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Recurrent Hypoglycemia Is Associated with Loss of
Activation in Rat Brain Cingulate Cortex

Paul Hurst, Alastair S. Garfield, Claire Marrow, Lora K. Heisler, and Mark L. Evans

University of Cambridge Metabolic Research Laboratories/Department of Medicine/National Institute for Health
Research Cambridge Biomedical Research Centre (P.H., C.M., M.L.E.), Institute of Metabolic Science-Metabolic
Research Laboratories, Addenbrookes Hospital, Cambridge CB2 0QQ, United Kingdom; and Department of
Pharmacology (A.S.G., L.K.H.), University of Cambridge, Cambridge CB2 1PD, United Kingdom

A subset of people with diabetes fail to mount defensive counterregulatory responses (CRR) to hypo-
glycemia. Although the mechanisms by which this occurs remain unclear, recurrent exposure to hy-
poglycemia may be an important etiological factor. We hypothesized that loss of CRR to recurrent
exposure to hypoglycemia represents a type of stress desensitization, in which limbic brain circuitry
involved in modulating stress responses might be implicated. Here, we compared activation of limbic
brain regions associated with stress desensitization during acute hypoglycemia (AH) and recurrent
hypoglycemia (RH). Healthy Sprague Dawley rats were exposed to either acute or recurrent 3-d hy-
poglycemia.WealsoexaminedwhetherchangesinneuronalactivationwerecauseddirectlybytheCRR
itself by infusing epinephrine, glucagon, and corticosterone without hypoglycemia. AH increased
neuronalactivityasquantifiedbyc-fos immunoreactivity(FOS-IR) inthecingulatecortexandassociated
ectorhinal and perirhinal cortices but not in an adjacent control area (primary somatosensory cortex).
FOS-IR was not observed after hormone infusion, suggesting that AH-associated activation was caused by
hypoglycemia rather than by CRR. Importantly, AH FOS-IR activation was significantly blunted in rats ex-
posed to RH. In conclusion, analogous with other models of stress habituation, activation in the cingulate
cortex and associated brain areas is lost with exposure to RH. Our data support the hypothesis that limbic
brainareasmaybeassociatedwiththe lossofCRRtoRHindiabetes. (Endocrinology153:1908–1914,2012)

In clinical practice in diabetes, hypoglycemia, or even just
fear of hypoglycemia, is the main factor limiting the ex-

tent to which average blood glucose levels can be lowered.
This is a particular problem for a subgroup of patients who
develop abnormalities in counterregulatory responses
(CRR) that normally protect against hypoglycemia. Loss
of CRR associated with decreased symptomatic aware-
ness of hypoglycemia [termed hypoglycemia-associated
autonomic failure (HAAF)] is a debilitating condition that
significantly increases the risk of patients suffering from
episodes of severe hypoglycemia.

To date, there has been a general assumption that
HAAF is a direct consequence of alterations in the brain’s
specialized glucose-sensing apparatus, with research ef-
forts focusing attention on identifying how hypoglycemia
is detected, predominantly within the ventral hypothala-
mus (1, 2). Although progress has been made, the process

underlying HAAF remains unclear. However, exposure to
antecedent hypoglycemia itself is undoubtedly an impor-
tant etiological factor (3).

Reduced defensive responses to recurrent, potentially dam-
aging insults is also seen with some other physical or psycho-
logical stresses, where repeated or chronic exposure results in
“stresshabituation”withareductioninresponseswhenrepeat-
edly challenged, perhaps as a defensive adaptation to limit ex-
pensive and potentially damaging stress responses (4). By anal-
ogy, HAAF may represent stress habituation to a recurrent
homotypic stress, in this case hypoglycemia.

Current data suggest that key areas within the brain’s
limbic system may be involved in habituation to other
stressors. For example, discrete areas within the medial
prefrontal cortex have been implicated in habituation to
recurrent restraint stress in rodents (5, 6). We hypothe-
sized that discrete areas within the prefrontal cortex and/or
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connectedlimbiccorticalareasmightbeinvolvedinmodulating
responses to recurrent hypoglycemia (RH). Specifically, we an-
ticipated that these brain areas would 1) be activated by acute
hypoglycemia(AH)and2)thatthisactivationwouldbeblunted
after RH. We used immunohistochemical detection of the im-
mediate early gene c-fos as an indicator of cellular activation
associatedwithRH.c-fos isacommonlyusedmarkerofcellular
activation, with expression in the nucleus induced within a few
minutes of cell stimulation (7).

Research Design and Methods

Animals
Healthy male Sprague Dawley rats (300–325 g) were

used throughout. Rats were group housed before survival
surgeryand individuallyhousedafter surgeryona12-h light,
12-h dark cycle. In accordance with United Kingdom law,
procedures were approved in advance after both a local Uni-
versityofCambridgeandanational (UnitedKingdomHome
Office) review. All chemicals were from Sigma-Aldrich
(Gillingham, United Kingdom) unless otherwise stated.

Surgical preparation
Under inhaled anesthesia, rats underwent survival sur-

gery for implantation of vascular catheters to right jugular
vein and/or left carotid artery as previously described (8).

Model 1. RH, insulin or saline
Three groups of rats were injected sc on three consecutive

daysas follows:1) control/euglycemia (EU)hadd1–3saline,2)
AH had d 1–2 saline and insulin (10 U/kg, Humulin S; Eli Lilly,
Basingstoke, United Kingdom) on d 3, and 3) RH had d 1–3
insulin (Humulin S 10–6 U/kg) (Fig. 1A), a protocol which we
havepreviouslyusedtocreateimpairedCRR(9).Oneachstudy
day, blood glucose was measured at 0, 60, and 120 min using
bloodsampledfromthetailvein;180minafter injectionond3,
rats were transcardially perfused with saline, then fixative and
brainswere extractedandprepared for immunohistochemistry
(IHC) as previously described (10).

Model 2. RH, matching exogenous insulin
Although simple, a limitation of model 1, in which we used

saline-injected controls, is that observed changes in brain acti-
vation could be attributable to insulin itself rather than hypo-
glycemia. To control for exogenous insulin, we therefore stud-
ied a further three groups of catheterized (jugular and carotid
catheters) rats. In this model, on the three consecutive study
days,scHumulinS(10U/kg)wasgiventoall ratsbutwith20%
dextrose being administered as an intravascular infusion as re-
quired to control plasma glucose. Food, but not water, was

removed 1 h before insulin injections, and animals were ad-
justed to and maintained at glycemic targets for 120 min.

Using this protocol, 1) EU animals received 3 d of dex-
trose infusions to maintain plasma glucose above 6 mM, 2)
AH animals received 2 d of EU followed by 1 d of hypo-
glycemia with plasma glucose lowered to 3 mM, and 3) RH
received 3 d of hypoglycemia; 180 min after injection on
d 3, rats were transcardially perfused with saline, then
fixative, and brains removed for IHC processing.

Model 3. Recreating hormonal CRR independent of
hypoglycemia

It is possible that any brain activation seen after AH may be
a response to the CRR hormones that are elevated during hy-
poglycemia (and indeed lost with RH) and/or the physiological
responses such as change in heart rate, etc., which these induce.
Toexaminethis,westudiedafurthergroupofchronicallycath-
eterized (jugular vein) rats which underwent 1 d studies with
120-min intravascular infusions of CRR hormones (corticoste-
rone 3 �g/kg�min, adrenaline 3 �g/kg�min, and glucagon 5 ng/
kg�min) to mimic the rise in CRR hormones seen during AH.
Bloodwassampledat0and120minforconfirmationofplasma
hormone concentrations; 180 min after the start of infusions,
rats were transcardially perfused with saline, then fixative, and
brains were extracted and prepared for IHC.

Immunohistochemistry
Hypoglycemia-induced activation patterns were exam-

ined using IHC as previously described (9, 11) using the after
primary antibodies rabbit anti-c-fos (1:8000; Millipore, Bil-
lerica, MA), mouse antineuronal nuclei (NeuN) (1:1000;
Millipore), and rabbit antiglial fibrillary acidic protein
(GFAP) (1:1000; Millipore), and the after secondary anti-
bodies biotinylated donkey antirabbit IgG (1:1000; Jackson
ImmunoResearch, West Grove, PA), Alexa Fluor 488 don-
key antimouse (1:1000; Invitrogen, Carlsbad, CA), and Al-
exa Fluor 568 donkey antirabbit (1:1000; Invitrogen), re-
spectively (see further details in Supplemental data,
published on The Endocrine Society’s Journals Online web
site at http://endo.endojournals.org). Based on initial screen-
ing of the pattern of distribution of c-fos immunoreactive
(FOS-IR) cells in the brain, we identified four cortical areas
of interest for a detailed comparison: cingulate cortex 1 (lev-
els from bregma 1.80, 0.96, 0.36, �0.24, �0.84), cingulate
cortex 2 (levels from bregma 1.80, 0.96, 0.36, �0.24,
�0.84), perirhinal cortex (PRh) (levels from bregma �3.24,
�3.84, �4.44, �5.04, �5.64), and ectorhinal cortex (Ect)
(levels from bregma �3.24, �3.84, �4.44, �5.04, �5.64).
We also examined the primary somatosensory cortex (S1)
(levels from bregma 1.80, 0.96, 0.36, �0.24, �0.84) as a
control cortical area adjacent to the cingulate cortex. AH-
treated brains were then processed for triple IHC, for FOS-
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IR, the neuronal marker NeuN, and the glial marker GFAP,
as previously described (10, 12).

Laboratory assays
Plasma glucose was measured using an Analox GM-9

analyzer (Analox Instruments, London, United Kingdom).
Plasma corticosterone (MP Biomedicals, Orangeburg, NY)
insulinandglucagon(LincoResearch,St.Charles,MO)were
measure by RIA in accord with manufacturer’s instructions.
Plasma epinephrine was measured using a 2-d-procedure
ELISA kit (IBL, Hamburg, Germany).

Statistics
Data were analyzed by either 1) one-way ANOVA with

Tukey’s or Dunnett’s post hoc comparisons, or 2) two-way
ANOVA with post hoc Bonferroni test, as appropriate. Data

are expressed as mean � SEM. For all anal-
yses, statistical significance was assigned at
P � 0.05.

Results

Model 1. Limbic cortical brain areas
are activated by AH but not RH

The doses of insulin used resulted in
1 or 3 d of moderate hypoglycemia in AH
andRHanimals,respectively(Fig.1,B–D).
In AH, a significant increase in FOS-IR
(suggesting increased cellular activation)
was observed in the cingulate cortex, PRh,
and Ect compared with EU treatment (Fig.
1, E–H). In contrast, FOS-IR in these re-
gions inRHratswasnotdifferent fromEU
rats (Fig. 1, E–H). These data indicate that
hypoglycemia-induced activation of key
limbic brain areas is impaired after 2 d of
previous exposure to the same hypoglyce-
mic stimulus.

Model 2. Limbic cortical brain area
activation is independent of
insulin exposure

It is possible that the changes inFOS-IR
seen in model 1 were caused by insulin
rather thanhypoglycemiaperse.Toexam-
ine this possibility, we studied animals that
underwent three sequential days of studies
but with identical exposure to insulin and
infusionofexogenousdextroseas required
toachieveglycemictargets(Fig.2). Inkeep-
ing with our hypothesis, significantly in-
creasedFOS-IRnucleiwereobservedinthe
cingulatecortex,Ect,andPRhafterAHbut

not RH (see figure 4 below). This was not simply due to in-
creased activation in all cortical brain areas, given that no
changes were observed in an adjacent cortical control area (S1;
for representative images see, Fig. 3). To determine whether
FOS-IR expression represented neuronal or glial activation, we
performed triple IHC for c-fos, neuronal marker NeuN, and
glial marker GFAP in AH-treated rats. FOS-IR was predomi-
nantly neuronal, as demonstrated by colocalization of FOS-IR
with NeuN, not GFAP (Fig. 3). These data suggest that hypo-
glycemia-induced changes in neuronal activation are indepen-
dent of insulin exposure.

Cortical brain areas are not activated by hormonal
CRR alone

To confirm that increased cortical brain activation after
AH is not a response to the CRR hormones elevated during
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FIG. 1. Model 1. Insulin-induced hypoglycemia results in increased cingulate cortex, Ect, and
PRh activation. Study design, showing saline (S) or insulin (I) treatment for each of the
experimental groups on the three consecutive study days (A). Plasma glucose values for the
three experimental groups of d 1 (B), d 2 (C), and d 3 (D). c-fos counts in cingulate cortex (E
and F), Ect (G), and PRh (F) after 3 d of glycemic manipulation. Data are presented as mean �
SEM, n � 8–10 in each group. *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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hypoglycemia, FOS-IR was assessed in rats treated with
CRR hormones. Specifically, rats were infused with the
CRR hormones resulting in levels of epinephrine (440 �
72 to 5222 � 695 pg/ml, P � 0.001), glucagon (38 � 8 to
155 � 31 pg/ml, P � 0.01), and corticosterone (258 � 15
to 473 � 51 ng/ml, P � 0.01), equivalent to previously
reported concentrations during hypoglycemia (1, 2, 13).
As expected, plasma glucose also rose in response to CRR
infusion (8.7 � 0.7 to 16.6 � 2 mM, P � 0.01). Impor-
tantly, there was no increase in FOS-IR in the cortical

brain areas assessed after hormone in-
fusion only (HO) (Figs. 3 and 4), sug-
gesting that changes in brain activation
after AH are not an indirect conse-
quence of the systemic CRR response.

Conclusions

The mechanisms by which some patients
with diabetes develop impaired re-
sponses tohypoglycemia remainunclear.
A better understanding of these changes
and the brain areas involved might allow
targeted therapies aimed at reversing
thesealterations, allowingpatients to im-
prove their glycemic control more safely.
The data presented here demonstrate
that AH activates the cingulate cortex
and associated Ect and PRh but not other
adjacent cortical areas. This activation is
impaired when animals have been previ-
ously exposed to hypoglycemia. Impor-
tantly,data frommodel2showthat these
changes are not related to insulin but
rather to hypoglycemia.

Infusion of CRR hormones did not ac-
tivate these cortical areas, suggesting that
the changes seen with hypoglycemia are
not a consequence of CRR hormones. As
anticipated, CRR infusion resulted in hy-
perglycemia, and although unlikely that
this would have masked any effect of
CRR hormones, this could be tested fur-
ther by combining hormone infusions
with an EU clamp to prevent the rise in
glucose. It is also important to note that
we have not examined directly whether
CRR hormone rises during AH are re-
lated to HAAF.

Although most previous studies have
focused on the role of the hypothalamus,
some reports also implicate limbic acti-

vation in areas such as insular cortex, amygdala, and thala-
mus associated with AH (14–16). One group reported that
thalamic activation was blunted with RH (15). Here, we
report that acute activation of cingulate cortex, Ect, or PRh
in rodents with hypoglycemia is blunted with repeat expo-
sure to hypoglycemia. Another important difference is that
none of these previous studies assessed neuronal activation
independentof exogenous insulin exposureaswehavedone,
despite the fact thatnumerous studieshave reportedaneffect
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of circulating insulin on responses to hypoglycemia (e.g.
Refs. 17, 18). Because FOS-IR is an indirect marker of ac-
tivity, it is not clear whether our observations of increased
cingulate cortex, Ect, or PRh activation represents a first or-
der site or forms a part of the circuitry generating or facili-
tating autonomic responses to hypoglycemia and/or in-
volved in the symptomatic awareness of hypoglycemia.

The cingulate cortex has been implicated in a number
of biological processes, including monitoring of the inter-

nal milieu and control of autonomic function. It has also
been reported to be activated in situations when errors in
cognition are likely to happen (19) and is linked to hypo-
thalamic and brain stem autonomic nuclei via descending
neurological pathways (20). In keeping with actions to
modulate the autonomic system, patients with cingulate
damage fail to mount autonomic responses (20, 21). An-
atomically, the cingulate projects to the ectorhinal and
perirhinal areas in the parahippocampal gyrus of the tem-

FIG. 3. AH, but not RH, increases neuronal activity in the cingulate cortex (Cg), Ect, and PRh. FOS-IR in sections from representative treatment
conditions, EU (A–D), AH (E–H), RH (M–P), and CRR HO (Q–T) treatment. I–L, Triple IHC for FOS-IR (blue), NeuN (green), and GFAP (red), carried
out in AH-treated rats only. Scale bar in EU-treated Cg, 100 �m (applies to all except I—L). Scale bar in I, 20 �m (applies to I–L).
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poral lobe via the cingulum but may also receive afferents
back from these areas (22, 23). Our study does not allow
us toexaminewhether the changes in ectorhinal/perirhinal
activation are secondary to changes in cingulate activity.
Both the Ect and PRh have been implicated in sympathetic
activity, with reciprocal connections between both the ec-
torhinal, perirhinal, and common sympathetic output re-
gions, such as the adrenal gland, stellate ganglion, and
celiac ganglion (24). Therefore, it is possible that the cin-
gulate cortex, Ect, and PRh collectively exert a controlling
influence over autonomic outflow from the brain.

In keeping with our findings, noninvasive human im-
aging studies report activation by AH in a number of lim-
bic brain areas implicated in facilitating/modifying re-
sponses to other stressors, including the cingulate/medial
prefrontal cortex and thalamus (25–27). A role for the
cingulate cortex, Ect, and/or PRh in HAAF has not pre-

viously been reported, although data
suggest a hypoglycemia-mediating role
for other limbic areas. For example,
changes in thalamic activation have been
reported in healthy humans after RH
(28), and a direct modulatory role for the
amygdala on CRR has been reported in
rodents (29).

It is importanttoacknowledgethatwe
show an association between RH and
blunted cortical activation but do not
prove that changes in these areas contrib-
ute to the etiology of HAAF. However,
mechanistic studies suggest that efferent
pathways from areas within the medial
prefrontal cortex adjacent to the cingu-
late may be intrinsically involved in
down-regulating responses to recurrent
restraint stress, supporting a role for pre-
frontal cortical areas in the genesis of
stress habituation (5).

In summary, our data show that lim-
bic cortical brain areas, including the cin-
gulate cortex, Ect, and PRh, are active
when blood glucose falls and that this ac-
tivity is blunted after RH. We speculate
that these cortical areas may contribute
to the development of HAAF. To date,
most mechanistic work using rodent
models to examine HAAF has concen-
trated on the hypothalamus. The signif-
icance of our work is that it suggests that
broaderbrainareasmaycontributetothe
developmentofHAAFandmaythusrep-
resent new areas for targeted therapy

aimed at minimizing problematic hypoglycemia in diabetes.
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