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Propositions as Sessions

PHILIP WADLER
University of Edinburgh

(e-mail: wadler@inf.ed.ac.uk)

Abstract

Continuing a line of work by Abramsky (1994), by Bellin and Scott (1994), and by Caires and Pfen-
ning (2010), among others, this paper presents CP, a calculus in which propositions of classical linear
logic correspond to session types. Continuing a line of work by Honda (1993), by Honda, Kubo, and
Vasconcelos (1998), and by Gay and Vasconcelos (2010), among others, this paper presents GV,
a linear functional language with session types, and presents a translation from GV into CP. The
translation formalises for the first time a connection between a standard presentation of session types
and linear logic, and shows how a modification to the standard presentation yield a language free
from races and deadlock, where race and deadlock freedom follows from the correspondence to
linear logic.

Note. This paper uses colour to highlight the relation of types to terms and source to target. If you
see no colour on this page, please download a colour version from the JFP website.

“The new connectives of linear logic have obvious meanings in terms of parallel
computation. [. . . ] Linear logic is the first attempt to solve the problem of parallelism at

the logical level, i.e., by making the success of the communication process only dependent
of the fact that the programs can be viewed as proofs of something, and are therefore

sound.”
—Girard (1987), emphasis as in the original

1 Introduction

Functional programmers know where they stand: upon the foundation of λ -calculus. Its
canonicality is confirmed by its double discovery, once as natural deduction by Gentzen
and once as λ -calculus by Church. These two formulations are related by the Curry-
Howard correspondence, which takes

propositions as types,
proofs as programs, and

normalisation of proofs as evaluation of programs.

The correspondence arises repeatedly: Hindley’s type inference corresponds to Milner’s
Algorithm W; Girard’s System F corresponds to Reynold’s polymorphic λ -calculus; Peirce’s
law in classical logic corresponds to Landin’s J operator (better known as call/cc).

Today, mobile phones, server farms, and many-core processors make us concurrent
programmers. Where lies a foundation for concurrency as firm as that of λ -calculus? Many
process calculi have emerged—ranging from CSP to CCS to π-calculus to join calculus
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to mobile ambients to bigraphs—but none is as canonical as λ -calculus, and none has
the distinction of arising from Curry-Howard. This paper takes a further step along the
programme, pursued by Girard, Abramsky, Honda, Caires, and Pfenning, among others,
of seeking foundations for concurrency that rest upon the correspondence uncovered by
Curry and Howard.

Since its inception by Girard (1987), linear logic has held the promise of a foundation
for concurrency rooted in Curry-Howard. In an early step, Abramsky (1994) and Bellin
and Scott (1994) devised a translation from linear logic into π-calculus. Along another
line, Honda (1993) introduced session types, further developed by Honda et al. (1998) and
others, which take inspiration from linear logic, but do not enjoy a relationship as tight as
Curry-Howard.

Recently, Caires and Pfenning (2010) found a twist on Abramsky’s translation that yields
an interpretation strongly reminiscent of session types, and a variant of Curry-Howard with

propositions as session types,
proofs as processes, and

cut elimination as communication.

The correspondence is developed in a series of papers by Caires, Pfenning, Toninho, and
Pérez. This paper extends these lines of work with three contributions.

First, inspired by the calculus πDILL of Caires and Pfenning (2010), this paper presents
the calculus CP. Based on dual intuitionistic linear logic, πDILL uses two-sided sequents,
with two constructs corresponding to output (⊗ on the right of a sequent and( on the left),
and two constructs corresponding to input (( on the right of a sequent and ⊗ on the left).
Based on classical linear logic, CP uses one-sided sequents, offering greater simplicity and
symmetry, with a single construct for output (⊗) and a single construct for input (O), each
dual to the other. Caires et al. (2012a) compares πDILL with πCLL, which like CP is based
on classical linear logic; we discuss this comparison in Section 5. (If you like, CP stands
for Classical Processes.)

Second, though πDILL is clearly reminiscent of the body of work on session types,
no one has previously published a formal connection. Inspired by the linear functional
language with session types of Gay and Vasconcelos (2010), this paper presents the calcu-
lus GV, and presents a translation from GV into CP, for the first time formalising a tight
connection between a standard presentation of session types and a standard presentation of
linear logic. In order to facilitate the translation, GV differs from the language of Gay and
Vasconcelos (2010) in some particulars. These differences suffice to make GV, unlike the
original, free from races and deadlock. (If you like, GV stands for Good Variation.)

Curry-Howard relates proof normalisation to computation. Logicians devised proof nor-
malisation to show consistency of logic, and for this purpose it is essential that proof
normalisation terminates. Hence, a consequence of Curry-Howard is that it identifies a
fragment of λ -calculus for which the Halting Problem is solved. Well-typed programs
terminate unless they explicitly resort to non-logical features such as general recursion.
Similarly, a consequence of Curry-Howard for concurrency is that it identifies a fragment
of a process calculus which is free of deadlock. In particular, πDILL and CP are both such
fragments, and the proof that GV is deadlock-free follows immediately from its translation
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to CP. We return to the question of what non-logical features might restore races and
deadlock in the conclusion.

Third, this paper presents a calculus with a stronger connection to linear logic, at the
cost of a weaker connection to traditional process calculi. Bellin and Scott (1994) and
Caires and Pfenning (2010) each present a translation from linear logic into π-calculus
such that cut elimination converts one proof to another if and only if the translation of
the one reduces to the translation of the other; but to achieve this tight connection several
adjustments are necessary.

Bellin and Scott (1994) restrict the axiom to atomic type, and Caires and Pfenning (2010)
omit the axiom entirely. In terms of a practical programming language, such restrictions
are excessive. The former permits type variables, but instantiating a type variable to a type
requires restructuring the program (as opposed to simple substitution); the latter outlaws
type variables altogether. In consequence, neither system lends itself to parametric poly-
morphism.

Further, Bellin and Scott (1994) only obtain a tight correspondence between cut elimi-
nation and π-calculus for the multiplicative connectives, and they require a variant of π-
calculus with surprising structural equivalences such as x(y).x(z).P≡ x(z).x(y).P—permuting
two reads on the same channel! Caires and Pfenning (2010) only obtain a tight correspon-
dence between cut elimination and π-calculus by ignoring commuting conversions; this
is hard to justify logically, because commuting conversions play an essential role in cut
elimination. Pérez et al. (2012) show commuting conversions correspond to contextual
equivalences, but fail to capture the directionality of the commuting conversions.

Thus, while the connection established in previous work between cut elimination in
linear logic and reduction in π-calculus is encouraging, it comes at a cost. Accordingly, this
paper cuts the Gordian knot: it takes the traditional rules of cut elimination as specifying
the reduction rules for its process calculus. Pro: we let logic guide the design of the ‘right’
process calculus. Con: we forego the assurance that comes from double discoveries of the
same system, as with Gentzen and Church, Hindley and Milner, Girard and Reynolds, and
Peirce and Landin. Mitigating the con are the results cited above that show a connection
between Girard’s linear logic and Milner’s π-calculus, albeit not as tight as the other
connections just mentioned.

In return for loosening its connection to π-calculus, the design of CP avoids the problems
described above. The axiom is interpreted at all types, using a construct suggested by
Caires et al. (2012a), and consequently it is easy to extend the system to support poly-
morphism, using a construct suggested by Turner (1995). All commuting conversions of
cut elimination are satisfied.

This paper is the journal version of Wadler (2012). It is organised as follows. Section 2
sketches the path from Abramsky, Bellin, Scott, Caires, and Pfenning to here. Section 3
presents CP. Section 4 presents GV and its translation to CP. Section 5 discusses related
work. Section 6 concludes.

2 The Twist

This section explains how a small but crucial twist relates the work of Abramsky, Bellin,
and Scott to the work of Caires and Pfenning, and to what is presented here.
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The key difference is in the interpretation of the linear connectives⊗ and O. In contrast,
all of these works agree in their interpretation of ⊕ and N as making a selection and
offering a choice, and indeed Honda (1993) already uses ⊕ and N in that way. But input
and output in Honda’s work appear to have no connection with the connectives of linear
logic. (It is an unfortunate historical accident that ! and ? denote output and input in many
process calculi, including those of Honda (1993) and Gay and Vasconcelos (2010), while
! and ? denote exponentials in linear logic; the two uses are distinct and should not be
confused.)

In Abramsky (1994) and Bellin and Scott (1994), the following two rules interpret the
linear connectives ⊗ and O.

P ` Γ,y : A Q ` ∆,z : B
νy,z.x〈y,z〉.(P | Q) ` Γ, ∆, x : A⊗B

⊗
R `Θ, y : A, z : B

x(y,z).R `Θ, x : AOB
O

Under their interpretation, A⊗B is the type of a channel which outputs a pair of an A and a
B, while AOB is the type of a channel which inputs a pair of an A and a B. In the rule for⊗,
process νy,z.x〈y,z〉.(P | Q) allocates fresh channels y and z, transmits the pair of channels
y and z along x, and then concurrently executes P and Q. In the rule for O, process x(y,z).R
communicates along channel x obeying protocol AOB; it receives from x the pair of names
y and z, and then executes R.

This work puts a twist on the above interpretation. Here we use the following two rules
interpret the linear connectives ⊗ and O.

P ` Γ, y : A Q ` ∆, x : B
νy.x〈y〉.(P | Q) ` Γ, ∆, x : A⊗B

⊗
R `Θ, y : A, x : B

x(y).R `Θ, x : AOB
O

Under the new interpretation, A⊗B is the type of a channel which outputs an A and then
behaves as B, while A O B is the type of a channel which inputs a A and then behaves as
B. In the rule for ⊗, process νy.x〈y〉.(P | Q) allocates fresh variable y, transmits y along x,
and then concurrently executes P and Q. In the rule for O, process x(y).R receives name y
along x, and then executes R.

The difference is that in the rules used by Abramsky, Bellin, and Scott the hypotheses
refer to channels y and z and the conclusion to channel x, while in the rules used here the
hypotheses refer to channels y and x, and the conclusion reuses the channel x. One may
regard the type of the channel as evolving as communication proceeds, corresponding to
the notion of session type.

While it is natural to interpret A⊗B and AOB as transmitting and accepting a pair, it may
initially seem unnatural to interpret A⊗B and A O B asymmetrically, as first transmitting
or accepting a channel obeying protocol A and then obeying protocol B. The unnaturality
of the interpretation may explain why it took sixteen years between when Abramsky
(1994) and Bellin and Scott (1994) published their interpretation of the linear connectives
as pairing, and Caires and Pfenning (2010) published their interpretation of the linear
connectives as session types. In fact, we will see that there is an isomorphism between
A⊗B and B⊗A, and similarly for AOB and BOA, which provides the necessary symmetry.

The insight behind this twist is clearly due to Caires and Pfenning, although the relation-
ship to the earlier work is not presented in their paper along the lines described. Indeed,
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the relation to the work of Abramsky, Bellin, and Scott is further obscured because Caires
and Pfenning use intuitionistic linear logic rather than classical logic.

In Caires and Pfenning (2010), the following four rules interpret the linear connectives
⊗ and(.

Γ; ∆ ` P :: y : A Γ; ∆′ ` Q :: x : B
Γ; ∆, ∆′ ` νy.x〈y〉.(P | Q) :: x : A⊗B

⊗-R
Γ; ∆, y : A, x : B ` R :: z : C

Γ; ∆, x : A⊗B ` x(y).R :: z : C
⊗-L

Γ; ∆, y : A ` R :: x : B
Γ; ∆ ` x(y).R :: x : A( B

(-R
Γ; ∆ ` P :: y : A Γ; ∆′, x : B ` Q :: z : C

Γ; ∆, ∆′, x : A( B ` νy.x〈y〉.(P | Q) :: z : C
(-L

To print these rules requires more than twice as much ink as to print the comparable rules
used here! Part of the difference is due to different forms of bookkeeping, which is mostly
incidental and won’t be detailed here. Another difference is that the above rules use (
instead of O, but since A( B and A⊥O B are equivalent that is not so significant. The
difference we will focus on here is that the use of an intuitionistic logic forces Caires and
Pfenning to represent output by two rules,⊗-R and(-L, and input by two rules,(-R and
⊗-L. This duplication adds complexity and confusion. Worse, it impedes usability, since if
one user defines an output protocol with A⊗B, and a second user defines an input protocol
with A( B, then these cannot be connected directly with a cut, but require some form
of mediating code. Avoiding mismatch requires some convention—for instance, a server
might always use R rules and a client always use L rules. The classical approach is easier to
use in practice, since no convention for servers and clients is required. Caires and Pfenning
do give some reasons to prefer the intuitionistic approach to the classical one, and these
are described in Section 5.

While Girard associated linear logic with concurrency from the beginning, many readers
of the original paper (including the current author) had some difficulty giving an intuitive
reading to the classical connective O. One advantage of the work presented here is that it
may finally offer an intuitive reading of this fundamental connective.

3 Classical linear logic as a process calculus

This section presents CP, a session-typed process calculus. CP is based on classical linear
logic with one-sided sequents, the system treated in the first paper on linear logic by Girard
(1987).
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w↔x ` w : A⊥, x : A
Ax

P ` Γ, x : A Q ` ∆, x : A⊥

νx :A.(P | Q) ` Γ, ∆
Cut

P ` Γ, y : A Q ` ∆, x : B
x[y].(P | Q) ` Γ, ∆, x : A⊗B

⊗
R `Θ, y : A, x : B

x(y).R `Θ, x : AOB
O

P ` Γ, x : A
x[inl].P ` Γ, x : A⊕B

⊕1
P ` Γ, x : B

x[inr].P ` Γ, x : A⊕B
⊕2

Q ` ∆, x : A R ` ∆, x : B
x.case(Q,R) ` ∆, x : ANB

N

P ` ?Γ, y : A
!x(y).P ` ?Γ, x : !A

!
Q ` ∆, y : A

?x[y].Q ` ∆, x : ?A
?

Q ` ∆

Q ` ∆, x : ?A Weaken
Q ` ∆, x : ?A, x′ : ?A
Q{x/x′} ` ∆, x : ?A

Contract

P ` Γ, x : B{A/X}
x[A].P ` Γ, x : ∃X .B

∃
Q ` ∆, x : B

x(X).Q ` ∆, x : ∀X .B
∀ (X 6∈ fv(∆))

x[ ].0 ` x : 1
1

P ` Γ

x().P ` Γ, x :⊥ ⊥ (no rule for 0) x.case() ` Γ, x :> >

Fig. 1. CP, classical linear logic as a session-typed process calculus

Types Propositions, which may be interpreted as session types, are defined by the follow-
ing grammar:

A,B,C ::=
X propositional variable
X⊥ dual of propositional variable
A⊗B ‘times’, output A then behave as B
AOB ‘par’, input A then behave as B
A⊕B ‘plus’, select from A or B
ANB ‘with’, offer choice of A or B
!A ‘of course!’, server accept
?A ‘why not?’, client request
∃X .B existential, output a type
∀X .B universal, input a type
1 unit for ⊗
⊥ unit for O
0 unit for ⊕
> unit for N

Let A,B,C range over propositions, and X ,Y,Z range over propositional variables. Every
propositional variable X has a dual written X⊥. Propositions are composed from multi-
plicatives (⊗,O), additives (⊕,N), exponentials (!,?), second-order quantifiers (∃,∀), and
units (1,⊥,0,>). In ∃X .B and ∀X .B, propositional variable X is bound in B. Write fv(A)
for the free variables in proposition A. Our notation is identical to that of Girard (1987),
save we write quantifiers as ∃,∀ where he writes ∨,∧.
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Duals Duals play a key role, ensuring that a request for input at one end of a channel
matches an offer of a corresponding output at the other, and that a request to make a
selection at one end matches an offer of a corresponding choice at the other.

Each proposition A has a dual A⊥, defined as follows:

(X)⊥ = X⊥ (X⊥)⊥ = X
(A⊗B)⊥ = A⊥OB⊥ (AOB)⊥ = A⊥⊗B⊥

(A⊕B)⊥ = A⊥NB⊥ (ANB)⊥ = A⊥⊕B⊥

(!A)⊥ = ?A⊥ (?A)⊥ = !A⊥

(∃X .B)⊥ = ∀X .B⊥ (∀X .B)⊥ = ∃X .B⊥

1⊥ =⊥ ⊥⊥ = 1
0⊥ => >⊥ = 0

The dual of a propositional variable, X⊥, is part of the syntax. Multiplicatives are dual to
each other, as are additives, exponentials, and quantifiers.

Duality is an involution, (A⊥)⊥ = A.

Substitution Write B{A/X} to denote substitution of A for X in B. Substitution of a propo-
sition for a dual propositional variable results in the dual of the proposition. Assuming
X 6= Y , define

X{A/X}= A X⊥{A/X}= A⊥

Y{A/X}= Y Y⊥{A/X}= Y⊥

The remaining clauses are standard, for instance (A⊗B){C/X}= A{C/X}⊗B{C/X}.
Duality preserves substitution, B{A/X}⊥ = B⊥{A/X}.

Environments Let Γ, ∆, Θ range over environments associating names to propositions,
where each name is distinct. Assuming Γ = x1 : A1, . . . , xn : An, with xi 6= x j whenever
i 6= j, we write fn(Γ) = {x1, . . . ,xn} for the names in Γ, and fv(Γ) = fv(A1)∪ ·· · ∪ fv(An)
for the free propositional variables in Γ. Order in environments is ignored. Environments
use linear maintenance, so two environments may be combined only if they contain distinct
names: writing Γ, ∆ implies fn(Γ)∩ fn(∆) = /0.
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Processes Our process calculus is a variant on the π-calculus (Milner et al., 1992). Pro-
cesses are defined by the following grammar:

P,Q,R ::=
x↔y link
νx :A.(P | Q) parallel composition
x[y].(P | Q) output
x(y).P input
x[inl].P left selection
x[inr].P right selection
x.case(P,Q) choice
!x(y).P server accept
?x[y].P client request
x[A].P output a type
x(X).P input a type
x[ ].0 empty output
x().P empty input
x.case() empty choice

In νx :A.(P |Q), name x is bound in P and Q, in x[y].(P |Q), name y is bound in P (but not
in Q), and in x(y).P, ?x[y].P, and !x(y).P, name y is bound in P. We write fn(P) for the free
names in process P. In x(X).P, propositional variable X is bound in P.

The form x↔y denotes forwarding, where every message received on x is retransmitted
on y, and every message received on y is retransmitted on x. Square brackets indicate
output and round brackets indicate input; unlike π-calculus, both output and input names
are bound. The forms x(y).P and !x(y).P in our calculus behave like the same forms in
π-calculus, while the forms x[y].P and ?x[y].P in our calculus both behave like the form
νy.x〈y〉.P in π-calculus.

Alternative notion A referee suggested, in line with one tradition for π-calculus, choosing
the notation x(y).P in place of x[y].P. We avoid this alternative because overlines can be
hard to spot, while the distinction between round and square brackets is clear.

Judgments The rules for assigning session types to processes are shown in Figure 1.
Judgments take the form

P ` x1 : A1, . . . , xn : An

indicating that process P communicates along each channel named xi obeying the protocol
specified by Ai. Erasing the process and the channel names from the above yields

` A1, . . . , An

and applying this erasure to the rules in Figure 1 yields the rules of classical linear logic,
as given by Girard (1987).
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(Swap)
P ` Γ, x : A Q ` ∆, x : A⊥

νx :A.(P | Q) ` Γ, ∆
Cut ≡

Q ` ∆, x : A⊥ P ` Γ, x : A

νx :A⊥.(Q | P) ` Γ, ∆
Cut

(Assoc)
P ` Γ, x : A Q ` ∆, x : A⊥, y : B

νx.(P | Q) ` Γ, ∆, y : B
Cut

R `Θ, y : B⊥

νy.(νx.(P | Q) | R) ` Γ, ∆, Θ
Cut

≡

P ` Γ, x : A

Q ` ∆, x : A⊥, y : B R `Θ, y : B⊥

νy.(Q | R) ` ∆, Θ, x : A⊥
Cut

νx.(P | νy.(Q | R)) ` Γ, ∆, Θ
Cut

(AxCut)

w↔x ` w : A⊥, x : A
Ax

P ` Γ, x : A⊥

νx.(w↔x | P) ` Γ, w : A⊥
Cut =⇒ P{w/x} ` Γ, w : A⊥

Fig. 2. Structural cut equivalences and reduction for CP

3.1 Structural rules

The calculus has two structural rules, Axiom and Cut. We do not list Exchange explicitly,
since order in environments is ignored.

The axiom is:

w↔x ` w : A⊥, x : A
Ax

We interpret the axiom as forwarding. A name input along w is forwarded as output along
x, and vice versa, so types of the two channels must be dual. Bellin and Scott (1994)
restrict the axiom to propositional variables, replacing A by X and replacing w↔x by
the π-calculus term w(y).x〈y〉.0. Whereas we forward any number of times and in either
direction, they forward only once and from X to X⊥.

The cut rule is:

P ` Γ, x : A Q ` ∆, x : A⊥

νx :A.(P | Q) ` Γ, ∆
Cut

Following Abramsky (1994) and Bellin and Scott (1994), we interpret Cut as a symmetric
operation combining parallel composition with name restriction. Process P communicates
along channel x obeying protocol A, while process Q communicates along the same channel
x obeying the dual protocol A⊥. Duality guarantees that sends and selections in P match
with receives and choices in Q, and vice versa. Communications along Γ and ∆ are disjoint,
so P and Q are restricted to communicate with each other only along x. If communication
could occur along two channels rather than one this could lead to races or deadlock. (When
we discuss exponentials, we will see that Γ and ∆ may share channels of type ?B, for some
B. Such channels are used only to communicate with replicable servers, so it remains the
case that the only communication between P and Q is along x.)

Observe that, despite writing νx : A in the syntax, the type of x differs in P and Q—it is
A in the former but A⊥ in the latter. Including the type A in the syntax for Cut guarantees
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that given the type of each free name in the term, each term has a unique type derivation.
To save ink and eyestrain, the type is omitted when it is clear from the context.

Cut elimination corresponds to process reduction. Figure 2 shows two equivalences on
cuts, and one reduction that simplifies a cut against an axiom, each specified in terms
of derivation trees; from which we read off directly the corresponding equivalence or
reduction on processes. We write≡ for equivalences and =⇒ for reductions; both relations
are reflexive and transitive. Equivalence (Swap) states that a cut is symmetric:

νx :A.(P | Q)≡ νx :A⊥.(Q | P)

It serves the same role as the π-calculus structural equivalence for symmetry, P |Q≡Q | P.
Equivalence (Assoc) permits reordering cuts:

νy.(νx.(P | Q) | R)≡ νx.(P | νy.(Q | R))

It serves the same role as the π-calculus structural equivalences for associativity, P | (Q |
R)≡ (P | Q) | R, and scope extrusion, (νx.P) | Q≡ νx.(P | Q) when x /∈ P.

Reduction (AxCut) simplifies a cut against an axiom.

νx.(w↔x | P) =⇒ P{w/x}

We write P{w/x} to denote substitution of w for x in P.

Alternative notation The confusion of giving different types to x in P and Q might be
avoided by picking a different syntax νx↔y.(P | Q), with the typing rule

P ` Γ, x : A Q ` ∆, y : A⊥

νx↔y.(P | Q) ` Γ, ∆
Cut

Here instead of using x as the distinguished free name of type A in P and type A⊥ in Q,
we retain x as the distinguished free name of type A in P but use y as the distinguished
free name of type A⊥ in Q. Thus νx↔y.(P | Q) in the alternative notation corresponds to
νx.(P | (Q{x/y})) in our notation. We avoid this alternative so as not to proliferate names.

3.2 Output and input

The multiplicative connectives ⊗ and O are dual. We interpret A⊗B as the session type of
a channel which outputs an A and then behaves as a B, and A O B as the session type of a
channel which inputs an A and then behaves as a B.

The rule for output is:

P ` Γ, y : A Q ` ∆, x : B
x[y].(P | Q) ` Γ, ∆, x : A⊗B

⊗

Processes P and Q act on disjoint sets of channels. Process P communicates along channel
y obeying protocol A, while process Q communicates along channel x obeying protocol B.
The composite process x[y].(P |Q) communicates along channel x obeying protocol A⊗B;
it allocates a fresh channel y, transmits y along x, and then concurrently executes P and
Q. Disjointness of P and Q ensures there is no further entangling between x and y, which
guarantees freedom from races and deadlock.
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The rule for input is:

R `Θ, y : A, x : B
x(y).R `Θ, x : AOB

O

Process R communicates along channel y obeying protocol A and along channel x obeying
protocol B. The composite process x(y).R communicates along channel x obeying protocol
A O B; it receives name y along x, and then executes R. Unlike with output, the single
process R that communicates with both x and y. It is safe to permit the same process to
communicate with x and y on the input side, because there is no further entangling of
x with y on the output side, explaining the claim that disentangling x from y on output
guarantees freedom from races and deadlock.

For output, channel x has type B in the component process Q but type A⊗ B in the
composite process x[y].(P | Q). For input, channel x has type B in the component process
R but type AOB in the composite process x(y).R. One may regard the type of the channel
evolving as communication proceeds, corresponding to the notion of session type. Assign-
ing the same channel name different types in the hypothesis and conclusion of a rule is
the telling twist added by Caires and Pfenning (2010), in contrast to the use of different
variables in the hypothesis and conclusion followed by Abramsky (1994) and Bellin and
Scott (1994).

The computational content of the logic is most clearly revealed in the principal cuts of
each connective against its dual. Principal cut reductions are shown in Figure 3.

Cut of output⊗ against input O corresponds to communication, as shown in rule (β⊗O):

νx.(x[y].(P | Q) | x(y).R) =⇒ νy.(P | νx.(Q | R))

In stating this rule, we take advantage of the fact that y is bound in both x[y].P and x(y).Q
to assume the same bound name y has been chosen in each; Pitts (2011) refers to this as
the ‘anti-Barendregt’ convention.

Recall that x[y].P in our notation corresponds to νy.x〈y〉.P in π-calculus. Thus, the rule
above corresponds to the π-calculus reduction:

νx.(νy.x〈y〉.(P | Q) | x(z).R) =⇒ νy.P | νx.(Q | R{z/y})

This follows from from x〈y〉.P | x(z).R =⇒ P | R{z/y}, and the structural equivalences for
scope extrusion, since x /∈ fn(P).

One might wonder why the right-hand side of the above reduction is νx.(P | νy.(Q | R))
rather than νy.(Q | νx.(P | R))? The two are in fact equivalent by the use of the structural
rules:

νx :A.(P | νy :B.(Q | R))
≡ νx :A.(P | νy :B⊥.(R | Q)) (Swap)
≡ νy :B⊥.(νx :A.(P | R) | Q) (Assoc)
≡ νy :B.(Q | νx :A.(P | R)) (Swap)

Hence either term serves equally well as the right-hand side.
The apparent lack of symmetry between A⊗B and B⊗A may appear unsettling: the first

means output A and then behave as B, the second means output B and then behave as A.
The situation is similar to Cartesian product, where B×A and A×B differ but satisfy an
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(β⊗O)
P ` Γ, y : A Q ` ∆, x : B

x[y].(P | Q) ` Γ, ∆, x : A⊗B
⊗

R `Θ, y : A⊥, x : B⊥

x(y).R `Θ, x : A⊥OB⊥
O

νx.(x[y].(P | Q) | x(y).R) ` Γ, ∆, Θ
Cut

=⇒

P ` Γ, y : A

Q ` ∆, x : B R `Θ, y : A⊥, x : B⊥

νx.(Q | R) ` ∆, Θ, y : A⊥
Cut

νy.(P | νx.(Q | R)) ` Γ, ∆, Θ
Cut

(β⊕N)
P ` Γ, x : A

x[inl].P ` Γ, x : A⊕B
⊕1

Q ` ∆, x : A⊥ R ` ∆, x : B⊥

x.case(Q,R) ` ∆, x : A⊥NB⊥
N

νx.(x[inl].P | x.case(Q,R)) ` Γ, ∆
Cut

=⇒

P ` Γ, x : A Q ` ∆, x : A⊥

νx.(P | Q) ` Γ, ∆
Cut

(β!?)
P ` ?Γ, y : A

!x(y).P ` ?Γ, x : !A
!

Q ` ∆, y : A⊥

?x[y].Q ` ∆, x : ?A⊥
?

νx.(!x(y).P | ?x[y].Q) ` ?Γ, ∆
Cut

=⇒ P ` ?Γ, y : A Q ` ∆, y : A⊥

νy.(P | Q) ` ?Γ, ∆
Cut

(β!W )
P ` ?Γ, y : A

!x(y).P ` ?Γ, x : !A
!

Q ` ∆

Q ` ∆, x : ?A⊥
Weaken

νx.(!x(y).P | Q) ` ?Γ, ∆
Cut

=⇒
Q ` ∆

Q ` ?Γ, ∆
Weaken

(β!C)
P ` ?Γ, y : A

!x(y).P ` ?Γ, x : !A
!

Q ` ∆, x : ?A, x′ : ?A
Q{x/x′} ` ∆, x : ?A

Contract

νx.(!x(y).P | Q{x/x′}) ` ?Γ, ∆
Cut

=⇒

P ` ?Γ, y : A
!x(y).P ` ?Γ, x : !A

!

P′ ` ?Γ′, y′ : A
!x′(y′).P′ ` ?Γ′, x′ : !A

!
Q ` ∆, x : ?A⊥, x′ : ?A⊥

νx′.(!x′(y′).P′ | Q) ` ?Γ′, ∆, x : ?A⊥
Cut

νx.(!x(y).P | νx′.(!x′(y′).P′ | Q)) ` ?Γ, ?Γ′, ∆
Cut

νx.(!x(y).P | νx′.(!x′(y).P | Q)) ` ?Γ, ∆
Contract

(β∃∀)
P ` Γ, x : B{A/X}

x[A].P ` Γ, x : ∃X .B
∃

Q ` ∆, x : B⊥

x(X).Q ` ∆, x : ∀X .B⊥
∀

νx.(x[A].P | x(X).Q) ` Γ, ∆
Cut

=⇒

P ` Γ, x : B{A/X} Q{A/X} ` ∆, x : B⊥{A/X}
νx.(P | Q{A/X}) ` Γ, ∆

Cut

(β1⊥)

x[ ].0 ` x : 1
1

P ` Γ

x().P ` Γ, x :⊥ ⊥

νx.(x[ ].0 | x().P) ` Γ
Cut

=⇒ P ` Γ

(β0>)
(no rule for 0 with >)

Fig. 3. Principal cut reductions for CP
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isomorphism. Similarly, A⊗B and B⊗A are interconvertible.

w↔z ` w : B⊥, z : B
Ax

y↔x ` y : A⊥, x : A
Ax

x[z].(w↔z | y↔x) ` w : B⊥, y : A⊥, x : B⊗A
⊗

w(y).x[z].(w↔z | y↔x) ` w : A⊥OB⊥, x : B⊗A
O

Let flipwx be the term in the conclusion of the above derivation. Given an arbitrary deriva-
tion ending in P ` Γ, w : A⊗B, one may replace A⊗B with B⊗A as follows:

P ` Γ, w : A⊗B flipwx ` w : A⊥OB⊥, x : B⊗A
νw.(P | flipwx) ` Γ, x : B⊗A

Cut

Here process P communicates along w obeying the protocol A⊗B, outputting A and then
behaving as B. Composing P with Q yields the process that communicates along x obeying
the protocol B⊗A, outputting B and then behaving as A.

The multiplicative units are 1 for ⊗ and ⊥ for O. We interpret 1 as the session type of a
channel that transmits an empty ouput, and ⊥ as the session type of a channel that accepts
an empty input. These are related by duality: 1⊥ = ⊥. Their rules are shown in Figure 1.
Cut of empty output 1 against empty input ⊥ corresponds to an empty communication, as
shown in rule (β1⊥):

νx.(x[ ].0 | x().P) =⇒ P

This rule resembles reduction of a nilary communication in the polyadic π-calculus.

Example We give a series of examples inspired by internet commerce, based on similar
examples in Caires and Pfenning (2010). Our first example is that of a sale, where the client
sends a product name and credit card number to a server, which returns a receipt. Define:

Buy
def= Name⊗ (Credit⊗ (Receipt⊥O⊥))

Sell
def= Name⊥O (Credit⊥O (Receipt⊗1))

buyx
def= x[u].(put-nameu | x[v].(put-creditv | x(w).x().get-receiptw))

sellx
def= x(u).x(v).x[w].(computeu,v,w | x[ ].0)

Here Name is the type of product names; Credit is the type of credit card numbers; Receipt

is the type of receipts; put-nameu transmits on u the name of a product, say “tea”; put-creditv
transmits on v a credit card number; computeu,v,w accepts name u and credit card v, and
computes a receipt, which it transmits on w; get-receiptw accepts receipt w, and continues
with the buyer’s business; Γ specifies other channels used by the client; and Θ specifies
other channels used by the server.

Observe that Buy = Sell⊥ and

buyx ` Γ, x : Buy sellx `Θ, x : Sell

νx.(buyx | sellx) ` Γ, Θ
Cut

By three applications of (β⊗O) and one of (β1⊥), we have

νx.(buyx | sellx) =⇒
νu.(put-nameu | νv.(put-creditv | νw.(computeu,v,w | get-receiptw)))

illustrating the interaction of output and input.
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Example As a further example, illustrating use of the units 1 and ⊥, we consider a way to
express two parallel computations. We introduce a primitive computation

pary,z ` y : 1, z : 1

that sends a signal along both y and z in parallel. Then we can derive a term that executes
two processes P ` Γ and Q ` ∆ in parallel, as follows:

pary,z ` y : 1, z : 1
P ` Γ

y().P ` y :⊥, Γ
⊥

νy.(pary,z | y().P) ` z : 1, Γ
Cut

Q ` ∆

z().Q ` z :⊥, ∆
⊥

νz.(νy.(pary,z | y().P) | z().Q) ` Γ, ∆
Cut

In what follows, we abbreviate the above derivation as

P ` Γ Q ` ∆

P | Q ` Γ, ∆
Mix

We will see that Mix has a logical interpretation in Section 6.

3.3 Selection and choice

The additive connectives ⊕ and N are dual. We interpret A⊕B as the session type of a
channel which selects from either an A or a B, and A N B as the session type of a channel
which offers a choice of either an A or a B.

The rule for left selection is:

P ` Γ, x : A
x[inl].P ` Γ, x : A⊕B

⊕1

Process P communicates along channel x obeying protocol A. The composite process
x[inl].P communicates along channel x obeying protocol A⊕B; it transmits along x a
request to select the left option from a choice, and then executes process P. The rule for
right selection is symmetric.

The rule for choice is:
Q ` ∆, x : A R ` ∆, x : B
x.case(Q,R) ` ∆, x : ANB

N

The composite process x.case(Q,R) communicates along channel x obeying protocol ANB;
it receives a selection along channel x and executes either process Q or R accordingly.

For selection, channel x has type A in the component process P and type A⊕B in the
composite process x[inl].P. For choice, channel x has type A in the component process Q,
type B in the component process R, and type ANB in the composite process x.case(Q,R).
Again, one may regard the type of the channel evolving as communication proceeds,
corresponding to the notion of session type.

Cut of selection ⊕ against choice N corresponds to picking an alternative, as shown in
rule (β⊕N):

x[inl].P | x.case(Q,R) =⇒ νx.(P | Q)

The rule to select the right option is symmetric.
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The additive units are 0 for⊕ and> for N. We interpret 0 as the session type of a channel
that selects from among no alternatives, and⊥ as the session type of a channel that offers a
choice among no alternatives. These are related by duality: 0⊥ =>. Their rules are shown
in Figure 1. There is no rule for 0, because it is impossible to select from no alternatives.
Hence, there is also no reduction for a cut of an empty selection against an empty choice,
as shown in Figure 3.

Example We extend our previous example to offer a choice of two operations, selling an
item or quoting a price. To start, we specify a second form of internet commerce, quoting a
price, where the client sends a product name to the server, which returns its price. Define:

Shop
def= (Name⊗ (Price⊥O⊥))

Quote
def= (Name⊥O (Price⊗1))

shopx
def= x[u].(put-nameu | x(v).get-pricev))

quotex
def= x(u).x[v].(lookupu,v | x[ ].0)

Here Name is the type of product names; Price is the type of prices; put-nameu transmits
on u the name of a product, say “tea”; lookupu,v accepts name u and looks up the price,
which it transmits along v; get-price accepts price v, and continues with the requester’s
business; ∆ specifies other channels used by the client; and Θ specifies other channels used
by the server. Apart from the distinguished channel x, sellX and quoteX use the same other
channels, while buyX and shopx may use different other channels.

Observe that Shop = Quote⊥ and

shopx ` ∆, x : Shop quotex `Θ, x : Quote

νx.(shopx | quotex) ` ∆, Θ
Cut

By two applications of (β⊗O) and one of (β1⊥), we have

νx.(shopx | quotex) =⇒ νu.(put-nameu | νv.(lookupu,v | get-pricev)))

further illustrating the interaction of output and input.
We now combine the two servers into one that offers a choice of either service, and

promote each of the previous clients into one that first selects the appropriate service and
then behaves as before. Define:

Select
def= Buy⊕Shop

Choice
def= SellNQuote

select-buyx
def= x[inl].buyx

select-shopx
def= x[inr].shopx

choicex
def= x.case(sellx,quotex)

Observe that Select = (Choice)⊥ and

select-buyx ` Γ, x : Choose choicex `Θ, x : Offer

νx.(select-buyx | choicex) ` Γ, Θ
Cut

By one application of (β⊕N) we have

νx.(select-buyx | choicex) =⇒ νx.(buyx | sellx)
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illustrating the interaction of selection and choice. Similarly, the above judgment also holds
if we replace select-buyx with select-shopx and Γ with ∆, and we have

νx.(select-shopx | choicex) =⇒ νx.(shopx | quotex)

illustrating the other selection.

3.4 Servers and clients

The exponential connectives ! and ? are dual. We interpret !A as the session type of a server
that will repeatedly accept an A, and interpret ?A as the session type of a collection of
clients that may each request an A. A server must be impartial, providing the same service
to each client, whereas clients may pass different requests to the same server. Hence, !A
offers uniform behaviour, while ?A accumulates diverse behviours.

The rule for servers is:
P ` ?Γ, y : A

!x(y).P ` ?Γ, x : !A
!

Process P communicates along channel y obeying protocol A. The composite process
!x(y).P communicates along channel x obeying the protocol !A; it receives y along x,
and then spawns a fresh copy of P to execute. All channels used by P other than y must
obey a protocol of the form ?B, for some B, to ensure that replicating P respects the type
discipline. Intuitively, a process may only provide a replicable service if it is implemented
by communicating only with other processes that provide replicable services.

There are three rules for clients, corresponding to the fact that a server may have one,
none, or many clients. The three rules correspond to the rules of classical linear logic for
dereliction, weakening, and contraction.

The first rule is for a single client.

Q ` ∆, y : A
?x[y].Q ` ∆, x : ?A

?

Process Q communicates along channel y obeying protocol A. The composite process
?x[y].Q communicates along channel x obeying protocol ?A; it allocates a fresh channel
y, transmits y along x, and then executes process Q. Cut of rule ! against rule ? corresponds
to spawning a single copy of a server to communicate with a client, as shown in rule (β!?):

νx.(!x(y).P | ?x[y].Q) =⇒ νy.(P | Q)

The second rule is for no clients.

Q ` ∆

Q ` ∆, x : ?A Weaken

A process Q that does not communicate along any channel obeying protocol A may be
regarded as communicating along a channel obeying protocol ?A. Cut of rule ! against
Weaken corresponds to garbage collection, deallocating a server that has no clients, as
shown in rule (β!W ):

νx.(!x(y).P | Q) =⇒ Q, if x 6∈ fn(Q)
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The third rule aggregates multiple clients.

Q ` ∆, x : ?A, x′ : ?A
Q{x/x′} ` ∆, x : ?A

Contract

Process Q communicates along two channels x and x′ both obeying protocol ?A. Process
Q{x/x′} is identical to Q save all occurrences of x′ have been renamed to x; it com-
municates along a single channel x obeying protocol ?A. Cut of rule ! against Contract
corresponds to replicating a server, as shown in rule (β!C):

νx.(!x(y).P | Q{x/x′}) =⇒ νx.(!x(y).P | νx′.(!x′(y).P | Q))

The type derivation on the right-hand side of rule (β!C) applies Contract once for each free
name in Γ. The derivation is written using the following priming convention: we assume
that to each name zi there is associated another name z′i, and we write P′ for the process
identical to P save that each free name zi in P has been replaced by z′i; that is, if fn(P) =
{z1, . . . ,zn} then P′ = P{z′1/z1, . . . ,z′n/zn}.

Example We further extend our example, so that the server offers a replicated service
to multiple clients. Presume that in the preceding examples the channels Θ used by sellx,
quotex, and choicex is in fact of the form ?Θ, so that each process is implemented by
communicating only with other processes that provide replicable services. Define:

Client
def= ?Select

Server
def= !Choice

clientx
def= ?x(y).select-buyy | ?x(y).select-shopy

serverx
def= !x(y).choicey

Here the combination of the two processes in clientx is formed using the Mix rule, as
discussed in the second example of Section 3.2.

Observe that Client = Server⊥ and
clientx ` Γ, ∆, x : Client serverx ` ?Θ, x : Server

νx.(clientx | serverx) ` Γ, ∆, ?Θ
Cut

By one application of (β!C) and two of (β!?) we have

νx.(clienty | servery) =⇒ (νy.select-buyy | choicey) | (νy′.select-shopy′ | choicey′)

illustrating the interaction of a replicable server with multiple clients. Note that pushing
the two instances of choice inside the instance of Mix requires two uses of the structural
rule Assoc from Section 3.1 and two uses of the commuting conversion κ0 discussed in
Section 3.6.

Alternative notation A referee notes weakening and contraction could be given explicit
notation rather than implicit, for instance using ?x[ ].Q to denote weakening and ?x[x′,x′′].Q
to denote contraction, yielding type rules

Q ` ∆

?x[ ].Q ` ∆, x : ?A
Weaken
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and

Q ` ∆, x′ : ?A, x′′ : ?A
?x[x′,x′′].Q ` ∆, x : ?A

Contract

while reduction rules (β!W ) and (β!C) become

νx.(!x(y).P | ?x[ ].Q) =⇒?z1[ ]. · · · .?zn[ ].Q

and

νx.(!x(y).P | ?x[x′,x′′].Q) =⇒
?z1[z′1,z

′′
1 ]. · · · .?zn[z′n,z

′′
n ].νx′.(!x′(y′).P′ | νx′′.(!x′′(y′′).P′′ | Q))

where fn(P) = {y,z1, . . . ,zn}. We avoid this alternative because the implicit notation is
more convenient.

3.5 Polymorphism

The quantifiers ∃ and ∀ are dual. We interpret ∃X .B as the session type of a channel that
instantiates propositional variable X to a given proposition, and interpret ∀X .B as the
session type of a process that generalises over X . These correspond to type application
and type abstraction in polymorphic λ -calculus, or to sending and receiving types in the
polymorphic π-calculus of Turner (1995).

The rule for instantiation is:

P ` Γ, x : B{A/X}
x[A].P ` Γ, x : ∃X .B

∃

Process P communicates along channel x obeying protocol B{A/X}. The composite pro-
cess x[A].P communicates along channel x obeying protocol ∃X .B; it transmits a represen-
tation of A along x, and then executes P.

The rule for generalisation is:

Q ` ∆, x : B
x(X).Q ` ∆, x : ∀X .B

∀ (X 6∈ fv(∆))

Process Q communicates along channel x obeying protocol B. The composite process
x(X).Q communicates along channel x obeying protocol ∀X .B; it receives a description
of a proposition along channel x, binds the proposition to the propositional variable X , and
then executes Q.

Cut of instantiation ∃ against generalisation ∀ corresponds to transmitting a representa-
tion of a proposition, as shown in rule (β∃∀):

νx.(x[A].P | x(X).Q) =⇒ νx.(P | Q{A/X})

This rule behaves similarly to beta reduction of a type abstraction against a type application
in polymorphic λ -calculus, or communication of a type in the polymorphic π-calculus.
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Example Quantification supports a definition of the Church numerals in our system. De-
fine

Church
def= ∀X .?(X⊗X⊥)O (X⊥OX)

zerox
def= x(X).x(s).x(z).z↔x

onex
def= x(X).x(s).x(z).?s[ f ]. f [a].(a↔z | f↔x)

twox
def= x(X).x(s).x(z).?s[ f ]. f [a].(a↔z |?s[g].g[b].( f↔b | g↔x))

Observe that if we define A( B = A⊥ O B then the type of Church numerals may be
rewritten as ∀X .!(X( X)( (X( X), which may appear more familiar. The terms zerox,
onex, and twox accept a type variable X , a process s :?(X ⊗X⊥) and a value z : X⊥, and
invoke s zero, one, or two times on z to return a value of type X . We may invoke the Church
numerals by instantiating X , s, and z appropriately.

Define process

countx,y ` x : Church⊥, y : Nat

that accepts a Church numeral on x and transmits the corresponding natural on y as follows:

countx,y
def= x[Nat].x[s].(!s( f ). f (a).incra, f | x[z].(noughtz | x↔y))

Here Nat is the type of natural numbers; process incra,b ` a : Nat⊥, b : Nat accepts a natural
along a and transmits a value one greater along b; and process noughta ` a : Nat transmits
the value zero along a. Then

νx.(zerox | countx,y) =⇒ noughty
νx.(onex | countx,y) =⇒ νz.(noughtz | incrz,y)
νx.(twox | countx,y) =⇒ νa.(νz.(noughtz | incrz,a) | incra,y)

These three processes transmit 0, 1, or 2, respectively, along y.
Similarly, define process

pingx,y,w ` x : Church⊥, y : ?⊥, w : 1

that accepts a Church numeral on x and transmits a corresponding number of signals along
y and when done transmits a signal along w, as follows:

pingx,y,w
def= x[1].x[s].(!s[ f ]. f (a).a().?y[u].u(). f [ ].0 | x[z].(z[ ].0 | x().w[ ].0))

Then
νx.(zerox | pingx,y,w) =⇒ w[ ].0
νx.(onex | pingx,y,w) =⇒ ?y[u].u().w[ ].0
νx.(twox | pingx,y,w) =⇒ ?y[u].u().?y[v].v().w[ ].0

These three processes transmit 0, 1, or 2 signals, respectively, along y, and then a signal
along w.

3.6 Commuting conversions

Commuting conversions are shown in Figures 4 and 5.
Each commuting conversion pushes a cut inside a communication operation. There are

two conversions for⊗, depending upon whether the cut pushes into the left or right branch.
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(κ⊗1)
P ` Γ, y : A, z : C Q ` ∆, x : B

x[y].(P | Q) ` Γ, ∆, x : A⊗B, z : C
⊗

R `Θ, z : C⊥

νz.(x[y].(P | Q) | R) ` Γ, ∆, Θ, x : A⊗B
Cut

=⇒

P ` Γ, y : A, z : C R `Θ, z : C⊥

νz.(P | R) ` Γ, Θ, y : A
Cut

Q ` ∆, x : B
x[y].(νz.(P | R) | Q) ` Γ, ∆, Θ, x : A⊗B

⊗

(κ⊗2)
P ` Γ, y : A Q ` ∆, x : B, z : C

x[y].(P | Q) ` Γ, ∆, x : A⊗B, z : C
⊗

R `Θ, z : C⊥

νz.(x[y].(P | Q) | R) ` Γ, ∆, Θ, x : A⊗B
Cut

=⇒

P ` Γ, y : A
Q ` ∆, x : B, z : C R `Θ, z : C⊥

νz.(Q | R) ` ∆, Θ, x : B
Cut

x[y].(P | νz.(Q | R)) ` Γ, ∆, Θ, x : A⊗B
⊗

(κO)
P ` Γ, y : A, x : B, z : C

x(y).P ` Γ, x : AOB, z : C
O

Q ` ∆, z : C⊥

νz.(x(y).P | Q) ` Γ, ∆, x : AOB
Cut

=⇒

P ` Γ, y : A, x : B, z : C Q ` ∆, z : C⊥

νz.(P | Q) ` Γ, ∆, y : A, x : B
Cut

x(y).νz.(P | Q) ` Γ, ∆, x : AOB
O

(κN)
P ` Γ, x : A, z : C Q ` Γ, x : B, z : C

x.case(P,Q) ` Γ, x : ANB, z : C
N

R ` ∆, z : C⊥

νz.(x.case(P,Q) | R) ` Γ, ∆, x : ANB
Cut

=⇒

P ` Γ, x : A, z : C R ` ∆, z : C⊥

νz.(P | R) ` Γ, ∆, x : A
Cut

Q ` Γ, x : B, z : C R ` ∆, z : C⊥

νz.(Q | R) ` Γ, ∆, x : B
Cut

x.case(νz.(P | R),νz.(Q | R)) ` Γ, ∆, x : ANB
N

(κ⊕)
P ` Γ, x : A, z : C

x[inl].P ` Γ, x : A⊕B, z : C
⊕

Q ` ∆, z : C⊥

νz.(x[inl].P | Q) ` Γ, ∆, x : A⊕B
Cut

=⇒
P ` Γ, x : A, z : C Q ` ∆, z : C⊥

νz.(P | Q) ` Γ, ∆, x : A
Cut

x[inl].νz.(P | Q) ` Γ, ∆, x : A⊕B
⊕

Fig. 4. Commuting conversions for CP, Part I

Each of the remaining logical operators has one conversion, with the exception of⊕, which
has two (only the left rule is shown, the right rule is symmetric); and of 1 and 0 which have
none.

An important aspect of CP is revealed by considering rule (κO), which pushes cut inside
input:

νz.(x(y).P | Q) =⇒ x(y).νz.(P | Q)



ZU064-05-FPR linearpi 20 December 2013 15:30

Propositions as Sessions 21

(κ!)
P ` ?Γ, y : A, z : ?C

!x(y).P ` ?Γ, x : !A, z : ?C
!

Q ` ?∆, z : !C⊥

νz.(!x(y).P | Q) ` ?Γ, ?∆, x : !A
Cut

=⇒

P ` ?Γ, y : A, z : ?C Q ` ?∆, z : !C⊥

νz.(P | Q) ` ?Γ, ?∆, y : A
Cut

!x(y).νz.(P | Q) ` ?Γ, ?∆, x : !A
!

(κ?)
P ` Γ, y : A, z : C

?x(y).P ` Γ, x : ?A, z : C
?

Q ` ∆, z : C⊥

νz.(?x(y).P | Q) ` Γ, ∆, x : ?A
Cut

=⇒
P ` Γ, y : A, z : C Q ` ∆, z : C⊥

νz.(P | Q) ` Γ, ∆, y : A
Cut

?x(y).νz.(P | Q) ` Γ, ∆, x : ?A
?

(κ∃)
P ` Γ, x : B{A/X}, z : C

x[A].P ` Γ, x : ∃X .B, z : C
∃

Q ` ∆, z : C⊥

νz.(x[A].P | Q) ` Γ, ∆, x : ∃X .B
Cut

=⇒

P ` Γ, x : B{A/X}, z : C Q ` ∆, z : C⊥

νz.(P | Q) ` Γ, ∆, x : B{A/X} Cut

x[A].νz.(P | Q) ` Γ, ∆, x : ∃X .B
∃

(κ∀)
P ` Γ, x : B, z : C

x(X).P ` Γ, x : ∀X .B, z : C
∀

Q ` ∆, z : C⊥

νz.(x(X).P | Q) ` Γ, ∆, x : ∀X .B
Cut

=⇒
P ` Γ, x : B, z : C Q ` ∆, z : C⊥

νz.(P | Q) ` Γ, ∆, x : B
Cut

x(X).νz.(P | Q) ` Γ, ∆, x : ∀X .B
∀

(κ⊥)
P ` Γ, z : C

x().P ` Γ, x :⊥, z : C
⊥

Q ` ∆, z : C⊥

νz.(x().P | Q) ` Γ, ∆, x :⊥ Cut
=⇒

P ` Γ, z : C Q ` ∆, z : C⊥

νz.(P | Q) ` Γ, ∆
Cut

x().νz.(P | Q) ` Γ, ∆, x :⊥ ⊥

(κ>)

x.case() ` Γ, x :>, z : C
>

Q ` ∆, z : C⊥

νz.(x.case() | Q) ` Γ, ∆, x :⊥ Cut =⇒ x.case() ` Γ, ∆, x :> >

Fig. 5. Commutative conversions for CP, Part II

On the left-hand side process Q may interact with the environment, while on the right-hand
side Q is guarded by the input and cannot interact with the environment. In our setting, this
is not problematic. If x is bound by an outer cut, then the guarding input is guaranteed to
match a corresponding output at some point. If x is not bound by an outer cut, then we
consider the process halted while it awaits external communication along x; compare this
with the use of labeled transitions in Lemma 5.7 of Caires and Pfenning (2010).
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3.7 Cut elimination

In addition to the rules of Figures 2, 3, 4, and 5, we add a standard rule relating reductions
to structural equivalences:

P≡ Q Q =⇒ R R≡ S
P =⇒ S

And we add congruence rules for cuts:

P1 =⇒ P2

νx.(P1 | Q) =⇒ νx.(P2 | Q)
Q1 =⇒ Q2

νx.(P | Q1) =⇒ νx.(P | Q2)

These rules are standard in treatments of cut elimination. We do not add congruences for
other operators; see below.

CP satisfies subject reduction: well-typed processes reduce to well-typed processes.

Theorem 1

If P ` Γ and P =⇒ Q then Q ` Γ.

Proof sketch: Figures 2, 3, 4, and 5 contain the relevant proofs. �
Say process P is a cut if it has the form νx.(Q | R) for some x, Q, and R. CP satisfies

top-level cut elimination: every process reduces to a process that is not a cut.

Theorem 2

If P ` Γ then there exists a Q such that P =⇒ Q and Q is not a cut.

Proof sketch: Each rule is either Ax, Cut, or a logical rule. If P is a cut there are three
possibilities: If one side of the cut uses the axiom, apply AxCut. If one side of the cut
is itself a cut, recursively eliminate the cut. In the remaining cases, either both sides are
logical rules that act on the cut variable, in which case a principal reduction of Figure 3 ap-
plies, or at least one side is a logical rule acting on a variable other than the cut variable, in
which case a commuting reduction of Figure 4 or 5 applies. Since we support impredicative
polymorphism, where a polymorphic type may be instantiated by a polymorphic type, care
is required in formulating the induction to ensure termination, but this is standard (Gallier,
1990). �

This result resembles the Principal Lemma of Cut Elimination (Girard et al., 1989,
Section 13.2), which eliminates a final cut rule, possibly replacing it with (smaller) cuts
further up the proof tree. Top-level cut elimination corresponds to lack of deadlock; it
ensures that any process can reduce until it needs to perform an external communication.

If our goal was to eliminate all cuts, we would need to introduce additional congruence
rules, such as

P =⇒ Q
x(y).P =⇒ x(y).Q

and similarly for each operator. Such rules do not correspond well to our notion of com-
putation on processes, so we omit them; this is analogous to the usual practice of not
permitting reduction under lambda.
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x : T ` x : T Id ` unit : Unit
Unit

Φ ` N : U un(T )
Φ, x : T ` N : U Weaken

Φ, x : T, x′ : T ` N : U un(T )

Φ, x : T ` N{x/x′} : U
Contract

Φ, x : T ` N : U
Φ ` λx.N : T ( U

(-I
Φ ` L : T ( U Ψ `M : T

Φ, Ψ ` L M : U (-E

Φ ` L : T ( U un(Φ)
Φ ` L : T →U →-I

Φ ` L : T →U
Φ ` L : T ( U →-E

Φ `M : T Ψ ` N : U
Φ, Ψ ` (M,N) : T ⊗U

⊗-I
Φ `M : T ⊗U Ψ, x : T, y : U ` N : V

Φ, Ψ ` let (x,y) = M in N : V
⊗-E

Φ `M : T Ψ ` N : !T .S
Φ, Ψ ` send M N : S Send

Φ `M : ?T .S
Φ ` receive M : T ⊗S Receive

Φ `M :⊕{li : Si}i∈I

Φ ` select l j M : S j
Select

Φ `M : N{li : Si}i∈I (Ψ, x : Si ` Ni : T )i∈I

Φ, Ψ ` case M of {li : x.Ni}i∈I : T
Case

Φ, x : S `M : end! Ψ, x : S ` N : T
Φ, Ψ ` with x connect M to N : T Connect

Φ `M : end?

Φ ` terminate M : Unit
Terminate

Fig. 6. GV, a session-typed functional language

4 A session-typed functional language

This section presents GV, a session-typed functional language based on one devised by
Gay and Vasconcelos (2010), and presents its translation into CP.

Our presentation of GV differs in some particulars from that of Gay and Vasconcelos
(2010). Most notably, our system is guaranteed free from deadlock whereas theirs is not.
Achieving this property requires some modifications to their system. We split their session
type ‘end’ into two dual types ‘end!’ and ‘end?’, and we replace their constructs ‘accept’,
‘request’, and ‘fork’, by two new constructs ‘with-connect-to’ and ‘terminate’.

A number of features of Gay and Vasconcelos (2010) are not echoed here. Their system
is based on asynchronous buffered communication, they show that the size required of
asynchronous buffers can be bounded by analysing session types, and they support re-
cursive functions, recursive session types, and subtyping. We omit these contributions for
simplicity, but see no immediate difficulty in extending our results to include them. Of
course, adding recursive terms or recursive session types may remove the property that all
programs terminate.

For simplicity, we also omit a number of other possible features. We do not consider
base types, which are straightforward. We also do not consider how to add replicated
servers with multiple clients, along the lines suggested by ! and ? in CP, or how to add
polymorphism, along the lines suggested by ∃ and ∀ in CP, but both extensions appear
straightforward.
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Session types Session types are defined by the following grammar:

S ::=
!T .S output value of type T then behave as S
?T .S input value of type T then behave as S
⊕{li : Si}i∈I select from behaviours Si with label li
N{li : Si}i∈I offer choice of behaviours Si with label li
end! terminator, convenient for use with output
end? terminator, convenient for use with input

Let S range over session types, and let T,U,V range over types. Session type !T .S describes
a channel along which a value of type T may be sent and which subsequently behaves as
S. Dually, ?T .S describes a channel along which a value of type T may be received and
which subsequently behaves as S. Session type ⊕{li : Si}1∈I describes a channel along
which one of the distinct labels li may be sent and which subsequently behaves as Si.
Dually, N{li : Si}1∈I describes a channel along which one of the labels li may be received,
and which subsequently behaves as Si. Finally, end! and end? describe channels that cannot
be used for further communication. As we will see, it is convenient to use one if the last
action on the channel is a send, and the other if the last action on the channel is a receive.

Types Types are defined by the following grammar:

T,U,V ::=
S session type (linear)
T ⊗U tensor product (linear)
T (U function (linear)
T →U function (unlimited)
Unit unit (unlimited)

Every session type is also a type, but not conversely. Types are formed from session types,
tensor product, two forms of function space, and a unit for tensor product.

Each type is classified as linear or unlimited:

lin(S) lin(T ⊗U) lin(T (U) un(T →U) un(Unit)

Here lin(T ) denotes a type that is linear, and un(T ) a type that is unlimited. Session
types, tensor, and one type of function are limited; the other type of function and unit
are unlimited. Unlimited types support weakening and contraction, while linear types do
not. Unlimited types correspond to those written with ! in CP.

Duals Each session type S has a dual S, defined as follows:

!T .S = ?T .S
?T.S. = !T .S

⊕(li : Si)i∈I = N(li : Si)i∈I

N(li : Si)i∈I =⊕(li : Si)i∈I

end! = end?

end? = end!
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Input is dual to output, selection is dual to choice, and the two terminators are dual. Duality
between input and output does not take the dual of the type.

Duality is an involution, S = S.

Environments We let Φ, Ψ range over environments associating variables to types. Write
un(Φ) to indicate that each type in Φ is unlimited. As in Section 3, order in environments
is ignored and we use linear maintenance.

Terms Terms are defined by the following grammar:

L,M,N ::=
x identifier
unit unit constant
λx.N function abstraction
L M function application
(M,N) pair construction
let (x,y) = M in N pair deconstruction
send M N send value M on channel N
receive M receive from channel M
select l M select label l on channel M
case M of {li : x.Ni}i∈I offer choice on channel M
with x connect M to N connect M to N by channel x
terminate M terminate input

The first six operations specify a linear λ -calculus, and the remaining six specify commu-
nication along a channel.

The terms are best understood in conjunction with their type rules, shown in Figure 6.
The rules for variables, unit, weakening, contraction, function abstraction and application,
and pair construction and deconstruction are standard. Functions are either limited or
unlimited. As usual, function abstraction may produce an unlimited function only if all
of its free variables are of unlimited type. Following Gay and Vasconcelos (2010) we do
not give a separate rule for application of an unlimited function, but instead give a rule
permitting an unlimited function to be treated as a linear function, which may then be
applied using the rule for linear function application.

For simplicity, we do not require that each term have a unique type. In particular, a
λ -expression where all free variables have unlimited type may be given either linear or
unlimited function type. In a practical system, one might introduce subtyping and arrange
that each term have a unique smallest type.

The rule for output is
Φ `M : T Ψ ` N : !T .S

Φ, Ψ ` send M N : S Send

Channels are managed linearly, so each operation on channels takes the channel before
the operation as an argument, and returns the channel after the operation as the result.
Executing ‘send M N’ outputs the value M of type T along channel N of session type !T .S,
and returns the updated channel, which after the output has session type S.
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The rule for input is

Φ `M : ?T .S
Φ ` receive M : T ⊗S Receive

Executing ‘receive M’ inputs a value from channel M of session type ?T .S, and returns a
pair consisting of the input value of type T , and the updated channel, which after the input
has session type S. The returned pair must be linear because it contains a session type,
which is linear.

Gay and Vasconcelos (2010) treat ‘send’ and ‘receive’ as function constants, and require
two versions of ‘send’ to cope with complications arising from currying. We treat ‘send’
and ‘receive’ as language constructs, which avoids the need for two versions of ‘send’.
Thanks to the rules for limited and unlimited function abstraction, λx.λy.send x y has type
T ( !T .S( S and also type T → !T .S( S when un(T ).

Select and Case are similar to Send and Receive, and standard.
The rule to create new channels is:

Φ, x : S `M : end! Ψ, x : S ` N : T
Φ, Ψ ` with x connect M to N : T Connect

Executing ‘with x connect M to N’ creates a new channel x with session type S, where x
is used at type S within term M and at the dual type S within term N. The two terms M
and N are evaluated concurrently. As is usual when forking off a value, only one of the two
subterms returns a value that is passed to the rest of the program. The left subterm returns
the exhausted channel, which has type end!. The right subterm returns a value of type T
that is passed on to the rest of the program.

Finally, we require a rule to terminate the other channel:

Φ `M : end?

Φ ` terminate M : Unit
Terminate

Executing ‘terminate M’ evaluates term M which returns an exhausted channel of type
end? (of linear type), which is deallocated. The expression returns the value of type Unit,
which is an unlimited type and hence may be discarded.

The constructs for Connect and Terminate between them deallocate two ends of a chan-
nel. The system is designed so it is convenient to use end! on a channel whose last operation
is Send or Select, and end? on a channel whose last operation is Receive or Case.

Usually, session typed systems make end an unlimited type that is self-dual, but the
formulation here fits better with CLL. A variation where end is a linear type requiring
explicit deallocation is considered by Vasconcelos (2011).

One might consider alternative designs, say to replace Connect by an operation that
creates a channel and returns both ends of it in a pair of type S⊗S, or to replace Terminate
by an operation that takes a pair of type end!⊗end? and returns unit. However, both of these
designs are difficult to translate into CP, which suggests they may suffer from deadlock.
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Example We reprise the example of a sale from Section 3.2, where the client sends a
product name and credit card number to a server, which returns a receipt. Define:

Buy
def= !Name.!Credit.?Receipt.end?

Sell
def= ?Name.?Credit.!Receipt.end!

buyx
def= let u = get-name in

let x1 = send u x in

let v = get-credit in

let x2 = send v x1 in

let (w,x3) = receive x2 in

let unit = terminate x3 in

put-receipt w

sellx
def= let (u,x1) = receive x in

let (v,x2) = receive x1 in

let w = compute u v in

send w x2

Here let (x,y) = M in N is pair deconstruction, as introduced above; and let x = M in N
stands for (λx.N) M; and let unit = M in N stands for (λx.N) M where x : Unit does
not apear in N. Let Name be the type of product names; Credit be the type of credit
card numbers; Receipt be the type of receipts; and Rest be the type of the rest of the
computation. The first three types are unlimited, and Rest may be either linear or unlimited.
Assume environments Φ and Ψ define variables of the given types:

Φ
def= get-name : Name, get-credit : Credit, put-receipt : Receipt→ Rest

Ψ
def= compute : Name→ Credit→ Receipt

Observe that Buy = Sell and

Ψ, x : Sell ` sellx : end! Φ, x : Buy ` buyx : Rest

Ψ, Φ ` with x connect sellx to buyx : Rest
Connect

4.1 Translation

The translation of GV into CP is given in Figures 7 and 8.

Session types The translation of session types is as follows:

J!T .SK = JT K⊥OJSK
J?T .SK = JT K⊗ JSK

J⊕{li : Si}i∈IK = JS1KN · · ·NJSnK, I = {1, . . . ,n}
JN{li : Si}i∈IK = JS1K⊕·· ·⊕ JSnK, I = {1, . . . ,n}

Jend!K =⊥
Jend?K = 1

This translation is surprising, in that each operator translates to the dual of what one might
expect! The session type for output in GV, !T .S is translated into O, the connective that
is interpreted as input in CP, and the session type for input in GV, ?T .S is translated into



ZU064-05-FPR linearpi 20 December 2013 15:30

28 Philip Wadler

q
x : T ` x : T Id

y
z = x↔z ` x : JT K⊥, z : JT K

Ax

q
` unit : Unit

Unit
y

z = y.case() ` y :> >

!z(y).y.case() ` z : !> !

s
Φ ` N : U un(T )

Φ, x : T ` N : U Weaken

{
z =

JNKz ` JΦK⊥, z : JUK

JNKz ` JΦK⊥, x : JT K⊥, z : JUK
Weaken

s
Φ, x : T, x′ : T ` N : U un(T )

Φ, x : T ` N{x/x′} : U
Contract

{
z =

JNKz ` JΦK⊥, x : JT K⊥, x′ : JT K⊥, z : JUK

JN{x/x′}Kz ` JΦK⊥, x : JT K⊥, z : JUK
Contract

s
Φ, x : T ` N : U

Φ ` λx.N : T ( U
(-I

{
z =

JNKz ` JΦK⊥, x : JT K⊥, z : JUK

z(x).JNKz ` JΦK⊥, z : JT K⊥OJUK
O

s
Φ ` L : T ( U Ψ `M : T

Φ, Ψ ` L M : U (-E

{
z =

JLKy ` JΦK⊥, y : JT K⊥OJUK

JMKx ` JΨK⊥, x : JT K y↔z ` y : JUK⊥, z : JUK
Ax

y[x].(JMKx | y↔z) ` JΨK⊥, y : JT K⊗ JUK⊥, z : JUK
⊗

νy.(JLKy | y[x].(JMKx | y↔z)) ` JΦK⊥, JΨK⊥, z : JUK
Cut

s
Φ ` L : T ( U un(Φ)

Φ ` L : T →U →-I

{
z =

JLKy ` JΦK⊥, y : JT ( UK

!z(y).JLKy ` JΦK⊥, z : !JT ( UK
!

r
Φ ` L : T →U
Φ ` L : T ( U →-E

z
z =

JLKy ` JΦK⊥, y : !JT ( UK

x↔z ` x : JT ( UK⊥, z : JT ( UK
Ax

?y[x].x↔z ` y : ?JT ( UK⊥, z : JT ( UK
?

νy.(JLKy | ?y[x].x↔z) ` JΦK⊥, z : JT ( UK
Cut

s
Φ `M : T Ψ ` N : U
Φ, Ψ ` (M,N) : T ⊗U

⊗-I

{
z =

JMKy ` JΦK⊥, y : JT K JNKz ` JΨK⊥, z : JUK

z[y].(JMKy | JNKz) ` JΦK⊥, JΨK⊥, z : JT K⊗ JUK
⊗

s
Φ `M : T ⊗U Ψ, x : T, y : U ` N : V

Φ, Ψ ` let (x,y) = M in N : V
⊗-E

{
z =

JMKy ` JΦK⊥, y : JT K⊗ JUK

JNKz ` JΨK⊥, x : JT K⊥, y : JUK⊥, z : JV K

y(x).JNKz ` JΨK⊥, y : JT K⊥OJUK⊥, z : JV K
O

νy.(JMKy | y(x).JNKz) ` JΦK⊥, JΨK⊥, z : JV K
Cut

Fig. 7. Translation from GV into CP, Part I

⊗, the connective that is interpreted as output in CP. Similarly ⊕ and N in GV translate,
respectively, to N and ⊕ in CP. Finally, end! and end? in GV translate, respectively, to ⊥
and 1 in CP, the units for O and ⊗.

The intuitive explanation of this duality is that Send and Receive in GV take channels
as arguments, whereas the interpretation of the connectives in CP is for channels as re-
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s
Φ `M : T Ψ ` N : !T .S

Φ, Ψ ` send M N : S Send

{
z =

JMKy ` JΦK⊥, y : JT K x↔z ` x : JSK⊥, z : JSK
Ax

x[y].(JMKy | x↔z) ` JΦK⊥, x : JT K⊗ JSK⊥, z : JSK
⊗

JNKx ` JΨK⊥, x : JT K⊥OJSK

νx.(x[y].(JMKy | x↔z) | JNKx) ` JΦK⊥, JΨK⊥, z : JSK
Cut

r
Φ `M : ?T .S

Φ ` receive M : T ⊗S Receive
z

z = JMKz ` JΦK⊥, z : JT K⊗ JSK

s
Φ `M :⊕{li : Si}i∈I

Φ ` select l j M : S j
Select

{
z =

JMKx ` JΦK⊥, x : JS1KN · · ·NJSnK

x↔z ` x : JS jK⊥, z : JS jK
Ax

x[in j].x↔z ` x : JS1K⊥⊕·· ·⊕ JSnK⊥, z : JS jK
⊕i

νx.(JMKx | x[in j].x↔z) ` JΦK⊥, z : JS jK
Cut

s
Φ `M : N{li : Si}i∈I (Ψ, x : Si ` Ni : T )i∈I

Φ, Ψ ` case M of {li : x.Ni}i∈I : T
Case

{
z =

JMKx ` JΦK⊥, x : JS1K⊕·· ·⊕ JSnK
(JNiKz ` JΨK⊥, x : JSiK⊥, z : JT K)i∈I

x.case(JN1K, . . . ,JNnK) ` x : JS1KN · · ·NJSnK, z : JT K
N

νx.(JMKx | x.case(JN1K, . . . ,JNnK)) ` JΦK⊥, JΨK⊥, z : JT K
Cut

s
Φ, x : S `M : end! Ψ, x : S ` N : T
Φ, Ψ ` with x connect M to N : T Connect

{
z =

JMKy ` JΦK⊥, x : JSK⊥, y :⊥ y[].0 ` y : 1
1

νy.(JMKy | y[].0) ` JΦK⊥, x : JSK⊥
Cut

JNKz ` JΨK⊥, x : JSK, z : JT K

νx.(νy.(JMKy | y[].0) | JNKz) ` JΦK⊥, JΨK⊥, z : JT K
Cut

s
Φ `M : end?

Φ ` terminate M : Unit
Terminate

{
z =

JMKx ` JΦK⊥, x : 1

y.case() ` y :> >

!z(y).y.case() ` z : !> !

x().!z(y).y.case() ` x : 0, z : !> 0

νx.(JMKx | x().!z(y).y.case()) ` JΦK⊥, z : !>
Cut

Fig. 8. Translation from GV into CP, Part II

sults. Indeed, the send operation takes a value and a channel, and sends the value to that
channel—in other words, the channel must input the value. Dually, the receive operation
takes a channel and returns a value—in other words, the channel must output the value. A
similar inversion occurs with respect to Select and Case.

Recall that duality on session types in GV leaves the types of sent and received values
unchanged:

!T .S = ?T .S ?T.S. = !T .S
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Conversely, the translation of these operations takes the dual of the sent value, but not the
received value:

J!T .SK = JT K⊥OJSK J?T .SK = JT K⊗ JSK

In classical linear logic, A( B = A⊥O B, so the right-hand side of the first line could
alternatively be written JT K( JSK. Accordingly, and as one would hope, the translation
preserves duality: JSK = JSK⊥.

Types The translation of types is as follows:

JT (UK = JT K⊥OJUK
JT →UK = !(JT K⊥OJUK)
JT ⊗UK = JT K⊗ JUK

JUnitK = !>

Session types are also types, they are translated as above.
The right-hand side of the first equation could alternatively be written JT K( JUK,

showing that linear functions translate as standard.
The right-hand side of the second equation could alternatively be written !(JT K( JUK).

There are two standard translations of intuitionistic logic into classical linear logic or,
equivalently, of λ -calculus into linear λ -calculus. Girard’s original takes (A → B)◦ =
!A◦( B◦, and corresponds to call-by-name, while a lesser known alternative takes (A→
B)∗ = !(A∗( B∗), and correspond to call-by-value (see Benton and Wadler (1996) and
Toninho et al. (2012)). The second is used here.

In classical linear logic, there is a bi-implication between 1 and !> (in many models,
this bi-implication is an isomorphism), so the right-hand side of the last equation could
alternatively be written 1, the unit for ⊗.

An unlimited type in GV translates to a type constructed with ! in CP: If un(T ) then
JT K = !A, for some A.

Terms Translation of terms is written in a continuation-passing style standard for trans-
lations of λ -calculi into process calculi. The translation of term M of type T is written
JMKz where z is a channel of type JT K; the process that translates M transmits the answer it
computes along z. More precisely, if Φ `M : T then JMKz ` JΦK⊥, z : JT K, where the Φ to
the left of the turnstile in GV translates, as one might expect, to the dual JΦK⊥ on the right
of the turn-style in CP.

The translation of terms is shown in Figures 7 and 8. Rather than simply giving a
translation from terms of GV to terms of CP, we show the translation as taking type
derivation trees to type derivation trees. Giving the translation on type derivation trees
rather than terms has two advantages. First, it eliminates any ambiguity arising from the
fact, noted previously, that terms in GV do not have unique types. Second, it makes it easy
to validate that the translation preserves types.

Figure 7 shows the translations for operations of a linear λ -calculus. A variable trans-
lates to an axiom, weakening and contraction translate to weakening and contraction. Func-
tion abstraction and product deconstruction both translate to input, and function application
and product construction both translate to output. The translation of each elimination rule
((-E,→-E, and ⊗-E) also requires a use of Cut.



ZU064-05-FPR linearpi 20 December 2013 15:30

Propositions as Sessions 31

Figure 8 shows the translation for operations for communication. For purposes of the
translation, it is convenient to work with n-fold analogues of ⊕ and N, writing ∈i for
selection and case(P1, · · · ,Pn) for choice.

Despite the inversion noted earlier in the translation of session types, the translation of
Send involves an output operation of the form x[y].(P |Q), the translation of Select involves
an select operation of the form x[in j].P, the translation of Case involves a choice operation
of the form case(Q1, . . . ,Qn), the translation of end! in Connect involves an empty output
of the form y[ ].0, and the translation of Terminate involves an empty input of the form
x().P. Each of these translations also introduces a Cut, corresponding to communication
with supplied channel. The translation of Receive is entirely trivial, but the corresponding
input operation of the form x(y).R appears in the translation of ⊗-E, which deconstructs
the returned pair. Finally, the translation of Connect involves a Cut, which corresponds to
introducing a channel for communication between the two subterms.

The translation preserves types.

Theorem 3
If Φ `M : T then JMKx ` JΦK⊥, x : JT K.

Proof sketch. See Figures 7 and 8. �
We also claim that the translation preserves the intended semantics. The formal seman-

tics of Gay and Vasconcelos (2010) is based on asynchronous buffered communication,
which adds additional complications, so we leave a formal proof of correspondence be-
tween the two for future work.

5 Related work

Session types Session types were introduced by Honda (1993), and further extended by
Takeuchi et al. (1994), Honda et al. (1998), and Yoshida and Vasconcelos (2007). Sub-
typing for session types is considered by Gay and Hole (2005), and the linear functional
language for session types considered in this paper was introduced by Gay and Vasconcelos
(2010). Session types have been applied to describe operating system services by Fähndrich
et al. (2006).

Deadlock freedom Variations on session types that guarantees deadlock freedom are pre-
sented in Sumii and Kobayashi (1998) and Carbone and Debois (2010). Unlike CP, where
freedom from deadlock follows from the relation to cut elimination, in the first it is ensured
by introducing a separate partial order on time tags, and in the second by introducing a
constraint on underlying dependency graphs.

Linear types for process calculus A variety of linear types systems for process calculus
are surveyed by Kobayashi (2002). Most of these systems look rather different than session
types, but Kobayashi et al. (1996) presents an embedding of session types into a variant of
π-calculus with linear types for channels.

Linear proof search Functional programming can be taken as arising from the Curry-
Howard correspondence, by associating program evaluation with proof normalisation. Anal-
ogously, logic programming can be taken as arising by associating program evaluation with
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proof search. Logic programming approaches based on linear logic give rise to systems
with some similarities to CP, see Miller (1992) and Kobayashi and Yonezawa (1993, 1994,
1995).

Polymorphism CP’s support of polymorphism is based on the polymorphic π-calculus
introduced by Turner (1995) and further discussed by Pierce and Turner (2000) and Pierce
and Sangiorgi (2000). More recently, Caires et al. (2013) extend session types to poly-
morphism and establish logical relations for parametricity. All of the above use explict
polymorphism (Church-style). In contrast, Berger et al. (2005) introduce a polymorphically
typed session calculus that uses implicit polymorphism (Curry-style).

Linear logic as a process calculus Various interpretations of linear logic as a process
calculus are proposed by Abramsky (1993), Abramsky (1994), and Abramsky et al. (1996),
the second of these being elaborated in detail by Bellin and Scott (1994).

This paper is inspired by a series of papers by Caires, Pfenning, Toninho, and Pérez.
Caires and Pfenning (2010) first observed the correspondence relating formulas of linear
logic to session types; its journal version is Caires et al. (2012b). Pfenning et al. (2011)
extends the correspondence to dependent types in a stratified system, with concurrent
communication at the outer level and a dependently-typed functional language at the inner
level. Pfenning et al. (2011) extends that system to support proof-carrying code and proof
irrelevance. Toninho et al. (2012) explores encodings of λ -calculus into πDILL. Pérez
et al. (2012) introduces logical relations on linear-typed processes to prove termination
and contextual equivalences. Caires et al. (2012a) is the text of an invited talk at TLDI,
summarising much of the above.

Two additional papers have appeared since the ICFP version of this paper. Caires et al.
(2013) add polymorphism and parametricity. Toninho et al. (2013) exploits monads to
integrate a functional language with a session-typed process calculus.

Mazurak and Zdancewic (2010) present Lolliproc, which also offers a Curry-Howard
interpretation of session types by relating the call/cc control operators to communication
using a double-negation operator on types.

DILL vs. CLL Caires et al. (2012b) consider a variant of πDILL based on one-sided
sequents of classical linear logic, which they call πCLL. Their πCLL is similar to CP, but
differs in important particulars: its bookkeeping is more elaborate, using two zones, one
linear and one intuitionitic; it has no axiom, so cannot easily support polymorphism; and
it does not support reductions corresponding to the commuting conversions.

Caires et al. (2012b) state they prefer a formulation based on DILL to one based on
CLL, because DILL satisfies a locality property for replicated input while CLL does not.
Locality requires that names received along a channel may be used to send output but not
to receive input, and is useful both from an implementation point of view and because
a process calculus so restricted satisfies additional observational equivalences, as shown
by Merro and Sangiorgi (2004). Caires et al. (2012b) only restrict replicated input, be-
cause restricting all input is too severe for a session-typed calculus. However, the good
properties of locality have been studied only in the case where all input is prohibited on
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received names. It remains to be seen to what extent the fact that DILL imposes locality
for replicated names is significant.

Additionally, in a private communication, Pfenning relayed that he believes DILL may
be amenable to extension to dependent types, while he suspects CLL is not because strong
sums become degenerate in some classical settings, as shown by Herbelin (2005). However,
linear logic is more amenable to constructive treatment than traditional classical logic, as
argued by Girard (1991), so it remains unclear to what extent CP, or πCLL, may support
dependent types.

6 Conclusion

One reason λ -calculus provides such a successful foundation for functional program-
ming is that it includes both fragments that guarantee termination (typed λ -calculi) and
fragments that can model any recursive function (untyped λ -calculus, or typed λ -calculi
augmented with a general fixpoint operator). Indeed, the former can be seen as giving rise
to the latter, by considering recursive types with recursion in negative positions; untyped
λ -calculus can be modelled by a solution to the recursive type equation X ' X → X .
Similarly, a foundation for concurrency based on linear logic will be of limited value if
it only models race-free and deadlock-free processes. Are there extensions that support
more general forms of concurrency?

Girard (1987) proposes one such extension, the Mix rule. In our notation, this is written:

P ` Γ Q ` ∆

P | Q ` Γ, ∆
Mix

Mix differs from Cut in that there are no channels in common between P and Q, rather
than one. Mix is equivalent to provability of the proposition A⊗B( AOB for any A and
B. Systems with Mix still do not deadlock, but support concurrent structures that cannot
arise under CLL, namely, systems with two components that are independent. An example
in Section 3.2 introduced a primitive computation

pary,z ` y : 1, z : 1

that is equivalent to the Mix rule. Mix is defined in terms of the primitive by setting

P | Q def= νz.(νy.(pary,z | y().P) | z().Q)

Equivalently, the primitive can be defined in terms of Mix by setting

pary,z
def= y[].0 | z[].0

Caires et al. (2012a) consider two variations of the rules for 1 and ⊥, the second of which
is less restrictive and, surprisingly, derives a rule similar to Mix.

Abramsky et al. (1996) proposes another extension, the Binary Cut rule (a special case
of Multicut). In our notation, this is written:

P ` Γ, x : A, y : B Q ` ∆, x : A⊥, y : B⊥

νx :A,y :B.(P | Q) ` Γ, ∆
BiCut

Binary Cut differs from Cut in that there are two channels in common between P and Q,
rather than one. Binary Cut is equivalent to provability of the proposition A O B( A⊗B
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for any A and B. Binary Cut allows one to express systems where communications form a
loop and may race or deadlock.

Systems with both Mix and Binary Cut are compact, in that from either of A⊗B and
A O B one may derive the other. Abramsky et al. (1996) provides a translation of full π-
calculus into a compact linear system, roughly analogous to the embedding of untyped
λ -calculus into typed λ -calculus based on the isomorphism X ' X → X . Searching for
principled extensions of CP that support the unfettered power of the full π-calculus is a
topic for future work.

Session types have been developed in many directions since being introduced by Honda
(1993). Among the most important of these is multi-party session types, introduced by
Honda et al. (2008) and elaborated by many others. Another topic for future work is
whether the logical foundations introduced by Caires and Pfenning and further developed
here extend to multiparty session types.

As λ -calculus provided foundations for functional programming in the last century, may
we hope for this emerging calculus to provide foundations for concurrent programming in
the coming century?
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