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HMM-Based Speech Synthesis Utilizing Glottal
Inverse Filtering

Tuomo Raitio*, Antti Suni, Junichi Yamagishi, Hannu Pulakka,Jani Nurminen, Martti Vainio, and Paavo Alku

Abstract—This paper describes an HMM-based speech synthe-
sizer that utilizes glottal inverse filtering for generating natural
sounding synthetic speech. In the proposed method, speech is
first decomposed into the glottal source signal and the model of
the vocal tract filter through glottal inverse filtering, and thus
parametrized into excitation and spectral features. The source
and filter features are modeled individually in the framework of
HMM and generated in the synthesis stage according to the text
input. The glottal excitation is synthesized through interpolating
and concatenating natural glottal flow pulses, and the excitation
signal is further modified according to the spectrum of the
desired voice source characteristics. Speech is synthesized by
filtering the reconstructed source signal with the vocal tract
filter. Experiments show that the proposed system is capable of
generating natural sounding speech, and the quality is clearly
better compared to two HMM-based speech synthesis systems
based on widely used vocoder techniques.

Index Terms—Speech synthesis, glottal inverse filtering, hidden
Markov model.

EDICS Category: SPE-SYNT

I. I NTRODUCTION

T HE ultimate goal of speech synthesis is to create natural
sounding spoken expression from arbitrary text. This

calls for the ability to synthesize high quality speech, butalso
provides a means to involve the appropriate variation of the
speech characteristics according to the speaker, context,and
emotion. The first criterion can be met with a synthesis scheme
that concatenates segments of pre-recorded speech. However,
these so-called unit selection-based systems are known to
suffer from limitations in their ability to vary the speech
characteristics [1]. Hidden Markov model (HMM)-based para-
metric speech synthesis techniques [1]–[4], in turn, are very
flexible and can be adapted [5] or modified [6] to generate
speech according to virtually any criterion related to varying
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vocal characteristics. This flexibility is due to the parametric
representation of speech, which enables the easy modification
of the parameters and the reconstruction of speech from them.
However, the quality and naturalness of the parametric HMM-
based speech synthesis has remained poorer than that of unit
selection methods. This degradation is mainly caused by two
factors: oversimplified vocoder techniques that are unable
to mimic natural speech pressure waveforms and statistical
modeling that causes over-smoothing of the parameters, both
resulting in inadequate reconstruction of speech. Research
exists on fixing the second problem [7], [8]. This paper will
concentrate on the first factor, the inadequate modeling of the
real speech production mechanism.

Synthesis methods utilizing parametric representation of
speech are largely based on the source-filter theory of speech
production [9]. This theory assumes that the production of
speech can be interpreted as a linear cascade of three pro-
cesses:S(z) = G(z)V (z)L(z), whereS(z) denotes speech,
andG(z), V (z), andL(z) denote the voice source, the vocal
tract filter, and the lip radiation effect, respectively. Inthe
real human voice production mechanism, the voice source
is represented for the voiced sounds by the glottal volume
velocity waveform generated by the vibrating vocal folds. The
voice source is known to be the origin for several essential
acoustical cues used in spoken communication [10], [11]. In
addition to determining the fundamental frequency (F0) of
speech, the voice source also contributes to various spectral
and temporal features that are related to voice quality and
prosodic variation in speech. In combination, the voice source
depicts attitude and emotion, and is also related to acoustical
cues underlying the speaker identity. Thus, it can be concluded
that a large part of what can be characterized as naturalness
in speech emerges from the voice source and its context-
dependent variation. Therefore, the search for methods that
aim at the accurate modeling of the voice source is justified.

While the vocal tract can be relatively well approximated
by a digital filter, the reliable modeling of the voice source
has remained more challenging. Therefore, the potential of
the voice source modeling as a technique to improve the
naturalness of synthetic speech in HMM-based parametric
speech synthesizers is substantial. The simplest model forthe
voice source, a train of impulses [12], [13], is clearly greatly
different from the real glottal flow signal, but still widelyused
in speech synthesis. Improvements to the signal generation
techniques of the parametric HMM systems have been intro-
duced, such as mixed excitation [14], residual modeling [15],
and two-band excitation [16], and they have been shown to
improve the quality compared to systems using the traditional
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impulse train excitation model. However, the quality of these
systems still remains relatively far from the quality of natural
speech.

The real voice source generated by the vocal folds has
naturally attracted interest in speech research and synthesis,
and many techniques have been proposed to mimic the glottal
excitation of the human voice production mechanism. Various
parametric models for the glottal flow exist, of which the
Liljencrants-Fant (LF) model [17] is the most widely used.
Previously, LF model pulses have been used in speech synthe-
sis experiments [18], [19], and recently the LF model has been
used within an HMM-based speech synthesizer [20], [21].
However, the use of the glottal flow models in HMM-based
speech synthesis has been limited and experiments conducted
have not succeeded in providing substantial advantages in
parametric speech synthesis.

The natural voice source itself is a complex signal and
the accurate modeling of the voice source has proven to be
very difficult. As an alternative to the artificial voice source
models, the idea of utilizing glottal flow pulses extracted
from natural speech with the help of glottal inverse filtering
has been proposed. For example, natural glottal flow pulses
have been used in formant speech synthesis [22], [23], and
in creating natural sounding speech stimuli for brain research
[24]. However, previous studies based on glottal flow pulses
extracted from natural speech are limited to special purposes
and have not provided a general synthesis method for utilizing
the natural glottal flow.

At present, the most widely used high-quality vocoding
technique for HMM-based speech synthesis is the speech ma-
nipulation tool STRAIGHT [25]. STRAIGHT was originally
proposed as a method to analyze, modify, and resynthesize
high-quality speech. Recently, STRAIGHT was adopted for
HMM-based speech synthesis [26], and it is currently con-
sidered to be one of the best vocoding methods for HMM-
based speech synthesis [27]. Despite great improvements,
STRAIGHT-based HMM systems cannot yet compete with
state-of-the-art unit selection methods in terms of naturalness
of synthetic speech [27].

Recently, an idea was proposed to utilize automatic glottal
inverse filtering in HMM-based speech synthesis [28]. The
proposed concept combines two existing areas of speech
technology in a novel way to enable high quality speech syn-
thesis: HMM-based statistical modeling and a physiologically
oriented model of speech production based on glottal inverse
filtering. Briefly, the idea comprises (a) utilization of automatic
glottal inverse filtering in order to decompose and parametrize
speech into the glottal source and vocal tract filter components
corresponding to the functioning of the real speech production
mechanism, (b) individual modeling of these characteristics in
the framework of HMM, and (c) utilization of real glottal flow
pulses extracted from natural speech for creating the excitation
signal. The preliminary results from the first experiments in
this work were presented in [29], where the proposed method
was compared, with encouraging results, to a conventional
HMM-based speech synthesizer [3] using a simple impulse
train excitation model. In the present study, the refined and
complete algorithm of the proposed method is presented in

detail. Most importantly, the proposed new system is compared
to a state-of-the-art STRAIGHT-based system in a series of
formal listening tests.

This paper is organized as follows. As a background for the
proposed method, glottal inverse filtering is described first in
Section II. The underlying principles of the new method and a
detailed description of the system are presented in SectionIII.
The performance of the proposed system is demonstrated in
Section IV through a comparison of the method with natural
speech and two other speech synthesis systems. The resulting
benefits of the method are depicted and discussed in Section
V. Finally, Section VI summarizes the findings and concludes
the paper.

II. GLOTTAL INVERSEFILTERING

A. General

Glottal inverse filtering [30] is a procedure in which the
source of voiced speech, the glottal volume velocity waveform,
is estimated from speech pressure signals. Conceptually, glot-
tal inverse filtering corresponds to obtaining the glottal volume
velocity G(z) from the equation

G(z) =
S(z)

V (z)L(z)
, (1)

where S(z), V (z), and L(z) denote z-transforms of the
speech signal, vocal tract, and lip radiation effect, respectively.
Since the lip-radiation effectL(z) can be modeled as a fixed
differentiator [31], only the parameters of the vocal tractneed
to be estimated to compute the glottal flow from the speech
pressure signal.

It is worth noting that the source signal to be solved in
Eq. 1 is different from the excitation used in the conventional
linear predictive (LP) model, the LP residual. When a speech
signal is decomposed into a source and a filter with a single
LP analysis, the spectral effects of the three main processes
of the real human voice production, the glottal excitation,the
vocal tract, and the lip radiation, are combined into a single
digital all-pole filter that is excited by an input resembling an
impulse train or a noise sequence that is spectrally white. In
contrast to this, the excitation given in Eq. 1 is not white but
is permitted to show spectral envelopes of varying decays (see
Fig. 1). This phenomenon reflects the vibratory patterns of the
vocal folds when a speaker regulates adduction of his or her
vocal folds, for example, in adjusting the phonation type orin
creating different emotional vocal cues.

There are several methods that have been developed during
the past decades for estimating the glottal flow from speech
(e.g., [32]–[38]). In this study, an automatic glottal inverse
filtering method, iterative adaptive inverse filtering (IAIF)
[24], [32], is used as a computational tool to implement
glottal inverse filtering. IAIF has three methodological and
computational features that make it an attractive choice for
the present study. First, the method needs only a single input,
the speech pressure signal, and there is no need for additional
information signals such as the electroglottography (EGG).
EGG is widely used in closed phase covariance analysis, a
method that is one of the most prevalent glottal inverse filtering
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Fig. 1. (a) Waveform of a sustained vowel [a] produced by a male
speaker using pressed (left panel) and breathy (right panel) phonation. (b)
Corresponding glottal flow signals estimated with the iterative adaptive inverse
filtering (IAIF) method [24], [32]. In pressed phonation (left), the glottal flow
pulses are shorter compared to breathy phonation and there isa clear closed
phase between the pulses. (c) Spectra of the estimated glottal flow signals
(only shown for 0–2 kHz). The spectrum of the breathy phonation (right)
shows a clear emphasis on the fundamental frequency component.The spectral
envelope is also steeper and there is more noise at the higher frequencies.

algorithms (e.g., [39]–[41]). Second, the IAIF method can
be implemented in a completely automatic manner and its
computational complexity is low. Both of these features are
pre-requisites when glottal inverse filtering is used in HMM-
based speech synthesis and other applications which require
processing of extensive amounts of speech data in the training
phase. Third, the IAIF method can be implemented in such
a manner that it utilizes the autocorrelation method of linear
prediction in modeling of the vocal tract. This enables the use
of all-pole filter structures that are guaranteed to be stable,
a requirement that is not met, for example, by closed phase
covariance analysis.

B. Iterative Adaptive Inverse Filtering

IAIF [24], [32] is a method that automatically decomposes
voiced speech into the vocal tract transfer function and the
glottal source. In general, the algorithm assumes that the
contribution of the glottal excitation to the speech spectrum
can be estimated as a low-order (monotonically decaying)
all-pole process, which is computed pitch-asynchronously
over several fundamental periods. By canceling this effect,
a parametric model for the vocal tract is obtained, also in
a pitch-asynchronous manner, which is then used to cancel
the effect of formants. The method has two main phases.
In the first one, a first-order all-pole model is computed to
get a preliminary estimate for the glottal contribution. The
second phase applies a higher-order all-pole model, which,in
principle, is able to yield a more accurate estimate for the
contribution of the glottal source. Various spectral modeling
tools can be used in the IAIF method, such as digital all-pole
modeling (DAP) [42] or linear predictive coding (LPC) [43].

1. High−pass
    filtering

2. LPC analysis
    (order 1)

4. LPC analysis

7. LPC analysis

11. Inverse filtering 12. Integration

10. LPC analysis

8. Inverse filtering 9. Integration

6. Integration5. Inverse filtering

3. Inverse filtering

s(n)

g1H   (z)

H    (z)vt1

g2H   (z)

g(n)

p      (order   )

g    (order   )

p    (order   )

vt2H    (z)

Fig. 2. Block diagram of the IAIF method. The glottal flow signal g(n) is
estimated through an repetitive procedure of canceling the effects of the vocal
tract and the lip radiation from the speech signals(n).

Due to its computational efficiency and simplicity, LPC was
chosen in this work.

The detailed structure of the IAIF method is shown by the
block diagram in Fig. 2. The estimation of the glottal flow
with the IAIF method consists of the following stages. First
(block 1), the speech signals(n) is high-pass filtered with a
linear phase finite impulse response (FIR) filter (300-tap, linear
phase, cut off frequency 70 Hz) in order to remove any low-
frequency ambient noise picked up by the microphone. High-
pass filtering is a standard pre-processing procedure in glottal
inverse filtering because the analysis calls for using high-
quality microphones whose frequency response goes down
to ca. 5–20 Hz and, consequently, the recordings typically
involve low frequency noise. Since canceling the lip radiation
effect requires sound integration (blocks no. 6, 9, and 12),
the low frequency noise components could distort the glottal
flow estimate by introducing a low frequency bias [33]. Next
(block 2), a first-order LPC filter is computed, yielding a
preliminary estimate of the combined effect of the glottal flow
and the lip radiation. The transfer function of the LPC inverse
filter is denoted byHg1 in Fig. 2. First order LPC analysis
yields only a very rough estimate of the contributions of the
glottal flow and the lip radiation, because the spectral model
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has only one adaptive pole on the real axis in the z-domain.
However, using a higher-order linear predictive analysis would
most likely result in modeling of the resonant structure of the
speech sound, an effect that is to be deliberately avoided if
the combined effect of the glottal flow and the lip radiation
is to be estimated. Thirdly (block 3), the estimated effect of
the glottal flow and the lip radiation is canceled out from the
speech signal through inverse filtering. The output is analyzed
with a pth order LPC (block 4) in order to obtain the first
estimate of the vocal tract filter, denoted byHvt1. (The orderp
of LPC analysis is typically 20 for speech sampled at 16 kHz.)
Next (block 5), the estimated vocal tract transfer functionis
canceled out from the original speech signal through inverse
filtering. The lip radiation is eliminated through integration
(block 6), and the resulting signal forms the first estimate of
the glottal flow. Next, agth order LPC analysis (block 7) is
computed to get a parametric model of the spectral envelope
of the estimate of the glottal flow. For this purpose, since the
estimated flow was arrived at by removing (in block 5) the
contribution of the vocal tract from speech, it is possible to
use a more accurate, higher-order LPC analysis than in block
no. 2 without obtaining models that exhibit spurious formant-
like peaks. (The value ofg is typically between 4 and 8.) The
glottal contribution and the lip radiation are canceled outagain
through inverse filtering and integration (blocks 8 and 9), and
the final estimate of the vocal tract (Hvt2) is obtained through
pth order LPC. Finally, the effects of the vocal tract and the
lip radiation are canceled out from the original speech signal,
yielding the glottal flow signalg(n). Examples of glottal flow
signals estimated with the IAIF method are shown in Fig. 1.

In practice, the computation of the glottal volume velocity
from the speech pressure signal is an inverse problem that
is extremely difficult, if not impossible, to solve accurately,
particularly in the case of continuous speech. Even for sus-
tained phonations there are challenging types of utterances,
such as high-pitch speech and nasals, for which the estimation
of the glottal flow is known to be problematic (e.g., [44],
[45]). In addition, a fundamental problem in trying to evaluate
the accuracy of glottal inverse filtering from natural speech is
the fact that one is unable to assess in detail how closely
the obtained waveform corresponds to the true glottal flow
because the latter cannot be measured non-invasively from
the human larynx. Therefore, glottal inverse filtering methods
are typically tested using synthetic speech (usually vowels)
that has been created using a known, artificial waveform of
the glottal excitation. This kind of evaluation, however, is not
truly objective because speech synthesis and inverse filtering
analysis are typically based on similar models of the human
voice production apparatus, e.g., the source filter model [9].
In contrast to this, the accuracy of the IAIF method has been
assessed recently using a different strategy based on physical
modeling of the vocal folds and the vocal tract [46], [47]. This
approach is different from ones where synthetic speech excited
by an artificial form of the glottal excitation is used, because
the glottal flow waveform results from the interaction of the
self-sustained oscillation of the vocal folds with subglottal
and supraglottal pressures. Results reported in [47] for four
different vowels of ten differentF0 values indicate that IAIF

yields satisfactory accuracy in the estimation of the glottal
flow: the relative error between the original and the estimated
flow was less than 10% in the far majority of the analyses
when parameterization of the flow was conducted with a
normalized amplitude quotient [48]. The estimation error in
[47] however, increased whenF0 was raised above 400 Hz
and was most severe when a high-pitch was combined with a
low value of the first formant. In summary, given the benefits
of the IAIF method described in section II. A and its previously
evaluated satisfactory accuracy, it was considered justified to
use the IAIF method as a computational tool for glottal inverse
filtering in the present study.

III. PROPOSEDSPEECHSYNTHESIS SYSTEM

A. Overview

The proposed speech synthesis system aims to produce
high quality synthetic speech capable of conveying various
styles of speaking, speaker characteristics, and emotions. To
achieve this goal, the human voice production mechanism is
modeled with the help of glottal inverse filtering embedded in
an HMM framework. Automatic glottal inverse filtering is used
in order to compute a parametric feature expression for the
voice source and the vocal tract transfer function. The voice
source and vocal tract features are then modeled with multi-
stream HMMs. In the synthesis stage, natural glottal flow
pulses are used to create the excitation signal for speech. This
excitation signal is further modified to reproduce the time-
varying changes in the natural voice source. The proposed
novel procedure enables both synthesis of natural sounding
speech and easy control over individual speech features that
contribute to the perceived quality of speech [11], [49], [50].

The overview of the system is shown in Fig. 3. The system
consists of two main stages: training and synthesis. In the
training part, speech parameters computed by glottal inverse
filtering are extracted from each utterance of a training speech
database, and the obtained speech parameters are modeled
in the framework of HMM. In the synthesis part, speech
parameters are generated from the HMMs corresponding to the
subword units used in a given input text, and speech waveform
is synthesized using the generated speech parameters and
natural glottal flow pulses. Although the proposed system
is built on a basic framework of an HMM-based speech
synthesis system [51], the novel parametrization and synthesis
methods are significantly different from previous HMM-based
synthesizers, and therefore they are explained in detail below.

B. Speech Parametrization

The parametrization stage attempts to compress the infor-
mation of the speech signal into a few parameters that would
describe the essential characteristics of the original speech sig-
nal as accurately as possible. The core of the parametrization
method is the automatic glottal inverse filtering method IAIF
[24], [32], which decomposes voiced speech into the glottal
source signal and the vocal tract transfer function.

The flow chart of the speech parametrization algorithm is
shown in Fig. 4. The speech is windowed with a rectangular
window to 25-ms frames at 5-ms intervals and the parameters
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Fig. 3. Overview of the described system. The system consistsof two main
stages, training and synthesis. In the training stage, utterances of a speech
database are parametrized with a glottal inverse filtering based method and
trained in a framework of HMM. In the synthesis stage, speech parameters
are generated according to the text input and speech is synthesized from the
parameters.

are extracted from each frame. The extracted features are
presented in Table I. First, the log-energy of the windowed
speech is evaluated, after which glottal inverse filtering is
performed. This decomposes a voiced speech signal into the
glottal source signalg(n) and thepth order all-pole model of
the vocal tractV (z). The orderp is set to 30, slightly higher
than the IAIF method basically requires for describing the
formant structure. The use of higher-order all-pole model will
alleviate the problem of coarticulation in continuous speech
by adding more poles to represent the more complex spectra.
Auditory analyses with the proposed synthesis technique have
shown that slightly increasing the orderp improves the quality
of synthetic speech.

The spectrum of the glottal source signal is estimated with
a 10th order LPC to capture the spectral properties of the
excitation G(z), mainly the spectral tilt, but also the more
detailed spectral structure of the source. Several previous
studies have utilized LPC-analysis for computing an estimate
of the spectral tilt of the glottal flow. Some of these studies
have used a very small LPC order, such as two [52] or
three [11]. Results in [53], however, indicate that the spectral
dynamics of the glottal flow cannot be modeled properly
with LPC analysis of this small a prediction order. Auditory
analyses with the proposed synthesis technique corroborated
this finding, and, consequently, 10th order LPC analysis was
selected to be used in modeling of the spectral decay of
the glottal flow. Both obtained all-pole models are converted
further to line spectral frequencies (LSF) [54], a parametric
representation of LPC information well-suited to be used ina
statistical HMM system [55], providing stability [56] and low
spectral distortion [57].

The source signal estimated by the glottal inverse filtering
reflects the acoustic excitation generated by the vibratingvocal
folds. Therefore, the estimated glottal flow is used in the esti-
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Fig. 4. Flow chart of the parametrization stage. The speech signal s(n)
is decomposed into the glottal source signalg(n) and the all-pole model
of the vocal tractV (z) using the IAIF method. The glottal source signal
is further parametrized into the all-pole model of the voice source G(z),
the fundamental frequencyF0, and the harmonic-to-noise ratio (HNR). The
obtained parameters are converted to a suitable representation for the HMM
system. For clarity, the parametrization of unvoiced speech segments, using
basic LPC for the estimation of spectrum, is excluded from the flow chart.

mation of the fundamental frequencyF0. The autocorrelation
method [58] is used to extract the fundamental frequency from
the glottal source signal and the values are further converted
to a logarithmic scale. The voiced-unvoiced decision is made
based on the energy of the low frequency band (0–1 kHz)
and the number of zero-crossings in the frame. The frames
determined as unvoiced are marked as zeros. Additionally, a
range of possibleF0 values is defined based on the speaker’s
F0 range in order to reduce gross errors.

In order to capture the degree of voicing in the excitation,
the harmonic-to-noise ratio (HNR) [59] of the glottal source
signal is analyzed in four bands (0–2, 2–4, 4–6, 6–8 kHz).
The HNR measure indicates the proportion of the periodic
vibratory glottal excitation compared to the aperiodic noise
excitation of the voice source. The HNR is determined by first
evaluating the fast Fourier transform (FFT) of the windowed
speech signal, and evaluating the cepstrum separately for
each frequency band. The degree of the harmonicity is then
indicated by the strength of the cepstral peak, whose location
is defined by the fundamental period. Finally, the HNR is
defined for each band as the ratio of the maximum value of
the cepstral peak to the averaged value of other quefrenciesof
the cepstrum.

In case of unvoiced speech, conventional LPC is used to
evaluate the spectral model of speech, though the inverse
filtering is continuously performed in order to get theF0

estimate. In unvoiced segments,F0 and HNR are set to zero.

TABLE I
SPEECH FEATURES AND THE NUMBER OF PARAMETERS.

Feature Parameters per frame
Fundamental frequency 1
Energy 1
Harmonic-to-noise ratio 4
Voice source spectrum 10
Vocal tract spectrum 30
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Fig. 5. Overview of the training stages of HMMs. First, monophone HSMMs
are trained, converted into context-dependent HSMMs, and re-estimated.
Then, decision-tree-based context clustering is applied to the HSMMs and
the model parameters of the HSMMs are tied. Finally, the clustered HSMMs
are re-estimated again.

The voice source spectrum is continuously extracted, although
only the values for voiced segments are used in the synthesis
stage.

C. HMM Training

The basic steps for the HMM training are similar to that
in [26]. In order to model the extracted features together
with their duration in a unified modeling framework, context-
dependent multi-stream and multi-space distribution (MSD)
[60] hidden semi-Markov models [61] (for short, MSD-
HSMMs [62]) are utilized as acoustic units for speech synthe-
sis. The multi-stream model structure is used for simultaneous
and synchronous modeling of the extracted features. The MSD
structure is used for statistical modeling of the fundamental
frequency as mixture sequences of continuous real numbers
for voiced regions and symbol strings for unvoiced regions.
The rest of the features are modeled as continuous probability
distribution (CD) streams. The harmonic-to-noise ratio and
the voice source spectrum would also be natural candidates
for MSD modeling, but in the following experiment CD was
used and the parameters generated for unvoiced regions were
simply omitted. The contexts used include not only phonetic
information but also linguistic information such as morpheme
features, accentual features, and even utterance-level features
[63], [64].

Five-state left-to-right MSD-HSMMs without skip paths are
used for all speech synthesis described in this paper. Each
state has a single Gaussian probability distribution function
(pdf) with a diagonal covariance matrix as the state output
pdf and a single Gaussian pdf with a scalar variance as the
state duration pdf.

The overview of the training process is illustrated in Fig. 5.
First, monophone MSD-HSMMs are trained using the segmen-
tal K-means and expectation-maximization (EM) algorithms
based on phonetic labels having time alignment information.
These are converted into context-dependent MSD-HSMMs and
the model parameters are re-estimated again. Then, decision-
tree-based context clustering using a minimum description
length (MDL) criterion [65] is applied to the HSMMs and
the model parameters of the HSMMs at each leaf node of the
decision trees are tied. The clustered MSD-HSMMs are then
re-estimated. For the proposed system, only the vocal tract
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Fig. 6. Example of a library pulse and its time derivative. The pulse is
extracted from a sustained vowel [a] produced by a male speaker using normal
phonation. The closed phase of the original pulse derivative was forced to zero
in order to remove minor fluctuations present in the waveform produced by
the glottal inverse filtering.

LSFs andF0 features were considered during the alignment
step of the re-estimation; the weights of the other streams were
set to zero.

D. Parameter Generation from HMMs

In the parameter generation step, an input text is first
transformed into a sequence of context-dependent phoneme
labels. A sentence MSD-HSMM corresponding to the label se-
quence is then constructed by concatenating the parameter-tied
context-dependent MSD-HSMMs. Then, a feature sequence
trajectory is statistically generated from the sentence MSD-
HSMM itself. Here the duration pdfs automatically determine
the duration of each state of the sentence MSD-HSMM. A
trajectory sequence that satisfies the global variance of the
whole corpus [8] is used to generate the parameters.

E. Speech Synthesis

After the generation of the speech parameters from the
HMM system, the speech waveform is synthesized from the
parameters. There are two main differences in this synthesis
stage compared to conventional synthesis methods. First, natu-
ral glottal flow pulses are used to create the voiced excitation
signal, and second, the spectral properties of the excitation
signal are modified with an adaptive infinite impulse response
(IIR) filter with the aim of reproducing the time-varying
changes in the real voice source and preserving the original
voice quality.

At present, a single glottal flow pulse, called the library
pulse, extracted from real speech with glottal inverse filtering,
is used for the given speaker. The pulse is extracted from a
glottal flow signal of a sustained vowel, and a pulse showing
distinct open and closed phases is selected as a representative
sample of the excitation. An example of a library pulse and its
derivative is shown in Fig. 6. A pulse based on real speech is
expected to be more natural than previous artificial excitations,
since various natural properties are absent from previously
available excitation models, especially from the simplestone:
a train of impulses. For example, the temporal and spectral
properties of the noise contained by the library pulse are a
consequence of real physical movement of the vocal folds and
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Fig. 7. Flow chart of the synthesis stage. The basis of the voiced excitation
signal is a library glottal flow pulse, which is modified according to the
voice source parameters. Unvoiced excitation is composed of white noise.
The excitation signals are combined and filtered with the vocal tract filter
V (z) to generate speech.

the following turbulence in the glottis [66], which cannot be
modeled with known techniques.

The flow chart of the synthesis stage is shown in Fig. 7.
The excitation consists of voiced and unvoiced sound sources.
The basis of the voiced sound source is the library pulse.
This glottal flow pulse is interpolated in the time domain with
a cubic spline interpolation algorithm [67], [68] in order to
achieve a specific fundamental period, and the energy (gain)
of the pulse is equalized to the energy measure given by the
HMM.

Next, the harmonic-to-noise ratio of the pulse is measured
by creating a frame that consists of pulses interpolated to the
given F0 and by using the same HNR estimation method as
in the analysis phase. Then, noise is added separately to four
bands (0–2, 2–4, 4–6, 6–8 kHz) in the frequency domain. The
amount of noise in each band is determined by the ratio of
the HNR measure of the pulse and the measure generated by
the HMM system. Noise is created by evaluating the FFT of
the pulse and adding a random component both to the real and
imaginary parts of the FFT vector. The strength of the random
component is determined by the band-wise HNR ratios.

Since the spectrum of the excitation generated by a single
library pulse is constant over time and does not correspond to
the target spectrum, the spectrum of the excitation needs to
be modified. The target spectrum is the all-pole model of the
glottal sourceG(z) generated by the HMM. This spectrum is
achieved by first evaluating the all-pole model of the library
pulse with LPC (the order is equal to the order ofG(z)), and

then filtering the pulse train with an IIR filter constructed from
these two all-pole models, compensating for the differences
between the spectra.

The lip radiation effect is modeled with a fixed differentia-
tor. The unvoiced excitation is white noise, the gain of which
is determined by the energy measure generated by the HMM
system. A formant enhancement procedure [69] is applied to
the LSFs generated by the HMM system to compensate for
the averaging effect of the statistical modeling. The LSFs are
then interpolated and converted into LPC coefficientsV (z)
and used to filter the excitation signal.

IV. EVALUATION

The quality of the proposed system was compared to two
alternative HMM-based speech synthesis systems for evalua-
tion purposes. The first system uses the popular STRAIGHT
vocoding technique, which has been shown to be able to
generate high quality synthetic speech [70]. The second system
uses an older vocoding technique, mel-cepstral analysis and
synthesis [71] with a simple impulse train excitation model.
In addition, natural speech samples were included in the test.
In order to understand the differences between the systems and
the underlying reasons for the possible differences in quality,
the two reference systems are described next.

A. STRAIGHT-Based System

The speech manipulation tool STRAIGHT [25] mainly
consists ofF0-adaptive spectral smoothing carried out in the
time-frequency domain to remove signal periodicity, mixedex-
citation, and group delay manipulation [72]. The STRAIGHT-
based system extracts and models three kinds of parameters
required for the STRAIGHT vocoder with mixed excitation:
spectral coefficients calculated from the smoothed spectra[26],
fundamental frequency, and aperiodicity measures [72], [73].

In STRAIGHT analysis, speech signals are first high-pass
filtered with a cut-off frequency of 70 Hz. They are then
sampled at a rate of 16 kHz and windowed by anF0-adaptive
Gaussian window with a 5-ms shift. The vocal tract filter is
estimated with a 39th-order mel-cepstrum [71]. In this system
C0 is used instead of log-energy. The extraction ofF0 values
and voiced-unvoiced decision are performed by using voting
of outputs of an instantaneous-frequency-amplitude-spectrum-
based algorithm [74], a fixed-point analysis called TEMPO
[75], and the ESPS get-F0 tool [76], [77]. The aperiodicity
measures for mixed excitation are based on a ratio between
the lower and upper smoothed spectral envelopes [72], [73]
and averaged across five frequency sub-bands (0–1, 1–2, 2–4,
4–6, and 6–8 kHz). The total number of speech parameters
per frame is 46, which is exactly the same as in the proposed
system.

In STRAIGHT synthesis, an excitation signal is generated
using mixed excitation consisting of impulses and a noise com-
ponent weighted by band-pass filtered aperiodicity parameters.
At each frequency bin, the aperiodicity parameter is converted
to the weight for a noise signal by using a sigmoid mapping
function adopted in [73]. The pitch-synchronous overlap add
(PSOLA) [78] method is used to reconstruct the excitation



8 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. X, MONTH YEAR

signal, which is then used to excite a mel log spectrum
approximation (MLSA) filter [71], [79], corresponding to the
STRAIGHT mel-cepstral coefficients. The vocoder modules
of the STRAIGHT-based system are the same as in [26].

B. Impulse Train Based System

The second reference for the experiment was thede facto
standard HMM-based speech synthesizer, which is included
in the current HTS (HMM-based Speech Synthesis System)
release [51], [80]. This system uses mel-cepstral coefficients
to model the spectrum of speech, and the excitation is modeled
only by the fundamental frequency. Voiced speech is excited
by an impulse train controlled by the fundamental frequency
and unvoiced speech is excited by white noise. Synthesis
from mel-cepstral coefficients is performed with the mel
log spectrum approximation (MLSA) filter [71], [79]. This
vocoder is known for its smooth speech quality, but also for
its buzziness, inherent to the simple excitation scheme.

For the experiment, 25 mel-cepstral coefficients (including
the zeroth coefficient for the gain) were extracted using a 25-
ms Blackman window with a 5-ms frame shift. The log-F0

values were estimated with the proposed system. The total
number of parameters per frame is thus 26, substantially less
than the other two systems.

While this vocoder could be considered outdated, it is a
useful reference for the test, because its properties are widely
known and the quality compared to the STRAIGHT-based
system is documented [26].

C. System Configurations

In order to ensure comparability between the proposed and
the two reference methods, identical linguistic and acoustic
data were used to train each system. The same linguistic front-
end was utilized to extract 67 contextual features for each
phone in the training corpus, and the same question set was
used to guide the model clustering.

The HMM configuration of the three systems was generally
similar. However, the HMM training and parameter generation
involves several tunable parameters, such as stream weights,
MDL factors, and global variance factors, whose optimal
values are dependent on the speech feature representation.
Thus, several parameters related to the HMM system were
optimized independently according to the requirements of each
parametrization scheme.

D. Speech Material

The proposed method was tested by training all the systems
with a prosodically annotated database of 600 phonetically
rich Finnish utterances spoken by a 39-year-old Finnish male
speaker, comprising approximately one hour of speech mate-
rial [81]. The utterances were from two to eleven seconds of
duration and they contained from two to 22 words, averaging
to 9.34 words. The number of total phone instances (including
silences) was 43210. Ninety-two utterances held out from the
database were used as stimuli for the evaluation.

Glottal inverse filtering is known to be sensitive to the
recording conditions, especially to the phase response of the

microphone [33]. Although phase information is not crucialin
the proposed method (only the magnitude spectrum is used),
a high quality recording was performed to ensure correct
glottal inverse filtering. The recordings were done directly to
a computer hard drive in an anechoic chamber using a high-
quality condenser microphone (AKG CK 61-ULS). The speech
was sampled at 16 kHz.

E. Test Setup

Three separate subjective listening tests were conducted to
assess the performance of the proposed system compared to
other speech synthesizers. All the tests were carried out inan
acoustically modified multipurpose room with low background
noise level. Each listener performed the tests individually using
a graphical user interface on a computer terminal. Test sam-
ples were played to both ears with high-quality headphones
(Sennheiser HD580). The three tests took approximately one
hour on average per person.

Fifteen listeners (13 males, 2 females) with no known
hearing impairment participated in the test. The listenerswere
native Finnish speakers between 23 and 35 years of age,
averaging to 28 years. All the listeners were graduate or post-
graduate students working in the field of acoustics or signal
processing, but not in speech synthesis.

The test method used for the first two tests was similar to
the comparison category rating (CCR) test described in [82].
In this test type, a listener is presented with a pair of speech
samples for each trial. A sample pair consists of a sentence
synthesized with two different methods (or natural speech).
The task of the listener is to assess the quality of the second
sample compared to the first one on the comparison mean
opinion score (CMOS) scale, which is a discrete seven-point
scale ranging from much worse (-3) to much better (3). The
listener responses in a CCR test can be summarized concisely
by calculating the mean score for each evaluated method. The
mean yields the order of preference and distances between all
the methods (i.e., the amount of preference relative to each
other), but the numerical values of the mean scores do not
have explicit meaning.

In the first test, the CCR method was used to assess the
quality of the proposed method in comparison to natural
speech and synthetic speech generated by the STRAIGHT-
based system. The purpose of this test was to evaluate the
overall performance of the two synthesis methods compared
to natural speech. Ten randomly chosen sentences from held-
out data were used to generate the test samples for each
method. All possible combinations of the three sample types
were assessed in both orders for each sentence. Ten null pairs
with identical samples were also included. Altogether, thetest
consisted of 70 cases.

Second, a similar CCR test was performed, but the natural
speech samples were replaced with synthetic speech generated
by the system using impulse train excitation. The purpose
of this test was to evaluate the overall performance of the
proposed method compared to two well known speech syn-
thesizers. Again, ten randomly chosen sentences from held-out
data were used to generate the test samples for each method
and a total of 70 test cases were assessed.
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The pair comparison test method was used in the third test.
In each test case, the subjects listened to a pair of samples
and selected the one they preferred. They also had the option
no preference between the two samples. The listeners could
listen to the samples any number of times before making
their choice. Only the synthetic speech samples generated by
the proposed system and the STRAIGHT-based system were
involved in the pair comparison test. The purpose of this
test was to evaluate the general preference between the two
high-quality speech synthesis systems. Ten randomly chosen
sentences from held-out data were used to generate the test
samples for each method. A total of 24 speech sample pairs
were assessed.

After the listening tests, the listeners were asked to report
and describe possible artifacts they noticed in the samplesin
order to obtain information about the most salient aspects that
degrade the quality of synthetic speech.

It is worth noticing that the prosody of the synthesized
utterances was not normalized between the test samples.
Normalization of the fundamental frequency and durations
was considered, but since there were various features in each
system, normalization of all differences between the systems
would not have been possible. The prosody of natural speech
was clearly different from that of the synthesized utterances.
The synthetic speech samples resembled each other highly in
terms of prosody.

Finally, the intelligibility of the proposed and the
STRAIGHT-based system was evaluated using a standard
semantically unpredictable sentence (SUS) intelligibility test
[83]. A total of 41 native Finnish speakers participated in
a web-based listening test containing 30 semantically unpre-
dictable sentences. In the test, subjects listened the sentences
and typed in what they heard. The letter error rate (LER) was
calculated from the results and the Wilcoxon signed rank test
[84] was used to evaluate the statistical significance.

F. Results

The result of the first test, the ranking of natural speech
and synthetic speech generated by the proposed and the
STRAIGHT-based system, is shown in Fig. 8. The figure
shows that the quality of natural speech is still superior
compared to synthetic speech. This large difference results
partly from the degraded naturalness and occasional artifacts
in the synthetic speech samples, but also from the prosodic
discrepancies between the synthetic and natural speech sam-
ples. It is worth emphasizing that in this experiment, wherethe
prosody was not normalized, natural speech was considered far
superior compared to either of the speech synthesis systems,
but despite that, the difference between the proposed system
and the STRAIGHT-based system was statistically significant.

The result of the second CCR test is shown in Fig. 9.
The three speech synthesis methods, the proposed system, the
STRAIGHT-based system, and the impulse train based system,
are ranked according to the evaluation. The figure shows a
clear preference for the proposed method over the two other
methods. The STRAIGHT-based system is also considered
clearly better than the impulse train based system. The result
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Fig. 8. Ranking of the first CCR test for the following speech samples:
natural speech (natural), proposed system (glottal), and STRAIGHT-based
system (straight). The mean score has no explicit meaning, butthe distances
between the scores define the amount of preference relative toeach other. The
95% confidence intervals are presented for each score.
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the distances between the scores define the amount of preference relative to
each other. The 95% confidence intervals are presented for each score.
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Fig. 10. Results of the pair comparison test applied for the proposed system
(glottal) and the STRAIGHT-based system (straight). The bars indicate the
percentage of the total number of answers to the question “Which one would
you rather listen to?”. The center bar (no pref.) indicates no preference for
either of the methods. The 95% confidence intervals are presented for each
bar.

can also be roughly interpreted so that the improvement in
quality from the STRAIGHT-based system to the proposed
system is as significant as the improvement from the impulse
train based system to the STRAIGHT-based system.

The result of the third test is shown in Fig. 10, which shows
that the proposed system is almost always preferred over the
STRAIGHT-based system, answering the question “Which one
would you rather listen to?”.

The listeners described the proposed system as smooth,
warm, natural sounding, and having clear characteristics of
a person and showing some emotion, but it was also criticized
for having some artifacts near consonants. The STRAIGHT-
based system was described as very clean, but also slightly
artificial and nasal, and some listeners compared it to band-
limited speech. The system using impulse train excitation was
mostly described as artificial and unnatural. The prosody ofall
the synthetic methods was criticized, but all the methods were



10 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. XX, NO. X, MONTH YEAR

assessed to have approximately the same amount of errors in
prosody.

The standard SUS test showed that the intelligibility of
the proposed system was better than that of the STRAIGHT-
based system. The letter error rate was 1.6% and 2.6% for
the proposed and the STRAIGHT-based method, respectively.
The difference between the systems was statistically significant
(p < 0.0001).

A representative set of test samples is available online at
http://www.helsinki.fi/speechsciences/synthesis/samples.html.

V. D ISCUSSION

Over the years, speech synthesis has largely been based
on the use of source-filter models, in which the production
of speech is represented in terms of the excitation and filter
characteristics. The separation of speech into these major
components has been mainly conducted by utilizing techniques
based on impulse-type waveforms for the excitation. This is
greatly different from the functioning of the real human voice
production mechanism, in which the excitation is represented
by the glottal volume velocity waveform, a smooth quasi-
periodic signal generated by the fluctuation of two physio-
logical organs, the human vocal folds. The artificial impulse-
type excitation used in typical source-filter models is also
extensively different in terms of its spectral behavior when
compared to its real, physiologically-oriented counterpart; the
spectral envelope of the impulse-train is always flat while
that of the real glottal excitation varies depending on, for
example, the phonation type and vocal intensity of the spoken
message. One can argue that, in speech synthesis, the use
of speech models unable to model properly the function of
the real human voice production, such as the impulse-based
excitation, may lead to a loss of valuable information and limit
the flexibility of the synthesizer.

Utilizing glottal inverse filtering-based modeling of the hu-
man voice production mechanism in HMM-based synthesis is
attractive because it also provides, in comparison to traditional
signal models, a better correspondence between the synthetic
speech and its underlying physiological parameters. Although
the imitation of the human vocal apparatus itself may not have
intrinsic value, this approach could provide several benefits.
For example, through the decomposition of speech according
to a glottal inverse filtering-based model, each component,
representing a specific physical phenomenon and thus repre-
senting specific features of speech, can be individually adapted
or modified based on the knowledge of the speech production
mechanism [85]. In a similar way to [85], this approach would
enable easy control over the features that can be directly
attributed to the perceived voice characteristics by modifying
the glottal source signal or the vocal tract transfer function.

The proposed novel method addresses two important issues
in parametric speech synthesis. First, the concept of separating
the voice source from the vocal tract filter in HMM-based
speech synthesis is expected to make speech synthesis more
flexible and natural compared to conventional methods. Sec-
ond, the utilization of a natural glottal flow pulse addresses
the problem of voice source modeling by preserving some of

the detailed structure of the natural excitation, which cannot
be easily modeled. However, since the current system uses
only a single glottal flow pulse for an utterance, the natural
variation in the excitation from one pulse to another cannotbe
well reproduced. The utilization of multiple pulses is a future
direction of this work.

This study demonstrates that the modeling of the real speech
production mechanism through the utilization of glottal inverse
filtering in HMM-based speech synthesis can improve the
quality of synthetic speech. The formal evaluation with one
male speaker, expected to be easiest for the glottal inverse
filtering, showed that the proposed method can synthesize
very natural sounding speech. Informal experiments on the
proposed system with several speakers, male and female, have
yielded encouraging results1. Based on the preliminary results
and the theoretical benefits of the method, it is expected that
high-quality synthetic speech in different speaking styles and
with different speaker characteristics can be reproduced.In
order to thoroughly test the performance of the proposed
synthesis technique, one should also use expressive speech,
where the spectral dynamics of the voice source are expected
to be larger. Another directions for future research is speaker
and speaking style adaptation, where the proposed method
could provide substantive improvements compared to tradi-
tional methods.

VI. CONCLUSIONS

In this paper, a new HMM-based text-to-speech system
utilizing glottal inverse filtering was described. The study
presented a method to extract and model individual parameters
for the voice source and the vocal tract, and a method
to reconstruct a realistic voice source from the parameters
using real glottal flow pulses. These novel procedures enable
the generation of high quality synthetic speech. Subjective
listening tests showed that the proposed method is able to
generate highly natural synthetic speech, and the quality of
the proposed system is considerably better compared to two
other commonly used HMM-based speech synthesizers.
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[36] M. Fröhlich, D. Michaelis, and H. Strube, “SIM – simultaneous inverse
filtering and matching of a glottal flow model for acoustic speech
signals,”J. Acoust. Soc. America, vol. 110, no. 1, pp. 479–488, 2001.

[37] O. Akande and P. Murphy, “Estimation of the vocal tract transfer
function with application to glottal wave analysis,”Speech Commun.,
vol. 46, pp. 15–36, 2005.

[38] Q. Fu and P. Murphy, “Robust glottal source estimation based on
joint source-filter model optimization,”IEEE Trans. Audio, Speech, and
Language Processing, vol. 14, no. 2, pp. 492–501, 2006.

[39] D. Childers and C. Ahn, “Modeling the glottal volume-velocity wave-
form for three voice types,”J. Acoust. Soc. America, vol. 97, no. 1, pp.
505–519, 1995.

[40] A. Krishnamurthy and D. Childers, “Two-channel speech analysis,”
IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 34, no. 4,
pp. 730–743, 1986.

[41] H. Strik and L. Boves, “On the relation between voice source parameters
and prosodic features in connected speech,”Speech Commun., vol. 11,
pp. 167–174, 1992.

[42] A. El-Jaroudi and J. Makhoul, “Discrete all-pole modeling,” IEEE Trans.
Signal Processing, vol. 39, no. 2, pp. 411–423, Feb. 1991.

[43] J. Makhoul, “Linear prediction: A tutorial review,”Proc. of the IEEE,
vol. 63, no. 4, pp. 561–580, Apr. 1975.

[44] D. Veeneman and S. BeMent, “Automatic glottal inverse filtering from
speech and electroglottographic signals,”IEEE Trans. Acoustics, Speech,
and Signal Processing, vol. 33, no. 2, pp. 369–377, 1985.

[45] J. Walker and P. Murphy, “Advanced methods for glottal wave extrac-
tion,” in Nonlinear Analyses and Algorithms for Speech Processing,
M. Faundez-Zanuyet al., Eds. Springer Berlin/Heidelberg, 2005, pp.
139–149.

[46] P. Alku, J. Hoŕaček, M. Airas, F. Griffond-Boitier, and A.-M. Laukka-
nen, “Performance of glottal inverse filtering as tested by aeroelastic
modelling of phonation and FE modelling of vocal tract,”Acta Acustica
united with Acustica, vol. 92, pp. 717–724, 2006.

[47] P. Alku, B. Story, and M. Airas, “Estimation of the voice source from
speech pressure signals: Evaluation of an inverse filteringtechnique
using physical modelling of voice production,”Folia Phoniatrica et
Logopaedica, vol. 58, no. 2, pp. 102–113, 2006.

[48] P. Alku, T. Bäckstr̈om, and E. Vilkman, “Normalized amplitude quotient
for parameterization of the glottal flow,”J. Acoust. Soc. America, vol.
112, no. 2, pp. 701–710, 2002.
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