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ABSTRACT 

Objective 

Intra-articular screws are used for internal fixation of osteochondral fragments after fracture or 

osteochondritis dissecans. This causes cartilage injury potentially leading to chondrocyte death. We 

have visualised/quantified the hole and zone of cell death (ZCD) in cartilage after drilling/insertion 

of various articular screws.  

Method 

Using an ex vivo bovine model with transmitted light and confocal laser scanning microscopy 

(CLSM), the holes and ZCD following drilling/insertion of articular screws (cortical screw, 

headless variable pitch metallic screw, headless variable pitch bioabsorbable screw) were evaluated. 

In situ chondrocyte death was determined by live/dead cell viability assay. An 

imaging/quantification protocol was developed to compare hole diameter and ZCD from 

drilling/insertion of screws into cartilage. The effect of saline irrigation during drilling on the ZCD 

was also quantified.  

Results 

Screw insertion created holes in cartilage that were significantly (p≤0.001) less than the diameters 

of the equipment used. With a 1.5mm drill, a ZCD of 580.2±124µm was produced which increased 

to 637.0±44µm following insertion of a 2mm cortical screw although this was not significant 

(p>0.05). The ZCD from insertion of the variable pitch headless screws (diam. 3.5mm) was lower 

for the metallic compared to the bioabsorbable design (800.9±159 vs. 1236.4±212µm, respectively; 

p<0.01). The ZCD from drilling was reduced ~50% (p<0.001) by saline irrigation.  

Conclusions 

Cartilage injury during intra-articular screw fixation caused a ZCD around the hole irrespective of 

screw design. Saline irrigation significantly reduced the ZCD from drilling into cartilage.  
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INTRODUCTION 

 

Intra-articular screws are commonly used for internal fixation of osteochondral fragments in 

fractures of different bones (e.g. scaphoid, radial head, capitellum, distal femur, talus1). They are 

also used for fixation of osteochondral fragments in chronic joint disorders e.g. osteochondritis 

dissecans2. Cortical and variable pitch headless screws have been used extensively for fragment 

fixation 1-5. Recently, bioabsorbable systems (screws, nails, tacks, pins) have been developed which 

do not require a second surgical intervention for removal6-8. The surgical goals are to achieve stable 

fixation between the fragment/lesion bed, restore articular congruity and preserve articular cartilage 

viability. The clinical goals are to alleviate pain, return patients to normal function and ultimately, 

prevent cartilage degeneration. However, mixed results have been obtained for internal fixation e.g. 

unsatisfactory results have been reported in approximately 30% of patients after internal fixation for 

osteochondritis dissecans2-4,6,7. 

There are several challenges to achieving a balance between the surgical goals of stable 

fixation, restoration of the articular surface and preservation of articular cartilage viability.   Firstly, 

there is considerable heterogeneity in the presentation and complexity of articular pathology 

amenable to internal fixation. Poor results may occur even with stable fixation and restoration of the 

articular surface because the severity of the initial cartilage injury prevents subsequent repair as the 

tissue has poor intrinsic reparative potential9-14. Secondly, even if the articular cartilage on the 

fragment is viable, lateral integration of the articular cartilage needs to occur at the interface 

between the fragment and native tissue9,12,13. Chondrocyte viability at this injured interface is poor 

and lateral integration often occurs by fibrocartilage formation12-15. Any residual incongruity at the 

articular surface may contribute to progressive cartilage degeneration16. Finally, loss of fixation 

from hardware failure results in a poorer prognosis as any fragment loosening or detachment is 

unlikely to heal anatomically due to loss of vascularity and interposed fibrous tissue2.  
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The use of variable pitch screws and interfragmentary lag screw techniques designed to 

achieve compression between the fragment and host bone improves fixation stability and decreases 

the risk of fragment detachment1-3. However, screw insertion into the articular fragment invariably 

results in articular cartilage injury. Although cartilage has an extraordinary capacity to withstand 

physiological mechanical loads, its ability to bear mechanical injury from iatrogenic surgical 

interventions is poor. For example, chondrocyte death and changes to matrix properties occur at 

wound margins following injury caused by a trephine9, scalpel cut10, surgical suturing11, and partial 

thickness defects12. The nature and extent of chondrocyte death in articular cartilage following 

insertion of an intra-articular screw has not been characterised. Although the natural history of 

cartilage defects created from insertion of the screw is unknown, focal tissue defects have the 

potential to progress and contribute to cartilage degeneration14. If an intra-articular screw is used for 

stable fixation of an osteochondral fragment, an appreciation of the extent of the associated articular 

cartilage injury sustained during the procedure would help surgeons develop techniques that 

minimise chondrocyte death and optimise the survival of the restored articular surface.  

The aim of this study was to visualise and quantify the hole and zone of cell death (ZCD) 

produced in articular cartilage after drilling and insertion of various articular screws. We have 

utilised transmitted light images and confocal scanning laser microscopy (CLSM) to compare the 

holes and ZCD caused by a standard orthopaedic drill, with that following insertion of a cortical 

screw, a metallic headless screw and a bioabsorbable headless screw.  
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MATERIALS AND METHODS 

 

Biochemicals and solutions. Biochemicals, including fluorescent indicators 5-

chloromethylfluorescein-diacetate (CMFDA) and propidium iodide (PI), were obtained from 

Invitrogen Ltd. (Paisley, U.K.) unless otherwise stated. Dulbecco’s Modified Eagle’s Medium 

(DMEM; 340mOsm/KgH2O; pH 7.4) was used for osteochondral explant culture. Saline (0.9% 

w/v) was from Baxter’s Healthcare (Thetford, U.K.) and para-formaldehyde (4% v/v in saline; pH 

7.3) from Fisher Scientific (Loughborough, U.K.). 

 

Orthopaedic equipment. Details of the drills and screws are summarised in Table 1. Standard 

1.5mm drills (Ortho Solutions Ltd., Essex, U.K.) were used either alone, or to prepare holes for the 

self-tapping cortical screws (2.0mm; Synthes, Hertfordshire, U.K.; Table 1, Fig. 1). Holes for the 

variable-pitch metallic (Acutrak) screws were prepared using the Acutrak long drill, whereas for the 

bioabsorbable (Biotrak) screws, the Biotrak tapered long drill was used with the necessary 

equipment for insertion by Acumed (Table 1, Fig. 1). Drill bits were coupled to a precision drill 

(18,000rpm; Radio Spares, Northamptonshire, U.K.). For some experiments, saline irrigation was 

used for cooling while drilling.  

 

Bovine model and osteochondral explants. Metacarpophalangeal joints of three-year-old cows 

from a local abattoir, were washed, skinned and de-hoofed within 24hrs of slaughter, and joints 

opened and secured in a vice. Typically, the 1.5mm drill was placed firmly on the first condyle, 

drilled to a depth of 25mm and removed (Fig. 1). This was completed within 1-2secs, and was 

associated with a rise in temperature (see below). For the second condyle, the 1.5mm guide hole 

was prepared identically, and a self-tapping cortical screw (2mm diam; 20mm length) inserted. The 

screw was driven firmly onto the cartilage surface using a flat-headed screwdriver. Due to the screw 

head, the screw could not be inserted below the cartilage surface and therefore it had to be removed 
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before osteochondral strips could be harvested. For the third condyle, a metallic headless screw 

(Acutrak, head diam. 3.5mm; tip diam. 3.0mm; length 20mm) was inserted using an abbreviated 

version of the manufacturer’s guidelines. The Acutrak long drill bit (3.5mm diam.) was placed 

firmly on the cartilage surface and drilled to approximately 25mm and removed. This was 

completed within 3-5sces, and was also associated with a rise in temperature (see below). The 

Acutrak handle was coupled with the hexagonal driver and the screw driven to the full depth so the 

head was recessed by 5mm below the cartilage surface. For the fourth condyle, a headless 

bioabsorbable screw (Biotrak, head diam. 3.5mm; tip diam. 3.0mm; length 20mm) was inserted into 

a guide hole prepared with the 3.5mm Biotrak mini drill bit, and subsequently threaded with the 

Biotrak mini tap to the full depth. The bioabsorbable screw was then inserted using the mini driver 

to the full depth so the head was recessed by 5mm below the cartilage surface, and the mini ejector 

used to disengage the driver from the screw upon completion.  

Drilling was carried out perpendicular to the cartilage surface with DMEM used to keep 

cartilage moist and reduce deleterious effects of cartilage drying on chondrocyte viability17. Despite 

these measures, the drills and cartilage/bone were hot after drilling pilot holes.  Preliminary 

measurements using a thermal imaging camera suggested that the surface temperature of the 

cartilage/bone increased to approx. 220±20oC immediately after drilling with the 1.5mm drill bit to 

a depth of 25mm, but decayed rapidly after removal from the hole to room temperature after 

approx. 5secs. Copious irrigation during drilling using saline (0.9%; 18oC) markedly reduced the 

peak temperature to 130±40oC, with the temperature returning to initial values after approx. 2 secs. 

(Data are means±s.d.; for 5 separate joints). A greater rise in temperature, with a slower decay was 

noted when drilling with the 3.5mm drills. After drilling and screw insertion/removal, 

osteochondral strips containing the holes (with the full thickness of articular cartilage attached to 1-

2mm of subchondral bone) were harvested from the joint using a chisel10.  The strips were placed in 

DMEM (37°C; 5% CO2; pH7.4; 10mins) and the edges trimmed with a scalpel to produce 

osteochondral explants measuring approximately 6mm x 6mm.  

 6 



 

Cell viability assay and fixation. CMFDA and PI were used to assess the extent of in situ 

chondrocyte death around the drill/screw holes in articular cartilage10. CMFDA is membrane-

permeant, and once inside intact cells, reacts with intracellular components to produce an intense 

green fluorescence indicating a living cell. PI is impermeant, only binds to DNA if the plasma 

membrane is disrupted and is therefore indicates dead cells. Osteochondral explants were then 

incubated in DMEM containing CMFDA and PI (10μM each;60mins; 37°C). Explants were rinsed 

in fresh medium and immersed in para-formaldehyde (4%v/v;30mins; 21°C) for tissue fixation. 

Samples were then rinsed and finally immersed in phosphate-buffered saline (PBS), and visualised 

by CLSM. 

 

Confocal laser scanning microscopy (CLSM). CLSM rejects out-of-focus light and can image 

thin ‘optical sections’ within the depth (i.e. z-axis) of cartilage13.  An upright Zeiss Axioskop LSM 

510 (Carl Zeiss Ltd, Welwyn Garden City, U.K.) with a x10 Plan Neofluar objective lens was used 

to image in situ chondrocytes around the drill/screw holes on explants. Excitation of CMFDA and 

PI, was achieved utilising Argon (EXλ=488nm) and Helium-Neon (EXλ=543nm) lasers 

respectively. Upon excitation, CMFDA emits light at EMλ=520nm (green) and PI emits light at 

EMλ=600nm (red) which were captured using 500-550nm band pass and >560nm long-pass filters 

respectively10. After optimising image quality, 20 sequential axial optical sections were taken 

starting from the cartilage surface at intervals of 10µm in the z-axis. The images therefore primarily 

represent chondrocytes within the superficial zone of cartilage.  

 

Quantification of hole diameter from transmitted light images. Images were acquired using a 

transmission detector on the CLSM which was placed in the transmitted light path of the 

microscope. This allowed detection of light (from a halogen bulb) which was transmitted through 

an osteochondral explant. The resulting images (x5 objective) consisted of a white region (the hole, 
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i.e. where light was transmitted fully) and a dark border (the cartilage, which blocked light). Due to 

the shape of the hole and mechanism of trauma, initial CLSM images showed a poorly-defined 

edge. Using the Zeiss LSM image browser software (Carl Zeiss Ltd, Welwyn Garden City, U.K.) 

the contrast of the images was increased to 100%. This created a clear black/white image with a 

definite hole edge (Fig. 2). Lines were overlaid which bisected the image horizontally and 

vertically. Where these crossed, two 45° lines were overlaid. A mark was placed where these four 

lines touched the hole edge and the diameters measured (Fig. 2). An average of the four lines and 

yielded a value for the hole diameter.  

 

Quantification of the zone of cell death (ZCD). The consecutive series of optical sections (200µm 

z-stack comprising 20x10 µm thick optical sections) acquired during CLSM were overlaid using the 

Zeiss LSM image browser to create ‘CLSM reconstructions’ representing the imaged cartilage 

volume. A standardised method was devised for the quantification of the ZCD from the CLSM 

reconstructions (Fig. 2). Reference lines, originating at a defined central point which was 200µm 

from the first dead (red) cell, identified on the 90° line, were overlaid at 45°, 65°, 90°, 115° and 

135° (Fig. 2). A 50µm2 region of interest (ROI) was overlaid at the live/dead cell border at each of 

these positions. Manual live/dead cell counts were performed within this ROI, which was then 

gradually moved outwards until the dead cell fraction comprised <50% of the total cell count.  A 

line parallel to the reference line was then overlaid measuring the distance from the last dead cell 

within the ROI to the first cell along the reference line at the drilled edge. An average of the five 

measurements was taken. At x10 magnification, the maximum CLSM image area was 

1300µmx1300µm, and because of this and the extent of the ZCD, the measurements from two 

images i.e. the left and right sides of the hole, were taken and averaged.  

 

Statistical analysis. Data are presented as means with 95% confidence interval (CI) shown, with n 

as the number of different animals used. Statistical tests were performed using SigmaStat (Systat 
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Software Inc., San Jose, U.S.A.). Paired, two-tailed, Student’s t-tests were used to compare 

observations between paired data sets, ANOVA for one-way comparisons between groups, and the 

post-hoc Holm-Sidak method for all pair-wise multiple comparisons. A significant difference was 

indicated when p≤0.05. 
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RESULTS 

 

Qualitative assessment of drill and screw holes. Transmitted light images of the drill/screw holes 

gave an overview of the cartilage injury (Fig. 2). The 1.5mm drill bit consistently produced 

relatively smooth hole edges, with occasional minor irregularities. The appearance of cartilage 

following insertion/removal of the cortical screw into the 1.5mm pilot hole was, however, different 

(Fig. 2). The hole edges were markedly irregular both in terms of shape and degree of loose 

cartilage material, which was probably produced by the screw threads. Additionally, occasional 

cartilage splitting at the hole edge was observed both by transmitted light and CLSM (Fig. 2). 

Although the metallic headless screw (Acutrak) produced reasonably uniform holes, there was 

screw thread damage in the ZCD, but less marked compared to the cortical screw (Fig. 2). The hole 

produced by the bioabsorbable screw (Biotrak) was similar to the metallic headless screw but the 

hole edges demonstrated larger irregularities related to injury from either the tap or screw.  

 

Hole diameter. This was determined using the 100% contrast transmitted light images to compare 

with the diameter of the equipment used to create the holes (Fig. 2). Holes produced by the 1.5mm 

drill were smaller than the drill diameter although this was not significant (Fig. 3). However, the 

holes produced by the cortical screw, metallic headless screw and bioabsorbable screw were 

significantly (p≤0.001) smaller than the diameter of the screw inserted (Fig. 3) suggesting a 

‘swelling’ of the damaged extracellular matrix back into the hole.  

 

ZCD. Quantitative CLSM measurements from fluorescently-labelled in situ living/dead 

chondrocytes demonstrated a ZCD with a 1.5mm drill measuring 580.2±124µm (n=6,Fig. 4). This 

increased by approximately 10% to 637.0±44µm (n=4) following insertion/removal of a 2mm 

cortical screw but this was not significant (p>0.05). Although there was a 26% increase in the ZCD 

between the 2mm cortical screw and the 3.5mm Acutrak screw (800.9±159µm; n=6), this was also 
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not significant (p>0.05). The ZCD from insertion of the headless bioabsorbable screw (Biotrak) of 

identical dimensions to its metallic design, was 1236.4±212µm (n=6) and this was significantly 

greater than the ZCD of the Acutrak and the Biotrak screws (p<0.001,p<0.01 respectively; post-hoc 

Holm-Sidak tests; Fig. 4). There was a significant increase (one-way ANOVA; p<0.001) in the 

extent of the ZCD in the order: 1.5mm drill, cortical screw, Acutrak screw, Biotrak screw.   

 

Comparison of the ZCD with or without saline irrigation. The same techniques and 

quantification methods were used to determine whether or not saline irrigation whilst drilling with 

the 1.5mm drill reduced the ZCD. CLSM reconstructions showed a clear decrease in the extent of 

cell death and quantification of the images demonstrated a significant reduction (approximately 

50%) with saline irrigation compared to drilling without irrigation (204.6±132µm; 455.0±124µm 

respectively; p<0.001,n=7;Fig. 5). 
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DISCUSSION 

 

This study described a novel method using CLSM for the quantification of in situ 

chondrocyte death associated with the insertion of drills/screws into articular cartilage. A qualitative 

description was also possible based on the transmitted light images. The two main findings were 

firstly, a marked ZCD and surface damage was observed around holes arising from using a drill and 

articular screws of different designs (cortical screw, headless metallic screw, headless 

bioabsorbable screw). Secondly, chondrocyte death arising from drilling could be significantly 

reduced using saline irrigation for cooling. The results suggest current methods of internal fixation 

may compromise the viability of chondrocytes within osteochondral fragments.  

We are not aware of any literature on the extent of in situ chondrocyte death from the 

application of drills/screws to cartilage. Previous work has described a ZCD in cartilage around 

injuries from trephines9, circular osteotomes for mosaicplasty13 and along a scalpel cut10. The 

resulting chondrocyte death appears to be less than that reported here. Our observation that saline 

irrigation markedly reduced, but did not abolish chondrocyte death (Fig. 5) suggests that thermal 

injury during drilling could be a major cause of cell death. For bone, a variety of improved drill bits 

and finely-tuned drilling parameters, including external irrigation have been developed to reduce 

‘thermal necrosis’18. Thermal damage delays bone healing, increases resorption, and causes implant 

loosening/failure19.  It is also recognised that using an irrigation medium may decrease cell death in 

bone20. However there are few studies on the response of chondrocytes/cartilage to heat20, and while 

bone can remodel/repair following mechanical injury/cell death21, cartilage has very poor repair 

potential22. In cartilage, regions of tissue devoid of living chondrocytes, particularly in the 

superficial zone as studied here following the insertion of screws, result in focal cartilage defects 

that may progress to more extensive cartilage degeneration16. For example, in the knee joint, 

incidental findings of focal cartilage defects on MRI have been shown to be predictive of cartilage 

loss within 2 years23. In the ankle joint, focal chondral defects following fractures were closely 
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associated with the development of post-traumatic arthritis of the ankle at approximately 12 years 

following injury24. These clinical findings indicate that minimising the extent of focal articular 

injury during insertion of intra-articular screws may help to decrease the risk of chondral defects 

progressing to secondary osteoarthritis.  

There was no significant increase (P > 0.05) in the ZCD between that produced by the 

1.5mm orthopaedic drill alone and the cortical screw (Fig. 4). Although there appeared to be an 

increase in the ZCD (of approx. 160μm) between the 2mm cortical screw and the headless metallic 

screw, this also was not significant (P > 0.05; Fig. 4). However for the headless screw, there was a 

marked significant increase (54%; P < 0.001) in the ZCD between the Biotrak screw compared to 

the Acutrak screw. Overall, there was a significant increase (ANOVA P < 0.001) in the ZCD in the 

order; drill, cortical screw, Acutrak screw and Biotrak screw (Fig. 4) however it is important to note 

the different methodologies that were used. Thus, the drill used for the Acutrak and Biotrak screws 

had a larger diameter for the cortical screw (3.5mm vs 1.5mm) and the Biotrak screw also required 

a tap (see Table 1) and it is possible that these procedures accounted for the additional chondrocyte 

death. In addition, the cortical screw had to be removed before osteochondral explant harvest, as the 

screw head could not be buried below the subchondral bone. By contrast, the headless screws could 

be buried and explants harvested without the need for screw removal. Hence the ZCD for the 

cortical screw represented cartilage injury sustained as a result of cartilage drilling and following 

both insertion and subsequent removal of the screw, and may therefore overestimate chondrocyte 

death. The results are therefore the cumulative effect of the procedures on chondrocyte death and it 

would clearly be of interest to assess the contribution of the individual steps (including drilling and 

the use of the tap) on the ZCD which are required for the insertion (and removal) of orthopaedic 

screws. This may assist in developing improved orthopaedic equipment with the ultimate aim of 

minimising chondrocyte injury and death.  

The finding that there was no significant difference between the extent of chondrocyte death 

following drilling alone and that after insertion/removal of the cortical screw (Fig. 4 drill vs cortical 
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screw) is of particular interest. This might suggest that the mechanical trauma resulting from 

manipulating the cortical screw was irrelevant compared to the trauma from drilling which would 

comprise both thermal and mechanical injury. Although there is the strong likelihood that the 

majority of chondrocyte death arises from cartilage heating during drilling, we cannot at present 

rule out the possibility that some of the cell death is due to mechanical trauma independent of a rise 

in temperature. For example, following cartilage drilling with copious irrigation, we still observed a 

marked ZCD (approx. 200μm; Fig. 5) although it was not possible to prevent a transient rise in 

temperature (see Materials and Methods). It has previously been reported that chondrocytes are 

sensitive to a rise in temperature above the physiological level, and in particular there is a marked 

decrease in chondrocyte viability when temperatures between 50-55oC20 are applied for 5 mins20. 

We have previously shown using a single scalpel cut10 and others have reported using a trephine9 or 

surgical suturing11 that there is significant chondrocyte death to cartilage where there will be 

negligible thermal injury. Thus we feel that it is not unreasonable to suggest that the underlying 

mechanical trauma per se, could potentially contribute to the ZCD, although we are not able to 

assess its contribution with the present data. In order to address this point unequivocally, it would 

be necessary to undertake a further study to precisely determine the contributions made by thermal 

injury and the various mechanical insults to the ZCD in cartilage which occur during the application 

of orthopaedic drills and screws.  

We emphasise that our data do not favour a particular screw design as there was a marked 

ZCD with all three screws studied. Nevertheless, the bioabsorbable headless screw demonstrated 

the greatest cartilage injury during insertion. While it may not require subsequent removal, further 

research is necessary before adopting it for widespread use in articular surgery. It may also be 

possible to reduce the ZCD resulting from mechanical injury per se by increasing the osmolarity of 

the irrigating solution10 and we are currently investigating chondroprotective strategies as they may 

maintain chondrocyte viability in osteochondral fragments and prevent cartilage degeneration.  
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Although care was taken, the ZCD in replicate samples was variable. The ability of the 

surgeon to maintain perpendicular insertion and steady pressure could have an impact on the final 

injury produced. It was also likely that the complex interaction between the drill/screw and the 

heterogeneous nature of the matrix surrounding chondrocytes, also caused variability. It was 

therefore important to have a standardised method for comparing the extent of cartilage injury 

statistically and the methodology was aimed at providing a relatively unbiased representation of the 

ZCD as detailed in Fig. 2. We also noted that cartilage hole diameters were significantly smaller 

than those created by the equipment inserted (Fig. 3). It is likely that mechanical damage to the 

collagen network allowed proteoglycan swelling25 causing the injured matrix to spread into the hole 

leading to an apparent reduction in diameter. This could potentially improve the ‘sealing’ between 

the inserted screws and cartilage however it is probable that the vast majority of the mechanical 

holding strength of the screws will be by its interaction with bone. 

There are certain limitations to our study. We compared the effects of three different 

methods of internal fixation and inserted the equipment as close to the clinical setting as possible 

which meant both drill diameter and design were not identical. Thus for example, a 1.5mm guide 

hole was required for the cortical screw, whereas a 3.5mm hole was necessary for the metallic 

headless and bioabsorbable screws (Table 1). It is likely that the larger diameter drills caused more 

heating trauma resulting in a greater degree of chondrocyte death26.  Additionally, these 

experiments were performed on an animal joint, and human cartilage might respond differently 

because, for example, it is thicker than bovine cartilage14 and rises in temperature during drilling 

might be dissipated more effectively. Nevertheless, all three techniques tested were clinically 

relevant and indicated for osteochondral fragment fixation. The extent of chondrocyte death 

associated with the insertion of articular screws suggests that further consideration of the design of 

orthopaedic drills/screws could be beneficial to minimise iatrogenic damage26. The imaging 

methods described here could therefore be of value in providing quantitative and statistically 

comparable data. This study also demonstrated the protective effects of saline irrigation during 
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cartilage drilling through its cooling effect, which may improve the long-term viability of 

internally-fixed osteochondral fragments.  
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Table 1. Orthopaedic drills and screws used in this study. The procedures performed are 

identified (GI – GIV) with the drills and screws utilised as indicated. Also shown are the 

dimensions of the drills/screws, and supplier with an illustration of their appearance. Scale bar = 

1cm.  
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Fig. 1. Insertion of the drill/screws on the bovine metacarpopahalangeal joint. From left to 

right: hole produced by the 1.5mm drill, Acutrak screw, Biotrak screw and a self-tapping cortical 

screw. Bar = 1cm. 

Fig. 2. Quantification of the hole diameter and zone of cell death (ZCD). Left panel: 

Transmitted light images with improvement in the demarcation of the edges with adjustment of 

contrast (top and middle images). The reference lines and measurements of hole diameter are 

superimposed on the bottom image. Right panel: CLSM reconstructions of the articular surface (top 

image) – note the dead (red) and live (green) in situ chondrocytes are clearly distinguished with a 

circumferential ZCD extending from the edge of the hole into normal tissue. The reference lines and 

50µm2 region of interest (ROI) used to determine the live/dead border are shown in the middle 

image. The distance from the last dead cell in the ROI, to the first dead cell at the hole edge was 

measured, and shown as the ZCD (bottom image).  

Fig. 3. Comparison between cartilage appearance, equipment diameters and holes produced. 

Upper panels show transmitted light images used to determine hole diameters (see Results section 

for a qualitative description of the holes). Bar = 500µm. The graph shows that there was no 

significant difference between the actual diameter of the drill and the diameter of the hole in 

articular cartilage caused by the drill (1471±181µm; n=6). In contrast, the holes in articular 

cartilage after insertion of the cortical screw (1381±250µm; n=6), Acutrak screw (2569±409µm, 

n=6) and Biotrak screw (2702±272µm; n=6) were significantly (p≤0.001) smaller than the actual 

screw diameters. 

Fig. 4. CLSM images and the ZCD after drilling and articular screw insertion. Upper images 

show CLSM reconstructions of drill and screw holes in articular cartilage. Individual CLSM 

reconstructions have been combined to provide a composite view of the holes. The ZCD is the band 

of red stained cells surrounding the black hole created by the insertion of a drill or screw. Top left - 

1.5mm drill; upper right - cortical screw; lower left – Acutrak screw; lower right - Biotrak screw. 

(Bars = 1000µm).  The graph compares the width of the ZCD after drilling alone and the three 
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different articular screws. Note the ZCD was least for the cortical screw and greatest for the Biotrak 

screw (Data are means with the 95% confidence interval shown, with n=6 for 1.5mm drill, Acutrak 

screw, Biotrak screw, n=4 for cortical screw). 

Fig. 5. Reduction in the ZCD using saline irrigation during drilling. The CLSM reconstructions 

show the ZCD following drilling using a 1.5mm drill without (left) and with (right) saline irrigation 

(0.9%; 18oC). The graph summarises the pooled data demonstrating an approximately 50% 

reduction in the ZCD with saline irrigation. (Data are means with 95% CI, for n=7, white bar = 

250µm). 
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