≈27.2 mbsf.
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4.2 Chronology

Compared to average continental crust, analysed samples have high U

concentrations (4.1-14.3 ppm) and low Th concentrations (0.06 – 0.28 ppm) (Table

1).  They all exhibit significant 230Th-234U-238U disequilibrium with calculated raw

ages (i.e. not corrected for initial 230Th) ranging from 147 to 406 ka (Table 1).

Corrections for initial 230Th range from 1 to 25 kyr, with a median value of 4 kyr,

reflecting the generally low Th concentrations of these samples.  Five samples have

age corrections >10 kyr (corresponding to 232Th concentrations of >200 ppb).  Ages

for these samples are not useful to constrain the timing of climate change due to the

large correction and are discarded.  This follows the approach used in previous dating

studies of Bahamas sediments (Henderson et al., 2001; Robinson et al., 2002).

δ234U(T) (calculated with corrected ages) range from 105 to 209, with an

average identical to the modern seawater value (146; Robinson et al., 2004).  This

average value suggests overall closure of the sediment mass to exchange of U with

other reservoirs, but the range of values observed indicates the presence of some

movement of U within the sediment.  Samples with values outside the range 135 to

155 are assumed to have suffered sufficient alteration to their U/Th system that

resulting ages are unreliable.  This range is identical to that used in Robinson et al.

(2002) and allows for uncertainty in the seawater value of δ234U through time

(Henderson 2002).  No attempt to correct ages for recoil mobility of nuclides using

measured δ234U has been conducted (e.g. Thompson et al. 2003).  Bulk sediment

δ234U(T) which differ significantly from seawater indicate transport of 234U over

sufficient distances that insoluble 230Th is unlikely to accompany it, so such open-

system age models are unlikely to be robust in this setting.
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Based on their 232Th concentrations and δ234U(T) values, 11 of the 31 ages

are assumed to provide reliable ages.  These range from 190 - 363 ka and are

illustrated, together with 12 reliable ages from Robinson et al. (2002), in Fig. 1.  Two

of these ages are significantly out of age sequence and cannot be correct (22.30 mbsf

and 28.49 mbsf).  These two samples are from sections of the core with the lowest

measured aragonite content of any dated samples (≈50% and ≈40% respectively)

(Malone, 2000).  Aragonite is the mineral in the sediment with a high U/Th ratio

which provides most of the age information (Henderson et al., 2001).  It appears that

when the fraction of such aragonite in the core is as low as 50%, accurate age

information cannot be derived from bulk sediments.  These ages are not considered

further, and care must be taken in interpreting other ages where the aragonite content

may be low.  The remaining ages define the timing of the MIS 7 and MIS 9 portions

of the δ18O record from Site 1008A.

5.0 Discussion

Most models to explain glacial-interglacial sealevel cycles assume that they

are linked to changes in summer insolation at mid-latitudes in the Northern

hemisphere.  This assumption, following Milankovitch (1930), is inherent to tuned

timescales of climate change, including the widely used SPECMAP timescale (Imbrie

et al., 1984; Martinson et al., 1987).  Several of these tuned climate records are shown

in Fig. 3, including a new tuned benthic δ18O stack (Lisiecki and Raymo, 2005).

Direct U-Th chronology for sealevel changes in this study, and from corals

(Thompson and Goldstein, 2005), can be compared to these tuned timescales to test

the assumption that glacial-interglacial cycles are linked to mid-latitude summer
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insolation.  We make such comparison here, but first consider the quality of the age

information derived from Hole 1008A.

5.1 Age reversals and the quality of the U/Th data

Ages are expected to increase down-core.  In general, ages that pass the

isotopic rejection criteria follow this pattern (Fig. 1).  There are, however, several age

reversals, particularly within MIS 7 (Fig. 2).  These age reversals must be caused

either by incomplete closure of the U-Th system, or by stratigraphic disturbance.

The failure of U-Th chronology in those samples that do not pass the

rejection criteria indicates the possibility for disturbance of the U-Th system in these

Bahamas sediments. δ234U(T) values close to seawater are, however, not easy to

explain if samples have been disturbed.  Movement of U within the core is expected

to perturb both the measured δ234U and the age, both of which significantly alter the

δ234U(T).  It is also noteworthy that, where replicate samples are both reliable based

on their δ234U(T) values, their ages are within error of one another (e.g. 2 samples at

19.48m, and 3 at 25.9m).

The stratigraphy in this off-shelf setting is also not perfect.  Sediment

transport occurs rapidly from the Bahamas banks to the slopes at present and is driven

by tidal processes.  Storage of sediment on the banks, or higher up the slopes, cannot

be ruled out, however, and these sediments might be transported down-slope to place

older sediment above newer in slope cores.  Such down-slope transport would

obviously perturb the stratigraphy.  It would not, however, alter the geochemistry so

that δ18O and U/Th ages would remain intact and coupled together.  U/Th ages on

sediment with a δ18O lower than zero therefore still imply highstand conditions at that

time even in the presence of stratigraphic disturbance.
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Overall, the presence of age-reversals does point to an imperfect system,

either geochemical or stratigraphic, but this record is the best independently dated

marine stratigraphy available.  It is interesting to contrast these Bahamas ages with

those from coral terraces.  Dating of corals is generally performed on individual

samples distributed laterally so that no relative stratigraphic information is provided.

Coral ages are therefore not normally subject to the stratigraphic test that these

Bahamas sediments have undergone.  It is also notable that, of the many MIS7 corals

that have been dated, only ≈5 give ages with a δ234U(T) close to modern seawater

(Robinson et al. 2003).  This contrast with the 12 ages with good δ234U(T) that are

presented here on Bahamas sediments.  Although the Bahamas sediments are not

perfect, the fact that they come with some stratigraphic control, and have experienced

submarine preservation, do give them certain advantages over subaerially exposed

corals.  Corals, of course, have their own advantages, such as their provision of a

more direct assessment of sealevel.  These two archives therefore provide

complementary information in the quest to define a radiometric chronology for

Pleistocene sealevel.

5.2 An additional sealevel highstand post-dating MIS 7

The early portions of MIS 7 have been discussed previously (Robinson et

al., 2002) and new ages reported here do not change the interpretation.  The start of

MIS 7 at Site 1008A agrees well with that expected from records tuned to 65oN

summer insolation.  The coral record also agrees with SPECMAP (Thompson and

Goldstein, 2005) and suggests that Termination 3 occurred at ≈245 ka (Fig. 4).

The more interesting feature occurs at the end of MIS 7.  Sediment with low

δ18O (in both G. sacculifer and bulk records) extends from 18 to 14 mbsf (Figs 1 and

2).  Based on typical highstand sedimentation rates for this core, and on the duration
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of this interval from U/Th ages, this is very likely to represent MIS 7.3 to MIS 7.1.  A

new U/Th age of 190 ka from the δ18O peak immediately following this interval

(13.80m; Table 1) supports this interpretation and is in agreement with previous U/Th

chronology for this period based on both corals (Thompson and Goldstein, 2005) and

speleothems (Bard et al., 2002).  Together, these archives provide convincing

evidence that MIS 7.1 ends at 190 ka, again in good agreement with SPECMAP.

Immediately above this MIS 7.1 section at Site 1008A, however, lies an additional

δ18O low (13.7 to 13.0 mbsf).  A date from this low δ18O  interval, and two ages from

slightly greater depth, give ages that are significantly younger than 190 ka.  An age

reversal at this depth (Fig. 2) make interpretation somewhat uncertain, but these ages

suggest the presence of highstand conditions lasting some 10 ka after the expected

SPECMAP age for the end of MIS 7.

A similar sealevel event was identified in the coral record of Thompson and

Goldstein (2005) which shows a discrete sealevel highstand from ≈187 to 180 ka (Fig.

4).  The chronology of both the Site 1008A and coral records are based on few U/Th

ages, but the close agreement in the duration and age of this sealevel event in two

completely independent records suggests that there is a sealevel highstand which post-

dates the normally recognized end of MIS 7.  This event is not MIS 6.5, which is

clearly seen as an additional feature in both the Bahamas sediment and Barbados coral

records (Fig. 4).

Some constraints can be placed on the duration and amplitude of this

sealevel event.  Typical highstand sedimentation rates for the Site 1008A location

would suggest a duration of 5-10 kyr, and the coral record suggests a duration of ≈6

kyr.  The duration is therefore long compared to typical millennial climate events as

seen, for instance, in the Greenland ice cores during the last glacial (Grootes et al.,
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1993) and is closer to the duration of highstands associated with MIS 5.5 or MIS 5.3.

In the Barbados coral record, sealevel reaches –13 m during this event, but this is in

conflict with speleothems from Italy which continue to grow during this period at an

altitude of –18 m.  This suggests that the tectonic reconstruction at either Barbados

and/or Italy is not completely accurate, perhaps due to glacio-eustatic effects (e.g.

Potter and Lambeck 2003) but overall suggests that sealevel must have been close to

–15 m during this period.

The presence of a sealevel highstand at ≈180 ka represents a challenge to the

idea that Pleistocene climate is driven by summer insolation at 65oN.  Sealevel is

increasing (and therefore ice is melting) when 65oN summer insolation is at one of its

lowest points of the last 400 kyr.  The presence of sub-orbital oscillations of sealevel

has been recognized before (Esat et al., 1999; Thompson and Goldstein, 2005).  But

this highstand, occurring in the period normally thought of as a portion of the MIS 6

glacial, joins Termination 2 (Gallup et al., 2002; Henderson and Slowey, 2000) in

providing a challenge to orbital models of climate change, and in providing clues

about the mechanisms for Pleistocene climate change.

5.3  Implications of the additional highstand for orbital tuning of δ18O records

The additional highstand at 185 ka is not seen in orbitally-tuned δ18O

records (Imbrie et al., 1984; Lisiecki and Raymo, 2005) despite the significant

sealevel component expected in these records.  The most recent tuned δ18O stack

(Lisiecki and Raymo, 2005) collects more than 50 benthic records from around the

globe and stacks them to provide a combined record of sealevel and deep-ocean

temperature for the last 5.3 Myr (Fig. 3, final curve).  This is the most comprehensive

benthic stack yet published, and indicates δ18O of 4.4‰ at ≈185 ka, 1.2‰ heavier
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than the modern value in the same stack, and therefore requiring sealevel significantly

lower than today at 185 ka.  There are only two possible explanations for the high

δ18O values at 185 ka in this and other tuned records.  Either deep-ocean temperatures

were very cold at this time, thus cancelling the δ18O signal from high sealevel, or the

timescales of these tuned records are incorrect.

It is very unlikely that deep-ocean temperatures can be cold enough to

cancel the δ18O signal from a –15m highstand at ≈185 ka.  The Holocene to Last

Glacial Maximum (LGM) change in δ18O is 1.8‰ in the Lisieki and Raymo stack.

This is thought to represent 1‰ (Schrag et al., 2002) due to a sealevel change of 125

m, plus about 3oC of deep-ocean cooling at the LGM.  This cooling takes bottom

waters throughout the ocean to very close to their freezing point (Adkins et al., 2002).

By comparison, δ18O at ≈185 ka is 1.2‰ heavier than modern values.  If sealevel is -

15 m at this time (as constrained by the coral, speleothem, and Bahamas records) only

≈0.1‰ of this difference is explained by sealevel.  The remaining 1.1‰ requires

deep-ocean temperatures to be more than 4oC colder than today, and therefore colder

than during the close-to-freezing LGM.  Deep-ocean cooling therefore cannot explain

the mismatch between tuned benthic δ18O stacks and the sealevel record.  This

conclusion is reinforced by the more qualitative but intuitive argument that it is

difficult to imagine ice-sheets shrinking to cause a sealevel highstand at a time of

extreme cold.

It therefore appears that the timescale of tuned records is incorrect at the end

of MIS 7.  The large change in δ18O, normally tuned to the decrease in northern

hemisphere summer insolation at 190 ka, actually occurs at ≈180 ka.  Tuned records

are therefore in error by about 10 kyr at this point.  This is significantly larger than the

normally quoted errors on such timescales (e.g. 5 ka, Martinson et al., 1987) and
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reflects a failure of the basic assumption on which such tuning relies.  Having

accepted that the tuned timescale is not robust, benthic δ18O records do, in fact,

contain evidence for this end-MIS 7 highstand.  In the Lisieki and Raymo stack, for

instance, there is a pronounced shoulder at the end of MIS 7 (arrow “a”, Figure 2),

with δ18O values only ≈0.2‰ heavier than at MIS 7.1 (Lisiecki and Raymo, 2005).  In

individual records, a discrete peak is sometimes seen at this point.  The well-known

V19-30 record, for instance, contains an event of similar duration and slightly lower

amplitude than those of MIS 7.3 and MIS 7.1 (Shackleton and Pisias, 1985).

Adjusting timescales for marine cores so that the end of MIS 7 is at 180 ka

rather than 190 ka does not generate unrealistic changes in sedimentation rate.  If such

a timescale adjustment implied large temporal changes in sedimentation rate it might

argue against its validity.  Recalculating sedimentation rates in the Lisiecki and

Raymo stack, assuming that the record at 190 ka is 10 kyr too old, leads to global

sedimentation rates during MIS 6 that are 23% higher than the average for the last

million years.  This compares to sedimentation rates during the last glacial (MIS2-4)

that are ≈32% higher than average and is therefore not unreasonable.

5.4 Possible mechanisms for this additional sealevel highstand

The additional late-MIS 7 sealevel highstand cannot be explained by ice-

sheet melting in response to northern-hemisphere summer insolation.  Instead, it must

be due to a climate response to insolation at another season/latitude, or to a natural

oscillation in the climate system.  Sub-orbital sealevel changes during the last glacial

(Siddall et al., 2003; Yokoyama et al., 2001) correlate with changes in North Atlantic

and Greenland temperatures and are thought to be caused by coupling between ice

sheets and ocean circulation via fresh-water supply and heat transport.  Such coupling
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is less likely at the end of MIS 7 when northern-hemisphere ice sheets are small (as is

the case, in general, for sub-orbital sealevel changes during highstands (Thompson

and Goldstein, 2005)).

Two insolation mechanisms can be suggested, but neither is without

problems.  The first is to suggest that the very low northern-hemisphere summer

insolation at this time (Fig. 3; top curve) keeps conditions in the North Atlantic region

cold enough that moisture transport is suppressed (by lower rates of evaporation, or

by the presence of sea-ice) and ice cannot grow.  Problems with this mechanism are

that the ice-sheets actually seem to shrink at 187 ka, requiring active melting rather

than just a cessation in growth, and there are other periods with equally low northern-

hemisphere summer insolation when ice sheets do not decrease (e.g. 230 ka).  The

second possible insolation mechanism is that summer insolation in the southern

hemisphere reaches a peak at 187 ka, just as the additional sealevel rise is observed.

This timing coincidence is appealing and might suggest that the sealevel rise is caused

by a melting of southern-hemisphere ice.  Southern hemisphere ice is generally

thought to contribute only ≈25m to glacial-interglacial sealevel changes, but recent

evidence is suggesting that it contributes a significant fraction (≈half) to sealevel

changes associated with millennial events (Rohling et al., 2004).  A larger role for

southern hemisphere ice might therefore be invoked for this late MIS 7 event.  Again,

though, a problem with this mechanism is that other, equally large peaks in southern-

hemisphere insolation are not accompanied by observable sealevel highstands.

Atmospheric CO2 levels may also play a role in this sealevel event.  The

Vostok CO2 record at the end of MIS 7 shows a series of peaks which are not easy to

relate directly to events in the marine δ18O record.  Two peaks of ≈ 240 ppmV appear

to correspond to MIS 7.3 and MIS 7.1 and are followed by a peak of 231 ppmV (Petit
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et al. 1997) (arrow “b”, Figure 2).  This additional peak occurs at 191 ka according to

the Vostok age scale but is 3 kyr younger in the Shackleton timescale tuned using

atmospheric δ18O.  There is latitude to move this event to still younger ages because

of the breadth of δ18Oatm peaks in this interval.  The additional sealevel peak might,

therefore, be caused by greenhouse warming induced by a change in the carbon cycle.

This explanation alters the question rather than answering it.  The cause of a change in

atmospheric pCO2 at this time is not clear.

5.5 The timing of highstands associated with MIS 9

Termination 4, at the start of MIS 9, is reasonably clear in the δ18O records

and occurs at ≈26.2 mbsf.  Four dates immediately above the Termination are all older

than the SPECMAP age for this event of 338 ka (Figure 4).  The oldest of these dates

(363 ka) predate the SPECMAP age very significantly but are from an interval where

the aragonite content may be low (measurements above and below these ages are 78%

and 24% aragonite respectively).  The other three ages are replicates at a single depth

where sediment has a measured aragonite fraction of 78%, and the δ18O of both G.

sacculifer and bulk sediment indicate full interglacial conditions.  These three

replicates all pass U-Th criteria and are within error of one another, averaging 343 ka

(±4 ka, 2σ).  Although the very old date can be called into question based on low

aragonite fraction, it is more difficult to question the well-constrained dates at ≈343

ka.  These ages therefore suggest that full interglacial conditions were achieved  ≈5

kyr (or more) before the age for Termination 4 in the SPECMAP chronology (338

ka).  Deglaciation typically takes ≈6 kyr (e.g. Broecker and Henderson 1999) so the

expectation is that full-interglacial conditions should lag the midpoint of deglaciation

by ≈3 kyr.  A 5 kyr lead therefore represents an 8 kyr mismatch from that expected if
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climate if forced by the mid-latitude northern hemisphere.  This is significantly

greater than the combined error on the three ages for this event so there is some

confidence in suggesting that Termination 4 is earlier than expected from traditional

Milankovitch forcing.

There is very little previous data for MIS 9 with which to compare this new

Bahamas data.  A single coral date from Huon Peninsula (Galewsky et al., 1996) is

also earlier than the SPECMAP age for Termination 4, but is within error (Fig. 5).

High-precision dates from Henderson Island (Stirling et al., 2001) do not provide any

evidence for an early start to MIS 9, but coral preservation is generally biased to the

end of highstand periods because of the possibility of marine erosion of early

highstand material.

In the absence of supporting evidence from other records it is premature to

be confident about the age for the start of MIS 9 based on the limited data presented

here.  Nevertheless, this data does suggest that MIS 9 may start significantly earlier

than predicted by tuned records such as SPECMAP.  This discrepancy would require,

as for the late end of MIS 7, revision of tuned chronologies, and would provide new

information about the mechanisms driving glacial-interglacial climate (e.g. Alley et

al. 2001).  For instance, a role for the southern hemisphere might be indicated by the

correlation of the early start to MIS 9 with a peak in southern-hemisphere insolation at

345 ka.

6. Conclusions

Bulk-sediment U-Th dates have been used to date MIS 7 and 9 as identified

in a δ 18O stratigraphy from ODP Site 1008A on the leeward slope of the Great

Bahamas Bank.  After screening dates based on their initial U and Th isotope ratios,
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‘reliable’ dates allow the testing of tuned chronologies based on the assumption that

climate is driven by changes in northern-hemisphere summer insolation.  Based on

both δ18O and U-Th data, we identify a sealevel highstand at the end of MIS 7,

previously seen in coral data, which lasts from ≈187 to 180 ka and therefore post-

dates the expected end of MIS 7 by some 10 kyr.  U-Th dates at the beginning of MIS

9 also suggest that tuned chronologies may be wrong.  Based on three replicate ages at

a single sediment depth, full interglacial conditions of MIS 9 appear to have been

established by 343 ka, ≈8 kyr earlier than expected.  These results indicate that the

phasing between climate change and northern hemisphere insolation is not constant,

so chronologies based on this assumption (e.g. SPECMAP) may have systematic

errors.  These results also provide new information about the mechanisms linking

insolation changes with changes in climate during the Pleistocene.
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Figure 1:  δ18O and aragonite records for ODP Hole 1008A with bulk sediment U/Th

ages.  The upper curve (blue) is δ18O for G. sacculifer (300-355micron fraction); the

middle curve (green) is δ18O for bulk carbonate; and the lower curve (orange) is

aragonite percentage (from Malone, 2000).  U/Th ages are corrected ages shown in

bold in Table 1, together with reliable ages from Robinson et al. (2002).  Two of these

ages are plotted in grey and are clearly out of sequence.  These are discussed in the

text, and not considered as part of the age model for this core.  Symbol size for the

U/Th ages approximates the final 2σ uncertainty (Table 1).  Vertical grey bands

define the low δ18O values corresponding to MIS 9 and MIS 7.

Figure 2:  A blow-up of the MIS 7 section of Figure 1.  Bulk-sediment U/Th ages are

shown with their 2σ uncertainties.  Note the general increase of age with depth, but

the presence of two age reversals.  The upper curve (blue) is δ18O for G. sacculifer

(300-355micron fraction) and the lower curve (green) is δ18O for bulk carbonate.

Marine isotope substages are selected based on these curves and shown by labelled

vertical grey bands.  Note the presence of an additional highstand, labelled as “??”.

Figure 3:  A comparison of age constraints for the timing of MIS9 and MIS 7 from

Bahamas sediments with previous sealevel reconstructions and some other relevant

data.  The vertical grey bands represent the timing for MIS 9 and MIS 7 based on

U/Th dating of bulk Bahamas sediment (see other Figures).  These are compared with,

from the top:  65oN insolation; open-system coral ages from Barbados (Thompson

and Goldstein, 2005); Vostok CO2 (Petit et al., 1999); sealevel curve based on Red-

Sea δ18O (Siddall et al., 2003); a “sealevel” curve based on correcting δ18O for

temperature using Mg/Ca (Lea et al., 2000); a “sealevel” curve based on comparison
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of Vostok and ocean δ18O records (Shackleton, 2000); and a stack of 57 benthic δ18O

records (Lisiecki and Raymo, 2005).  Note that, while the grey bands and the upper

two records are plotted on an absolute timescale.  Other records are plotted on their

published timescales which are based on some form of tuning.  In the case of the

Vostok CO2 record, this tuning is to only two age control points.  Other records are

tuned to some form of mid-latitude northern-hemisphere summer insolation curve.

Arrow “a” marks the shoulder at the end of MIS 7, and “b” the extra peak in the CO2

curve, as discussed in the text.

Figure 4:  All available absolute constraints on sealevel during MIS 7.  Blue lines

show intervals of speleothem growth at the Bahamas (Smart and Richards, 1992) and

Italy (Bard et al., 2002) and are an upper bound for sealevel (assuming that there are

no unrecognized hiatuses in the record).  The red line is a reconstruction of sealevel

based on open-system coral ages from Barbados which are shown as red points

(Thompson and Goldstein, 2005).  All coral data has been shifted –7 m compared to

the published record.  This brings coral and speleothem sealevel into closer agreement

and reflects probable small errors in the reconstruction of tectonic movement at the

various sites.  The new Bahamas δ18O data are plotted below these literature data in

blue (G. sacculifer) and green (bulk sediment).  They are placed on an age scale

assuming a constant sedimentation rate between Termination 3 (at 243 ka) and the

end of MIS 7 (at 180 ka).  Ages for these tied points are based on bulk sediment ages

as shown in Figure 2 and discussed in the text.  The lowermost curve shows the

SPECMAP curve for comparison (Imbrie et al. 1984).  Note the presence of an

additional highstand in both the coral and Bahamas data – highlighted by the vertical

grey band.
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Figure 5:  All available absolute constraints on sealevel during MIS 9.  A single blue

triangle is a speleothem age (Lundberg and Ford, 1994).  Coral ages are shown in red

from Henderson Island (Stirling et al., 2001); Huon (Galewsky et al., 1996); and

Muruoa (Camoin et al., 2001).  The new Bahamas δ18O data are plotted below these

literature data in blue (G. sacculifer) and green (bulk sediment).  They are placed on

an age scale assuming a constant sedimentation rate between the start of full

interglacial conditions (at 343 ka – based on bulk sediment ages as discussed in the

text) and the end of MIS 9 (at 204 ka – based on the SPECMAP age scale). The

lowermost curve shows the SPECMAP curve for comparison (Imbrie et al. 1984).

Note that the new Bahamas chronology suggests that MIS 9 started earlier than

expected from northern hemisphere mid-latitude orbital forcing (as  highlighted by the

vertical grey band).
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Figure 2
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Figure 3
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Figure 4
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Depth Core Sect top 238U 232Th 230Th δ234U(0) (230Th/238U) Raw age Corr. age δ234U(T)
(mbsf) (cm) (ppm) (ppb) (ppt) ‰ (ka) (ka) ‰

12.30 2 4 120 7.453 ±0.006 272.3 ±0.8 100.2 ±0.3 92 ±1 0.821 ±0.003 147 ±1 137 ±5 136 ±2
12.56 2 4 146 4.981 ±0.004 280.3 ±0.8 70.1 ±0.2 100 ±1 0.860 ±0.003 159 ±1 144 ±7 151 ±3
12.75 2 5 15 7.171 ±0.006 206.9 ±0.6 116.4 ±0.4 88 ±1 0.992 ±0.003 242 ±3 235 ±5 171 ±2
13.80 2 5 120 8.192 ±0.007 77.1 ±0.2 122.2 ±0.4 80 ±1 0.912 ±0.003 193 ±2 190 ±2 138 ±2
18.84 3 2 124 5.464 ±0.005 73.4 ±0.2 87.8 ±0.3 74 ±1 0.982 ±0.003 248 ±3 244 ±3 149 ±1
20.07 3 3 97 3.499 ±0.003 222.9 ±0.7 59.3 ±0.2 63 ±2 1.035 ±0.003 337 ±8 320 ±8 163 ±1
20.98 3 4 38 8.584 ±0.010 166.9 ±0.5 127.7 ±0.2 65 ±4 0.909 ±0.002 201 ±3 196 ±4 112 ±6
21.61 3 4 101 14.316 ±0.017 181.9 ±0.5 195.0 ±0.3 88 ±4 0.832 ±0.002 152 ±1 149 ±2 134 ±6
22.30 3 5 20 7.243 ±0.006 160.9 ±0.5 113.3 ±0.4 75 ±1 0.956 ±0.003 224 ±2 218 ±4 140 ±2
22.48 3 5 38 7.042 ±0.006 142.3 ±0.4 120.8 ±0.4 68 ±1 1.048 ±0.003 352 ±9 346 ±9 183 ±1
22.63 3 5 53 6.144 ±0.005 164.2 ±0.5 102.6 ±0.3 68 ±1 1.020 ±0.003 300 ±5 293 ±6 157 ±2
22.63 3 5 54 6.254 ±0.008 158.2 ±0.2 106.5 ±0.1 70 ±1 1.041 ±0.001 330 ±4 325 ±5 175 ±3
23.27 3 5 117 6.954 ±0.008 123.3 ±0.2 121.3 ±0.2 67 ±1 1.066 ±0.002 406 ±9 403 ±9 209 ±2
23.63 3 6 3 7.173 ±0.009 111.3 ±0.2 124.5 ±0.1 64 ±1 1.060 ±0.001 402 ±8 400 ±8 197 ±4
23.98 3 6 38 6.888 ±0.006 66.3 ±0.2 111.1 ±0.3 60 ±1 0.986 ±0.003 268 ±4 265 ±4 128 ±1
23.98 3 6 38 7.632 ±0.009 69.9 ±0.1 127.5 ±0.1 57 ±1 1.021 ±0.001 324 ±4 322 ±4 142 ±3
24.24 3 6 64 9.364 ±0.011 75.8 ±0.1 153.2 ±0.2 51 ±1 0.999 ±0.002 300 ±3 299 ±3 119 ±1
24.49 3 6 89 8.544 ±0.007 172.0 ±0.5 133.3 ±0.4 54 ±1 0.953 ±0.003 242 ±3 236 ±5 105 ±1
24.49 3 6 89 8.253 ±0.010 67.7 ±0.1 137.2 ±0.1 55 ±1 1.016 ±0.001 319 ±4 317 ±4 135 ±3
24.98 3 6 138 7.382 ±0.009 75.1 ±0.1 124.4 ±0.2 66 ±1 1.029 ±0.002 319 ±4 318 ±4 161 ±2
25.48 3 7 38 8.238 ±0.010 72.1 ±0.1 138.2 ±0.2 56 ±1 1.025 ±0.002 335 ±4 333 ±5 144 ±2
25.90 3 7 80 7.531 ±0.006 73.2 ±0.2 126.0 ±0.4 51 ±1 1.022 ±0.003 343 ±8 340 ±8 135 ±2
25.90 3 7 80 7.457 ±0.009 75.2 ±0.1 125.1 ±0.2 51 ±1 1.025 ±0.002 348 ±5 346 ±5 137 ±2
25.90 3 7 80 7.261 ±0.009 76.9 ±0.1 122.0 ±0.1 53 ±1 1.026 ±0.001 345 ±5 344 ±5 140 ±3
26.13 4 1 3 5.543 ±0.007 101.3 ±0.1 93.9 ±0.1 54 ±1 1.036 ±0.002 366 ±6 363 ±7 149 ±2
26.32 4 1 22 5.230 ±0.006 106.0 ±0.1 89.0 ±0.1 59 ±1 1.040 ±0.002 360 ±6 355 ±6 160 ±2
26.48 4 1 38 5.896 ±0.007 117.4 ±0.3 98.3 ±0.2 46 ±4 1.019 ±0.002 350 ±12 346 ±12 122 ±10
27.15 4 1 105 4.121 ±0.005 447.3 ±1.3 71.4 ±0.1 58 ±4 1.059 ±0.002 428 ±23 403 ±27 181 ±12
27.76 4 2 16 4.480 ±0.005 388.7 ±1.1 73.0 ±0.1 49 ±4 0.995 ±0.002 298 ±7 276 ±14 106 ±8
28.49 4 2 89 8.114 ±0.007 121.9 ±0.4 130.6 ±0.4 69 ±1 0.983 ±0.003 254 ±3 249 ±4 141 ±2
29.13 4 3 3 7.994 ±0.010 144.6 ±0.4 128.6 ±0.2 61 ±4 0.983 ±0.002 263 ±5 259 ±6 128 ±8

Table 1:  U and Th concentrations and U-Th ages for bulk carbonate samples from ODP hole 1008A.  Errors are 2σ.  Corr. Age is the age
corrected for initial 230Th assuming an initial 232Th/230Th atom ratio of 20,000.  Ages marked in bold are considered reliable based on their
δ234U(T) and 232Th concentrations, those in italics are not considered reliable.
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