

Edinburgh Research Explorer

Abstract Procedures and the Physical World

Citation for published version:
Schweizer, P & Jablonski, P 2013, 'Abstract Procedures and the Physical World'. in Proceedings of the
AISB'13 Symposium on Computing and Philosophy. The Society for the Study of Artificial Intelligence and
the Simulation of Behaviour, pp. 66-73.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Proceedings of the AISB'13 Symposium on Computing and Philosophy

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28971426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/abstract-procedures-and-the-physical-world(f05bddda-8cdd-4e1f-80f5-e540a280cc54).html

[Published in Proceedings of the AISB'13 Symposium on Computing and Philosophy, pp. 66-73, ISBN

978-1-908187-31-4]

Abstract Procedures and the Physical World

Paul Schweizer
1
 and Piotr Jablonski

1

Abstract. The paper examines some central issues concerning

the notion of implementing abstract formal structures, including

effective procedures and dynamical systems, in the realm of

physical space-time. We address the view originally put forward

by Putnam and Searle, that virtually any physical system can be

interpreted as implementing virtually any computational

formalism, and defend the general conclusion that realizing an

abstract procedural structure is not an intrinsic property of

physical systems, but rather is a purely observer-dependent

ascription. In a parallel manner, the 'trivialization' arguments

originally put forward against computationalism are extended to

dynamical systems theory, an alternative abstract framework that

has also been advocated as providing the theoretical foundation

for mentality in the natural world. Rather than attempting to

distinguish 'true' from 'false' cases of implementation, we

distinguish pragmatically useful ascriptions from those that serve

no epistemic purpose. 1the

1 ENGINEERED IMPLEMENTATION

From a disembodied mathematical perspective, classical

computation comprises an extremely well defined and stable

phenomenon. Central to the theory of traditional computation is

the intuitive notion of an effective or ‘mechanical’ procedure,

and there are any number of different possible frameworks for

filling in the details and making the idea rigorous and precise.

Turing’s ‘automatic computing machines’ [1] (TMs), supply a

very intuitive and elegant rendition of the notion of an effective

procedure, but there is a well known variety of alternative

frameworks.

According to the widely accepted Church-Turing

thesis, the class of computable functions is nonetheless captured

in a mathematically absolute sense by the notion of TM

computability, and every alternative formalization so far given of

the broad intuitive notion of an effective procedure has been

demonstrated to be equivalently powerful, and hence to specify

exactly the same class of functions [2]. Thus the idealized notion

of in-principle computability, where all finite bounds on input

size, storage capacity and length of running time are abstracted

away, seems to constitute a fundamental category, a stable and

fundamental ‘mathematical kind’.

A related further question is whether any sort of

comparable feature carries over to computation as implemented

or realized in the physical universe. Turing machines and other

types of computational formalisms are mathematical

abstractions and don’t exist in real time or space. In order to

1
 Institute for Language, Cognition and Computation, School of

Informatics, Univ. of Edinburgh, EH8 9AD, UK. Email:

paul@inf.ed.ac.uk.

perform actual computations, an abstract Turing machine must

be realized by a suitable arrangement of matter and energy, and

as Turing observed long ago [3], there is no privileged or unique

way to do this. Like other abstract structures, Turing machines

are multiply realizable - what unites different types of physical

implementation of the same abstract TM is nothing that they

have in common as physical systems, but rather a structural

isomorphism expressed in terms of a higher level of description.

Hence it’s possible to implement the very same computational

formalism using modern electronic circuitry, a human being

executing the instructions by hand with paper and pencil, a

Victorian system of gears and levers, as well as more atypical

arrangements of matter and energy including beer cans serving

as tokens of the symbol ‘1’ and rolls of toilet paper serving as

the tape.

Adopting the conventions introduced by Schweizer

[4], let us call this ‘downward’ multiple realizability, wherein,

for any given abstract structure or formal procedure, this same

abstract structure can be implemented via an arbitrarily large

number of distinct physical systems. And let us denote this type

of downward multiple realizability as ‘↓MR’. After the essential

foundations of the mathematical theory of computation were

laid, the vital issue then became one of engineering – how best to

utilize state of the art technology to construct rapid and powerful

physical implementations of our abstract mathematical

blueprints, and hence perform actual high speed computations

automatically. This is a clear and deliberate ↓MR endeavour,

involving the intentional construction of artefacts, painstakingly

designed to follow the algorithms that we have created. From

this top-down perspective, there is an obvious and pragmatically

indispensible sense in which the hardware that we have designed

and built can be said to perform genuine computations in

physical space-time.

2 NATURAL COMPUTATION?

In addition to these comparatively recent engineering

achievements, but presumably still members of a single

underlying category of phenomena, various authors and

disciplines propound the notion of ‘Natural Computation’ (NC),

and invoke a host of indigenous processes and occurrences as

cases in point, including neural computation, DNA computing,

biological evolution, molecular and membrane computing, slime

mould growth, cellular automata, ant swarm optimization, etc.

According to such views, computation in the physical world is

not merely artificial – it is not restricted to the devices

specifically designed and constructed by human beings. Instead,

computation is a seemingly ubiquitous feature of the natural

order, and the artefacts that we have produced constitute only a

very small subset of the overall class of computational systems

that inhabit the physical universe.

The disciplinary and terminological practices

surrounding NC plainly invite a more thorough and rigorous

examination of the underlying assumptions involved. Salient

questions in need of scrutiny include: To what extent, if any, is

computation a genuine natural kind – is there an intrinsic unity

or core of traits systematically held in common by the myriad of

purported examples of computation in the physical world? In

what sense, if any, can computation be said to take place

spontaneously, as a truly native, ‘bottom-up’ phenomenon?

The issue has pronounced conceptual importance with

respect to positions on the conjectured computational nature of

mentality and cognition. According to the widely embraced

computational theory of mind (CTM), which underpins cognitive

science, Strong AI and various allied positions in the philosophy

of mind, computation (of one sort or another) is held to provide

the scientific key to explaining and, in principle, reproducing

mentality artificially. The paradigm maintains that cognitive

processes are essentially computational processes, and hence that

intelligence in the physical world arises when a material system

implements the appropriate kind of computational formalism. So

it’s an immediate corollary of CTM that the human brain counts

as an exemplary instance of natural computation.

Hence it is crucial to CTM's theoretical stance that

there be a rigorous and precise analysis of physically grounded

computation in the case of organically engendered human brains.

But the issue has wider and independent significance, in an

attempt to gain conceptual clarity on whether and to what extent

computation can be cogently viewed as a natural occurrence.

And this in turn requires a general theoretical investigation and

articulation of what it means for computations and other sorts of

abstractly specified formalisms and structures to be implemented

in the physical realm. It is this last, overarching theme that will

comprise the primary focal point of the ensuing discussion.

3 THREE DIFFERENT SENSES

For the sake of analytical precision, we will begin by

disambiguating three possible senses in which real physical

systems might be thought of as ‘performing a computation’, and

where these distinct senses are often blurred or run together by

proponents of NC.
First (1), a physical system or object may be said to

obey or satisfy a particular equation or mathematical function.

For example, a falling body in the earth's gravitational field will

satisfy or obey Newton's equation for gravitational acceleration.

Similarly, the planets orbiting the sun satisfy or obey Kepler's

laws of planetary motion. This has lead various NC enthusiasts

to claim that the planets orbiting the sun, falling bodies in the

earth's gravitational field, etc., are in fact computing the values

of the equations in question. Taken to its most extreme form, this

becomes the assertion that physical processes and natural laws

are themselves fundamentally computational, and hence that

computation constitutes the foundational key to the natural order.

Second (2), the activities of a physical system or

process may be precisely modelled or simulated by a given

computational formalism or depiction. For example, it is

possible to create highly accurate and explanatorily useful

computer models which simulate the behaviour of various

complex physical events such as earthquakes, climate change,

hurricanes, particle collisions, protein folding, brain processes,

etc. Again, the usefulness and accuracy of these computational

models has lead proponents of NC to claim that the physical

phenomena themselves are performing such computations or are

somehow instances of such computations occurring in nature.

And third (3), a physical device or process may be said

to literally implement, realize or execute a particular algorithm

or effective procedure. Thus when I write a piece of code in

some artificial programming language, say Prolog, and then run

this code on my desktop computer, there is a very clear and

paradigmatic sense in which the electro-mechanical hardware in

question is performing or executing the algorithm explicitly

encoded in Prolog.

It seems uncontroversial that (3) is the basic and

indeed canonical sense of computation in the physical world, and

constitutes the modern historical origin of the concept. But in the

Prolog example used to illustrate the import of (3), the

computation in question is not a natural occurrence ─ rather it’s

a direct result of human design and engineering. Human artefacts

in the form of electromechanical hardware devices comprise the

arrangements of matter and energy that carry out the actual

computation in space and time, and the procedures being

executed are specified in terms of artificial programming and

machine languages. In such literal and exemplary cases, real

world computation is a purely synthetic phenomenon.

However, this does not in itself rule out the possibility

that there could be genuine natural computation in the stringent

sense of (3), since it is still entirely possible that some

appropriate version of CTM is true. For example, if Fodor [5] is

correct, then the human brain, an organically engendered

'wetware' device, is running the Language of Thought (LOT) as

an indigenous formal system of rule governed symbol

manipulation, in a manner directly comparable with a

computational artefact. Thus if Fodor is correct, then the human

brain is a paradigmatic instance of NC in sense (3).

Accordingly, in the ensuing discussion we will treat

Fodor's conjectured LOT as epitomizing what genuine

computational processing in the natural world would look like in

its most explicit form − a spontaneously generated, bottom-up

case of formal symbol manipulation. And this is compatible with

the foregoing discussion of downward multiple realization, since

the relation between LOT and the brain could then be viewed in

typical ↓MR terms. For example, an alternative mechanical

device, physically quite unlike the brain, could presumably be

constructed to implement the LOT in an artificial medium.

In order to construct such an implementation, we

would need to utilize expertise in engineering and materials

science, which exploited the lawlike regularities that characterize

the time evolution of physical systems. This expertise would be

required to design the material implementation in such a way

that it could be methodically interpreted, at the appropriate level

of description, as behaving in a manner isomorphic to the

abstract processing structure of the human brain. Indeed, it's

perfectly conceivable that if we could abstract out the relevant

computational structure of the LOT physically realized in brain

activity, then we could run this same abstract computational

structure on some version of our existing artificial hardware.

And then, in perfect accord with ↓MR, the systematic and

predictable behaviour of both the brain and the artificial device,

seen as systems governed by natural law, could be interpreted, at

a higher level of description, as implementations of the same

abstract computational structure.

4 CRITIQUE OF SENSES (1) AND (2)

As noted in sense (1) above, a physical system or object, such as

a piece of electromechanical hardware, may be described as

obeying or satisfying various equations or mathematical

functions. And it is by utilizing our knowledge of these

regularities that we are able to construct physical realizations of

abstract computational procedures, and thereby systematically

and reliably preserve the implementational mapping from

abstract formalism to relevant sequences of states of the physical

machine. What then is to be gained by then claiming that, in

addition to performing a computation in virtue of systematically

preserving this mapping, the hardware is performing yet another,

underlying computation, simply in virtue of evolving through

time in accordance with natural laws?

 Such a claim seems to be founded on a conflation

between two of Marr's [6] classic distinctions in levels of

analysis. The salient difference between what is going on in (1)

as opposed to (3) is precisely the difference between the level of

bare mathematical function and the level of computational

algorithm. For any given function there are many different

algorithms for computing its input/output values, and a

mathematical function or general equation on its own does not

specify any corresponding formal method or single out any one

of the many different possible corresponding effective

procedures as privileged. Hence merely satisfying an equation,

as in the case of a hardware device obeying a lawlike physical

regularity, is too weak to underwrite an assertion of distinctively

computational processing, because it leaves the vital procedural

details completely unspecified. Exactly which particular

algorithm for computing the values of Kepler's laws of planetary

motion is the earth currently implementing? And articulated in

precisely which abstract computational framework?

 Thus sense (1) seems to constitute an unmotivated and

theoretically unilluminating inversion of perspective. Human

scientists have devised mathematical abstractions in the form of

general equations in order to characterize observed regularities

in physical behaviour. In turn, we utilize these rigorously

characterized regularities to construct artefacts that can be

systematically interpreted, at a higher level of description, as

implementations of selected computational formalisms. In this

respect, we have a well defined implementational foundation in

brute physical behaviour. The ontological and causal status of

real-time computations is thus grounded in a stable, non-

computational medium. But to then assert that the

implementational medium itself, simply in virtue of evolving in

accord with certain abstractly characterized patterns, is thereby

performing lower level computations, seems to threaten a

causal/ontological regress. And unless the particular algorithms

and formalisms purportedly being executed are explicitly

specified and substantiated, the assertion seems to make no

additional contribution. However, the general equations as such

are central to our scientific theorizing and abstract representation

of the natural world. In section 7 below we shall further

investigate sense (1) and the status of such formal specifications

in the particular guise of dynamical systems.

 In the case of sense (2), the algorithmic details missing

from sense (1) are provided, but they are located in the wrong

place. When complex physical events and processes are

accurately simulated via computational models, it is the artificial

computational structures which compute the values of the laws,

equations and regularities governing the physical phenomena

being simulated. And indeed, this is why the models are accurate

and useful. But what motivates the further claim that the

complex physical phenomena are themselves somehow

implementations of the computations performed by the artificial

models? Again, the same equations and regularities could be

computed by another computational model using different

underlying algorithms, programming languages, etc. to calculate

the relevant values. Which of the many distinct computational

possibilities is privileged or singled out by nature? In agreement

with Piccinini [7], we would advocate a sharp distinction

between mere computational modelling and genuine

computational processing in nature.

 So in the ensuing discussion we will treat (3) as the

literal and canonical sense of computation in the space-time

arena. We diagnose sense (1) as derived from the mathematical

characterization of fundamental regularities in nature, but where

the additional attribution of computational activity is due to a

conflation between Marr's distinct levels of bare mathematical

function versus specific algorithm for computing the values of

the function. Finally, sense (2) is a case of artificial simulation of

natural events and processes, where the values of the regularities

salient to sense (1) are explicitly computed, but where this

computation is merely a tool of human heuristics and is not

supported by nature. In this respect sense (2) is a hybrid of the

more basic content involved in (1) and (3), and will not receive

any further investigation. The ensuing discussion will focus

primarily on (3) as the paradigmatic sense of computation in the

physical world, and will also provide an allied investigation of

sense (1), since both (1) and (3) are cases of applying explicit

renditions of abstract, formal procedures directly to physical

events and processes.

 Of course, to some extent the issue could be seen as

purely terminological. One could choose to brand computation in

sense (3) as 'classical' or 'Turing' computation, and then label

senses (1) and (2) as 'computation', but of a different, broader

sort. But for this broadening of the scope of application of the

term to count as useful and well motivated, it would need an

accompanying story to explain (i) what essential characteristics

are had in common to unify all three apparently quite disparate

senses of the term, and then (ii) why the category of phenomena

so unified should be called 'computation' and not something else.

 We don't wish to dwell on mere terminological or

taxonomical disputes, and hence maintain that, whatever use of

terminology one may adopt, sense (3) has clear and paradigmatic

import, and it is this interpretation of the word that we wish to

emphasize and investigate. Furthermore, whatever may be going

on in most cases of (1) and (2), be it felicitously categorized as

'natural computation' or as something else, it is still quite distinct

from what is captured by sense (3).

5 COMPUTATION IS NON-INTRINSIC

We will now articulate and begin to defend one of the main

theses of the paper, a thesis stemming from arguments originally

put forward by Putnam [8] and Searle [9, 10], that even in the

quite restricted and canonical sense of (3), computation is not an

inherent or intrinsic characteristic of any physical system.

Instead, it's a purely observer dependent ascription, projected

onto a physical system via an act of human interpretation.

Furthermore, the extent to which a physical device can be

interpreted as realizing any sufficiently rich computational

formalism, such as an abstract Turing machine, is not absolute,

but instead is always a matter of degree of approximation. And

the choice to interpret a physical device as implementing a

particular abstract formalism is always relative to our particular

purposes and potential epistemic gains.

Our normal practice of interpreting specialized

artefacts as performing computations is clearly of very high

pragmatic value. Nonetheless, such interpretations are ultimately

dependent on human conventions and are not intrinsic to the

hardware itself. Thus computation in the physical world is not

sustained or underwritten by the innate structure of the systems

interpreted as realizers, and computation as such is not a natural

kind. We will begin our defence of this view by examining some

well known arguments concerning the theoretical possibility of

multifarious ‘deviant’ interpretations.

6 TRIVIALIZATION ARGUMENTS

Various critics of CTM have put forward a family of

'trivialization arguments', directly relevant to sense (3) above.

The arguments are based on the contention that the notion of a

physical system implementing a computational formalism is

overly liberal to the point of vacuity. As a case in point, Putnam

[8] offers a proof of the thesis that every open physical system

can be interpreted as the realization of every finite state

automaton. Putnam's argument will be explored in more detail in

section 7, in the context of Dynamical Systems theory.

 In the current section of the paper we will consider the

closely related position advanced by Searle [9], who argues that

virtually any physical system can be interpreted as following

virtually any program. Thus hurricanes, our digestive system, the

motion of the planets, even an apparently inert lecture stand, all

possess a level of description at which they instantiate any

number of different abstract formal procedures. The stomach has

inputs, internal processing states and outputs, and if one wanted

to, one could interpret the inputs and outputs as code for any

number of different symbolic processes. And in [10] Searle

attempts to illustrate the extreme conceptual looseness of the

notion of implementing an abstract formalism by famously

claiming that the molecules in his wall could be interpreted as

running the WordStar program.

 Again adopting conventions introduced by Schweizer

[4], let us label multiple realizability in this direction, wherein

any given physical system can be interpreted as implementing an

arbitrarily large number of different computational formalisms

‘upward MR’ and denote it as ‘↑MR’. The basic import of ↑MR

is the non-uniqueness of computational ascriptions to particular

physical systems. In the extreme versions suggested by Putnam,

Searle, and more recently Bishop [11], there are apparently no

significant constraints whatever – it is possible in principle to

interpret every open physical system as realizing every

computational procedure. Let us call this extreme version

‘universal upward MR’ and denote it as ‘↑MR*’. Mere ↑MR is

weaker than ↑MR*, since the former does not assert that there

are no salient constraints, and hence ↑MR would be consistent

with the denial that, e.g., the molecules in Searle’s wall can in

fact be interpreted as implementing the WordStar program,

although every physical system is still interpretable as

implementing some very large set of distinct computations.

 In the present discussion we will not argue for or

against ↑MR* but instead confine our considerations to the more

modest ↑MR. In view of ↑MR, it’s still never the case that any

given computational interpretation of a physical system is

privileged or unique, and this is far more difficult to deny than

the powerful and broad sweeping ↑MR*. In turn, the non-

intrinsic status of computation would seem to follow as a direct

consequence of mere ↑MR alone. As long as there are at least

two distinct interpretations, there is no objective fact of the

matter regarding which computation is ‘actually’ being

performed, nor which of the alternatives is the ‘correct’ or ‘real’

account. And this is because the computation itself is not an

intrinsic property of the physical device, and is instead

dependent on a human observer to supply the various alternative

interpretations.

 This is not to say that it’s purely a matter of caprice,

and that there are no objective constraints that the interpretation

must satisfy. Instead, the situation is perhaps comparable to the

distinction between natural kinds, such as water, and

conventional kinds, such as being a table. Even though

membership in either kind might be based on criteria whose

satisfaction (or not) is a matter of objective truth, still the criteria

for conventional kinds are not intrinsic, and there is nothing

about the particular arrangement of matter now holding up my

desk top computer which makes it intrinsically a table. The

salient criteria stem purely from human practices and

stipulations rather than from, e.g., fundamental microstructure or

natural law.

 The original trivialization arguments are intended to

undermine CTM, by showing that attributions of computational

processing are overly liberal to the point of vacuity, and hence

cannot serve as a criterion for mentality in the natural world. But

the potential scope of application is clearly much wider, and they

also serve to trivialize the idea of ‘Natural Computation’ in

general. According to ↑MR*, anything computes everything, and

hence computational processing in the natural world turns out to

be far more rampant and ubiquitous than proponents of NC ever

suspected.

7 SYNTAX, SEMANTICS, PHYSICS

At the abstract, formal level, computation is an essentially

syntactic phenomenon, and how we choose to interpret

arrangements of matter and energy as constituting, say, tokens of

an abstract syntactic type, and thus specifying an implementation

of the basic computational vocabulary, is entirely independent of

physical composition. For example, in the downward ↓MR

direction there is a more or less limitless diversity in the ways in

which material patterns and arrangements can be viewed as

implementing the binary notation of ‘0’ and ‘1’, from ink marks

on a piece of paper, stones placed in wooden boxes, patterns on

old-fashioned punch cards, electric voltages, beer cans

positioned on rolls of toilet paper, … And this applies in the

reverse ↑MR direction as well, wherein the same stones placed

in wooden boxes can be interpreted as implementing any number

of distinct computational formalisms.

Classical computation is rule-governed syntax

manipulation, and it is no more intrinsic to physical

configurations than is syntax itself. It is also worth observing

that discrete states are themselves idealizations, since the

physical processes that we interpret as performing computations

are in fact continuous, and we must abstract away from the

continuity of the underlying substrate and impose a scheme of

conventional demarcations to attain discrete values. Hence even

this elemental building block of digital procedures must be

projected on to the natural order from the beginning. The

irresistible conclusion to be drawn is that there is a fundamental

gap separating ‘concrete’ physical reality from the human-based

ascriptions of abstract syntactic features.

 In turn, there is yet another fundamental gap

separating abstract syntactic features from their semantic

interpretation. Just as syntax is not intrinsic to physics, so too

semantics is not intrinsic to syntax. Just as being an instance of

the spoken English sentence ‘The cat is on the mat’ is not an

inherent property of the sound waves constituting any particular

utterance token, so too, the associated proposition comprising

the interpretation of the utterance is not intrinsic to the abstract

syntactic structure. Instead, the associated meaning is determined

via arbitrary human convention, and the same syntactic item

could just as well have had the interpretation currently expressed

in English by ‘The rat is on the table’ or ‘The dog is on the

hearth’.

In the context of classical computation, one of the key

constraints in the notion of an effective procedure is that the

rules can be followed 'mindlessly', i.e. without knowing what the

manipulated symbols are supposed to mean. As a consequence,

there is no unique meaning determined by the procedure as such,

and a multitude of distinct and incompatible interpretations are

always possible. As a simple example, a Turing machine

intended to compute the values of a particular truth function, say

inclusive disjunction, can be easily reinterpreted as computing

conjunction instead, simply by flipping our interpretation of the

symbols ‘0’ and ‘1’, so that ‘0’ is construed as denoting true

while ‘1’ denotes false. And the same procedure interpreted as

computing conjunction could instead be construed as computing

the values of the arithmetical function of multiplication.

restricted to the numerical inputs 0 and 1.

Similarly, formal systems in general are such that the

transformations on symbols are not specified with reference to

their intended interpretation. Many classical negative results in

mathematical logic stem from this separability between formal

syntax and meaning. The various upward and downward

Löwenheim-Skolem theorems show that formal systems cannot

capture intended meaning with respect to infinite cardinalities.

As another eminent example, Gödel’s incompleteness results

involve taking a formal system designed to be ‘about’ the natural

numbers, and systematically reinterpreting it in terms of its own

syntax and proof structure. As a consequence of this

‘unintended’ interpretation, Gödel is able to prove that

arithmetical truth, an exemplary semantical notion, cannot, in

principle, be captured by finitary proof-theoretic means.

In summary, there are two fundamental gaps

separating formal procedures, standardly interpreted as

computing the values of given functions, from the physical

processes that we construe as implementing such procedures.

First there is the gulf dividing the intended semantic

interpretation from the bare syntactic formalism, and second

there is the chasm between abstract syntactic formalism and

physical reality. In both cases the gaps can only be bridged by an

act of purely conventional human interpretation. And it is in this

sense that computation in the physical world is inherently

observer dependent.

8 PUTNAM AND DYNAMICAL SYSTEMS

We will now take a closer look at the foregoing sense (1)

sometimes used to support the view of computation in nature.

As was noted in section 3, the term 'computation' is occasionally

meant as a description of the fact that some physical processes

satisfy or obey a mathematical equation. Although, as we noted,

there is little reason to believe that planets orbiting the sun

compute an algorithmic approximation of the Newtonian laws of

motion. So instead of viewing such cases in explicit NC terms,

we will analyze the underlying notion of projecting the bare,

abstract procedural descriptions furnished by dynamical systems

onto the time evolution of physical phenomena. Thus, instead of

a mapping between the physical states of the system and the

computational states of an algorithm, there is a mapping between

physical states and the variables of the appropriate dynamical

system (DS). Following Jablonski [12], we argue that DS, when

viewed in this manner, exhibit striking similarities to the

inputless Finite-State-Automata (iFSA) analyzed by Putnam [8],

and that the endeavour succumbs to very similar difficulties as

originally proposed by Putnam in the context of strong ↑MR*

arguments against computationalism.

 Since an iFSA is defined by the set of monadic

computational states and the rules of transitions from any given

state to the next, any execution of an algorithm will take the

form of the sequence of states. Putnam has noted that the

evolution of any non-cyclic physical phenomena can be divided

into a sequence of periods in such a way that we can map the

physical states of the system onto the computational states of an

iFSA. Say, we want to show that Searle's wall realises a

computation performed by the iFSA defined by the states A, B

and C and rules of transition A>B, B>C and C>B. If initialised

in the state A the automaton will transit through states ABCBCB

and will continue to oscillate between states C and B. We can

claim that the wall performed 6 steps of the computation within

any period of time e.g. from 12:00 to 12:06. We simply label all

physical states of the wall within the first minute as

computational state A, within the second minute as state B, third

– C, forth – B, fifth – C and sixth – B.

Since the complexity of the thermal movements in the

wall, openness of the system and, possibly, some non-reversible

physical phenomena (e.g. radioactive decay) insure that every

physical state of the wall will manifest itself only once, the

labelling will be functional i.e. for every physical state only one

computational state is given (however, a single computational

state can be realised by many different physical states).

In applying this same basic strategy using a Dynamical

Systems framework rather than inputless Finite-State-Automata,

we first note that a system is defined by the set of its variables

and rules governing the evolution of the variables over time.

Unlike iFSA that have a finite number of possible states, the

states of a DS are given by the vector of real number variables.

Thus DS have an infinite number of possible states. Usually, the

dynamical models are defined as deterministic, continuous

systems so the rules governing the dynamics are given by a set

of differential equations. Equations are the continuous

equivalents of the rules of transitions for the iFSA. Finally, the

phase-space trajectory of the system, the evolution of its

variables over time, can be compared to the sequence of

computational states of the iFSA.

The analogies between the two formalisms can be

summarised as follows:

iFSA DS
Finite number of states Infinite number of states

Initial state Initial conditions

Table of transitions Differential equations

Computational steps Time

Sequence of states Trajectory through the phase space

Using these analogies, we can see that it is possible to

map any finite trajectory of any DS onto any non-cyclic physical

process in a manner similar to Putnam's original strategy. We

map the first point of the trajectory onto the first physical state of

the system and all consecutive points onto the corresponding

physical states.

First, we need to map a real, physical time of the

process onto the abstract time of the DS. Since we are interested

in the finite period, we may define a mapping function M as

follows:

where is an abstract time of the DS, – real, physical

time, – the beginning of the dynamical process, – the end

of the dynamical process, and – the beginning and the end

of the physical process in real time.

We need to include Putnam’s condition of non-cyclic

behaviour of the physical system in order to guarantee, that

every moment of the physical time indicates just one physical

state of the system. Given that DS is defined by its equations

of motion

where is a multidimensional vector of variables, and

a single trajectory of the DS is determined by the initial

conditions and the time interval, we can take an integral of

the equations of motion that will have the form of the function of

the state of the DS over time . This integral defines the

trajectory of the system in phase space and is the equivalent to

the sequence of states in the case of iFSA. However, since the

trajectory is composed of the infinite number of points it has to

be expressed as a function of time and cannot be presented in a

form of a table of values. Now we can form a labelling function f

that assigns abstract states of the DS to the physical states of

the system.

Thus for every physical state we know the time t

when it appeared (since the behaviour of the system is non-

cyclic). Knowing the time t and the time-mapping function M(t)

we can determine the corresponding time of the

abstract dynamics. Eventually, since we know the states of the

DS as a function h of time we can determine the formal state

of the DS, and what follows, the values of its variables. In other

words, for every non-cyclic physical system and finite period of

time we are able to map its states onto states of any DS.

A main difference between DS and iFSA lies in the

fact that the latter have a finite number of states and steps while

the former have an infinite number. However, since physical

systems are continuous in nature the mapping still can be carried

out. In order to perform Putnam's version of trivialization we

need to know in advance the sequence of the states of the iFSA.

In the case of DS we ought to know the trajectory of the system.

That was easy for iFSAs since computation of the sequence

required only a finite number of steps. However for the DS we

need to integrate the equations of the DS. In many cases,

nonlinear differential equations do not have analytic solutions so

we are unable to obtain the trajectory of the system in the form

of a function of variables over time.

This limitation is however, only epistemic in nature.

Every DS has a trajectory defined for every initial condition even

if we are unable to discover its analytic form. We still may

conclude that, in principle, there is a mapping between any DS

and physical system, although in many cases we will unable to

provide the specific details.

9 CONSTRAINTS ON IMPLEMENATION

In response to ↑MR* and the trivialization arguments, various

authors, including Chrisley [13], Chalmers [14], Copeland [15],

and Block [16] have proposed a number of constraints on

computational interpretations in an attempt to distinguish ‘true’

cases of implementation from the myriad of purportedly ‘false’

cases utilized by Putnam and others. Two of the most intuitively

compelling restrictions are supplied by (i) causal and (ii)

counterfactual considerations. The first constraint holds that the

pattern of abstract state transitions constituting a particular run of

the computational procedure on a particular input must map to

an appropriate transition of physical states of the machine, where

the relation between succeeding states in this physical sequence

is governed by proper causal regularities. The second constraint

holds that a necessary condition for being a ‘genuine’

implementation is the ability of the mapping to support

counterfactual sequences of transitions on inputs not actually

given. This constraint is prompted by the fact that various ↑MR*

mappings from formalism to physical system, given by Putnam

and others, are defined only for a single run and say nothing

about what would have happened if a different input had been

given (see Bishop [11] for an exception).

 Although both (i) and (ii) are intuitively plausible

suggestions, we view both as ultimately unsuccessful in blocking

the trivialization results. See Schweizer [4] for arguments to the

effect that, within the context of computation in canonical sense

(3), constraint (i) provides a sufficient but not a necessary

condition, while (ii) is unsatisfiable in principle (for sufficiently

rich frameworks, such as those invoked in the Church-Turing

thesis), and can serve only as a measure of degree of

approximation.

 In the context of ‘computation’ in sense (1), and

pertinent to the above extension of the ↑MR* arguments to

Dynamical Systems, we will now briefly examine two of the

main points raised by Chalmers [14] and address them in the

context of DS trivialization. In line with (ii) above, it has been

objected that Putnam's labelling does not map counterfactual

computational states onto any physical states. If a given iFSA is

defined by states A, B, C, D and transitions A>B, B>C, C>B and

D>B it could also perform the sequences ABCBCB, BCBCBC,

CBCBCB or DBCBCB. Because Putnam’s method of

construction of the labelling function only works for the single

chain of physical events, we would be unable to map state D

onto any physical state of the wall because D did not appear in

the sequence used for labelling.

Since an iFSA can perform only a finite number of

state sequences, we need to form a labelling function that maps

all those possible sequences onto some states of the physical

system and show that such a labelling can be constructed for an

arbitrary physical device or phenomenon. In the context of

classical computation, this stronger version of trivialization is

known as the “clock and dial” reply to Chalmers objection. The

argument states that every physical system can contain not only

non-reversible physical phenomenon (a clock) but also some

physical magnitude that can be set into a number of distinct

states and will remain in the same state for the given period of

time (a dial). Thus the complete state of the system is defined by

the pair [d, ts], where d is the state of the dial and ts – the state

of the clock at time t. Since our iFSA can perform four different

sequences, d will take four values. The state of the dial will

determine which sequence is mapped onto the states of the clock.

Thus if the dial is set to
1d we will map the first sequence onto

physical states of the system during this time period. If the dial is

set to
2d we will map the second sequence and so on. One can

argue that not every physical system contains clock and dial

components, however there is certainly a large class of such

systems thus the ‘↑MR’ is conserved.

A parallel strategy can be applied in the context of DS

trivialization. The infinite number of possible trajectories of the

DS forces us to modify the “clock and dial” response to the

argument. The clock will have to transit continuously through an

infinite number of physical states within a finite amount of time

(which seems to be uncontroversial since physical time is

continuous) while the dial will have to be substituted by devices

that can be set in an infinite number of states. We may picture

the devices as set of continuous sliders, one for every variable in

the equations of the DS. Every initial state of the DS can be

encoded by the appropriate setting of the sliders just as every

initial state of the iFSA can be encoded as a position of the dial.

After that, we map the integrated trajectory of the DS onto the

run of the clock.

A second requirement is reliability, which is closely

akin to causal regularities − a proper labelling function should

interpret not only one but every evolution of the physical system

from the same initial state as a realisation of the same algorithm.

If Searle is right, then he should be able to reliably and

repeatedly reset his wall to a given initial condition and

demonstrate that its physical evolution is identical to the one

used for the initial labelling. Since the wall is an open system

and (as required for the trivialisation argument) exhibits non-

cyclic evolution it certainly will not repeat its states.

However, the “clock and dial” version of the argument

seems to be immune to this objection. The dial can be reliably

set into any of its states and the clock will reliably pass through

the same sequence of moments. And it appears that there will be

no significant difference in this regard between a continuous

“clock an dial” and the sequential counterpart used for iFSA as

long as we are able to demonstrate that the clock can reliably

pass through its sequence of states and the sliders can stay in the

unchanged position through the period of observation.

10 COMPUTATION AND PRAGMATICS

We would now like to propose a different perspective on the

issue. Rather than distinguishing ‘true’ from ‘false’ cases of

implementation, what these and other proposed constraints do

instead is to go some distance in distinguishing interesting,

conceptually rich and pragmatically useful implementations

from the many uninteresting, trivial and useless cases that

abound in the space of possibility. It’s certainly true that there is

no pragmatic value in most interpretive exercises compatible

with ↑MR and ↑MR*. Ascribing computational activity to

physical systems is useful to us only insofar as it supplies

informative outputs, which in most cases will come down to new

information acquired as a result of the implemented calculation.

 So, interesting and useful observer dependent

computation takes place when we can directly read-off

something that follows from the implemented formalism, but

which we didn’t already know in advance and explicitly

incorporate into the mapping from the start. That’s the incredible

value of our computational artefacts, and it’s the only practical

motivation for playing the interpretation game in the first place.

Hence a crucial difference between our computational artefacts

and the attributions of formal structure to naturally occurring

open systems, as employed by ↑MR* exercises, is that the

mapping in the latter case is entirely ex post facto and thus

supplies us with no epistemic gains. The abstract procedural

‘trajectory’ is already known and used as the basis for

interpreting various state transitions in the open system and

hence characterizing it as an implementation. In sharp contrast,

we can use the intended interpretation of our artefacts both to

predict their future behavior, as well as discover previously

unknown output values automatically.

 And this is obviously why an engineered correlation

obtains between fine-grained causal structure and abstract formal

structure in the case of our artefacts – we want them to be

informative and reliable! We also want them to be highly

versatile, and this is where counterfactual considerations come to

the fore in practice: over time we can do runs on a huge number

of different inputs, and in principle the future outputs follow as

direct consequences of the intended interpretation. So a physical

system is useful to us as a computer only when its salient states

are distinguishable by us with our measuring devices, and when

we can put the system into a selected initial state to compute the

output of our chosen algorithm on a very wide range of specific

input values.

 These pragmatic considerations supply clear and well

motivated criteria for differentiating useful from useless cases of

physical implementation. And we would advocate this type of

pragmatic taxonomy in lieu of attempts to give overarching

theoretical constraints purporting to distinguish ‘true’ from

‘false’ cases. Some basic desiderata for pragmatically valuable

implementations include (a) fully automatic, (b) reliable, (c)

versatile in the sense of computing values for a wide range of

different inputs (d) non ex post facto (e) yielding increased

predictive power with regard to future physical states of the

implementing mechanisms, (f) possessing technologically

manipulable initial configurations and output configurations

detectable by our measuring devices and (g) physical rather than

purely abstract constraints on the input and output

characterizations.

 Similarly, ascriptions of computation in the sense (1)

to the physical systems are motivated by pragmatic reasons.

Useful interpretations ought to yield simple formalisms whose

equations we are able to integrate or at least investigate their

properties with our mathematical resources. Variables should be

mapped onto reliably observable physical magnitudes that figure

in many scientific theories and are not proposed ad hoc.

Valuable interpretations of physical phenomena in terms of DS

give us simplified formal description, epistemically useful and,

hopefully, manifesting some predictive powers. We cannot

however, claim that the physical process itself realises the

mathematical equations in any other sense than that its behaviour

can be fruitfully described using such equations.

11 CONCLUSION

Computation is an extrinsic, observer dependent interpretation

that we project onto physical systems according to our purposes

and potential epistemic gains. As such, it does not support a

stable or independent natural kind. Diverse types of natural

events and processes can be modelled or simulated using

computational techniques, as in sense (2) above, but this is to be

distinguished from canonical sense (3), in which the system itself

is viewed as instantiating and executing an explicit formal

procedure. However, various physical systems do spontaneously

‘obey’ clear regularities in their evolution through time, and

many such regularities have been mathematically characterized

in terms of Dynamical Systems theory. Although this sense (1)

reading does not comprise a case of genuine computation, in the

strict connotation of executing a well defined formal procedure,

it does provide a fundamental form of mathematical

representation of the natural world.

 Various opponents of the Computational Theory of

Mind have provided trivialization arguments to the effect that,

even in canonical sense (3), the notion of implementing a

computational formalism is overly liberal to the point of vacuity.

Such results serve to undermine not only CTM in particular, but

the more encompassing notion of ‘Natural Computation’ in

general. In a parallel manner, we extend this strategy to sense (1)

‘computation’ in the guise of Dynamical Systems theory, to

argue that realizing such abstract formal structures is again a

matter of observer dependent ascription. As with the original

trivialization strategies aimed against CTM, this extended result

has deep implications for the science of mind, since Dynamical

Systems have been advocated (by, e.g. van Gelder [17]) as

providing an alternative theoretical foundation for mentality in

the natural world.

 Advocates of CTM have proposed a number of

constraints on the notion of ‘genuine’ implementation, in an

attempt to block the trivialization results and uphold a robust

notion computation in the physical world. However we argue

that such constraints derive purely from human interest as

opposed to underlying and independent matters of fact. Rather

than serving to distinguish true’ from ‘false’ cases of

implementation, what the proposed constraints do instead is to

help distinguish conceptually rich and pragmatically useful

implementations from the many uninteresting, trivial and useless

cases that abound in the space of theoretical possibility.

 Although practical considerations clearly guide the

design and construction of our computational artefacts, such

pragmatic motivations do not justify any deep or ontologically

grounded distinction between genuine versus trivial

interpretations. Hence we support an anti-realist view of

computation in nature, and implementing or realizing abstract

formal structures in general is not an intrinsic property of

physical systems. In particular we have viewed the notion of

implementation in the context of senses (1) and (3), but the view

generalizes to all the prospective forms of non-Turing

'computation' inspired by considering natural events and

processes. These are abstract, observer dependent ascriptions

projected onto a more basic physical substrate.

REFERENCES

[1] Turing, A., ‘On Computable Numbers, with an Application to the

 Entscheidungsproblem’, Proceeding of the London Mathematical
 Society, (series 2), 42, 230-265, (1936).

[2] Boolos, G., Burgess, J.P. and Jeffrey, R.C., Computability and Logic,
 5th edition, Cambridge University Press, (2007).

[3] Turing, A., ‘Computing Machinery and Intelligence’, Mind, 59: 433-

 460 (1950).
[4] Schweizer, P., ‘Physical Instantiation and the Propositional

 Attitudes’, Cognitive Computation, 4: 226-235 (2012).

[5] Fodor, J., The Language of Thought, Harvard University Press,
(1975).

[6] Marr, D., Vision, CA: W. H. Freeman, (1982).
[7] Piccinini, C., ‘Computational Modelling vs. Computational
 Explanation’, The Australasian Journal of Philosophy, 85(1), 93-115,

 (2007).

[8] Putnam, H., Representation and Reality, MIT Press, (1988).
[9] Searle, J., ‘Minds, Brains and Programs’, Behavioral and Brain

 Sciences 3: 417-424, (1980).

[10] Searle, J., ‘Is the Brain a Digital Computer?’, Proceedings of the
 American Philosophical Association, 64, 21-37, (1990).

[11] Bishop, J. M., ‘Why Computers Can’t Feel Pain’, Minds and

 Machines, 19, 507-516, (2009).
[12] Jablonski, P., Trivialisation Arguments Against Dynamical

 Hypotheses. MSc dissertation, University of Edinburgh (2012).

[13] Chrisley, R. L., ‘Why Everything Doesn’t Realize Every
 Computation’, Minds and Machines, 4, 403-420, (1994).

[14] Chalmers, D. J., ‘Does a Rock Implement Every Finite-State

 Automaton?’, Synthese, 108, 309-333, (1996).
[15] Copeland, J., ‘What is Computation?’, Synthese, 108:335-359,

 (1996)

[16] Block, N., ‘Searle’s Arguments against Cognitive Science’. In J.
 Preston and J. M. Bishop Views into the Chinese Room, Oxford

 University Press, (2002).
[17] van Gelder, T. J., ‘What Might Cognition Be If Not Computation?’,

Journal of Philosophy, 91: 345-381, (1995)

