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HMM-Based Speech Synthesis Utilizing Glottal
Inverse Filtering

Tuomo Raitio*, Antti Suni, Junichi Yamagishi, Hannu Pulaklani Nurminen, Martti Vainio, and Paavo Alku

Abstract—This paper describes an HMM-based speech synthe- vocal characteristics. This flexibility is due to the paramae
sizer t'hat utilizes_glottal inverse filtering for generating natural _representation of speech, which enables the easy modificati
sounding synthetic speech. In the proposed method, speech isyf the parameters and the reconstruction of speech from.them

first decomposed into the glottal source signal and the model of . .
the vocal tract filter through glottal inverse filtering, and thus However, the quality and naturalness of the parametric HMM-

parametrized into excitation and spectral features. The source based speech synthesis has remained poorer than that of unit
and filter features are modeled individually in the framework of selection methods. This degradation is mainly caused by two

HMM and generated in the synthesis stage according to the text factors: oversimplified vocoder techniques that are unable
input. The glottal excitation is synthesized through interpolating to mimic natural speech pressure waveforms and statistical

and concatenating natural glottal flow pulses, and the excitation deling that thi f th terb. bot
signal is further modified according to the spectrum of the modeling that causes over-smoothing ot the parameters, bo

desired voice source characteristics. Speech is synthesized byesulting in inadequate reconstruction of speech. Relsearc
filtering the reconstructed source signal with the vocal tract exists on fixing the second problem [7], [8]. This paper will

filter. Experiments show that the proposed system is capable of concentrate on the first factor, the inadequate modelinpef t
generating natural sounding speech, and the quality is clearly real speech production mechanism
better compared to two HMM-based speech synthesis systems Svnthesi thods utilizi ) i tati f
based on widely used vocoder techniques. ynthesis methods utilizing parametric representation o
speech are largely based on the source-filter theory of Bpeec
production [9]. This theory assumes that the production of
speech can be interpreted as a linear cascade of three pro-
EDICS Category: SPE-SYNT cessesS(z) = G(2)V(z)L(z), whereS(;) denotes speech,
andG(z), V(z), and L(z) denote the voice source, the vocal
tract filter, and the lip radiation effect, respectively. time
" | of h hesis | reIaI human voice production mechanism, the voice source
HE ultimate g?(a of speech synft esis Is to create natl;@ represented for the voiced sounds by the glottal volume
sounding spoken expression from arbitrary text. Thig,,city waveform generated by the vibrating vocal foldseT
calls for the ability to synthesize high quality speech, @180 | 5ice source is known to be the origin for several essential

provides a means to involve t_he appropriate variation of the, stical cues used in spoken communication [10], [11]. In
spee_ch charagterlst}cs_accordmg to thg speaker, cgramdt, addition to determining the fundamental frequendy)( of
emotion. The first criterion can be met with a synthesis S(Eherglpeech’ the voice source also contributes to various spectr
that concatenates segments of pre-recorded speech. HOWeygy yomnoral features that are related to voice quality and
these so-called unit selection-based systems are known,i8qqic variation in speech. In combination, the voicerseu
suffer from limitations in their ability to vary the speechyeyicis attitude and emotion, and is also related to acasti
chargctenshcs [4]- H|dQen Mark_ov mode| (HM_M)-based Parg es underlying the speaker identity. Thus, it can be caledu
met.rlc speech synthesis techniques [1]_,[4]' In turn, amy Vet o large part of what can be characterized as naturalness
flexible and can be adapted [5] or modified [6] to generajf gyeech emerges from the voice source and its context-
speech according to virtually any criterion related 0 W8y yenendent variation. Therefore, the search for methods tha
Manuscript received Month Day, Year; revised Month Day, ryekhis aim aj[ the accurate modeling of the YOice source is jgstified.
project is supported by Nokia and the Academy of Finland guisj 111848,  While the vocal tract can be relatively well approximated
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impulse train excitation model. However, the quality ofsbe detail. Most importantly, the proposed new system is coegbar
systems still remains relatively far from the quality ofuratl to a state-of-the-art STRAIGHT-based system in a series of
speech. formal listening tests.

The real voice source generated by the vocal folds hasThis paper is organized as follows. As a background for the
naturally attracted interest in speech research and ssistheproposed method, glottal inverse filtering is described firs
and many techniques have been proposed to mimic the gloBaiction Il. The underlying principles of the new method and a
excitation of the human voice production mechanism. Variodetailed description of the system are presented in Selition
parametric models for the glottal flow exist, of which thé'he performance of the proposed system is demonstrated in
Liljencrants-Fant (LF) model [17] is the most widely usedSection IV through a comparison of the method with natural
Previously, LF model pulses have been used in speech syntiigeech and two other speech synthesis systems. The rgsultin
sis experiments [18], [19], and recently the LF model hasibebenefits of the method are depicted and discussed in Section
used within an HMM-based speech synthesizer [20], [2I. Finally, Section VI summarizes the findings and concludes
However, the use of the glottal flow models in HMM-basethe paper.
speech synthesis has been limited and experiments codducte
have not succeeded in providing substantial advantages in II. GLOTTAL INVERSEFILTERING
parametric speech synthesis.

The natural voice source itself is a complex signal an
the accurate modeling of the voice source has proven to be3lottal inverse filtering [30] is a procedure in which the
very difficult. As an alternative to the artificial voice sear Source of voiced speech, the glottal volume velocity warrafo
models, the idea of utilizing glottal flow pulses extractetp estimated from speech pressure signals. Conceptubdly, g
from natural speech with the help of glottal inverse filtgrintal inverse filtering corresponds to obtaining the glottlLme
has been proposed. For example, natural glottal flow pulséocity G(z) from the equation
have been used in formant speech synthesis [22], [23], and S(2)
in creating natural sounding speech stimuli for brain regea G(z) =
[24]. However, previous studies based on glottal flow pulses
extracted from natural speech are limited to special pwposvhere S(z), V(z), and L(z) denote z-transforms of the
and have not provided a general synthesis method for nijizispeech signal, vocal tract, and lip radiation effect, respely.
the natural glottal flow. Since the lip-radiation effeckt(z) can be modeled as a fixed

At present, the most widely used high-quality vocodindifferentiator [31], only the parameters of the vocal traeed
technique for HMM-based speech synthesis is the speech rmabe estimated to compute the glottal flow from the speech
nipulation tool STRAIGHT [25]. STRAIGHT was originally pressure signal.
proposed as a method to analyze, modify, and resynthesizét is worth noting that the source signal to be solved in
high-quality speech. Recently, STRAIGHT was adopted fdq. 1 is different from the excitation used in the converaion
HMM-based speech synthesis [26], and it is currently cofinear predictive (LP) model, the LP residual. When a speech
sidered to be one of the best vocoding methods for HMMsignal is decomposed into a source and a filter with a single
based speech synthesis [27]. Despite great improvemehB, analysis, the spectral effects of the three main prosesse
STRAIGHT-based HMM systems cannot yet compete witbf the real human voice production, the glottal excitatithe
state-of-the-art unit selection methods in terms of ndttess vocal tract, and the lip radiation, are combined into a sngl
of synthetic speech [27]. digital all-pole filter that is excited by an input resemblian

Recently, an idea was proposed to utilize automatic glottahpulse train or a noise sequence that is spectrally white. |
inverse filtering in HMM-based speech synthesis [28]. Theontrast to this, the excitation given in Eq. 1 is not whité bu
proposed concept combines two existing areas of speéshpermitted to show spectral envelopes of varying decass (s
technology in a novel way to enable high quality speech syhig. 1). This phenomenon reflects the vibratory patternsief t
thesis: HMM-based statistical modeling and a physioldtjica vocal folds when a speaker regulates adduction of his or her
oriented model of speech production based on glottal ievenrgocal folds, for example, in adjusting the phonation typénor
filtering. Briefly, the idea comprises (a) utilization of amtatic  creating different emotional vocal cues.
glottal inverse filtering in order to decompose and paraizeetr  There are several methods that have been developed during
speech into the glottal source and vocal tract filter comptsethe past decades for estimating the glottal flow from speech
corresponding to the functioning of the real speech praduct (e.g., [32]-[38]). In this study, an automatic glottal inse
mechanism, (b) individual modeling of these charactessti filtering method, iterative adaptive inverse filtering (Rl
the framework of HMM, and (c) utilization of real glottal flow[24], [32], is used as a computational tool to implement
pulses extracted from natural speech for creating theagianit glottal inverse filtering. IAIF has three methodologicaldan
signal. The preliminary results from the first experimemts icomputational features that make it an attractive choige fo
this work were presented in [29], where the proposed methtite present study. First, the method needs only a singld,inpu
was compared, with encouraging results, to a conventiortae speech pressure signal, and there is no need for addition
HMM-based speech synthesizer [3] using a simple impulggormation signals such as the electroglottography (EGG)
train excitation model. In the present study, the refined almt{3G is widely used in closed phase covariance analysis, a
complete algorithm of the proposed method is presented rirethod that is one of the most prevalent glottal inverseifilte

. General
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Fig. 1. (@) Waveform of a sustained vowel [a] produced by a male
speaker using pressed (left panel) and breathy (right parenation. (b)
Corresponding glottal flow signals estimated with the ifeesdaptive inverse
filtering (IAIF) method [24], [32]. In pressed phonation ¢letthe glottal flow 8. Inverse filtering |—{ 9. Integration —‘

pulses are shorter compared to breathy phonation and thareléar closed
phase between the pulses. (c) Spectra of the estimated|dlottasignals
(only shown for 0—2 kHz). The spectrum of the breathy phama{right)
shows a clear emphasis on the fundamental frequency compdiergpectral Hvz (2)

envelope is also steeper and there is more noise at the higiprencies. 10. '(‘C)F:dce?";'ygs _‘

algorithms (e.g., [39]-[41]). Second, the IAIF method can o)
be implemented in a completely automatic manner and its 11. Inverse filtering|—] 12. Integration ~ |——
computational complexity is low. Both of these features are
pre-requisites when glqttal inverse ﬁlterir.]g i-S used i-n HMMF' 2. Block diagram of the IAIF method. The glottal flow sigrgn) is
based speech synthesis and other applications which eeqQLﬁi.mz;lted throughgan repetitive procedure df canc%lingflbete of the vocal
processing of extensive amounts of speech data in therigainiract and the lip radiation from the speech signt).

phase. Third, the IAIF method can be implemented in such

a manner that it utilizes the autocorrelation method ofdme

prediction in modeling of the vocal tract. This enables tee UDpue to its computational efficiency and simplicity, LPC was
of all-pole filter structures that are guaranteed to be etab&hosen in this work.

a requirement that is not met, for example, by closed phas
covariance analysis.

eI'he detailed structure of the IAIF method is shown by the
block diagram in Fig. 2. The estimation of the glottal flow
. . o with the IAIF method consists of the following stages. First
B. Ilterative Adaptive Inverse Filtering (block 1), the speech signaln) is high-pass filtered with a
IAIF [24], [32] is a method that automatically decomposelnear phase finite impulse response (FIR) filter (300-tmgdr
voiced speech into the vocal tract transfer function and tiphase, cut off frequency 70 Hz) in order to remove any low-
glottal source. In general, the algorithm assumes that tffequency ambient noise picked up by the microphone. High-
contribution of the glottal excitation to the speech speutr pass filtering is a standard pre-processing procedure ttaglo
can be estimated as a low-order (monotonically decayinigiverse filtering because the analysis calls for using high-
all-pole process, which is computed pitch-asynchronoudlyiality microphones whose frequency response goes down
over several fundamental periods. By canceling this effetd ca. 5-20 Hz and, consequently, the recordings typically
a parametric model for the vocal tract is obtained, also involve low frequency noise. Since canceling the lip radiat
a pitch-asynchronous manner, which is then used to caneffect requires sound integration (blocks no. 6, 9, and 12),
the effect of formants. The method has two main phasdke low frequency noise components could distort the dlotta
In the first one, a first-order all-pole model is computed tibow estimate by introducing a low frequency bias [33]. Next
get a preliminary estimate for the glottal contribution.eTh(block 2), a first-order LPC filter is computed, yielding a
second phase applies a higher-order all-pole model, wimich,preliminary estimate of the combined effect of the glotta/l
principle, is able to yield a more accurate estimate for thand the lip radiation. The transfer function of the LPC irpeer
contribution of the glottal source. Various spectral moug! filter is denoted byHg, in Fig. 2. First order LPC analysis
tools can be used in the IAIF method, such as digital all-pojéelds only a very rough estimate of the contributions of the
modeling (DAP) [42] or linear predictive coding (LPC) [43].glottal flow and the lip radiation, because the spectral hode
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has only one adaptive pole on the real axis in the z-domainelds satisfactory accuracy in the estimation of the glott
However, using a higher-order linear predictive analysisid flow: the relative error between the original and the estadat
most likely result in modeling of the resonant structurera t flow was less than 10% in the far majority of the analyses
speech sound, an effect that is to be deliberately avoidednihen parameterization of the flow was conducted with a
the combined effect of the glottal flow and the lip radiatiomormalized amplitude quotient [48]. The estimation ernor i
is to be estimated. Thirdly (block 3), the estimated effect §47] however, increased wheh, was raised above 400 Hz
the glottal flow and the lip radiation is canceled out from thand was most severe when a high-pitch was combined with a
speech signal through inverse filtering. The output is aealy low value of the first formant. In summary, given the benefits
with a pth order LPC (block 4) in order to obtain the firstof the IAIF method described in section 1. A and its previlgus
estimate of the vocal tract filter, denoted Hyy;. (The orderp  evaluated satisfactory accuracy, it was considered jedtiio

of LPC analysis is typically 20 for speech sampled at 16 kHaise the IAIF method as a computational tool for glottal iseer
Next (block 5), the estimated vocal tract transfer functien filtering in the present study.

canceled out from the original speech signal through imvers

filtering. The lip radiation is eliminated through integoet [1l. PROPOSEDSPEECHSYNTHESIS SYSTEM

(block 6), and the resulting signal forms the first estimdte @ oyerview

the glottal flow. Next, agth order LPC analysis (block 7) is The proposed speech svnthesis svstem aims to produce
computed to get a parametric model of the spectral envelope Prop P y IS sy ! produ

of the estimate of the glottal flow. For this purpose, sinae t Igh quality synthetic speech capable of conveying various

estimated flow vas arved t by removrg (n block 5) nEY 5 PSRN, Peaker Shaceriies ne e
contribution of the vocal tract from speech, it is possilde t s goal, : progucti )
use a more accurate, higher-order LPC analysis than in bIo@l?deIEd with the help of glot_tal inverse flltermg er_nbe_dded !
no. 2 without obtaining models that exhibit spurious fortaana" HMM framework. Automatic glpttal INVerse f||ter|ng is uke
like peaks. (The value of is typically between 4 and 8.) Then .order to compute a parametric feature expression for _the
glottal contribution and the lip radiation are canceled again ngg:gﬂge\/s‘:ﬁ 'E:]aectv ?g:tlutrfsma?eartf;f :#Qggg Tj \mﬁ er;OJﬁi_
through inverse filtering and integration (blocks 8 and @y 2 Cream HMMs. In the svnthesis stage. natural alottal flow
the final estimate of the vocal tradtf(s) is obtained through ulses are usea to createythe excitatign ,si nal forg, edik. T
pth order LPC. Finally, the effects of the vocal tract and thgu'ses . . . 9 P S

lip radiation are canceled out from the original speechailgnexc't.atlon signal IS further mod|f|eq to reproduce the time-
yielding the glottal flow signay(n). Examples of glottal flow varying changes in the natural voice source. The proposed

signals estimated with the IAIF method are shown in Fig. 1novel procedure enables both synthesis of natural sounding

In practice, the computation of the glottal volume velocit:;pe?%1 ; n:JO ?ﬁgy gocn;_roé dovera:_r:dl\cl)lfdua(laescphe eﬂ] fez;ureg tha
from the speech pressure signal is an inverse problem t riou perceived quality ot sp [11], 49D

is extremely difficult, if not impossible, to solve acculgte he overview of the system is shown in Fig. 3. The system

particularly in the case of continuous speech. Even for SLfsQnS'StS of wo main stages: training and synthesis. In the

tained phonations there are challenging types of uttersamcralnlng part, speech parameters computed by glottal Sever

such as high-pitch speech and nasals, for which the estimat tering are extracted from each utterance of a trainingespe
database, and the obtained speech parameters are modeled

of the glottal flow is known to be problematic (e.g., [44] .
[45]). In addition, a fundamental problem in trying to e 1nartarl]r(rie]j[rearrsn(rj\\:\éorlénct)afrat'e,\g'\f/lr.or|1:1 tr:r(;eHlf/lyl\r/lnshc?s:fesp ac:tr;disnpefocthhe
the accuracy of glottal inverse filtering from natural sgeec pubword units uged in a given input text, and s egch wageform
the fact that one is unable to assess in detail how closéﬁsy : : 9 P ' P

. IS synthesized using the generated speech parameters and
the obtained waveform corresponds to the true glottal flow

. . natural glottal flow pulses. Although the proposed system

because the latter cannot be measured non-invasively frosmb it on a basic framework of an HMM-based speech
the human larynx. Therefore, glottal inverse filtering noekh 'S bl ' W P

are typically tested using synthetic speech (usually szeﬁynthess system [51], the novel parametrization and sgigh

that has been created using a known, artificial waveform g}ethod_s are significantly different from previous HI\/IM-_base
the glottal excitation. This kind of evaluation, howevesr not synthesizers, and therefore they are explained in detiitbe

truly objective because speech synthesis and inverserfiter o

analysis are typically based on similar models of the hum&h Speech Parametrization

voice production apparatus, e.g., the source filter model [9 The parametrization stage attempts to compress the infor-
In contrast to this, the accuracy of the IAIF method has beemation of the speech signal into a few parameters that would
assessed recently using a different strategy based oncphysilescribe the essential characteristics of the origina&psig-
modeling of the vocal folds and the vocal tract [46], [47]iSh nal as accurately as possible. The core of the parametrizati
approach is different from ones where synthetic speechiezkcimethod is the automatic glottal inverse filtering methodHAI
by an artificial form of the glottal excitation is used, besau [24], [32], which decomposes voiced speech into the glottal
the glottal flow waveform results from the interaction of theource signal and the vocal tract transfer function.
self-sustained oscillation of the vocal folds with subtdbt The flow chart of the speech parametrization algorithm is
and supraglottal pressures. Results reported in [47] far fashown in Fig. 4. The speech is windowed with a rectangular
different vowels of ten differenty values indicate that IAIF window to 25-ms frames at 5-ms intervals and the parameters
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Fig. 3. Overview of the described system. The system considtso main
stages, training and synthesis. In the training stagerauntes of a speech
database are parametrized with a glottal inverse filterirgpdbanethod and
trained in a framework of HMM. In the synthesis stage, speemtampeters
are generated according to the text input and speech isesinéid from the
parameters.

Fig. 4. Flow chart of the parametrization stage. The speeghakis(n)

is decomposed into the glottal source siggéh) and the all-pole model
of the vocal tractV'(z) using the IAIF method. The glottal source signal
is further parametrized into the all-pole model of the voiceirse G(z),
the fundamental frequencly, and the harmonic-to-noise ratio (HNR). The
obtained parameters are converted to a suitable representat the HMM
system. For clarity, the parametrization of unvoiced speegments, using
basic LPC for the estimation of spectrum, is excluded from tbe fthart.

mation of the fundamental frequendy. The autocorrelation
method [58] is used to extract the fundamental frequenay fro
are extracted from each frame. The extracted features Hre glottal source signal and the values are further coestert
presented in Table I. First, the log-energy of the windowd@ a logarithmic scale. The voiced-unvoiced decision is enad
speech is evaluated, after which glottal inverse filtering based on the energy of the low frequency band (0-1 kHz)
performed. This decomposes a voiced speech signal into &l the number of zero-crossings in the frame. The frames
glottal source signaj(n) and thepth order all-pole model of determined as unvoiced are marked as zeros. Additionally, a
the vocal tracti’(z). The orderp is set to 30, slightly higher range of possibleé, values is defined based on the speaker’s
than the IAIF method basically requires for describing th&y range in order to reduce gross errors.
formant structure. The use of higher-order all-pole modiél w In order to capture the degree of voicing in the excitation,
alleviate the problem of coarticulation in continuous spee the harmonic-to-noise ratio (HNR) [59] of the glottal sceirc
by adding more poles to represent the more complex specsinal is analyzed in four bands (0-2, 2-4, 4-6, 6-8 kHz).
Auditory analyses with the proposed synthesis technique harhe HNR measure indicates the proportion of the periodic
shown that slightly increasing the ordeimproves the quality vibratory glottal excitation compared to the aperiodic Seoi
of synthetic speech. excitation of the voice source. The HNR is determined by first
The spectrum of the glottal source signal is estimated wigiyaluating the fast Fourier transform (FFT) of the windowed
a 10th order LPC to capture the spectral properties of thBeech signal, and evaluating the cepstrum separately for
excitation G(z), mainly the spectral tilt, but also the moreeach frequency band. The degree of the harmonicity is then
detailed spectral structure of the source. Several prevididicated by the strength of the cepstral peak, whose loeati
studies have utilized LPC-analysis for computing an egemds defined by the fundamental period. Finally, the HNR is
of the spectral tilt of the glottal flow. Some of these studiedefined for each band as the ratio of the maximum value of
have used a very small LPC order, such as two [52] Hpe cepstral peak to the averaged value of other quefreaties
three [11]. Results in [53], however, indicate that the siéc the cepstrum.
dynamics of the glottal flow cannot be modeled properly In case of unvoiced speech, conventional LPC is used to
with LPC analysis of this small a prediction order. Auditorgvaluate the spectral model of speech, though the inverse
analyses with the proposed synthesis technique corrabrafiltering is continuously performed in order to get ti&
this finding, and, consequently, 10th order LPC analysis wastimate. In unvoiced segments, and HNR are set to zero.
selected to be used in modeling of the spectral decay of
the glottal flow. Both obtained all-pole models are conwkrte TABLE |
further to line spectral frequencies (LSF) [54], a paraietr SPEECH FEATURES AND THE NUMBER OF PARAMETERS
representation of LPC information well-suited to be used in
statistical HMM system [55], providing stability [56] andw/ Eeat“re Parameters per frame
. . undamental frequency 1
spectral distortion [57]. Energy 1
The source signal estimated by the glottal inverse filtering \"/';fcrgc’sfgﬁrtcoenso'zitrfﬁ;‘) 41 0
reflects the acoustic excitation generated by the vibratiogl Vocal tract Speﬁtmm 30
folds. Therefore, the estimated glottal flow is used in the es
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Monophone HSMM | Segmental K-means & EM | o 1
°
S — 205
| Embedded Training D g
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, vy < 0
| Embedded Training |47
Context-dependent HSMM ¥ 0.1,
Decision-Tree-based Context Clustering °
(MDL criterion) & State Tying g
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, £
Tied-state g W
context-dependent HSMM | Embedded Training D -0.
1 10 2 4 6 8
Time (ms)

Fig. 5. Overview of the training stages of HMMs. First, monopaé HSMMs
are trained, converted into context-dependent HSMMs, amdstimated.
Then, decision-tree-based context clustering is appletheé HSMMs and
the model parameters of the HSMMs are tied. Finally, the cledtéISMMs
are re-estimated again.

Fig. 6. Example of a library pulse and its time derivative. Thdse is

extracted from a sustained vowel [a] produced by a male speakey normal

phonation. The closed phase of the original pulse deriwatias forced to zero
in order to remove minor fluctuations present in the waveforodpced by
the glottal inverse filtering.

The voice source spectrum is continuously extracted, agho LSFs andFy features were considered during the alignment

ggé;he values for voiced segments are used in the Synthessi'esp of the re-estimation; the weights of the other streasre w

set to zero.

C. HMM Training

The basic steps for the HMM training are similar to thalP'
in [26]. In order to model the extracted features together In the parameter generation step, an input text is first
with their duration in a unified modeling framework, contexttransformed into a sequence of context-dependent phoneme
dependent multi-stream and multi-space distribution ()1SOabels. A sentence MSD-HSMM corresponding to the label se-
[60] hidden semi-Markov models [61] (for short, MSD-quence is then constructed by concatenating the paramieder-
HSMMs [62]) are utilized as acoustic units for speech syntheontext-dependent MSD-HSMMs. Then, a feature sequence
sis. The multi-stream model structure is used for simultase trajectory is statistically generated from the sentenceDMS
and synchronous modeling of the extracted features. The MSISMM itself. Here the duration pdfs automatically deterenin
structure is used for statistical modeling of the fundamakentthe duration of each state of the sentence MSD-HSMM. A
frequency as mixture sequences of continuous real numbtggectory sequence that satisfies the global variance @f th
for voiced regions and symbol strings for unvoiced regionghole corpus [8] is used to generate the parameters.

The rest of the features are modeled as continuous pratyabili
distribution (CD) streams. The harmonic-to-noise rati@ a
the voice source spectrum would also be natural candidal
for MSD modeling, but in the following experiment CD was After the generation of the speech parameters from the
used and the parameters generated for unvoiced regions wdkéM system, the speech waveform is synthesized from the
simply omitted. The contexts used include not only phonetfrarameters. There are two main differences in this syrghesi
information but also linguistic information such as morptee stage compared to conventional synthesis methods. Fatst; n
features, accentual features, and even utterance-leatirés ral glottal flow pulses are used to create the voiced exoitati
[63], [64]. signal, and second, the spectral properties of the exaitati

Five-state left-to-right MSD-HSMMs without skip paths aresignal are modified with an adaptive infinite impulse respons
used for all speech synthesis described in this paper. E4R) filter with the aim of reproducing the time-varying
state has a single Gaussian probability distribution fionct changes in the real voice source and preserving the original
(pdf) with a diagonal covariance matrix as the state outpuvice quality.
pdf and a single Gaussian pdf with a scalar variance as theAt present, a single glottal flow pulse, called the library
state duration pdf. pulse, extracted from real speech with glottal inverserfiltg

The overview of the training process is illustrated in Fig. s used for the given speaker. The pulse is extracted from a
First, monophone MSD-HSMMs are trained using the segmeglottal flow signal of a sustained vowel, and a pulse showing
tal K-means and expectation-maximization (EM) algorithmdistinct open and closed phases is selected as a représentat
based on phonetic labels having time alignment informatiosample of the excitation. An example of a library pulse and it
These are converted into context-dependent MSD-HSMMs aderivative is shown in Fig. 6. A pulse based on real speech is
the model parameters are re-estimated again. Then, decisiexpected to be more natural than previous artificial exoitat
tree-based context clustering using a minimum descriptisince various natural properties are absent from prewousl
length (MDL) criterion [65] is applied to the HSMMs andavailable excitation models, especially from the simptast:
the model parameters of the HSMMs at each leaf node of thdrain of impulses. For example, the temporal and spectral
decision trees are tied. The clustered MSD-HSMMs are theroperties of the noise contained by the library pulse are a
re-estimated. For the proposed system, only the vocal tracnsequence of real physical movement of the vocal folds and

Parameter Generation from HMMs

.SSpeech Synthesis
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Voiced excitation Unvoiced excitatio then filtering the pulse train with an IR filter constructedrh

, — these two all-pole models, compensating for the difference
Library pulse White noise
between the spectra.
/A The lip radiation effect is modeled with a fixed differentia-
tor. The unvoiced excitation is white noise, the gain of vkahic
is determined by the energy measure generated by the HMM
system. A formant enhancement procedure [69] is applied to
Fo the LSFs generated by the HMM system to compensate for
the averaging effect of the statistical modeling. The LSkes a

Energy —Et gain then interpolated and converted into LPC coefficiehits:)
and used to filter the excitation signal.

Interpolate

Lip radiation

HNR
IV. EVALUATION
Voice source

spectrunG(z) The quality of the proposed system was compared to two
alternative HMM-based speech synthesis systems for evalua
tion purposes. The first system uses the popular STRAIGHT
Voiced / Unvoiced vocoding technigue, which has been shown to be able to
generate high quality synthetic speech [70]. The secortesys

uses an older vocoding technique, mel-cepstral analysis an

Vocal tract synthesis [71] with a simple impulse train excitation model
spectrum In addition, natural speech samples were included in the tes
V@) In order to understand the differences between the systacs a

Speech the underlying reasons for the possible differences inityal

_ _ _ _ . . the two reference systems are described next.
Fig. 7. Flow chart of the synthesis stage. The basis of theedbexcitation

signal is a library glottal flow pulse, which is modified acdogl to the

voice source parameters. Unvoiced excitation is composedhitewnoise. STRAIGHT-Based System

The excitation signals are combined and filtered with the M@t filter

V(2) to generate speech. The speech manipulation tool STRAIGHT [25] mainly

consists ofFy-adaptive spectral smoothing carried out in the
time-frequency domain to remove signal periodicity, miese
the following turbulence in the glottis [66], which cannat b citation, and group delay manipulation [72]. The STRAIGHT-
modeled with known techniques. based system extracts and models three kinds of parameters

The flow chart of the synthesis stage is shown in Fig. Yequired for the STRAIGHT vocoder with mixed excitation:
The excitation consists of voiced and unvoiced sound ssurcspectral coefficients calculated from the smoothed spgiia
The basis of the voiced sound source is the library pulseandamental frequency, and aperiodicity measures [73]. [7
This glottal flow pulse is interpolated in the time domaintwit In STRAIGHT analysis, speech signals are first high-pass
a cubic spline interpolation algorithm [67], [68] in ordey t filtered with a cut-off frequency of 70 Hz. They are then
achieve a specific fundamental period, and the energy (gagampled at a rate of 16 kHz and windowed byfnradaptive
of the pulse is equalized to the energy measure given by #Baussian window with a 5-ms shift. The vocal tract filter is
HMM. estimated with a 39th-order mel-cepstrum [71]. In this eyst

Next, the harmonic-to-noise ratio of the pulse is measuréd is used instead of log-energy. The extractionFgfvalues
by creating a frame that consists of pulses interpolateti¢o tand voiced-unvoiced decision are performed by using voting
given F; and by using the same HNR estimation method as outputs of an instantaneous-frequency-amplitudeispec
in the analysis phase. Then, noise is added separately to foased algorithm [74], a fixed-point analysis called TEMPO
bands (0-2, 2—4, 4-6, 6-8 kHz) in the frequency domain. T[ig5], and the ESPS gdfy tool [76], [77]. The aperiodicity
amount of noise in each band is determined by the ratio wfeasures for mixed excitation are based on a ratio between
the HNR measure of the pulse and the measure generatedHegy lower and upper smoothed spectral envelopes [72], [73]
the HMM system. Noise is created by evaluating the FFT ahd averaged across five frequency sub-bands (0-1, 1-2, 24,
the pulse and adding a random component both to the real @@, and 6-8 kHz). The total number of speech parameters
imaginary parts of the FFT vector. The strength of the randoper frame is 46, which is exactly the same as in the proposed
component is determined by the band-wise HNR ratios.  system.

Since the spectrum of the excitation generated by a singleln STRAIGHT synthesis, an excitation signal is generated
library pulse is constant over time and does not correspondusing mixed excitation consisting of impulses and a noise-co
the target spectrum, the spectrum of the excitation needspmnent weighted by band-pass filtered aperiodicity pararaet
be modified. The target spectrum is the all-pole model of thg each frequency bin, the aperiodicity parameter is caeder
glottal sourceGG(z) generated by the HMM. This spectrum iso the weight for a noise signal by using a sigmoid mapping
achieved by first evaluating the all-pole model of the ligrarfunction adopted in [73]. The pitch-synchronous overlag ad
pulse with LPC (the order is equal to the order(®fz)), and (PSOLA) [78] method is used to reconstruct the excitation



8 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, YOXX, NO. X, MONTH YEAR

signal, which is then used to excite a mel log spectrumicrophone [33]. Although phase information is not cruamal
approximation (MLSA) filter [71], [79], corresponding toeh the proposed method (only the magnitude spectrum is used),
STRAIGHT mel-cepstral coefficients. The vocoder modules high quality recording was performed to ensure correct
of the STRAIGHT-based system are the same as in [26]. glottal inverse filtering. The recordings were done dinetdl

a computer hard drive in an anechoic chamber using a high-
B. Impulse Train Based System guality condenser microphone (AKG CK 61-ULS). The speech

The second reference for the experiment wasdédacto was sampled at 16 kHz.

standard HMM-based speech synthesizer, which is includEd Test Setup
in the current HTS (HMM-based Speech Synthesis System)
release [51], [80]. This system uses mel-cepstral coeffisie Three separate subjective listening tests were conduoted t
to model the spectrum of speech, and the excitation is mddefssess the performance of the proposed system compared to
only by the fundamental frequency. Voiced speech is excité8er speech synthesizers. All the tests were carried oai in
by an impulse train controlled by the fundamental frequen@poustically modified multipurpose room with low backgrdun
and unvoiced speech is excited by white noise. Symheggise level. Each listener performed the tests indiviguading
from mel-cepstral coefficients is performed with the met graphical user interface on a computer terminal. Test sam-
log spectrum approximation (MLSA) filter [71], [79]. This ples were played to both ears with high-quality headphones
vocoder is known for its smooth speech quality, but also fépennheiser HD580). The three tests took approximately one
its buzziness, inherent to the simple excitation scheme. ~hour on average per person. .

For the experiment, 25 mel-cepstral coefficients (inclgdin Fifteen listeners (13 males, 2 females) with no known
the zeroth coefficient for the gain) were extracted using-a 2&earing impairment participated in the test. The listemezee
ms Blackman window with a 5-ms frame shift. The 16g- native Finnish speakers between 23 and 35 years of age,
values were estimated with the proposed system. The to¥fraging to 28 years. All the listeners were graduate o pos
number of parameters per frame is thus 26, substantialty |ggaduate students working in the field of acoustics or signal
than the other two systems. processing, but not in speech synthesis.

While this vocoder could be considered outdated, it is a The test method used for the first two tests was similar to
useful reference for the test, because its properties atelyi the comparison category rating (CCR) test described in. [82]

known and the quality compared to the STRAIGHT-basée#l this test type, a listener is presented with a pair of speec
system is documented [26]. samples for each trial. A sample pair consists of a sentence

synthesized with two different methods (or natural speech)
The task of the listener is to assess the quality of the second

C. System Configurations _ .
sample compared to the first one on the comparison mean

In order to ensure comparability between the proposed agginion score (CMOS) scale, which is a discrete seven-point
the two reference methods, identical linguistic and adoust o ranging from much worse (-3) to much better (3). The

data were used to train each system. The same linguistic frOﬁlstener responses in a CCR test can be summarized concisely

end was ut|I|zed_ FO extract 67 contextual feature_s for eag calculating the mean score for each evaluated method. The
phone in the training corpus, and the same question set

i . an yields the order of preference and distances betwken al
used to guide the model clustering.

i ) he methods (i.e., the amount of preference relative to each
The HMM configuration of the three systems was general her), but the numerical values of the mean scores do not
similar. However, the HMM training and parameter generatioﬂ

) - have explicit meaning.
involves several tunable parameters, such as stream wgeig tn the first test, the CCR method was used to assess the

MDL factors, and global variance factors, whose °ptim%]uality of the proposed method in comparison to natural
values are dependent on the speech feature representagB@ech and synthetic speech generated by the STRAIGHT-

Thus, several parameters related to the HMM system wgfgqeq system. The purpose of this test was to evaluate the
optimized independently according to the requirementsiohe overall performance of the two synthesis methods compared

parametrization scheme. to natural speech. Ten randomly chosen sentences from held-
) out data were used to generate the test samples for each
D. Speech Material method. All possible combinations of the three sample types
The proposed method was tested by training all the systemsre assessed in both orders for each sentence. Ten null pair
with a prosodically annotated database of 600 phoneticallyth identical samples were also included. Altogether,tdst
rich Finnish utterances spoken by a 39-year-old Finnistemaldonsisted of 70 cases.
speaker, comprising approximately one hour of speech mateSecond, a similar CCR test was performed, but the natural
rial [81]. The utterances were from two to eleven seconds sppeech samples were replaced with synthetic speech getherat
duration and they contained from two to 22 words, averagify the system using impulse train excitation. The purpose
to 9.34 words. The number of total phone instances (inctudiof this test was to evaluate the overall performance of the
silences) was 43210. Ninety-two utterances held out froen throposed method compared to two well known speech syn-
database were used as stimuli for the evaluation. thesizers. Again, ten randomly chosen sentences fromcld-
Glottal inverse filtering is known to be sensitive to thelata were used to generate the test samples for each method
recording conditions, especially to the phase responséef aind a total of 70 test cases were assessed.
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The pair comparison test method was used in the third test. 3
In each test case, the subjects listened to a pair of samples 2 - natural
and selected the one they preferred. They also had the option . 1
no preference between the two samples. The listeners could § 0 - ot
listen to the samples any number of times before making -1
their choice. Only the synthetic speech samples generated b -2 = stegnt
the proposed system and the STRAIGHT-based system were -3

involved in the pair comparison test. The purpose of this
test was to evaluate the general preference between the tg08. Ranking of the first CCR test for the following speeamgles:
high-quality speech synthesis systems. Ten rand0m|y chogatural speech (natural), proposed system (glottal), aheASGHT-based
f held d d h Eést m (straight). The mean score has no explicit meaninghbutlistances

sentences from held-out data were used to generate the {ggleen the scores define the amount of preference relataactoother. The
samples for each method. A total of 24 speech sample paisss confidence intervals are presented for each score.
were assessed.

After the listening tests, the listeners were asked to tepor

3
and describe possible artifacts they noticed in the saniples 5
1
0

order to obtain information about the most salient aspdts t * glorel
degrade the quality of synthetic speech. § - straight

It is worth noticing that the prosody of the synthesized - ,
utterances was not normalized between the test samples. -2 = Imeuke
Normalization of the fundamental frequency and durations -3

was considered, but since there were various features m eac

system, normalization of all differences between the $§sterig. 9. Ranking of the second CCR test for the following spesemples:

would not have been possible. The prosody of natural speatcbposed system (glottal), STRAIGHT-based system (ditpignd impulse

was clearly different from that of the synthesized uttegsnc ain based system (impulse). The mean score has no expliciingsebut
. . the distances between the scores define the amount of prederelative to

The synthetic speech samples resembled each other highlgdh other. The 95% confidence intervals are presented ébr sEare.

terms of prosody.

Finally, the intelligibility of the proposed and the 100
STRAIGHT-based system was evaluated using a standard
semantically unpredictable sentence (SUS) intelligipitest 75
[83]. A total of 41 native Finnish speakers participated in £ 50
a web-based listening test containing 30 semantically emnpr -
dictable sentences. In the test, subjects listened therszeg _ |

and typed in what they heard. The letter error rate (LER) was
calculated from the results and the Wilcoxon signed rank tes
[84] was used to evaluate the statistical significance.

glottal no pref. straight

Fig. 10. Results of the pair comparison test applied for tloppsed system
(glottal) and the STRAIGHT-based system (straight). Thes badicate the
percentage of the total number of answers to the question ‘e would

F. Results you rather listen to?”. The center bar (no pref.) indicatespreference for

. . ither of the methods. The 95% confidence intervals are dar each
The result of the first test, the ranking of natural speecﬁgr_ ’ prest

and synthetic speech generated by the proposed and the
STRAIGHT-based system, is shown in Fig. 8. The figure
shows that the quality of natural speech is still superiman also be roughly interpreted so that the improvement in
compared to synthetic speech. This large difference esujuality from the STRAIGHT-based system to the proposed
partly from the degraded naturalness and occasional @gifasystem is as significant as the improvement from the impulse
in the synthetic speech samples, but also from the prosotfigin based system to the STRAIGHT-based system.
discrepancies between the synthetic and natural speech santhe result of the third test is shown in Fig. 10, which shows
ples. It is worth emphasizing that in this experiment, whee that the proposed system is almost always preferred over the
prosody was not normalized, natural speech was considaredSTRAIGHT-based system, answering the question “Which one
superior compared to either of the speech synthesis systemsuld you rather listen to?”.
but despite that, the difference between the proposedmyste The listeners described the proposed system as smooth,
and the STRAIGHT-based system was statistically significamvarm, natural sounding, and having clear characteristfcs o
The result of the second CCR test is shown in Fig. @ person and showing some emotion, but it was also criticized
The three speech synthesis methods, the proposed systemfdh having some artifacts near consonants. The STRAIGHT-
STRAIGHT-based system, and the impulse train based systdrased system was described as very clean, but also slightly
are ranked according to the evaluation. The figure showsadificial and nasal, and some listeners compared it to band-
clear preference for the proposed method over the two othienited speech. The system using impulse train excitatias w
methods. The STRAIGHT-based system is also consideneabstly described as artificial and unnatural. The prosodflof
clearly better than the impulse train based system. Thdtreghe synthetic methods was criticized, but all the methodewe
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assessed to have approximately the same amount of errorthim detailed structure of the natural excitation, whichnan
prosody. be easily modeled. However, since the current system uses
The standard SUS test showed that the intelligibility adnly a single glottal flow pulse for an utterance, the natural
the proposed system was better than that of the STRAIGHariation in the excitation from one pulse to another careot
based system. The letter error rate was 1.6% and 2.6% Vegll reproduced. The utilization of multiple pulses is auiet
the proposed and the STRAIGHT-based method, respectivalirection of this work.
The difference between the systems was statistically fsignit This study demonstrates that the modeling of the real speech
(p < 0.0001). production mechanism through the utilization of glottaldrse
A representative set of test samples is available online fidtering in HMM-based speech synthesis can improve the
http://www.helsinki.fi/speechsciences/synthesis/damptml.  quality of synthetic speech. The formal evaluation with one
male speaker, expected to be easiest for the glottal inverse
filtering, showed that the proposed method can synthesize
very natural sounding speech. Informal experiments on the
Over the years, speech synthesis has largely been baseshosed system with several speakers, male and femalke, hav
on the use of source-filter models, in which the productiofielded encouraging resultsBased on the preliminary results
of speech is represented in terms of the excitation and filtafid the theoretical benefits of the method, it is expectet tha
characteristics. The separation of speech into these mdjigh-quality synthetic speech in different speaking styded
components has been mainly conducted by utilizing teclasiquvith different speaker characteristics can be reproduted.
based on impulse-type waveforms for the excitation. This égder to thoroughly test the performance of the proposed
greatly different from the functioning of the real humana®i synthesis technique, one should also use expressive speech
production mechanism, in which the excitation is represgntwhere the spectral dynamics of the voice source are expected
by the glottal volume velocity waveform, a smooth quasto be larger. Another directions for future research is kpea
periodic signal generated by the fluctuation of two physiand speaking style adaptation, where the proposed method
logical organs, the human vocal folds. The artificial impdls could provide substantive improvements compared to tradi-
type excitation used in typical source-filter models is alsgonal methods.
extensively different in terms of its spectral behavior whe
compared to its real, physiologically-oriented countet;pae
spectral envelope of the impulse-train is always flat while
that of the real glottal excitation varies depending on, for In this paper, a new HMM-based text-to-speech system
example, the phonation type and vocal intensity of the spok®tilizing glottal inverse filtering was described. The stud
message. One can argue that, in speech synthesis, the niesented a method to extract and model individual paramete
of speech models unable to model properly the function & the voice source and the vocal tract, and a method
the real human voice production, such as the impulse-bad@dreconstruct a realistic voice source from the parameters
excitation, may lead to a loss of valuable information andtli Using real glottal flow pulses. These novel procedures enabl
the flexibility of the synthesizer. the generation of high quality synthetic speech. Subjectiv
Utilizing glottal inverse filtering-based modeling of the-h listening tests showed that the proposed method is able to
man voice production mechanism in HMM-based synthesisggnerate highly natural synthetic speech, and the quafity o
attractive because it also provides, in comparison toticail the proposed system is considerably better compared to two
signal models, a better correspondence between the signth@ther commonly used HMM-based speech synthesizers.
speech and its underlying physiological parameters. Algho
the imitation of the human vocal apparatus itself may noehav ACKNOWLEDGMENT
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