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Speleothems reveal 500 kyr history of Siberian permafrost 

 

Vaks, A.1*, Gutareva, O.S.2, Breitenbach, S.F.M.3, Avirmed, E.4, Mason, A.J.1, Thomas, 

A.L.1, Osinzev, A.V.5, Kononov, A.M.2, & Henderson, G.M.1 

 

Soils in permafrost regions contain twice as much carbon as the atmosphere, and permafrost 

has an important influence of the natural and built environment at high northern latitudes. There 

is little information about how permafrost responded to glacial-interglacial transitions and to 

global temperatures warmer than present. In this study, we date periods of speleothem growth in 

a north-south transect of caves in Siberia to reconstruct the history of permafrost in past climate 

states. Speleothem growth is restricted to full interglacial conditions in all studied caves. In the 

northernmost cave (at 60oN), no growth has occurred since Marine Isotopic Stage (MIS) 11. 

Growth at that time indicates that global climates only slightly warmer than today are sufficient 

to thaw significant regions of permafrost. 

Permafrost regions (where the ground is frozen for at least two consecutive winters and the 

intervening summer) cover 24% of the northern-hemisphere land surface and hold ≈1700 Gt of 

organic carbon.  When it thaws it releases CO2 and CH4, turning a long-term carbon sink into a 

source and enhancing the greenhouse effect (1-2).  Permafrost degradation also intensifies 

thermo-karst development, coastline erosion and liquefaction of ground previously cemented by 

ice. The latter endangers infrastructure including major Siberian oil and gas facilities (3). An 

ability to predict the extent of future permafrost degradation is desirable. 

Assessing the response of permafrost to changing climate is challenging. Significant warming 

and thawing of local permafrost settings are seen in instrumental records during the last 20 years 

(4) but permafrost extent on continental scale is slow to respond to warming. For the latter, 

spatially distributed and long term data is still sparse. To understand the long-term response of 

permafrost to climate change requires knowledge of past permafrost conditions.  Dating of 

organic material (4) or ground ice (5) can indicate the age of existing permafrost, but cannot 

reveal the longer-term history of permafrost. 

In this study, we use cave carbonates (speleothems) as a tool to date past permafrost and its 

relationship to global climate. Vadose speleothems (stalactites, stalagmites and flowstones) form 

when meteoric waters (i.e. water originating from atmospheric precipitation) seep through the 
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vadose zone into caves. Cave temperatures usually approximate the local mean annual air 

temperatures (MAAT), because of buffering by the surrounding rock (6). When cave 

temperatures drop below 0°C, waters freeze and speleothem growth ceases. Speleothems found 

in modern permafrost regions are therefore relicts from warmer periods before permafrost 

formed (7-9). Absence of water also prevents speleothem growth in arid settings, so speleothem 

growth episodes in modern deserts are proxies for past wet periods (10). Because speleothems 

can be robustly and precisely dated with U-Th techniques, they provide a detailed history of 

periods when liquid water was available, and both permafrost and desert conditions were absent. 

We reconstruct the history of Siberian permafrost (and the aridity of the Gobi Desert) during 

the last ~500 kyr using U-Th dating of speleothems in six caves along a north-south transect in 

northern Asia from Eastern Siberia at 60.2°N to the Gobi Desert at 42.5°N (Fig. 1). The 

northernmost cave - Lenskaya Ledyanaya sits today on the boundary of continuous permafrost 

with MAAT substantially below 0°C (11). The permafrost type changes to the south-west to 

discontinuous, sporadic, and then to permafrost-free conditions (12) (Fig. 1). Annual 

precipitation in this Siberian region is 400-600 mm/y falling mainly during summer. To the 

south, in the Gobi, MAAT ranges from +2°C to +8°C and little precipitation falls (200-80 mm/y) 

(13). 

Speleothem thickness provides an indication of long-term liquid-water availability along the 

transect. Only 8 cm of growth is seen in the northernmost cave, increasing to ~70 cm in the caves 

of southern Siberia and decreasing again to less than 30 cm in the Gobi. As expected, southern 

Siberia is more suitable for speleothem growth than the cold north or the dry south. All 

recovered speleothems show a texture of calcium-carbonate layers alternating with growth 

hiatuses (see Supporting Online Material; SOM).  

Thirty-six speleothems were collected from the caves and 111 U-Th ages conducted (Fig 2A). 

In each speleothem, at least one sample was taken from the outermost layer and from each 

section of growth (i.e. between hiatuses) inward, until the limits of the U-Th chronology were 

reached  (~500 ka) to assess all periods of growth. A full description of the samples, and their 

sub-sampling and dating is given in the SOM. 

The youngest speleothem growth in the region of modern continuous permafrost (i.e. at 60°N) 

occurred during interglacial MIS-11, contrasting with the centre of the transect where 

speleothems grew during all interglacials (Fig. 2A, B). Age ranges in southern Siberia also 
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demonstrate that the duration of speleothem deposition in MIS-11 was longer than during 

subsequent interglacials. These observations indicate that permafrost thawing during MIS-11 

was more extensive than at any other point during the last 450 kyr and extended northward of 

60°N, significantly further north than the present limit of continuous permafrost. Some similar 

thawing may also have occurred at MIS-13 in this most northerly cave. The absence of any 

observed speleothem growth since MIS 11 in the northerly Lenskaya Ledyanaya cave (despite 

dating outer edges of 7 speleothems), suggests the permanent presence of permafrost at this 

latitude since the end of MIS-11. Speleothem growth in this cave occurred in early MIS-11, 

ruling out the possibility that the unusual length of MIS-11 caused the permafrost thawing. 

MIS-11 was also characterized by wetter conditions in the Mongolian Gobi Desert, as shown 

by two ages from Shar-Khana Cave speleothems (Fig. 2A), which contrast with the absence of 

growth during subsequent interglacials. The existence of a humid event in the Gobi during early 

MIS-11 is supported by mollusk assemblages from Chinese Loess Plateau (14), and by the 

dominance of input into Lake Baikal via the Selenga River during MIS-11 (15).  

The degradation of permafrost at 60°N during MIS-11 allows an assessment of the warming 

required globally to cause such extensive change in the permafrost boundary. There is significant 

evidence that MIS-11 was the warmest of recent interglacials, including the presence of boreal 

forest on South Greenland at that time (16), the absence of ice-rafted debris in the North Atlantic 

(17), increased sea levels (18), and higher sea-surface temperatures (SST) in the tropical Pacific  

(19-21). Mg/Ca reconstructions (20-21) indicate that SST of the Pacific Warm Pool (PWP) 

reached >30°C in early MIS-11, compared to 29.5°C in MIS-5.5 and ~28.5°C during the pre-

industrial Late Holocene (Fig. 2D). This tropical heat was transported poleward (22) and there is 

evidence of unusual warmth in Siberia during MIS-11, evidenced by the high fraction of 

biogenic silica in the sediments of Lake Baikal (23) (Fig. 2C) and high spruce pollen content in 

Lake El’gygytgyn, suggesting local temperatures 4-5°C above present (24). When PWP 

temperatures reach 30°C this appears to cause more pronounced warming of northern continents, 

and lead to significant northward migration of the permafrost boundary. 

Periods of Siberian speleothem growth since MIS-11 suggest a close link between greenhouse 

warming/global temperatures and permafrost extent. After a brief post MIS-11 hiatus in growth 

(from 370 to 355 ka), coinciding with a minimum in atmospheric CO2 and in PWP SST during 

MIS-10 (Fig. 2D, F), significant thicknesses of speleothem grew in Southern Siberia during MIS-
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9 as greenhouse gases returned to higher values. Speleothems also grew actively during MIS-5.5 

and the Holocene (>5 cm) when CO2 levels were high. In contrast, growth during MIS-7, a 

period of lower CO2 and cooler global conditions, is minimal (maximum 1.5 cm in any studied 

cave) and no growth is observed during MIS-5.4 to 5.1. Conditions during MIS-7 were at the 

very limit for growth in southern Siberia: speleothems grew during MIS-7.3 and 7.1 in 

Okhotnichya Cave (52oN) but only during MIS-7.1 just to the north at Botovskaya Cave (55oN). 

No growth occurred during MIS-7.5 at either cave despite higher concentrations of CO2 and CH4 

than later in MIS-7 (25-26) and high PWP SST (Fig 2D-F) (20-21). Lake Baikal biogenic silica 

(23) and the percentage of arboreal pollen in Lake El’gygytgyn sediments (27) are also lower 

during MIS-7.5 than during MIS-7.3 and 7.1. Lower local summer insolation during MIS-7.5 

(Fig 2G) (28) suggests a role for local insolation in overprinting a Siberian climate dominantly 

controlled by global greenhouse gas levels. 

U-Th dating of Siberian speleothem growth during recent interglacials allows detailed 

comparison of permafrost history with other aspects of the global climate system (Fig 3).   

During MIS-5.5, speleothems started growing between 128.7 and 127.3 ka, and ended between 

119.2 and 118.1 ka (determined from Bayesian analysis of U-Th data using OxCal-4.1; see SOM 

for details). The permafrost thawing initiated when insolation was close to its maximum and 

greenhouse gases had just reached maximum values. Holocene permafrost degradation in our 

sites lags maximum insolation and greenhouse gas concentrations slightly, and starts between 

10.0 and 9.8 ka. This lag may be due to the time required for permafrost to thaw at the slightly 

lower insolation and CO2 levels of the Holocene (relative to MIS-5.5). 

Overall, dated periods of speleothem growth allow an assessment of the relationship between 

global temperature and permafrost extent. PWP SST was 0.5-1.0°C higher during MIS-5.5 and 

≈1.5°C higher during early MIS-11 relative to the pre-industrial Late Holocene (Fig. 2D) (20-

21).  Using PWP SST as a surrogate for global temperature (20) suggests that increase in global 

temperatures by 0.5-1.0°C will degrade only non-continuous permafrost in southern Siberia with 

the Gobi Desert remaining arid. Warming of ≈1.5°C (i.e. as in MIS-11) may cause a substantial 

thaw of continuous permafrost as far north as 60°N, and create wetter conditions in the Gobi 

Desert. Such warming is therefore expected to dramatically change the environment of 

continental Asia, and can potentially lead to substantial release of carbon trapped in the 

permafrost into the atmosphere. 
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Figure Captions: 

 

Figure 1: Map showing the extent of permafrost types in eastern Siberia, the Gobi Desert, and 

the location of studied caves (black circles). Permafrost data is taken from Brown et al. (2001) 

(29). 

Figure 2: (A) Distribution of speleothem U-Th ages (±2  in time and space (n – total number 

of U-Th age determinations per cave, including those beyond the U-Th range) with grey bars 

signifying periods of growth in Okhotnichya and Botovskaya caves. (B) Benthic 18O stack (30) 

with MIS numbers. (C) Concentration of biogenic silica in Lake Baikal sediments (%) (23). (D) 

Pacific Warm Pool Mg/Ca SST, with the pre-industrial Late Holocene SST shown by red 

horizontal fragmented line (20-21). (E, F) CH4 and CO2 records of EPICA Dome C respectively 

(25-26). (G) Summer insolation at 55°N (28).  Speleothems with ages exceeding 500 ka (within 

±2 range) are not shown, but accounted for in n. Two samples SLL9-2-A+B and SOP-32-B 

are not included because they reflect a mixture of material from different layers; please refer to 

the Supplementary Table 1. 

Figure 3: Siberian speleothem growth periods during Holocene and MIS-5.5 (A) with grey bars 

indicating periods of growth.  Compared with East-Asian Monsoon record from Hulu and 

Sanbao caves (B) (31), GICC05 18O (C) (32-33), CH4 (D) and CO2 (E) records of EPICA 

Dome C (25-26), and 55°N summer insolation (F) (28). 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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