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Abstract Procedures and the Physical World 
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 and Piotr Jablonski
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Abstract.   The paper examines some central issues concerning 

the notion of implementing abstract formal structures, including 

effective procedures and dynamical systems, in the realm of 

physical space-time. We address the view originally put forward 

by Putnam and Searle, that virtually any physical system can be 

interpreted as implementing virtually any computational 

formalism, and defend the general conclusion that realizing an 

abstract procedural structure is not an intrinsic property of 

physical systems, but rather is a purely observer-dependent 

ascription. In a parallel manner, the 'trivialization' arguments 

originally put forward against computationalism are extended to 

dynamical systems theory, an alternative abstract framework that 

has also been advocated as providing the theoretical foundation 

for mentality in the natural world. Rather than attempting to 

distinguish 'true' from 'false' cases of implementation, we 

distinguish pragmatically useful ascriptions from those that serve 

no epistemic purpose.        1the  

1     ENGINEERED IMPLEMENTATION 

From a disembodied mathematical perspective, classical 

computation comprises an extremely well defined and stable 

phenomenon. Central to the theory of traditional computation is 

the intuitive notion of an effective or ‘mechanical’ procedure, 

and there are any number of different possible frameworks for 

filling in the details and making the idea rigorous and precise. 

Turing’s ‘automatic computing machines’ [1] (TMs), supply a 

very intuitive and elegant rendition of the notion of an effective 

procedure, but there is a well known variety of alternative 

frameworks.  

According to the widely accepted Church-Turing 

thesis, the class of computable functions is nonetheless captured 

in a mathematically absolute sense by the notion of TM 

computability, and every alternative formalization so far given of 

the broad intuitive notion of an effective procedure has been 

demonstrated to be equivalently powerful, and hence to specify 

exactly the same class of functions [2]. Thus the idealized notion 

of in-principle computability, where all finite bounds on input 

size, storage capacity and length of running time are abstracted 

away, seems to constitute a fundamental category, a stable and 

fundamental ‘mathematical kind’. 

A related further question is whether any sort of 

comparable feature carries over to computation as implemented 

or realized in the physical universe. Turing machines and other 

types of computational formalisms are mathematical 

abstractions and don’t exist in real time or space. In order to 
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perform actual computations, an abstract Turing machine must 

be realized by a suitable arrangement of matter and energy, and 

as Turing observed long ago [3], there is no privileged or unique 

way to do this. Like other abstract structures, Turing machines 

are multiply realizable - what unites different types of physical 

implementation of the same abstract TM is nothing that they 

have in common as physical systems, but rather a structural 

isomorphism expressed in terms of a higher level of description. 

Hence it’s possible to implement the very same computational 

formalism using modern electronic circuitry, a human being 

executing the instructions by hand with paper and pencil, a 

Victorian system of gears and levers, as well as more atypical 

arrangements of matter and energy including beer cans serving 

as tokens of the symbol ‘1’ and rolls of toilet paper serving as 

the tape. 

Adopting the conventions introduced by Schweizer 

[4], let us call this ‘downward’ multiple realizability, wherein, 

for any given abstract structure or formal procedure, this same 

abstract structure can be implemented via an arbitrarily large 

number of distinct physical systems. And let us denote this type 

of downward multiple realizability as ‘↓MR’. After the essential 

foundations of the mathematical theory of computation were 

laid, the vital issue then became one of engineering – how best to 

utilize state of the art technology to construct rapid and powerful 

physical implementations of our abstract mathematical 

blueprints, and hence perform actual high speed computations 

automatically. This is a clear and deliberate ↓MR endeavour, 

involving the intentional construction of artefacts, painstakingly 

designed to follow the algorithms that we have created. From 

this top-down perspective, there is an obvious and pragmatically 

indispensible sense in which the hardware that we have designed 

and built can be said to perform genuine computations in 

physical space-time.    

2     NATURAL COMPUTATION?   

In addition to these comparatively recent engineering 

achievements, but presumably still members of a single 

underlying category of phenomena, various authors and 

disciplines propound the notion of ‘Natural Computation’ (NC), 

and invoke a host of indigenous processes and occurrences as 

cases in point, including neural computation, DNA computing, 

biological evolution, molecular and membrane computing, slime 

mould growth, cellular automata, ant swarm optimization, etc. 

According to such views, computation in the physical world is 

not merely artificial – it is not restricted to the devices 

specifically designed and constructed by human beings. Instead, 

computation is a seemingly ubiquitous feature of the natural 

order, and the artefacts that we have produced constitute only a 



very small subset of the overall class of computational systems 

that inhabit the physical universe. 

The disciplinary and terminological practices 

surrounding NC plainly invite a more thorough and rigorous 

examination of the underlying assumptions involved. Salient 

questions in need of scrutiny include: To what extent, if any, is 

computation a genuine natural kind – is there an intrinsic unity 

or core of traits systematically held in common by the myriad of 

purported examples of computation in the physical world? In 

what sense, if any, can computation be said to take place 

spontaneously, as a truly native, ‘bottom-up’ phenomenon?  

The issue has pronounced conceptual importance with 

respect to positions on the conjectured computational nature of 

mentality and cognition. According to the widely embraced 

computational theory of mind (CTM), which underpins cognitive 

science, Strong AI and various allied positions in the philosophy 

of mind, computation (of one sort or another) is held to provide 

the scientific key to explaining and, in principle, reproducing 

mentality artificially. The paradigm maintains that cognitive 

processes are essentially computational processes, and hence that 

intelligence in the physical world arises when a material system 

implements the appropriate kind of computational formalism. So 

it’s an immediate corollary of CTM that the human brain counts 

as an exemplary instance of natural computation. 

Hence it is crucial to CTM's theoretical stance that 

there be a rigorous and precise analysis of physically grounded 

computation in the case of organically engendered human brains. 

But the issue has wider and independent significance, in an 

attempt to gain conceptual clarity on whether and to what extent 

computation can be cogently viewed as a natural occurrence. 

And this in turn requires a general theoretical investigation and 

articulation of what it means for computations and other sorts of 

abstractly specified formalisms and structures to be implemented 

in the physical realm. It is this last, overarching theme that will 

comprise the primary focal point of the ensuing discussion. 

 
3    THREE DIFFERENT SENSES 
 

For the sake of analytical precision, we will begin by 

disambiguating three possible senses in which real physical 

systems might be thought of as ‘performing a computation’, and 

where these distinct senses are often blurred or run together by 

proponents of NC.  
First (1), a physical system or object may be said to 

obey or satisfy a particular equation or mathematical function. 

For example, a falling body in the earth's gravitational field will 

satisfy or obey Newton's equation for gravitational acceleration. 

Similarly, the planets orbiting the sun satisfy or obey Kepler's 

laws of planetary motion. This has lead various NC enthusiasts 

to claim that the planets orbiting the sun, falling bodies in the 

earth's gravitational field, etc., are in fact computing the values 

of the equations in question. Taken to its most extreme form, this 

becomes the assertion that physical processes and natural laws 

are themselves fundamentally computational, and hence that 

computation constitutes the foundational key to the natural order.   

Second (2), the activities of a physical system or 

process may be precisely modelled or simulated by a given 

computational formalism or depiction. For example, it is 

possible to create highly accurate and explanatorily useful 

computer models which simulate the behaviour of various 

complex physical events such as earthquakes, climate change, 

hurricanes, particle collisions, protein folding, brain processes, 

etc. Again, the usefulness and accuracy of these computational 

models has lead proponents of NC to claim that the physical 

phenomena themselves are performing such computations or are 

somehow instances of such computations occurring in nature. 

And third (3), a physical device or process may be said 

to literally implement, realize or execute a particular algorithm 

or effective procedure. Thus when I write a piece of code in 

some artificial programming language, say Prolog, and then run 

this code on my desktop computer, there is a very clear and 

paradigmatic sense in which the electro-mechanical hardware in 

question is performing or executing the algorithm explicitly 

encoded in Prolog. 

It seems uncontroversial that (3) is the basic and 

indeed canonical sense of computation in the physical world, and 

constitutes the modern historical origin of the concept. But in the 

Prolog example used to illustrate the import of (3), the 

computation in question is not a natural occurrence ─ rather it’s 

a direct result of human design and engineering. Human artefacts 

in the form of electromechanical hardware devices comprise the 

arrangements of matter and energy that carry out the actual 

computation in space and time, and the procedures being 

executed are specified in terms of artificial programming and 

machine languages. In such literal and exemplary cases, real 

world computation is a purely synthetic phenomenon.  

However, this does not in itself rule out the possibility 

that there could be genuine natural computation in the stringent 

sense of (3), since it is still entirely possible that some 

appropriate version of CTM is true. For example, if Fodor [5] is 

correct, then the human brain, an organically engendered 

'wetware' device, is running the Language of Thought (LOT) as 

an indigenous formal system of rule governed symbol 

manipulation, in a manner directly comparable with a 

computational artefact. Thus if Fodor is correct, then the human 

brain is a paradigmatic instance of NC in sense (3). 

Accordingly, in the ensuing discussion we will treat 

Fodor's conjectured LOT as epitomizing what genuine 

computational processing in the natural world would look like in 

its most explicit form − a spontaneously generated, bottom-up 

case of formal symbol manipulation. And this is compatible with 

the foregoing discussion of downward multiple realization, since 

the relation between LOT and the brain could then be viewed in 

typical ↓MR terms. For example, an alternative mechanical 

device, physically quite unlike the brain, could presumably be 

constructed to implement the LOT in an artificial medium. 

In order to construct such an implementation, we 

would need to utilize expertise in engineering and materials 

science, which exploited the lawlike regularities that characterize 

the time evolution of physical systems. This expertise would be 

required to design the material implementation in such a way 

that it could be methodically interpreted, at the appropriate level 

of description, as behaving in a manner isomorphic to the 

abstract processing structure of the human brain. Indeed, it's 

perfectly conceivable that if we could abstract out the relevant 

computational structure of the LOT physically realized in brain 

activity, then we could run this same abstract computational 

structure on some version of our existing artificial hardware. 

And then, in perfect accord with ↓MR, the systematic and 

predictable behaviour of both the brain and the artificial device, 

seen as systems governed by natural law, could be interpreted, at 



a higher level of description, as implementations of the same 

abstract computational structure.  

4    CRITIQUE OF SENSES (1) AND (2) 
 

As noted in sense (1) above, a physical system or object, such as 

a piece of electromechanical hardware, may be described as 

obeying or satisfying various equations or mathematical 

functions. And it is by utilizing our knowledge of these 

regularities that we are able to construct physical realizations of 

abstract computational procedures, and thereby systematically 

and reliably preserve the implementational mapping from 

abstract formalism to relevant sequences of states of the physical 

machine.  What then is to be gained by then claiming that, in 

addition to performing a computation in virtue of systematically 

preserving this mapping, the hardware is performing yet another, 

underlying computation, simply in virtue of evolving through 

time in accordance with natural laws? 

 Such a claim seems to be founded on a conflation 

between two of Marr's [6] classic distinctions in levels of 

analysis. The salient difference between what is going on in (1) 

as opposed to (3) is precisely the difference between the level of 

bare mathematical function and the level of computational 

algorithm. For any given function there are many different 

algorithms for computing its input/output values, and a 

mathematical function or general equation on its own does not 

specify any corresponding formal method or single out any one 

of the many different possible corresponding effective 

procedures as privileged. Hence merely satisfying an equation, 

as in the case of a hardware device obeying a lawlike physical 

regularity, is too weak to underwrite an assertion of distinctively 

computational processing, because it leaves the vital procedural 

details completely unspecified. Exactly which particular 

algorithm for computing the values of Kepler's laws of planetary 

motion is the earth currently implementing? And articulated in 

precisely which abstract computational framework? 

 Thus sense (1) seems to constitute an unmotivated and 

theoretically unilluminating inversion of perspective. Human 

scientists have devised mathematical abstractions in the form of 

general equations in order to characterize observed regularities 

in physical behaviour. In turn, we utilize these rigorously 

characterized regularities to construct artefacts that can be 

systematically interpreted, at a higher level of description, as 

implementations of selected computational formalisms. In this 

respect, we have a well defined implementational foundation in 

brute physical behaviour. The ontological and causal status of 

real-time computations is thus grounded in a stable, non-

computational medium. But to then assert that the 

implementational medium itself, simply in virtue of evolving in 

accord with certain abstractly characterized patterns, is thereby 

performing lower level computations, seems to threaten a 

causal/ontological regress. And unless the particular algorithms 

and formalisms purportedly being executed are explicitly 

specified and substantiated, the assertion seems to make no 

additional contribution. However, the general equations as such 

are central to our scientific theorizing and abstract representation 

of the natural world.  In section 7 below we shall further 

investigate sense (1) and the status of such formal specifications 

in the particular guise of dynamical systems. 

 In the case of sense (2), the algorithmic details missing 

from sense (1) are provided, but they are located in the wrong 

place. When complex physical events and processes are 

accurately simulated via computational models, it is the artificial 

computational structures which compute the values of the laws, 

equations and regularities governing the physical phenomena 

being simulated. And indeed, this is why the models are accurate 

and useful. But what motivates the further claim that the 

complex physical phenomena are themselves somehow 

implementations of the computations performed by the artificial 

models?  Again, the same equations and regularities could be 

computed by another computational model using different 

underlying algorithms, programming languages, etc. to calculate 

the relevant values.  Which of the many distinct computational 

possibilities is privileged or singled out by nature? In agreement 

with Piccinini [7], we would advocate a sharp distinction 

between mere computational modelling and genuine 

computational processing in nature.  

 So in the ensuing discussion we will treat (3) as the 

literal and canonical sense of computation in the space-time 

arena. We diagnose sense (1) as derived from the mathematical 

characterization of fundamental regularities in nature, but where 

the additional attribution of computational activity is due to a 

conflation between Marr's distinct levels of bare mathematical 

function versus specific algorithm for computing the values of 

the function. Finally, sense (2) is a case of artificial simulation of 

natural events and processes, where the values of the regularities 

salient to sense (1) are explicitly computed, but where this 

computation is merely a tool of human heuristics and is not 

supported by nature. In this respect sense (2) is a hybrid of the 

more basic content involved in (1) and (3), and will not receive 

any further investigation. The ensuing discussion will focus 

primarily on (3) as the paradigmatic sense of computation in the 

physical world, and will also provide an allied investigation of 

sense (1), since both (1) and (3) are cases of applying explicit 

renditions of abstract, formal procedures directly to physical 

events and processes.  

 Of course, to some extent the issue could be seen as 

purely terminological. One could choose to brand computation in 

sense (3) as 'classical' or 'Turing' computation, and then label 

senses (1) and (2) as 'computation', but of a different, broader 

sort. But for this broadening of the scope of application of the 

term to count as useful and well motivated, it would need an 

accompanying story to explain (i) what essential characteristics 

are had in common to unify all three apparently quite disparate 

senses of the term, and then (ii) why the category of phenomena 

so unified should be called 'computation' and not something else. 

 We don't wish to dwell on mere terminological or 

taxonomical disputes, and hence maintain that, whatever use of 

terminology one may adopt, sense (3) has clear and paradigmatic 

import, and it is this interpretation of the word that we wish to 

emphasize and investigate. Furthermore, whatever may be going 

on in most cases of (1) and (2), be it felicitously categorized as 

'natural computation' or as something else, it is still quite distinct 

from what is captured by sense (3).  

 
5    COMPUTATION IS NON-INTRINSIC 
 

We will now articulate and begin to defend one of the main 

theses of the paper, a thesis stemming from arguments originally 

put forward by Putnam [8] and Searle [9, 10], that even in the 

quite restricted and canonical sense of (3), computation is not an 

inherent or intrinsic characteristic of any physical system. 



Instead, it's a purely observer dependent ascription, projected 

onto a physical system via an act of human interpretation.  

Furthermore, the extent to which a physical device can be 

interpreted as realizing any sufficiently rich computational 

formalism, such as an abstract Turing machine, is not absolute, 

but instead is always a matter of degree of approximation. And 

the choice to interpret a physical device as implementing a 

particular abstract formalism is always relative to our particular 

purposes and potential epistemic gains.  

Our normal practice of interpreting specialized 

artefacts as performing computations is clearly of very high 

pragmatic value. Nonetheless, such interpretations are ultimately 

dependent on human conventions and are not intrinsic to the 

hardware itself. Thus computation in the physical world is not 

sustained or underwritten by the innate structure of the systems 

interpreted as realizers, and computation as such is not a natural 

kind. We will begin our defence of this view by examining some 

well known arguments concerning the theoretical possibility of 

multifarious ‘deviant’ interpretations.         

 
6     TRIVIALIZATION ARGUMENTS 

Various critics of CTM have put forward a family of 

'trivialization arguments', directly relevant to sense (3) above. 

The arguments are based on the contention that the notion of a 

physical system implementing a computational formalism is 

overly liberal to the point of vacuity. As a case in point, Putnam 

[8] offers a proof of the thesis that every open physical system 

can be interpreted as the realization of every finite state 

automaton. Putnam's argument will be explored in more detail in 

section 7, in the context of Dynamical Systems theory.  

 In the current section of the paper we will consider the 

closely related position advanced by Searle [9], who argues that 

virtually any physical system can be interpreted as following 

virtually any program. Thus hurricanes, our digestive system, the 

motion of the planets, even an apparently inert lecture stand, all 

possess a level of description at which they instantiate any 

number of different abstract formal procedures. The stomach has 

inputs, internal processing states and outputs, and if one wanted 

to, one could interpret the inputs and outputs as code for any 

number of different symbolic processes. And in [10] Searle 

attempts to illustrate the extreme conceptual looseness of the 

notion of implementing an abstract formalism by famously 

claiming that the molecules in his wall could be interpreted as 

running the WordStar program. 

 Again adopting conventions introduced by Schweizer 

[4], let us label multiple realizability in this direction, wherein 

any given physical system can be interpreted as implementing an 

arbitrarily large number of different computational formalisms 

‘upward MR’ and denote it as ‘↑MR’. The basic import of ↑MR 

is the non-uniqueness of computational ascriptions to particular 

physical systems. In the extreme versions suggested by Putnam, 

Searle, and more recently Bishop [11], there are apparently no 

significant constraints whatever – it is possible in principle to 

interpret every open physical system as realizing every 

computational procedure. Let us call this extreme version 

‘universal upward MR’ and denote it as ‘↑MR*’. Mere ↑MR is 

weaker than ↑MR*, since the former does not assert that there 

are no salient constraints, and hence ↑MR would be consistent 

with the denial that, e.g., the molecules in Searle’s wall can in 

fact be interpreted as implementing the WordStar program, 

although every physical system is still interpretable as 

implementing some very large set of distinct computations. 

 In the present discussion we will not argue for or 

against ↑MR* but instead confine our considerations to the more 

modest ↑MR. In view of ↑MR, it’s still never the case that any 

given computational interpretation of a physical system is 

privileged or unique, and this is far more difficult to deny than 

the powerful and broad sweeping ↑MR*. In turn, the non-

intrinsic status of computation would seem to follow as a direct 

consequence of mere ↑MR alone. As long as there are at least 

two distinct interpretations, there is no objective fact of the 

matter regarding which computation is ‘actually’ being 

performed, nor which of the alternatives is the ‘correct’ or ‘real’ 

account. And this is because the computation itself is not an 

intrinsic property of the physical device, and is instead 

dependent on a human observer to supply the various alternative 

interpretations. 

 This is not to say that it’s purely a matter of caprice, 

and that there are no objective constraints that the interpretation 

must satisfy. Instead, the situation is perhaps comparable to the 

distinction between natural kinds, such as water, and 

conventional kinds, such as being a table. Even though 

membership in either kind might be based on criteria whose 

satisfaction (or not) is a matter of objective truth, still the criteria 

for conventional kinds are not intrinsic, and there is nothing 

about the particular arrangement of matter now holding up my 

desk top computer which makes it intrinsically a table. The 

salient criteria stem purely from human practices and 

stipulations rather than from, e.g., fundamental microstructure or 

natural law. 

 The original trivialization arguments are intended to 

undermine CTM, by showing that attributions of computational 

processing are overly liberal to the point of vacuity, and hence 

cannot serve as a criterion for mentality in the natural world. But 

the potential scope of application is clearly much wider, and they 

also serve to trivialize the idea of ‘Natural Computation’ in 

general. According to ↑MR*, anything computes everything, and 

hence computational processing in the natural world turns out to 

be far more rampant and ubiquitous than proponents of NC ever 

suspected. 

7     SYNTAX, SEMANTICS, PHYSICS 

At the abstract, formal level, computation is an essentially 

syntactic phenomenon, and how we choose to interpret 

arrangements of matter and energy as constituting, say, tokens of 

an abstract syntactic type, and thus specifying an implementation 

of the basic computational vocabulary, is entirely independent of 

physical composition. For example, in the downward ↓MR 

direction there is a more or less limitless diversity in the ways in 

which material patterns and arrangements can be viewed as 

implementing the binary notation of ‘0’ and ‘1’, from ink marks 

on a piece of paper, stones placed in wooden boxes, patterns on 

old-fashioned punch cards, electric voltages, beer cans 

positioned on rolls of toilet paper, … And this applies in the 

reverse ↑MR direction as well, wherein the same stones placed 

in wooden boxes can be interpreted as implementing any number 

of distinct computational formalisms.  

Classical computation is rule-governed syntax 

manipulation, and it is no more intrinsic to physical 

configurations than is syntax itself. It is also worth observing 



that discrete states are themselves idealizations, since the 

physical processes that we interpret as performing computations 

are in fact continuous, and we must abstract away from the 

continuity of the underlying substrate and impose a scheme of 

conventional demarcations to attain discrete values. Hence even 

this elemental building block of digital procedures must be 

projected on to the natural order from the beginning. The 

irresistible conclusion to be drawn is that there is a fundamental 

gap separating ‘concrete’ physical reality from the human-based 

ascriptions of abstract syntactic features. 

 In turn, there is yet another fundamental gap 

separating abstract syntactic features from their semantic 

interpretation. Just as syntax is not intrinsic to physics, so too 

semantics is not intrinsic to syntax. Just as being an instance of 

the spoken English sentence ‘The cat is on the mat’ is not an 

inherent property of the sound waves constituting any particular 

utterance token, so too, the associated proposition comprising 

the interpretation of the utterance is not intrinsic to the abstract 

syntactic structure. Instead, the associated meaning is determined 

via arbitrary human convention, and the same syntactic item 

could just as well have had the interpretation currently expressed 

in English by ‘The rat is on the table’ or ‘The dog is on the 

hearth’.  

In the context of classical computation, one of the key 

constraints in the notion of an effective procedure is that the 

rules can be followed 'mindlessly', i.e. without knowing what the 

manipulated symbols are supposed to mean.  As a consequence, 

there is no unique meaning determined by the procedure as such, 

and a multitude of distinct and incompatible interpretations are 

always possible. As a simple example, a Turing machine 

intended to compute the values of a particular truth function, say 

inclusive disjunction, can be easily reinterpreted as computing 

conjunction instead, simply by flipping our interpretation of the 

symbols ‘0’ and ‘1’, so that ‘0’ is construed as denoting true 

while ‘1’ denotes false. And the same procedure interpreted as 

computing conjunction could instead be construed as computing 

the values of the arithmetical function of multiplication. 

restricted to the numerical inputs 0 and 1.  

Similarly, formal systems in general are such that the 

transformations on symbols are not specified with reference to 

their intended interpretation. Many classical negative results in 

mathematical logic stem from this separability between formal 

syntax and meaning. The various upward and downward 

Löwenheim-Skolem theorems show that formal systems cannot 

capture intended meaning with respect to infinite cardinalities. 

As another eminent example, Gödel’s incompleteness results 

involve taking a formal system designed to be ‘about’ the natural 

numbers, and systematically reinterpreting it in terms of its own 

syntax and proof structure. As a consequence of this 

‘unintended’ interpretation, Gödel is able to prove that 

arithmetical truth, an exemplary semantical notion, cannot, in 

principle, be captured by finitary proof-theoretic means. 

In summary, there are two fundamental gaps 

separating formal procedures, standardly interpreted as 

computing the values of given functions, from the physical 

processes that we construe as implementing such procedures. 

First there is the gulf dividing the intended semantic 

interpretation from the bare syntactic formalism, and second 

there is the chasm between abstract syntactic formalism and 

physical reality. In both cases the gaps can only be bridged by an 

act of purely conventional human interpretation. And it is in this 

sense that computation in the physical world is inherently 

observer dependent.    

 

8     PUTNAM AND DYNAMICAL SYSTEMS  
 

We will now take a closer look at the foregoing sense (1) 

sometimes used to support the view of computation in nature.  

As was noted in section 3, the term 'computation' is occasionally 

meant as a description of the fact that some physical processes 

satisfy or obey a mathematical equation. Although, as we noted, 

there is little reason to believe that planets orbiting the sun 

compute an algorithmic approximation of the Newtonian laws of 

motion. So instead of viewing  such cases in explicit NC terms, 

we will analyze the underlying notion of projecting the bare, 

abstract procedural descriptions furnished by dynamical systems 

onto the time evolution of physical phenomena. Thus, instead of 

a mapping between the physical states of the system and the 

computational states of an algorithm, there is a mapping between 

physical states and the variables of the appropriate dynamical 

system (DS). Following Jablonski [12], we argue that DS, when 

viewed in this manner, exhibit striking similarities to the 

inputless Finite-State-Automata (iFSA) analyzed by Putnam [8], 

and that the endeavour succumbs to very similar difficulties as 

originally proposed by Putnam in the context of strong ↑MR* 

arguments against computationalism. 

 Since an iFSA is defined by the set of monadic 

computational states and the rules of transitions from any given 

state to the next, any execution of an algorithm will take the 

form of the sequence of states. Putnam has noted that the 

evolution of any non-cyclic physical phenomena can be divided 

into a sequence of periods in such a way that we can map the 

physical states of the system onto the computational states of an 

iFSA. Say, we want to show that Searle's wall realises a 

computation performed by the iFSA defined by the states A, B 

and C and rules of transition A>B, B>C and C>B. If initialised 

in the state A the automaton will transit through states ABCBCB 

and will continue to oscillate between states C and B. We can 

claim that the wall performed 6 steps of the computation within 

any period of time e.g. from 12:00 to 12:06. We simply label all 

physical states of the wall within the first minute as 

computational state A, within the second minute as state B, third 

– C, forth – B, fifth – C and sixth – B.  

Since the complexity of the thermal movements in the 

wall, openness of the system and, possibly, some non-reversible 

physical phenomena (e.g. radioactive decay) insure that every 

physical state of the wall will manifest itself only once, the 

labelling will be functional i.e. for every physical state only one 

computational state is given (however, a single computational 

state can be realised by many different physical states). 

In applying this same basic strategy using a Dynamical 

Systems framework rather than inputless Finite-State-Automata, 

we first note that a system is defined by the set of its variables 

and rules governing the evolution of the variables over time. 

Unlike iFSA that have a finite number of possible states, the 

states of a DS are given by the vector of real number variables. 

Thus DS have an infinite number of possible states. Usually, the 

dynamical models are defined as deterministic, continuous 

systems so the rules governing the dynamics are given by a set 

of differential equations. Equations are the continuous 

equivalents of the rules of transitions for the iFSA. Finally, the 

phase-space trajectory of the system, the evolution of its 



variables over time, can be compared to the sequence of 

computational states of the iFSA.  

The analogies between the two formalisms can be 

summarised as follows: 

 

 

iFSA DS 
Finite number of states Infinite number of states 

Initial state Initial conditions 

Table of transitions Differential equations 

Computational steps Time 

Sequence of states Trajectory through the phase space 

 

Using these analogies, we can see that it is possible to 

map any finite trajectory of any DS onto any non-cyclic physical 

process in a manner similar to Putnam's original strategy. We 

map the first point of the trajectory onto the first physical state of 

the system and all consecutive points onto the corresponding 

physical states.  

First, we need to map a real, physical time of the 

process onto the abstract time of the DS. Since we are interested 

in the finite period, we may define a mapping function M as 

follows: 

 
where  is an abstract time of the DS,  – real, physical 

time,  – the beginning of the dynamical process,  – the end 

of the dynamical process,  and  – the beginning and the end 

of the physical process in real time.  

We need to include Putnam’s condition of non-cyclic 

behaviour of the physical system in order to guarantee, that 

every moment of the physical time  indicates just one physical 

state  of the system. Given that DS is defined by its equations 

of motion 

 
where  is a multidimensional vector of variables, and 

a single trajectory of the DS is determined by the initial 

conditions  and the time interval, we can take an integral of 

the equations of motion that will have the form of the function of 

the state of the DS over time . This integral defines the 

trajectory of the system in phase space and is the equivalent to 

the sequence of states in the case of iFSA. However, since the 

trajectory is composed of the infinite number of points it has to 

be expressed as a function of time and cannot be presented in a 

form of a table of values. Now we can form a labelling function f 

that assigns abstract states of the DS to the physical states  of 

the system. 

 
Thus for every physical state  we know the time t 

when it appeared (since the behaviour of the system is non-

cyclic). Knowing the time t and the time-mapping function M(t) 

we can determine the corresponding time  of the 

abstract dynamics. Eventually, since we know the states of the 

DS as a function h of time  we can determine the formal state  

of the DS, and what follows, the values of its variables. In other 

words, for every non-cyclic physical system and finite period of 

time we are able to map its states onto states of any DS.  

A main difference between DS and iFSA lies in the 

fact that the latter have a finite number of states and steps while 

the former have an infinite number. However, since physical 

systems are continuous in nature the mapping still can be carried 

out. In order to perform Putnam's version of trivialization we 

need to know in advance the sequence of the states of the iFSA. 

In the case of DS we ought to know the trajectory of the system. 

That was easy for iFSAs since computation of the sequence 

required only a finite number of steps. However for the DS we 

need to integrate the equations of the DS. In many cases, 

nonlinear differential equations do not have analytic solutions so 

we are unable to obtain the trajectory of the system in the form 

of a function of variables over time. 

This limitation is however, only epistemic in nature. 

Every DS has a trajectory defined for every initial condition even 

if we are unable to discover its analytic form. We still may 

conclude that, in principle, there is a mapping between any DS 

and physical system, although in many cases we will unable to 

provide the specific details. 

 
9      CONSTRAINTS ON IMPLEMENATION 
 

In response to ↑MR* and the trivialization arguments, various 

authors, including Chrisley [13], Chalmers [14], Copeland [15], 

and Block [16] have proposed a number of constraints on 

computational interpretations in an attempt to distinguish ‘true’ 

cases of implementation from the myriad of purportedly ‘false’ 

cases utilized by Putnam and others. Two of the most intuitively 

compelling restrictions are supplied by (i) causal and (ii) 

counterfactual considerations. The first constraint holds that the 

pattern of abstract state transitions constituting a particular run of 

the computational procedure on a particular input must map to 

an appropriate transition of physical states of the machine, where 

the relation between succeeding states in this physical sequence 

is governed by proper causal regularities. The second constraint 

holds that  a necessary condition for being a ‘genuine’ 

implementation is the ability of the mapping to support 

counterfactual sequences of transitions on inputs not actually 

given. This constraint is prompted by the fact that various ↑MR* 

mappings from formalism to physical system, given by Putnam 

and others, are defined only for a single run and say nothing 

about what would have happened if a different input had been 

given (see Bishop [11] for an exception). 

 Although both (i) and (ii) are intuitively plausible 

suggestions, we view both as ultimately unsuccessful in blocking 

the trivialization results. See Schweizer [4] for arguments to the 

effect that, within the context of computation in canonical sense 

(3), constraint (i) provides a sufficient but not a necessary 

condition, while (ii) is unsatisfiable in principle (for sufficiently 

rich frameworks, such as those invoked in the Church-Turing 

thesis), and can serve only as a measure of degree of 

approximation.  

 In the context of ‘computation’ in sense (1), and 

pertinent to the above extension of the ↑MR* arguments to 

Dynamical Systems, we will now briefly examine two of the 

main points raised by Chalmers [14] and address them in the 

context of DS trivialization. In line with (ii) above, it has been 

objected that Putnam's labelling does not map counterfactual 

computational states onto any physical states. If a given iFSA is 

defined by states A, B, C, D and transitions A>B, B>C, C>B and 

D>B it could also perform the sequences ABCBCB, BCBCBC, 

CBCBCB or DBCBCB. Because Putnam’s method of 

construction of the labelling function only works for the single 

chain of physical events, we would be unable to map state D 



onto any physical state of the wall because D did not appear in 

the sequence used for labelling. 

Since an iFSA can perform only a finite number of 

state sequences, we need to form a labelling function that maps 

all those possible sequences onto some states of the physical 

system and show that such a labelling can be constructed for an 

arbitrary physical device or phenomenon. In the context of 

classical computation, this stronger version of trivialization is 

known as  the “clock and dial” reply to Chalmers objection. The 

argument states that every physical system can contain not only 

non-reversible physical phenomenon (a clock) but also some 

physical magnitude that can be set into a number of distinct 

states and will remain in the same state for the given period of 

time (a dial). Thus the complete state of the system is defined by 

the pair [d, ts ], where d is the state of the dial and ts  – the state 

of the clock at time t. Since our iFSA can perform four different 

sequences, d will take four values. The state of the dial will 

determine which sequence is mapped onto the states of the clock. 

Thus if the dial is set to 
1d we will map the first sequence onto 

physical states of the system during this time period. If the dial is 

set to 
2d we will map the second sequence and so on. One can 

argue that not every physical system contains clock and dial 

components, however there is certainly a large class of such 

systems thus the ‘↑MR’ is conserved. 

A parallel strategy can be applied in the context of DS 

trivialization. The infinite number of possible trajectories of the 

DS forces us to modify the “clock and dial” response to the 

argument. The clock will have to transit continuously through an 

infinite number of physical states within a finite amount of time 

(which seems to be uncontroversial since physical time is 

continuous) while the dial will have to be substituted by devices 

that can be set in an infinite number of states. We may picture 

the devices as set of continuous sliders, one for every variable in 

the equations of the DS. Every initial state of the DS can be 

encoded by the appropriate setting of the sliders just as every 

initial state of the iFSA can be encoded as a position of the dial. 

After that, we map the integrated trajectory of the DS onto the 

run of the clock. 

A second requirement is reliability, which is closely 

akin to causal regularities − a proper labelling function should 

interpret not only one but every evolution of the physical system 

from the same initial state as a realisation of the same algorithm. 

If Searle is right, then he should be able to reliably and 

repeatedly reset his wall to a given initial condition and 

demonstrate that its physical evolution is identical to the one 

used for the initial labelling. Since the wall is an open system 

and (as required for the trivialisation argument) exhibits non-

cyclic evolution it certainly will not repeat its states. 

However, the “clock and dial” version of the argument 

seems to be immune to this objection. The dial can be reliably 

set into any of its states and the clock will reliably pass through 

the same sequence of moments. And it appears that there will be 

no significant difference in this regard between a continuous 

“clock an dial” and the sequential counterpart used for iFSA as 

long as we are able to demonstrate that the clock can reliably 

pass through its sequence of states and the sliders can stay in the 

unchanged position through the period of observation. 

 
10   COMPUTATION AND PRAGMATICS  

 

We would now like to propose a different perspective on the 

issue. Rather than distinguishing ‘true’ from ‘false’ cases of 

implementation, what these and other proposed  constraints do 

instead is to go some distance in distinguishing interesting, 

conceptually rich and pragmatically useful implementations 

from the many uninteresting, trivial and useless cases that 

abound in the space of possibility. It’s certainly true that there is 

no pragmatic value in most interpretive exercises compatible 

with ↑MR and ↑MR*. Ascribing computational activity to 

physical systems is useful to us only insofar as it supplies 

informative outputs, which in most cases will come down to new 

information acquired as a result of the implemented calculation.  

 So, interesting and useful observer dependent 

computation takes place when we can directly read-off 

something that follows from the implemented formalism, but 

which we didn’t already know in advance and explicitly 

incorporate into the mapping from the start. That’s the incredible 

value of our computational artefacts, and it’s the only practical 

motivation for playing the interpretation game in the first place.  

Hence a crucial difference between our computational artefacts 

and the attributions of formal structure to naturally occurring 

open systems, as employed by ↑MR* exercises, is that the 

mapping in the latter case is entirely ex post facto and thus 

supplies us with no epistemic gains. The abstract procedural 

‘trajectory’ is already known and used as the basis for 

interpreting various state transitions in the open system and 

hence characterizing it as an implementation. In sharp contrast, 

we can use the intended interpretation of our artefacts both to 

predict their future behavior, as well as discover previously 

unknown output values automatically.  

 And this is obviously why an engineered correlation 

obtains between fine-grained causal structure and abstract formal 

structure in the case of our artefacts – we want them to be 

informative and reliable! We also want them to be highly 

versatile, and this is where counterfactual considerations come to 

the fore in practice: over time we can do runs on a huge number 

of different inputs, and in principle the future outputs follow as 

direct consequences of the intended interpretation.  So a physical 

system is useful to us as a computer only when its salient states 

are distinguishable by us with our measuring devices, and when 

we can put the system into a selected initial state to compute the 

output of our chosen algorithm on a very wide range of specific 

input values. 

 These pragmatic considerations supply clear and well 

motivated criteria for differentiating useful from useless cases of 

physical implementation. And we would advocate this type of 

pragmatic taxonomy in lieu of attempts to give overarching 

theoretical constraints purporting to distinguish ‘true’ from 

‘false’ cases. Some basic desiderata for pragmatically valuable 

implementations include (a) fully automatic, (b) reliable, (c) 

versatile in the sense of computing values for a wide range of 

different inputs (d) non ex post facto (e) yielding increased 

predictive power with regard to future physical states of  the 

implementing mechanisms, (f) possessing technologically 

manipulable initial configurations and output configurations 

detectable by our measuring devices and (g) physical rather than 

purely abstract constraints on the input and output 

characterizations.   

 Similarly, ascriptions of computation in the sense (1) 

to the physical systems are motivated by pragmatic reasons. 

Useful interpretations ought to yield simple formalisms whose 



equations we are able to integrate or at least investigate their 

properties with our mathematical resources. Variables should be 

mapped onto reliably observable physical magnitudes that figure 

in many scientific theories and are not proposed ad hoc. 

Valuable interpretations of physical phenomena in terms of DS 

give us simplified formal description, epistemically useful and, 

hopefully, manifesting some predictive powers. We cannot 

however, claim that the physical process itself realises the 

mathematical equations in any other sense than that its behaviour 

can be fruitfully described using such equations. 

 
11     CONCLUSION 
 

Computation is an extrinsic, observer dependent interpretation 

that we project onto physical systems according to our purposes 

and potential epistemic gains. As such, it does not support a 

stable or independent natural kind. Diverse types of natural 

events and processes can be modelled or simulated using 

computational techniques, as in sense (2) above, but this is to be 

distinguished from canonical sense (3), in which the system itself 

is viewed as instantiating and executing an explicit formal 

procedure. However, various physical systems do spontaneously 

‘obey’ clear regularities in their evolution through time, and 

many such regularities have been mathematically characterized 

in terms of Dynamical Systems theory. Although this sense (1) 

reading does not comprise a case of genuine  computation, in the 

strict connotation of executing a well defined formal procedure,  

it does provide a fundamental form of mathematical 

representation of the natural world.  

 Various opponents of the Computational Theory of 

Mind have provided trivialization arguments to the effect that, 

even in canonical sense (3), the notion of implementing a 

computational formalism is overly liberal to the point of vacuity. 

Such results serve to undermine not only CTM in particular, but 

the more encompassing notion of ‘Natural Computation’ in 

general. In a parallel manner, we extend this strategy to sense (1) 

‘computation’ in the guise of  Dynamical Systems theory, to 

argue that realizing such abstract formal structures is again a 

matter of observer dependent ascription. As with the original 

trivialization strategies aimed against CTM, this extended result 

has deep implications for the science of mind, since Dynamical 

Systems have been advocated (by, e.g. van Gelder [17]) as 

providing an alternative theoretical foundation for mentality in 

the natural world. 

 Advocates of CTM have proposed a number of 

constraints on the notion of ‘genuine’ implementation, in an 

attempt to block the trivialization results and uphold a robust 

notion computation in the physical world. However we argue 

that such constraints derive purely from human interest as 

opposed to underlying and independent matters of fact. Rather 

than serving to distinguish true’ from ‘false’ cases of 

implementation, what the proposed  constraints do instead is to 

help distinguish conceptually rich and pragmatically useful 

implementations from the many uninteresting, trivial and useless 

cases that abound in the space of theoretical possibility.  

 Although practical considerations clearly guide the 

design and construction of our computational artefacts, such 

pragmatic motivations do not justify any deep or ontologically 

grounded distinction between genuine versus trivial 

interpretations. Hence we support an anti-realist view of 

computation in nature, and implementing or realizing abstract 

formal structures in general is not an intrinsic property of 

physical systems. In particular we have viewed the notion of 

implementation in the context of senses (1) and (3), but the view 

generalizes to all the prospective forms of non-Turing 

'computation' inspired by considering natural events and 

processes. These are abstract, observer dependent ascriptions 

projected onto a more basic physical substrate.   
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