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a b s t r a c t

Natural killer (NK) cell activity is conserved throughout vertebrate development, but characterization of
non-mammalian NK-cells has been hampered by the absence of specific mAbs for these cells.

Monoclonal antibodies were generated against in vitro IL-2 expanded sorted CD3−CD8�+ peripheral
blood lymphocytes, previously described to contain chicken NK-cells. Screening of embryonic and adult
splenocytes with hybridoma supernatants resulted in five candidate NK markers.

Activation of chicken NK-cells with PMA/Ionomycin or with the NK target cell-line LSCC-RP9 resulted
in increased expression of CD107 (LAMP-1) and a newly developed flow cytometry based cytotoxicity
assay showed that NK-cells were able to kill target cells. Combining NK markers with functional assays
indicated that marker positive cells showed NK-cell function.

In conclusion, we generated new monoclonal antibodies and developed two functional assays which
will enhance our understanding of the role of NK-cells in healthy and diseased chickens.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Natural killer (NK) cells play an important role in the early
defence against intracellular pathogens like viruses, bacteria and
intracellular parasites [1,2]. Initially NK-cells were thought to kill
any cell that did not express self-major histocompatibility com-
plex (MHC) class I proteins, the so called missing self-hypothesis
[3,4]. Now it is widely appreciated that NK-cells express both acti-
vating and inhibiting receptors, and that the balance between these
signals determines NK-cell activation [2,5]. In addition to their clas-
sical role as killers, recently more regulatory functions of NK-cells
have been described. Both human and mouse studies suggest that
NK-cells may influence the adaptive immune response by the inter-
action with dendritic cells (DC) or by the production of cytokines
[6,7] and a recent study suggests a helper role for NK-cells in elicit-
ing a functional CD8+ T-cell response in the absence of CD4+ T-cell
help [8].

Abbreviations: CFSE, 5,6-carboxyfluorescein diacetate succinimidyl ester; CHIRc,
hicken Ig-like receptor; ConA, concanavalin A; IBV, infectious bronchitis virus; IEL,
intestinal epithelial lymphocytes; LRC, leukocyte receptor region; mAb, monoclonal
antibody; MFI, mean fluorescent intensity; NCR, natural cytotoxicity receptors;
NK-cell, natural killer cell; PBL, peripheral blood lymphocytes; PMA, phorbol 12-
myristate 13-acetate.

∗ Corresponding author. Tel.: +31 30 253 4345; fax: +31 30 253 3555.
E-mail address: c.a.jansen@uu.nl (C.A. Jansen).

In humans, NK-cells have been defined as a population of lym-
phocytes that lack cell surface expression of CD3 and do express the
adhesion molecule CD56 (NCAM) [9,10]. These CD3−CD56+ lym-
phocytes can be divided into a population of CD56bright cells, which
mainly produce cytokines and chemokines and a CD56dim subset
which has cytotoxic capacity [11]. Since CD56 is not expressed on
murine cells, NK-cells in mice were initially defined by the NKR-P1
family member NK1.1 [12] or by the integrin DX5� [13]. Similar to
human NK-cells, also in mice different NK cell subsets have been
identified. CD27high NK-cells showed effective cytotoxicity against
tumor cell-lines and readily produce IFN� upon stimulation while
CD27low NK-cells are low or non-responsive under the same con-
ditions [14].

In most farm animals, the definition of NK-cells was difficult
due to the lack of specific markers [15]. Cow NK-cells for example
were defined as CD3−CD2+ lymphocytes [16] and isolation of these
cells was based on markers that are not commonly expressed on
NK-cells [17].

Recently, Vivier and colleagues have suggested that NKp46, a
member of the highly conserved natural cytotoxicity receptor fam-
ily (NCR) [18], is able to define NK-cells cross-species [19]. Indeed,
this receptor has been described to be specific for NK-cells in
humans [20], mice [21], monkeys [22], rats [23] and cattle [24] and
may be useful in comparative NK-cell analyses between species.

In contrast to mammalian NK-cells, characteristics of non-
mammalian NK-cells are lacking. This is mainly due to the lack of
NK-cell-specific monoclonal antibodies. Avian NK-cells have been

0145-305X/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
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described as a population of cells in the chicken embryonic spleen
at a developmental stage where T-cells have not yet migrated to
the periphery. These TCR0 cells express surface CD8�� homod-
imers, but no T- or B-cell-specific antigens and are able to kill the
NK-susceptible cell-line LSCC-RP9 [25]. In adult chickens, these
avian NK-cells were readily detected in the intestinal epithelial
lymphocyte population (IEL) and were used to generate a mAb
(28-4). Interestingly, the frequency of avian NK-cells in periph-
eral tissues was very low, ranging from 0.5% to 1.0% [26]. This is
in sharp contrast to NK-cell frequencies in mammals, which have
approximately around 10% of NK-cells in blood and spleen.

Based on the differences in NK-cell frequencies between chicken
and mammals, one may speculate that chickens simply lack NK-
cells in blood and spleen. However, since NK activity in chicken
splenocytes has previously been reported [27,28], the absence of
chicken NK-cells from other organs than the intestine is not likely.
An alternative explanation is that the current markers are not suit-
able for detection of all chicken NK-cells in blood and spleen.

Interestingly, chicken NK-cells have been reported to express
immunoregulatory receptors. These Chicken Ig-like receptors
(CHIR) resemble mammalian Ig-like receptors [29] and CHIR genes
are located in the chicken genome at a region which was shown
to be orthologous to the human leukocyte receptor complex (LRC)
[30]. This suggests that chicken NK-cell biology may not be that
different from the mammalian NK-cell biology.

Since characterization of chicken NK-cells has been hampered
by the lack of specific mAbs, new tools are warranted to study
NK-cell biology in the chicken. In this study we set out to identify
new markers for chicken NK-cells, which can be used to study the
NK-cell frequencies. In parallel, functional assays are essential to
confirm that cells which are recognized by NK markers indeed have
NK-cell function. Combining markers with functional assays will
make it possible to distinguish between presence and functionality
of NK-cells in healthy and diseased chickens.

2. Materials and methods

2.1. Animals

One-day-old commercial Lohman Brown chickens were housed
in groups and fed ad libitum on commercial feed. Lohman Brown
eggs (embryonic day 14) were obtained from a commercial
hatchery. Spleens were isolated from 14-day-old embryos and 4-
week-old chickens, and homogenised using a 70 �M cell strainer
(Beckton Dickinson (BD), Franklin Lakes, NJ, USA) to obtain a single
cell suspension. Viable cells were isolated by Ficoll-Paque density
gradient centrifugation. Cells were resuspended in IMDM medium
supplemented with 2% heat inactivated FCS; 8% heat inactivated
chicken serum, 100 U/ml penicillin/streptomycin and 2 mM glu-
tamax I (‘NK medium’; Gibco BRL, United Kingdom) and were
used directly or cryopreserved until the day of analysis. Embry-
onic splenocytes were used directly or cultured for up to 7 days in
conditioned medium as previously described [25,31]. Conditioned
medium was prepared by culturing adult splenocytes (1 × 107/ml)
in IMDM supplemented with 0.5% BSA in the presence of 10 �g/ml
ConA (Sigma–Aldrich, Zwijndrecht, The Netherlands) for 48 h. The
cytokine-containing supernatant was filtered through a 30 kDa
filter to remove the ConA (Vivaspin/Sartorius, Weesp, The Nether-
lands), sterilized by filtration and stored at −80 ◦C.

For the infectious bronchitis virus (IBV) experiments, 31-day-
old SPF layer chickens were either challenged with 104.0 EID50
of IBV M41 or sterile water by oculo-nasal route, one droplet of
0.05 ml on the eye, one droplet on the nostril. Birds were euth-
anized using CO2/O2 and lungs were collected. Lung tissue was
cut into small pieces and digested in RPMI containing 2.4 mg/ml
collagenase (Roche Applied Science, Almere, The Netherlands) and

1 mg/ml DNAse (Roche Applied Science) for 30 min at 37 ◦C, and
homogenised using a 70 �M cell strainer. Viable cells were isolated
by Ficoll-Paque density gradient centrifugation.

Chickens were housed, handled and treated following approval
by the Animal Experimental Committee of the Veterinary Faculty of
Utrecht University, The Netherlands. The IBV infection experiment
was performed following approval of the Animal Experimental
Committee of the GD Animal Health Service, The Netherlands. All
experiments were performed in accordance with the Dutch regu-
lation on experimental animals.

2.2. Cell-lines and antibodies

Hybridomas were raised against purified chicken CD3−CD8�+
splenic lymphocytes which were expanded for 2 weeks in
the presence of recombinant IL-2 using standard procedures
and 48 supernatants were screened. The hybridoma LEP-7
producing the ChCD107 mAb was obtained from the Devel-
opmental Studies Hybridoma Bank (DSHB, University of Iowa,
IA, United States). The ChCD107 mAb was affinity purified
(GammabindPlus, GE Healthcare, Zeist, The Netherlands) from
the hybridoma supernatant and biotinylated (d-biotinoyl-�-
aminocaproic acid–N-hydroxysuccinimide ester, Roche Applied
Science). Other antibodies used in this study: mouse anti-chicken
CD3 (CT3, IgG1), mouse anti-chicken CD8� (CT8, IgG1), mouse
anti-chicken CD8� (EP42, IgG2a), mouse anti-chicken CD4 (CT4,
IgG1), mouse anti-chicken Bu-1 (AV20, IgG1), mouse anti-chicken
��-TCR (TCR1, IgG1), mouse anti-chicken ��1-TCR (TCR2, IgG1),
mouse anti-chicken ��2-TCR (TCR3, IgG1), mouse anti-chicken
monocyte/macrophage (KUL01, IgG1), isotype-specific secondary
step antibodies goat anti-mouse IgG1, IgG2a and IgG3 (Southern
Biotec (SBA), San Diego, CA, USA). Secondary antibodies goat anti-
mouse IgG and fluorochrome-labelled streptavidin were obtained
from BD.

The chicken B-lymphoblastoid cell-line LSCC-RP9 is commonly
used as a chicken target cell-line [32] and was kindly provided by
Dr. A. Rebel (CVI, Lelystad, The Netherlands). The chicken B-cell-
line 2D8 is not a target for chicken NK-cells. All cell-lines were
grown in RPMI 1640 supplemented with 10% FCS, 100 U/ml peni-
cillin/streptomycin and 2 mM glutamax I.

2.3. Flow cytometry

Flow cytometry was performed to analyse the expression of can-
didate NK markers on chicken splenocytes. Cells were stained with
hybridoma supernatants (mouse IgG) for 30 min at 4 ◦C, followed by
a secondary Ab or isotype-specific antibodies for 20 min 4 ◦C. Nor-
mal mouse serum was used to block a-specific binding followed by
staining with T-cell, B-cell and macrophage specific mAbs. CD107
expression was analysed by staining with an anti-ChCD107 mAb,
followed by a secondary antibody and when adult splenocytes were
used staining with anti-ChCD107 was combined with anti-CD3 and
anti-CD8� mAbs. At least 50,000 events were acquired using a FACS
Calibur flowcytometer (BD) and data were analysed using the soft-
ware program CELL Quest (BD) or FlowJO (Threestar Inc., Ashland,
OR, USA).

2.4. CD107 assay

The CD107 assay that has been described to study NK-cell acti-
vation in humans [33,34] was adapted for the chicken. Embryonic
or adult splenocytes were resuspended in NK medium at a concen-
tration of 1 × 106 cells/ml. Cells were stimulated with 100 ng/ml
phorbol 12-myristate 13-acetate (PMA) and 500 ng/ml Ionomycin
(Sigma) in the presence of 1 �l/ml Golgistop (BD) and anti-ChCD107
mAb during 4 h at 37 ◦C, 5% CO2. After incubation, cells were washed
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in PBS supplemented with 0.5% BSA, stained with a secondary anti-
body and cell surface markers and flow cytometry was performed.
Incubation with anti-ChCD107 or secondary mAbs did not result in
a specific staining (data not shown).

2.5. Flow cytometry based cytotoxicity assay

Killing capacity of chicken NK-cells was measured by flow
cytometry using the LSCC-RP9 cell-line and the chicken B-cell-line
2D8 as target cells and cultured embryonic splenocytes as effector
cells. Target cells were labelled with the fluorescent, cell perme-
able dye CFSE (5,6-carboxyfluorescein diacetate succinimidyl ester,
Molecular Probes, Leiden, The Netherlands) according to the man-
ufacturer’s protocol. Briefly, cells were incubated with CFSE for
8 min, after which labelling was stopped using FCS. Cells were
washed in PBS and resuspended in RPMI-10 medium supplemented
with 10% FCS, penicillin and streptomycin and glutamax. Spleno-
cytes were washed and resuspended in NK medium. Cells were
mixed in different effector: target ratios and incubated for 4 h at
37 ◦C, 5% CO2. Directly before flow cytometry was performed, pro-
pidium iodide (Sigma) was added at a final concentration of 5 ng/ml
as well as 10 �l of Flow-Count fluorospheres (Beckman Coulter,
Woerden, The Netherlands).

2.6. Statistical analyses

Non-parametric statistical tests were used because the assump-
tion of normally distributed data was not met. Differences between
the groups were analysed using Mann–Whitney tests. A p-value
<0.05 was considered statistically significant. All statistical analy-
ses were performed using the software program SPSS 12.0 (SPSS
Inc., Chicago, IL).

3. Results

3.1. Screening hybridoma supernatants to identify new candidate
markers for chicken NK-cells

In order to identify new markers for chicken NK-cells, spleno-
cytes from 14-day-old embryos were isolated and stained ex vivo
with supernatants from 47 hybridomas derived against in vitro
expanded CD3−CD8�+ splenocytes. Based on staining patterns,
four groups of markers could be identified as shown in Fig. 1A.
Thirty-six supernatants showed minimal reactivity (mean fluores-
cent intensity (MFI) 2.6, range 1.9–3.2; group 1). Two supernatants
resulted a clear population of positive cells (MFI 14.9 (8.6–17.4);
group 4) and nine supernatants stain positive, but to a variable
extent (MFI 4.3 (3.8–4.7); group 2 and MFI 5.9 (5.3–6.6); group
3).

Next, supernatants were used together with anti-CD3 and anti-
CD8� mAbs to stain splenocytes from 14-day-old embryos ex
vivo and after 7 days of culture. This showed that hybridoma
supernatant positive cells were indeed CD3−CD8�+ (Fig. 1B). Fur-
thermore, marker expression changed upon 7 days of culture, as
shown in Table 1. Expression of 19 out of 36 markers belonging
to group 1 increased, as well as expression of 3 out of 5 (group 2)
and 3 out of 4 (group 3). This suggests that different populations of
NK-cells may be recognized by these supernatants. These changes
in expression were coincided by a decrease in CD8� expression,
probably reflecting the activation of chicken splenocytes during
culture.

Next, a selection of 12 candidate NK markers representing all
groups was further tested on splenocytes from 4-week-old chick-
ens together with the 28-4 mAb. Splenocytes were stained with the
hybridoma supernatants in combination with anti-CD3 and anti-
CD8� antibodies, and the percentage of marker positive cells in

Fig. 1. Initial screening of 47 hybridoma supernatants results in new candidate NK markers. Forty-seven hybridoma supernatants were screened by flow cytometry using
splenocytes from 14-day-old chicken embryos. Based on expression, four groups of candidate NK markers could be identified (A). Within the CD3 negative population,
expression of NK markers on CD8� positive cells was analysed and representative stainings for each group as defined in (A) are shown. Staining of embryonic splenocytes
directly ex vivo (A and B) or after culture (C) showed that marker positive cells are CD3−CD8�+ and that the expression of CD8� diminished during culture (C).
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Table 1
Expression of candidate chicken NK-cell markers on ED14 cells on day 0 and after 7 days of culture.

Day 0 Day 7

Group 1 Group 2 Group 3 Group 4

Group 1 14D9 7G6 15E7 2A4 9G6 4H3 6E12 15F8
5D1 1D11 7A6 20C8 13G3 12H3 15D1 11F7
10H7 19H6 3C6 14D3 7C1 6E7 12A11 4A5
15B11 1C4 16B8 9G4 6H7 2G3 7B5
21D5 4F8 1B1 1D12 17B12

Group 2 21E3 5C7
15C7 12D7

14H12

Group 3 1G7 14A8
20E5
3C4

Group 4 12D6
6B5

Groups 1, 2, 3 and 4 refer to the grouping that is shown in Fig. 1.

different subsets was analysed. As shown in Fig. 2A and B, the pop-
ulation of CD3−CD8�+ splenocytes (population 1) is small; median
2.0% with a range of 0.7–6.9%. The population of CD3−CD8�dim
(population 2) cells is much larger; median 9.2% with a range of
5.8–16.8%. When the expression of the candidate NK markers on
CD3−CD8�+ cells was analysed (Fig. 2C), differences between the
markers were observed. Staining patterns could be divided into
two groups, based on frequencies of positive cells. Eight mark-
ers stained the major fraction of CD3−CD8�+ cells (median 35.3,

range 19.4–46.6), and five markers were expressed on a minor-
ity of the CD3−CD8�+ cells (median 4.8, range 1.5–6.2). The 28-4
mAb stained 2.1% of the CD3−CD8�+ cells (range 0.8–5.5%). Simi-
lar results were observed for the CD3−CD8�dim population and
CD3− cells (data not shown). Based on these staining patterns
which suggested that markers from different groups may recog-
nize different populations of NK-cells, two markers from group
1 and three markers from group 2 were selected for further
analyses.

Fig. 2. Additional screening on adult splenocytes results in a panel of five candidate NK markers. Splenocytes from 4-week-old chickens were stained with anti-CD3 and
anti-CD8� mAbs. A representative example is shown (A). Frequencies of CD3−CD8�+ cells (population 1) and CD3−CD8�dim splenocytes (population 2) were analysed in
12 4-week-old chickens (B). Co-staining with 12 candidate NK markers (or 28-4, previously described as a marker for intestinal and embryonic NK-cells) and anti-CD3 and
anti-CD8� mAbs was performed on splenocytes from 4-week-old chickens. Median expression and interquartile range is shown. Markers that are selected for further study
are indicated by a black dot (C).
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Fig. 3. Co-staining of hybridoma supernatants and non-NK markers. Co-staining with non-NK markers was performed using splenocytes from 4-week-old chickens. NK
marker+ cells were selected and within this population frequencies of cellular marker+ and cellular marker− populations were determined by flow cytometry. Co-staining
with the candidate NK markers 7C1 (B), 21E3 (C), 17B12 (D), 20E5 (E), 5C7 (F) and the NK mAb 28-4 (G) was performed with a marker for �� T-cells (TCR1), ��1 T-cells
(TCR2), ��2 T-cells (TCR3), CD3+ T-cells, CD8�+ cells, CD8�+ cells, CD4+ cells, B-cells and monocytes/macrophages. In grey: median expression in the NK marker negative
subset; in white: median expression in the NK marker positive subset.

3.2. Co-staining of hybridoma supernatants and non-NK markers
shows that markers are not exclusive for NK-cells

To investigate if the candidate NK markers recognize other cell
types as well, co-staining with non-NK markers was performed
using splenocytes from 4-week-old chickens. NK marker+ cells
were selected and within this population frequencies of cellular
marker+ and cellular marker− populations were determined (for
a representative example see Fig. 3A showing the percentage of
��+ and ��− T-cells within the 20E5+ cells). Co-staining with can-
didate NK markers and anti-TCR2 and anti-TCR3 mAb shows that
all markers are mainly expressed on ��1− and ��2− T-cells. Co-
staining with anti-TCR1 antibodies shows that 7C1 and 28-4 are
mainly expressed on ��− T-cells, while 17B12, 20E5 and 5C7 are
expressed in equal amounts on ��+ and ��− T-cells. Interest-

ingly, co-staining with anti-CD3 mAbs shows that all candidate
NK markers are readily expressed on CD3+ as well as CD3− cells.
Co-staining with anti-CD8� mAbs shows differences between the
markers: 7C1, 21E3 and 17B12 are predominantly expressed on
CD8�+ cells, while the known NK antibody 28-4 is highly expressed
on CD8� negative cells. Similar results were observed for stain-
ing with anti-CD8� mAb. Co-staining with anti-CD4 mAb shows
that the candidate NK markers are predominantly expressed on
CD4− cells, except for the known NK marker 28-4. Co-staining
with anti-Bu-1 mAb shows that all markers are predominantly
expressed on Bu-1− cells. Markers are not expressed on KUL01+
cells. Taken together, differences are observed between the can-
didate NK markers suggesting that these markers may recognize
different populations of NK-cells. Furthermore, co-staining with
anti-CD3 mAb will be necessary to distinguish NK-cells from T-cells.
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Fig. 4. Expression of ChCD107 (LAMP-1) can be used to measure activation of chicken NK-cells. (A) Embryonic and adult splenocytes were stimulated with PMA/Ionomycin
for 4 h and CD107 expression was analysed by flow cytometry. A representative example of CD107 expression in the absence (left panel) and presence (right panel) of
stimuli is shown. (B) Stimulation of embryonic splenocytes directly ex vivo resulted in a significant increase in CD107 expression (n = 5). (C) Stimulation of splenocytes with
PMA/Ionomycin results in a significant increase in CD107 expression in CD3− splenocytes (n = 12). (D) Co-incubation of splenocytes with the chicken B-cell-line LSCC-RP-9
(NK target cell-line) results in an increase in CD107 expression in NK-cells from different sources (n = 6). Significant differences (p < 0.05) are indicated by an asterisk.

3.3. Activation of chicken NK-cells is determined by the
expression of ChCD107

In order to correlate the newly identified NK markers to
functional activities, new assays to measure NK-cell functions
were developed. NK-cell activation was measured by analysing
the expression of ChCD107 (for a representative example see
Fig. 4A). Stimulation of splenocytes from 14-day-old embryos with
PMA/Ionomycin in the presence of anti-ChCD107 mAb resulted
in an increased CD107 expression (unstimulated median 2.1%
(range 1.7–5.1%); stimulated median 8.9% (range 4.6–29.1) p < 0.05,
Fig. 4B). Similar results were found for splenocytes from 4-week-
old chickens, stimulation resulted in a significant increase in CD107
expression in the CD3− cells (unstimulated median 6.0% (range
3.4–12.6); stimulated median 12.3% (range 3.8–32.4), p < 0.05,
Fig. 4C). Co-incubation of NK-cells with the target cells RP9 also
resulted in an increase in CD107 expression in CD3− cells from
14-day-old embryos and 1-week-old chickens (Fig. 4D).

In addition, killing capacity of chicken NK-cells was analysed
using a flow cytometry based cytotoxicity assay. Fig. 5A shows
killing of the target cell-line RP9 by embryonic splenocytes. This
killing is specific for the known chicken target cell-line RP9, because
another chicken B-cell-line 2D8 is not killed by these splenocytes
(Fig. 5B). Taken together, two assays have been developed that can
be used to measure the function of embryonic and chicken NK-cells.

3.4. Combining candidate NK markers with functional assays
shows that markers recognize cells with NK function

To investigate if the newly identified NK markers recognize
cells which have NK function, staining with NK markers was com-
bined with the measurement of CD107 expression (Fig. 6). In
three out of five tested (7C1, 21E3 and 17B12), increased CD107
expression was observed within the marker positive subset upon
PMA/Ionomycin stimulation, suggesting that these markers recog-
nize functional chicken NK-cells. Interestingly, two markers with
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Fig. 5. Flow cytometry based cytotoxicity assay shows killing of target cell-line RP9 by chicken NK-cells. (A) Cytotoxic capacity of cultured ED14 splenocytes was analysed
using a flow cytometry based killing assay. The NK target cell-line LSCC-RP-9 was labelled with CFSE and incubated with effector cells at various E:T ratios. After 4 h, the
percentage of live cells was analysed using propidium iodide exclusion. (B) Lack of killing of the chicken B-cell-line 2D8 as target showed that killing of the known NK target
B-cell-line LSCC-RP9 was specific. (C) All experiments were performed in triplicate and results from four experiments are shown.

Fig. 6. Co-staining with candidate NK markers and ChCD107 shows that markers
recognize cells with NK function. Stimulated splenocytes from 4-week-old chickens
were stained with a ChCD107 mAb and a panel of candidate NK markers, as well
as 28-4 and expression was analysed by flow cytometry. Three markers (7C1, 21E3
and 17B12) showed increased CD107 expression in marker positive cells upon stim-
ulation. Median expression and interquartile range are shown for four chickens. In
grey unstimulated cells, in black stimulated cells.

the highest expression as shown in Fig. 2C (20E5 and 5C7) do not
show an increase in CD107 expression in marker positive cells upon
stimulation. Furthermore, cells that express the 28-4 mAb that was
previously described as a marker for intestinal and embryonic NK-
cells do not show enhanced CD107 expression upon stimulation.

Taken together, we identified five new candidate NK markers that
recognize chicken NK-cells.

3.5. Increased NK-cell activation in lungs of IBV infected chickens

Next, we investigated if the newly developed CD107 assay
could be applied to healthy and virus infected birds. To this end,
chickens were infected with IBV, lung cells were isolated and
CD107 expression was analysed directly ex vivo without restim-
ulation as shown in Fig. 7. CD107 expression was significantly
higher in CD3−CD8�− cells from IBV infected chickens compared
to uninfected chickens (infected median 20.8% (range 14.8–24.6%);
uninfected median 7% (range 4.7–11%), p < 0.05). Interestingly, no
differences in CD107 expression were observed in the CD3−CD8�+
cells (infected median 7.3% (range 5.3–9.7%); uninfected median
6.8% (range 5.5–11.2%)). Thus, ex vivo analysis of CD107 expres-
sion showed enhanced expression on lung cells from IBV infected
chickens, reflecting increased NK-cell activation.

4. Discussion

Characterization of non-mammalian NK-cells has been ham-
pered by the absence of specific mAbs for these cells. Until now,
avian NK-cells have been described as a population of cells that
express the CD8�� homodimer but lack surface CD3 and Ig [25]
and only one NK-cell-specific mAb, 28-4 has been described [26].
Cells with these characteristics have mainly been found in embry-
onic spleen and the intestinal epithelium of chickens. In contrast,
the frequencies of these CD3−CD8�+ avian NK-cells in blood and
spleen was very low, ranging from 0.5% to 1% rather than the 10%

Fig. 7. Increased ChCD107 expression in CD3−CD8�− lung cells after IBV infection. Lung cells from IBV infected and uninfected chickens were isolated and CD107 expression
was analysed directly ex vivo by flow cytometry. (A) CD107 expression was significantly increased in CD3−CD8�− cells from IBV infected chickens. (B) No differences in
CD107 expression in CD3−CD8�+ cells were observed between uninfected and IBV infected chickens. Results for five infected and six uninfected chickens are shown and the
vertical bar shows the median CD107 expression. Significant differences (p < 0.05) are indicated by an asterisk.
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observed in many mammals. This implicates that NK-cells are rarely
present outside the gut or more likely that the current markers are
not appropriate for the detection of NK-cells in blood and spleen of
chickens. Therefore, we set out to identify new markers for chicken
NK-cells. Splenocytes from 14-day-old embryos were isolated and
stained with supernatants from 47 hybridomas generated against
in vitro expanded CD3−CD8�+ splenocytes and based on staining
patterns four different groups of markers could be identified. Next,
staining of the supernatants in the presence of anti-CD3 and anti-
CD8� mAbs on splenocytes from 14-day-old embryos confirmed
that the positive cells were indeed CD3−CD8�+, which fits earlier
observations [34]. Culturing the cells for 7 days with conditioned
medium showed changes in expression of the different NK mark-
ers and a decrease in CD8� expression. This decrease in CD8�
expression may reflect activation of the cells, similar to loss of CD3
expression upon stimulation.

It is tempting to speculate that the differences in expression
upon culture are due to the existence of different populations
of NK-cells which develop during culture. Staining splenocytes
from healthy 4-week-old chickens with a panel of 12 candidate
NK markers and the 28-4 mAb resulted in two different groups
based on staining patterns within the CD3−CD8�+ population.
Interestingly, while in the spleen the population of CD3−CD8�+
cells is rather small (median 2.0%; range (0.7–6.9%)), the popula-
tion of CD3−CD8�dim cells is much bigger (median 9.2%; range
(5.8–16.8%)). As activation of embryonic splenocytes resulted in a
decrease in CD8� expression, these CD3−CD8�dim cells may very
well represent a population of (activated) NK-cells. This is sup-
ported by the similar staining patterns of the candidate NK markers
for the CD3−CD8�+ and CD3−CD8�dim population. Furthermore,
the total frequency of CD3−CD8�dim and CD3−CD8�+ cells is sim-
ilar to the frequencies of NK-cells observed in mammals and CD107
is predominantly expressed in CD8�dim cells (data not shown).

Co-staining with non-NK markers suggests that the candidate
NK markers recognize different populations. Most markers also rec-
ognize CD8� negative cells. As we observed down regulation of
CD8� expression upon activation, this suggests that some of these
markers may recognize activated NK-cells. Furthermore, staining
with the NK markers needs to be combined with staining with anti-
CD3 mAbs, similar to the human situation in which the NK marker
CD56 is also expressed on T-cells [35]. Some markers may also rec-
ognize �� T-cells (21E3, 17B12, 20E5 and 5C7). In mammals, almost
all NK-cell receptors have been found to be expressed by �� or ��
T-cells [36]. Also bovine �� T-cells that have been stimulated with
IL-15 express the NK-cell receptor NKp46 [37]. Chickens have up
to 50% �� T-cells in blood and spleen [38], and a mAb against a NK
receptor from the C-type lectin family (B-NK) recognizes embry-
onic ED14 splenocytes as well as subsets of splenic �� and ��
T-cells [39]. This implies that markers for NK-cells may recognize
�� T-cells as well as NK-cells show which is supported by our data
showing that the candidate NK markers are also readily expressed
on TCR1+ cells.

The function of chicken NK-cells was determined by analysing
the expression of CD107 (LAMP-1) which is expressed on the sur-
face of NK-cells upon activation. The expression of CD107 has
previously been shown to correlate cytotoxicity and IFN� produc-
tion [34] and is commonly used as an assay to measure activation
of mammalian NK-cells [34,40]. CD107 expression was found upon
stimulation with PMA/Ionomycin and upon stimulation with the
target cell-line LSCC-RP9, showing that activation of chicken NK-
cells can be measured in vitro.

In addition, a flow cytometry based cytotoxicity assay showed
killing of the target cell-line LSCC-RP9 by cultured ED14 embryonic
splenocytes and CD3−CD4-depleted lung cells. Flow cytometry
based cytotoxicity assays have previously been shown to correlate
well with the standard 51Chromium release assay [41,42]. Further-

more, the advantage of a flow cytometry based assay is that this
assay is not radioactive and multi-color flow cytometry allows the
analysis of cell-specific parameters.

Based on the screening of embryonic and adult splenocytes,
staining of five candidate NK markers and the 28-4 mAb was com-
bined with the measurement of CD107 expression. Three markers
(7C1, 21E3 and 17B12) showed increased CD107 expression within
the marker positive subset upon PMA/Ionomycin stimulation,
suggesting that these markers recognize chicken NK-cells. Inter-
estingly, 20E5 and 5C7, two markers with the highest expression
based on Fig. 2C do not show an increase in CD107 expression
in marker positive cells upon stimulation. This confirms the ear-
lier observation that these markers may be expressed to some
extend on NK-cells, but are readily expressed by other cells as well.
Furthermore, 28-4+ cells in spleen do not show NK-cell function.
Interestingly, 28-4+ IEL have been reported to induce lysis of NK-
sensitive targets [26]. This suggests that 28-4+ IEL are different from
28-4+ splenocytes which are studied here.

Analysis of CD107 expression in lung cells from IBV infected
chickens showed increased CD107 expression compared to lung
cells from uninfected chickens. Interestingly, this difference was
only observed for CD3−CD8�− cells, which again suggests that acti-
vation of chicken NK-cells is paralleled by down regulation of CD8�.
These data show for the first time that the ChCD107 assay can be
readily used to study chicken NK-cell activation ex vivo. Therefore,
this assay is a valuable tool to study NK-cell biology in healthy and
diseased chickens.

In conclusion, we identified five new markers (7C1, 21E3, 17B12,
20E5 and 5C7) that recognize chicken NK-cells and developed two
assays to measure NK-cell activation and cytotoxicity. Although the
antigens that are recognized by the different markers are not yet
known, the experiments performed in this study suggest that the
markers may recognize different populations of NK-cells. It is pos-
sible that the frequencies of NK-cells recognized by the different
markers may vary between different organs, similar to the results
with the 28-4 mAb. These results will lead to a better understand-
ing of NK-cell frequencies and distribution in healthy and diseased
chickens.
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