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a b s t r a c t

To gain more insight in underlying mechanisms correlating to protection against avian influenza virus
(AIV) infection, we investigated correlates of protection after AIV H9N2 infection and studied the contri-
bution of different adjuvants to a protective response at host transcriptional level. One-day-old chickens
were immunised with inactivated H9N2 supplemented with w/o, Al(OH)3, CpG or without adjuvant. Two
weeks later, birds were homologously challenged and at 1–4 days post challenge (d.p.c.) trachea and lung
were collected. Birds immunised with H9N2 + w/o or H9N2 + Al(OH)3 were protected against challenge
infection and had lower viral RNA expression, less immune related genes induced after challenge, a lower
amplitude of change of gene expression and smaller cellular influxes compared to the higher and pro-
longed gene expression in unprotected birds. We show that a limited number of differentially expressed
genes correlates with reduced immune activation and subsequently reduced immunopathology after
challenge with AIV.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Avian influenza virus (AIV) infection causes problems world-
wide and affects both humans and animals. Therefore, much effort
is invested in development of effective vaccines. A good under-
standing of mechanisms that correlate to protection or AIV induced
pathology may help in the development of effective vaccines and
methods to diagnose the outcome of the infection at an early stage.

Much research has been performed into the interplay between a
virus and the immune system to unravel mechanisms that correlate
to virus induced pathology and predictors of disease progression.
Persistent immune activation is a strong predictor of disease pro-
gression after HIV infection [9]. Chronic immune activation after
HIV-1 infection has been described to correlate to pathogene-
sis of progressive HIV-1 infection [12], while in non-pathogenic
SIV infection of sooty mangabeys a high immune activation was
rapidly attenuated despite the presence of high viral loads [36].
Uncontrolled immune activation has also been reported for high
pathogenic influenza virus. H5N1 influenza virus has been reported
to induce severe lung pathology accompanied by strong and per-
sistent induction of genes involved in innate and inflammatory

∗ Corresponding author. Tel.: +31 30 2531872; fax: +31 30 2533555.
E-mail address: L.Vervelde@uu.nl (L. Vervelde).

immune responses in macaques [2]. A highly pathogenic infection
with the 1918 H1N1 influenza virus also caused high and per-
sistent induction of innate and inflammatory immune responses
in macaques [20], mice [17] and ferrets [4]. Furthermore, highly
pathogenic influenza virus infection has been described to cause
early and extensive infiltration of macrophages and neutrophils in
the lungs [2,31], while for low pathogenic virus infections lower
numbers of macrophages and neutrophils were found in the lungs.
This suggests a relationship between influenza virus virulence and
host responses in which an uncontrolled host response to influenza
virus infection seems to be correlated to high pathology and the
severity of the infection.

Mechanisms that correlate to reduced pathology and to pro-
tection against AIV infection remain poorly defined. In mammals,
innate immune cells like macrophages, dendritic cells and natu-
ral killer cells have shown to be important to control influenza
virus infection at and early stage and promote adaptive response
[28]. Adaptive immune cells like B- and T-cell play a crucial role in
clearing the infection and neutralizing antibodies play an impor-
tant protective role during infection by diminishing virus entry. In
general the induction of hemagglutinin (HA) antibodies is accepted
as a major correlate of protection and vaccine efficacy in chickens
and human [23,34].

In this study we set out to investigate predictors of reduced
immunopathology and subsequent protection after vaccination

0264-410X/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.vaccine.2010.06.099

dx.doi.org/10.1016/j.vaccine.2010.06.099
http://www.sciencedirect.com/science/journal/0264410X
http://www.elsevier.com/locate/vaccine
mailto:L.Vervelde@uu.nl
dx.doi.org/10.1016/j.vaccine.2010.06.099


6352 S.S. Reemers et al. / Vaccine 28 (2010) 6351–6360

Fig. 1. (A) “Right chicken lung with a blunt probe indicating the localization of the primary bronchus.” The lung was divided into four parts, L1 to L4 according to airflow and
lung anatomy [32], with the primary bronchus entering the lung in L1 shown on the left side. Segment L1, containing the primary bronchus and secondary bronchi, and L4,
containing the paleopulmonic parabronchi, were used for analysis. The white blocks indicate the part of the lung segments used for RNA isolation, while the adjacent part
within the segment was used for immunocytochemistry. “Illustration of the unidirectional air flow pattern, which flows from caudal to cranial during (B) inspiration and (C)
expiration in the avian lung. (1) Primary bronchus, (2) lung, (3) clavicular air sac, (4) cranial thoracic air sac, (5) caudal thoracic air sac, (6) abdominal air sac.” Adapted and
reprinted with permission [21], Copyright 2008.

and challenge with AIV H9N2. We also addressed the question
whether different adjuvants contribute to a difference in immune
activation. Therefore, we choose three adjuvants with a different
mode of action. Water-in-oil (w/o) and hydroxide (Al(OH)3) act
Toll-like receptor (TLR) independent [15] and are generally associ-
ated with induction of Th2 responses [6,13,14,25]. Non-methylated
CpG oligonucleotides (CpG) act TLR dependent and are associated
with Th1 responses [15]. All three adjuvants have been reported
to induce a protective response in birds [11,24,29,35]. In our
study chickens were immunised with H9N2 vaccine in presence of
w/o, Al(OH)3, CpG or without adjuvant, and these birds together
with non-immunised birds were challenged with live H9N2 14
days post immunisation. At 1–4 days post challenge (d.p.c.) viral
RNA expression, gene expression profiles and cellular influxes
were determined in trachea and lung. Together with HI and AIV
nucleoprotein (NP)-specific antibody titers in serum we defined
characteristics of protective responses and differences in the mode
of action between the different adjuvants. Birds immunised in pres-
ence of w/o and Al(OH)3 were protected and both groups had a
limited number of differentially expressed genes, reduced immune
activation and high HI and AIV NP-specific antibody titers. We
show that a limited number of differentially expressed genes cor-
relates with reduced immune activation and subsequently reduced
immunopathology after challenge with AIV.

2. Materials and methods

2.1. Infection model

Avian influenza A virus, subtype H9N2, isolate A/Chicken/United
Arab Emirates/99 produced in eggs using routine procedures was
kindly provided by Intervet/Schering-Plough Animal Health. For
the vaccine formulation used to immunise the birds the aqueous
phase containing the virus suspension, diluted in 0.01 M phosphate
buffer (pH 7.2), was formalin-inactivated (Intervet/Schering-
Plough Animal Health).

One-day-old White Leghorn chickens were housed under SPF
conditions and all experiments were carried out according to pro-
tocols approved by the Animal Welfare Committee.

Chickens were divided into six groups over six isolators,
containing twenty animals per group. One-day-old chickens
were immunised s.c. with 0.25 ml formalin-inactivated avian
influenza H9N2 with w/o, Al(OH)3, CpG or without adjuvant.
The non-immunised-non-challenged (NINC) and non-immunised-
challenged (NIC) groups were immunised s.c. with saline. The
formalin-inactivated antigen preparation was formulated into an
immunopotentiating mineral oil-based w/o emulsion according to
standard procedures (HAR titer of ≥7.0 log2; commercial H9N2
vaccin of Intervet/Schering-Plough Animal Health [8]). Al(OH)3
consisted of an Al(OH)3-gel (Brenntag) with a final concentra-
tion in the vaccine of 0.5%. CpG-ODN 2007 was custom made

and consisted of the whole phosphorothioate backbone purified
via ethanol precipitation (TibMolbiol). Per dose 40 �g CpG was
used. Two weeks after the immunization blood samples were taken
from each bird for measuring HI titers and AIV NP-specific anti-
body titers after which they were inoculated via aerosol spray
with 20 ml 107.7 EID50 H9N2 AIV per isolator. The NINC group was
inoculated via aerosol spray with 20 ml saline. Chickens remained
in the aerosol spray in a closed isolator for 10 min, after which
the isolator was ventilated as before. This led to the following
six experimental groups: non-immunised-non-challenged (NINC),
non-immunised and H9N2 challenged (NIC), H9N2 immunized and
challenged (IC), H9N2 + adjuvant w/o immunized and challenged
(IC + w/o), H9N2 + adjuvant Al(OH)3 immunized and challenged
(IC + Al(OH)3), H9N2 + adjuvant CpG immunized and challenged
(IC + CpG).

At 1–4 days post challenge (d.p.c.) chickens were killed (n = 4
per time point per group; n = 2 for NIC at 4 d.p.i. due to death
caused by infection of two birds) and trachea and left lung were
isolated and stored in RNAlater (Ambion) at −80 ◦C for RNA iso-
lation or fixed in liquid nitrogen for immunocytochemistry. The
trachea was divided into upper and lower trachea of which upper
trachea was used for analysis. The lung was divided into four
parts L1–L4 according to anatomy and airflow (Fig. 1). Segment
L1, containing the primary bronchus and secondary bronchi, and
L4, containing the paleopulmonic parabronchi, were used for
analysis. Selection of organ parts used for analysis was based
on viral load and virus induced gene expression as previously
described [32].

2.2. H9-specific HI and AIV NP-specific antibody titers

H9-specific haemagglutination inhibition (HI) titers in serum
were determined by a HI assay as previously described [8].

AIV NP-specific antibody titers in serum were determined
by enzyme-linked immunosorbent assay (ELISA). Briefly, Nunc
Maxisorp flatbottom plates were coated with mouse monoclonal
antibody (mAb) to nucleoprotein (NP) of H9N2 at 37 ◦C overnight.
Antibody coated plates were washed three times with PBS/Tween
and blocked with 10 mM PBS + 1% BSA for 1 h at room temper-
ature. Formalin-inactivated AIV H9N2 antigen, containing intact
virions and virion subunits due to degradation of virions, was
added to the plates and incubated for 1 h at 37 ◦C after which the
plates were washed three times with PBS/Tween. Chicken sera
were 2-fold serially diluted in PBS/Tween, added to the plates
and incubated for 1 h at 37 ◦C. Plates were washed three times
with PBS/Tween. HRP-conjugated rabbit anti-chicken IgG (Nordic
Immunological Laboratories) was added to the plates and incubated
for 30 min at 37 ◦C. After washing three times with PBS/Tween
the plates were developed with TMB substrate for 10 min at room
temperature in the dark. The reaction was stopped by adding 4N
H2SO4 to the plates and the absorbance was measured at 450 nm.
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Fig. 2. Viral RNA levels in trachea and lung of birds immunised with H9N2 adjuvanted with w/o or Al(OH)3 are lower compared to the other challenged groups. Highest viral
RNA levels were found in the groups non-immunised-challenged (NIC), immunised-challenged (IC) and immunised with H9N2 adjuvanted with CpG. Data were expressed
as means (n = 4, † n = 2) with standard error of the mean (SEM). * Indicates significant differences (P < 0.05) in viral RNA expression compared to NIC and IC birds.

On each plate positive and negative control sera were included
with known H9N2-NP titer. Results were expressed as mean 2log
titers.

2.3. Immunocytochemistry

Virus and cellular influxes were detected in lung by immuno-
cytochemistry as previously described [38]. Viral NP was detected
with mAb to NP of H9N2 (provided by Intervet/Schering-Plough
Animal Health). Macrophages and CD4+ cells were detected with
mAb KUL-01 [26] and CT-4 (Southern Biotech). For detection of
CD8�+ cells a mix of mAb EP72 (Southern Biotech) and AV14 (kind
gift of Dr T.F. Davison, Institute for Animal Health, Compton UK [39])
was used to avoid differences in staining due to polymorphism in
the chicken CD8� molecule [3,22].

2.4. RNA isolation

Total RNA was isolated from trachea (5 mm part) and lung L1 and
L4 (1 mm × 5 mm part) using the RNeasy Mini Kit (Qiagen) as pre-
viously described [33]. All RNA samples were checked for quantity
using a spectrophotometer (Shimadzu) and quality using a 2100
Bioanalyzer (Agilent).

2.5. Real-time quantitative reverse transcription-PCR (qRT-PCR)

cDNA was generated from 500 ng RNA with reverse transcrip-
tion using iScript cDNA Synthesis Kit (Biorad Laboratories B.V.).

Real-time qRT-PCR was used for detection of GAPDH and H9
hemagglutinin (HA) products using the primers and program pre-
viously described [8,33]. Expression of GAPDH mRNA, which was
used as a reference gene for correction of viral RNA expression,
was not affected by H9N2 AIV (data not shown). Corrections for
variation in RNA preparation and sampling were performed as
previously described [10]. Results are expressed in terms of the
threshold cycle value (Ct) and given as corrected 40-Ct values.

To determine the statistical significance between groups and
time points of trachea and lung an ANOVA with a Tukey post-hoc
test was used. A P-value < 0.05 was considered significant.

2.6. Oligonucleotide microarray analysis

Microarray analysis was performed as previously described [32]
using the Gallus gallus Roslin/ARK CoRe Array Ready Oligo Set V1.0
(Operon Biotechnologies). All trachea and lung samples were co-
hybridised with respectively a trachea or lung reference sample.
These reference samples consisted of pooled RNA extracted from
tracheas or lungs of four chickens that were not included in the
inoculation experiment.

Microarray arrays were analysed as previously described [32].
Briefly, slide normalisation was performed with Printtip Loess on
mean data without background subtraction. Groups of replicates
were analysed using ANOVA. In a fixed effect analysis, sample,
array and dye effects were modelled. P-values were determined
by a permutation F2-test, in which residuals were shuffled 5000
times globally. Genes with P < 0.05 after family wise error cor-
rection were considered significantly differentially expressed and
were selected to be included for further analysis. Visualisation
and cluster-analysis were performed using GeneSpring 7.2 (Agilent
Technologies). Ensembl Gallus gallus (assembly: WASHUC2, May
2006, genebuild: Ensembl, August 2006, database version: 47.2e)
was used for gene names, description and gene ontology (GO) anno-
tations. For pathway analysis database for annotation, visualization
and integrated discovery (DAVID) 2008 was used.

2.7. Microarray data accession numbers

Primary data are available in the public domain through Array-
express at http://www.ebi.ac.uk/microarray-as/ae/under accession
numbers E-MTAB-136 for L1, E-MTAB-137 for L4 and E-MTAB-138
for upper trachea.

3. Results

3.1. Effect of adjuvants on protection against challenge with
avian influenza virus

To determine the effect of the adjuvants on viral RNA level after
challenge, viral RNA expression was measured using real-time qRT-
PCR (Fig. 2). IC + w/o and IC + Al(OH)3 birds had significantly lower
(P < 0.05) viral RNA expression in upper trachea, L1 and L4 com-
pared to NIC and IC birds. There were no significant differences in
the viral RNA levels in IC + CpG compared to NIC and IC birds at any
time point. The viral RNA levels were significantly higher (P < 0.05)
in all unprotected groups in lung L1, which contained the larger
airways and the bifurcations to the secondary bronchi, compared
to lung L4, which contained the paleopulmonic parabronchi. Based
on the reduced levels of viral RNA, we denominated the groups
immunized in the presence of w/o and Al(OH)3 “protected” against
challenge with AIV and the CpG birds “unprotected”.

3.2. Global gene expression profiles

In order to determine whether the differences in viral RNA
level after challenge were also reflected in gene expression pro-
files, microarray analysis was performed on upper trachea and
lung L1 and L4 at 1–4 d.p.c. By connecting the gene expression
level per gene over time, a global gene expression pattern was

http://www.ebi.ac.uk/microarray-as/ae/
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Fig. 3. (A) A lower amplitude of change in global gene expression patterns over time was found in upper trachea, lung L1 and L4 of birds with low viral RNA levels (IC + w/o
and IC + Al(OH)3) versus birds with high viral RNA levels (NIC, IC and IC + CpG) birds (n = 4, except for NIC 4 d.p.c. n = 2). Red indicates up regulation and green down regulation.
Gene expression rates of individual birds are compared to expression rates in a reference sample consisting of pooled lungs or pooled trachea of uninfected birds. (B) Venn
diagrams showing genes significantly differentially expressed at any day post challenge between IC birds and IC + CpG, IC + w/o and IC + Al(OH)3 birds in upper trachea, lung
L1 and L4 (n = 4). The numbers within the segments indicate the number of genes that were significantly differentially expressed between the IC group and an adjuvanted
group. Most overlap in gene expression was found between the groups IC + w/o and IC + Al(OH)3 with low viral RNA levels. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of the article.)

created reflecting the global host response. Based on the expres-
sion patterns, the different treatment groups fell into two groups:
one group with low amplitude of change and one group with high
amplitude of change (Fig. 3A). The gene expression patterns of the
NIC, IC and IC + CpG group showed that many genes were signifi-

cantly differentially expressed with high amplitude of change. The
IC + w/o and IC + Al(OH)3 group, and the non-challenged NINC group
had a gene expression pattern with low amplitude of change. In
the trachea more genes were expressed at a higher amplitude of
change compared to lung L1 and L4, but the global gene expression
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Fig. 4. Lower expression rates of immune related genes were associated with low viral RNA levels in IC + w/o and IC + Al(OH)3 groups. Heatmaps over time showing genes
significantly differentially expressed at any day post challenge between IC birds and IC + w/o and/or IC + Al(OH)3 birds in upper trachea, lung L1 and L4 (n = 4). Gene expression
rates in the heatmaps are the result of comparing expression in challenged birds to expression in non-challenged birds (NINC). Red indicates up regulation and green down
regulation. Genes were divided into functional groups based on GO annotations. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of the article.)
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Fig. 5. Brief and low expression of significantly differentially expressed pathways is associated with reduced immune activation and subsequent immunopathology. Pathways
showing genes significantly differentially expressed at any day post challenge between IC birds and both IC + w/o and IC + Al(OH)3 birds in lung L1 (n = 4). Gene expression
rates in the gene individual heatmaps are the result of comparing expression in IC + w/o, IC + Al(OH)3 and IC birds to expression in NINC birds. Red indicates up regulation
and green down regulation. Pathways analysis was performed using DAVID and based on KEGG. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of the article.)
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patterns of trachea, lung L1 and to a lesser extent in L4 showed a
similar trend. Thus, gene expression patterns can act as predictor of
viral RNA levels after challenge, which often correlate to protection.

We determined which genes were significantly differentially
expressed in IC + w/o, IC + Al(OH)3 and IC + CpG compared to IC birds
to determine adjuvant unique genes. Venn diagrams were made to
show the number of genes that were overlapping or unique to the
adjuvant (Fig. 3B). Most overlap in genes was seen between the
protected IC + w/o and IC + Al(OH)3 birds. Innate defense and inter-
feron related genes were differentially expressed in all adjuvanted
groups (in white), but are not correlated to viral RNA levels. The
number and the genes expressed differed between locations within
the respiratory tract, with lung L1 and L4 being most similar.

3.3. Immune related gene expression profiles

To determine immune related genes which correlate to the dif-
ference in viral RNA levels in unprotected versus protected birds,
gene expression profiles of IC and IC + CpG birds with high viral
load and of IC + w/o and IC + Al(OH)3 birds with low viral load
were compared to the non-immunised-non-challenged NINC birds.
An immune related gene category was created based on the GO
terms host-pathogen interaction, external stimulus and immune
response. Immune related genes that were significantly differen-
tially expressed in the groups with low viral RNA levels compared
to the IC group with high viral RNA level were selected, divided into
functional groups according to the GO annotations, and depicted in
heatmaps (Fig. 4). In general these immune related genes expressed
in birds with low viral RNA levels were also significantly differ-
entially expressed in birds with high viral RNA levels, but at a
much lower expression level in birds with low viral RNA levels.
Of these genes, 44 genes were significantly differentially expressed
throughout the respiratory tract, trachea, lung L1 and L4, in birds
with low compared to birds with high viral RNA levels (IC group;
Supplemented data Fig. S1) and related mainly to defense and
inflammatory responses and cell differentiation. Again these genes
were induced at a lower expression level in IC + w/o and IC + Al(OH)3
birds with a low viral RNA level in all three parts of the respiratory
tract, with two exceptions; CCL20 and TGFB2. In lung L4 differences
in gene expression level between birds with high or low viral RNA
levels were less profound than in L1 and trachea, which correlated
to the lower viral RNA expression in L4.

3.4. Pathway analysis of immune related genes

Next, we studied expression of genes within immune related
pathways that were significantly differentially expressed in birds
with low viral RNA levels compared to birds with high viral RNA lev-
els to obtain a general signature that relates to protection induced
after challenge.

Genes involved in leukocyte transendothelial migration were
only expressed on 1 d.p.c in birds with low viral RNA levels, but con-
tinually in birds with high viral RNA levels, suggesting that in birds
only a short period of cellular recruitment occurred. This expres-
sion pattern was also seen in the other pathways that were part
of the general signature of protection (Fig. 5). Based on differential
gene expression the signature of protection after challenge mainly
consisted of increased gene expression at 1 d.p.c in birds with low
viral RNA levels after which gene expression declined. In contrast,
in birds with high viral RNA levels stronger and prolonged gene
expression over time was found.

Genes differentially expressed in the complement and coagu-
lation cascade were mainly involved in the classical pathway and
followed the expression pattern of the general signature of protec-
tion, except for CD59.

In the cytokine-cytokine receptor interaction pathway several
genes of many subfamilies were induced. In contrast to the other
cytokine and chemokine gene subsets, growth factors were increas-
ingly down regulated in birds with high viral RNA levels, whereas in
birds with low viral RNA levels expression was less down regulated.

Subsequently we looked for pathways that were significantly
differentially expressed in either IC + w/o or IC + Al(OH)3 birds
compared to IC birds. Not one immune related pathway was
uniquely significantly induced within an adjuvant group in either
w/o or Al(OH)3 immunised birds. However, within the pathways
described above, unique genes were found within an adjuvant
group (Supplemented data Fig. S2). For w/o 41 unique genes were
found and for Al(OH)3 35 genes. Again expression rates of the
these genes were lower in IC + w/o or IC + Al(OH)3 birds compared
to IC birds. In conclusion, although IC + w/o or IC + Al(OH)3 birds
expressed some unique genes, the expression pattern of these
genes remained similar to the general gene expression signature
related to low viral RNA levels.

3.5. Effect of adjuvants on recruitment of leukocytes in the lung

Gene profiling indicated that after AIV challenge a low viral
RNA expression associated with a low amplitude of change in
gene expression. Next, we analysed cell influxes in the respira-
tory tract using immunocytochemical staining for viral NP, KUL-01+

(macrophages), CD4+ and CD8�+ cells.
In general, independent of the treatment, virus infected cells

were detected at 1 d.p.c. in the larger airways and in adjacent
parabronchi in L1. Thereafter more virus infected cells were found
in the adjacent parabronchi. In L4 less and smaller virus infected
areas were found than in L1, corresponding to the viral RNA lev-
els. In birds with low viral RNA levels (IC + w/o and IC + Al(OH)3),
less and smaller virus infected areas in L1 were found compared to
the birds with high viral RNA levels (NIC, IC and IC + CpG), but the
location of infected areas was similar. No differences were found
between these groups, the number and size of virus infected areas
were similar in IC and IC + CpG birds to those seen in NIC birds for
both L1 and L4. The staining of NP is a measure for virus replica-
tion, in contrast to the H9 viral RNA levels which represent the
presence of virus replicating and non-replicating. Based on the NP-
stained lung sections, the differences in the amount of replicating
virus correlated to the differences found in viral RNA expression
between the challenged groups and lung L1 and L4.

Influxes of KUL-01+, CD4+ and CD8�+ cells were seen in lung L1
and L4 in all birds from 1 d.p.c. Independent of the adjuvant, larger
influxes of KUL-01+ macrophages and CD4+ cells were seen in L1
than in L4 correlating to the number of virus infected cells. The cell
influxes co-localised with virus-infected areas. The size of the CD4+

and KUL-01+ cell influxes correlated to the number of virus infected
cells, resulting in fewer influxes in birds with low viral RNA levels
and least NP positive cells. Influxes of CD8�+ cells did not differ
between protected and unprotected birds. Influxes of CD8�+ cells
were less dense than KUL-01+ and CD4+ cell influxes (Fig. 6), but
also co-localised with virus infected areas.

The recruitment of leukocytes in the lung corresponded to the
gene profiles of birds with low and high viral RNA levels. Less virus
entry into the lung resulted in smaller influxes of macrophages and
CD4+ cells, linked to absence of immunopathology after challenge
therefore having fewer and lower gene expression in birds with low
viral RNA levels.

3.6. Effect of adjuvants on humoral responses

Since the cause of the lower viral load in the respiratory tract
might be prevention of viral entry by virus-specific antibodies,
H9-specific HI titres were measured in blood samples taken two
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Fig. 6. Less influx of CD4+ cells and KUL-01+ macrophages in lung of birds with low viral RNA levels after H9N2 challenge (IC + w/o). Cryosections of lung L1 of non-immunised-
non-challenged (NINC) birds, non-immunised-challenged (NIC) birds, immunised-challenged (IC + CpG) birds and immunised-challenged (IC + w/o) birds stained for viral NP
and KUL-01+ macrophages at 2 d.p.i. and for CD4+ and CD8�+ cells at 4 d.p.c. L indicates luminal side of a parabronchus. Bar is 100 �m.

weeks after immunisation prior to challenge (Fig. 7A). A signifi-
cant increase in HI titer was only found in IC + w/o and IC + Al(OH)3
birds. IC + Al(OH)3 birds had the highest HI titer of 15, which was
significantly higher compared to IC + w/o birds (titer of 5). How-
ever, this was to be expected because the maximum antibody titer
post-vaccination is generally delayed in w/o vaccinated birds when
compared to Al(OH)3 vaccinated birds. AIV NP-specific antibody
titers were also measured (Fig. 7B) and a significant increase was
found in IC + w/o and IC + Al(OH)3 birds which had low viral RNA
levels.

4. Discussion

Avian influenza virus (AIV) infection has severe consequences,
not only for the worldwide economy but also for human health. As
no vaccines have been found yet that protect against a broad range
of influenza virus strains much effort is invested in development of
new vaccines and improvement of vaccine efficacy.

In this study we set out to investigate predictors of reduced
immunopathology and subsequent protection after vaccination
and challenge with low pathogenic AIV H9N2 and studied the role
of the different immune potentiators w/o, Al(OH)3 and CpG. This
was investigated using microarrays, and gene expression profiles
were studied in more detail using qRT-PCR and immunocytochem-
ical analysis of the lung. Immunisation of day-old birds in with
H9N2 + w/o or H9N2 + Al(OH)3 provided protection based on low

viral RNA expression and high HI titers against homologues H9N2
challenge two weeks later, while immunisation with H9N2 + CpG
did not. Although detection of antibodies against the internal viral
NP protein in vaccinated chickens are not considered to correlate
to reduction of the virus load after challenge [23], in our study the
NP-titers were significantly increased in birds with low viral RNA
levels. In contrast, the presence of antibodies against the surface
proteins of AIV measured in HI tests is indicative for a reduction
of virus excretion. Two weeks after vaccination of birds with inac-
tivated H7N7 + w/o a HI titer of 16 would lead to protection after
homologues challenge [23]. In our study a HI titer of 16 was found
in birds with low viral RNA levels, moreover, a reduction in viral
RNA level of 100–1000-fold was found in these birds, suggest-
ing that the vaccination with w/o or Al(OH)3 had been successful.
When differences in gene expression patterns of birds with low
and high viral RNA levels were compared, no specific sets of genes
were associated with viral RNA levels and HI titer. Previous stud-
ies report subsets of genes defining disease pathology of influenza
virus infection in mammals [2,5,30], but no gene subsets have been
described relating to protection. Differences in the patterns of gene
expression were observed. In birds with low viral RNA levels gene
expression rates in lung and trachea were lower and diminished
after 1 d.p.c., while gene expression patterns and pathway analysis
showed stronger and prolonged gene expression in birds with high
viral RNA levels. These data suggest that short-term activation of
the immune system after challenge is beneficial for the host pre-
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Fig. 7. IC + w/o and IC + Al(OH)3 birds had a significant increase in HI titer (A) and AIV NP-specific antibody titer (B) in contrast to NIC, IC and IC + CpG birds, coinciding with
low viral RNA levels. Serum was collected at 14 days after immunisation prior to challenge of all birds (n = 16 per group). Data are expressed as mean 2log titers with standard
error of the mean (SEM). *Indicates a significant difference (P < 0.05).

venting immunopathology induced by overaction of the immune
system. Indeed immunocytochemistry showed smaller influxes of
KUL-01+ macrophages and CD4+ cells in the lung of protected birds
compared to unprotected birds which parallels the microarray data.
Thus, rather than finding certain genes or pathways that are pre-
dictors of reduced immunopathology and subsequent protection
after vaccination and challenge with AIV H9N2, we conclude that
the absence of immunopathology induced by overactivation of the
immune system is associated with protection.

That reduced immune activation is associated with protec-
tion against progressive infection has been reported previously for
other viral infections. For example, persistent immune activation
after HIV-1 infection has been shown to correlate with progressive
disease and immunopathology [12] and non-pathogenic SIV infec-
tion in sooty mangabeys was associated with a balanced immune
activation despite the presence of high levels of viral replication
[36]. Uncontrolled immune activation is also reported for high
pathogenic influenza virus. The broad tissue specificity and sys-
temic replication relates to the pathogenicity of H5N1 viruses in
animals. Virus induced cytokine dysregulation contributes to dis-
ease severity, in that high viral load results in intense inflammatory
responses and fatal outcome [2,7,18,31]. Thus, although activation
of the immune system is necessary in order to get an anti-viral
immune response, too much activation may lead to immunopathol-
ogy and progressive disease.

In this study a significant difference between the effects of the
three adjuvants was found based on viral RNA levels and HI titers.
We showed that significant reduction in viral RNA levels after
H9N2 challenge was only obtained after immunisation in the pres-
ence of immunopotentiators w/o and Al(OH)3. These adjuvants are
known to induce a humoral response [14,16] providing high virus-
specific antibody responses. Furthermore, w/o emulsions have
been demonstrated to enhance cellular immune responses [1,37].
Immunisation in the presence of CpG, which induces activation of
macrophages, NK cells and antigen specific CTL did not result in
protection [19]. In our study the differences between the adjuvants
is most likely explained by the difference in HI titer; adjuvants that
induce neutralizing antibodies prevent viral entry. In other stud-
ies addition of CpG to E. coli bacterin or recombinant plasmids DNA
vaccine encoding the VP2 gene of IBDV did provide protection from
mortality and induced increased antigen specific antibody titers
[10,24]. The difference found with our study may be due to the age
of the birds that were used in the different studies. We immunised
day-old birds which were challenged 14 days later, while the other
studies immunised birds from 7 or 10 days of age and challenged
birds at 21 or 30 days of age. Previous data showed that immu-
nization of 1-day-old broilers with BSA resulted in a much lower
and slower antibody production compared to immunization at 1
or 2 weeks of age [27]. This suggests that age of the vaccinated
birds may be an important factor in the choice of adjuvant, which
is highly relevant for the poultry industry.

In conclusion, in this study we show that a limited number
of differentially expressed genes correlates with reduced immune
activation and subsequently reduced immunopathology after chal-
lenge with AIV.
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