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Abstract A variety of integrity constraints have been
studied for data cleaning. While these constraints can detect
the presence of errors, they fall short of guiding us to correct
the errors. Indeed, data repairing based on these constraints
may not find certain fixes that are guaranteed correct, and
worse still, may even introduce new errors when attempting
to repair the data. We propose a method for finding certain
fixes, based on master data, a notion of certain regions, and
a class of editing rules. A certain region is a set of attributes
that are assured correct by the users. Given a certain region
and master data, editing rules tell us what attributes to fix and
how to update them. We show how the method can be used in
data monitoring and enrichment. We also develop techniques
for reasoning about editing rules, to decide whether they lead
to a unique fix and whether they are able to fix all the attri-
butes in a tuple, relative to master data and a certain region.
Furthermore, we present a framework and an algorithm to
find certain fixes, by interacting with the users to ensure that
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one of the certain regions is correct. We experimentally verify
the effectiveness and scalability of the algorithm.

Keywords Certain fix · Editing rule · Master data ·
Data cleaning · Data quality

1 Introduction

Real-life data is often dirty: 1–5% of business data con-
tains errors [36]. Dirty data costs us companies alone 600
billion dollars each year [15]. These highlight the need for
data cleaning, to catch and fix errors in the data. Indeed,
the market for data cleaning tools is growing at 17% annu-
ally, way above the 7% average forecast for the other it
sectors [24].

An important functionality expected from a data clean-
ing tool is data monitoring [9,37]: when a tuple t is created
(either entered manually or generated automatically by some
process), it is to find errors in t and correct the errors. That
is, we want to ensure that t is clean before it is used, to pre-
vent errors introduced by adding t . As noted by [37], it is far
less costly to correct t at the point of data entry than fixing it
afterward.

A variety of integrity constraints have been studied for
data cleaning, from traditional constraints (e.g., functional
and inclusion dependencies [6,13,40]) to their extensions
(e.g., conditional functional and inclusion dependencies
[8,19,26]). These constraints help us determine whether data
is dirty or not, i.e., whether errors are present in the data.
However, they fall short of telling us which attributes of t are
erroneous and moreover, how to correct the errors.

Example 1 Consider an input tuple t1 given in Fig. 1a.
It specifies a supplier in the uk in terms of name (fn, ln),
phone number (area code AC and phone phn) and type,
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(a)

(b)

Fig. 1 a Example input tuples t1, t2, t3 and t4, b example master relation Dm

address (street str, city, zip code) and items supplied.
Here phn is either home phone or mobile phone, indicated
by type (1 or 2, respectively).

It is known that in the uk, if AC is 020, city should be Ldn,
and when AC is 131, city must be Edi. These can be expressed
as conditional functional dependencies (cfds [19]). The cfds

find that tuple t1 is inconsistent: t1[AC] = 020 but t1[city] =
Edi. In other words, either t1[AC] or t1[city] is incorrect, or
both. However, they do not tell us which of the two attributes
is wrong and to what value it should be changed. ��

Several heuristic methods have been studied for repairing
data based on constraints [2,6,14,23,28,30]. For the reasons
mentioned above, however, these methods do not guaran-
tee to find correct fixes in data monitoring; worse still, they
may introduce new errors when trying to repair the data. For
instance, the tuple s1 of Fig. 1b indicates corrections to t1.
Nevertheless, the prior methods may opt to change t1[city]
to Ldn; this does not fix the erroneous t1[AC] and worse,
messes up the correct attribute t1[city].

This highlights the quest for effective methods to find cer-
tain fixes that are guaranteed correct [25,28]. The need for
this is especially evident in monitoring critical data, in which
a minor error may have disastrous consequences [28]. To this
end we need editing rules that tell us how to fix errors, i.e.,
which attributes are wrong and what values they should take.
In contrast, constraints only detect the presence of errors.

This is possible given the recent development of master
data management (MDM [31]). An enterprise nowadays typ-
ically maintains master data (a.k.a. reference data), a single
repository of high-quality data that provides various appli-
cations with a synchronized, consistent view of its core busi-
ness entities. MDM systems are being developed by IBM, SAP,
Microsoft and Oracle. In particular, master data have been
explored to provide a data entry solution in the Service Ori-
ented Architecture (SOA) at IBM [37], for data monitoring.

Example 2 A master relation Dm is shown in Fig. 1. Each
tuple in Dm specifies a person in the uk in terms of the
name (fn, ln), home phone (Hphn), mobile phone (Mphn),

address, date of birth (DOB) and gender. An example edit-
ing rule eR1 is:

◦ for an input tuple t , if there exists a master tuple s in
Dm with s[zip] = t[zip], then t should be updated by
t[AC, str, city] := s[AC, str, city], provided that t[zip] is
certain, i.e., it is assured correct by the users.

This rule makes corrections to attributes t[AC], t[str] and
t[city], by taking values from the master tuple s1.

Another editing rule eR2 is:

◦ if t[type] = 2 (indicating mobile phone) and if there is a
master tuple s with s[Mphn] = t[phn], then t[FN,LN]
:= s[FN,LN], as long as t[phn, type] is certain.

This standardizes t1[FN] by changing Bob to Robert.
As another example, consider tuple t2 in Fig. 1a, in which

t2[str, zip] are missing, and t2[AC] and t2[city] are inconsis-
tent. Consider an editing rule eR3:

◦ if t[type] = 1 (indicating home phone) and if there
exists a master tuple s in Dm such that s[AC,phn] =
t[AC,Hphn], then t[str, city, zip] := s[str, city, zip],
provided that t[type,AC,phn] is certain.

This helps us fix t2[city] and enrich t2[str, zip] by taking the
corresponding values from the master tuple s1. ��

Contributions. We propose a method for data monitoring,
by capitalizing on editing rules and master data.

(1) We introduce a class of editing rules defined in terms of
data patterns and updates (Sect. 2). Given an input tuple t
that matches a pattern, editing rules tell us what attributes of
t should be updated and what values from master data should
be assigned to them. In contrast to constraints, editing rules
have a dynamic semantics, and are relative to master data.
All the rules in Example 2 can be written as editing rules, but
they are not expressible as traditional constraints.
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(2) We identify and study fundamental problems for reason-
ing about editing rules (Sects. 3 and 4). The analyses are
relative to a region (Z , Tc), where Z is a set of attributes and
Tc is a pattern tableau. One problem is to decide whether a
setΣ of editing rules guarantees to find a unique (determin-
istic [25,28]) fix for input tuples t’s that match a pattern in
Tc. The other problems concern whether Σ is able to fix all
the attributes of such tuples. Intuitively, as long as t[Z ] is as-
sured correct, we want to ensure that editing rules can find a
certain fix for t . We show that these problems are conp-com-
plete, np-complete or #p-complete, but we identify special
cases that are in polynomial time (ptime).

(3) We present an interactive framework and an algorithm to
find certain fixes (Sect. 5). A set of certain regions are first
recommended to the users, derived from a set Σ of editing
rules and master data Dm available, by using an algorithm
of [20]. For an input tuple t , the users may only ensure that
t[X ] is correct, for a set X of attributes of t . If t[X ] matches
any of the certain regions, the rules guarantee to find t a cer-
tain fix. Otherwise we deduce what other attributes Y of t are
implied correct by t[X ] and the rules, and moreover, suggest a
minimal set S of attributes such that as long as t[S] is assured
correct, Y ∪ S covers a certain region and hence, a certain fix
to the entire t is warranted. The interactive process proceeds
until the users are guided to reach a certain region. We show
that it is np-complete to find a minimum S. Nonetheless,
we develop an efficient heuristic algorithm to find a set of
suggestions and introduce effective optimization techniques.
These yield a practical data entry solution to clean data.

(4) We experimentally verify the effectiveness and scalabil-
ity of the algorithm, using real-life hospital data and dblp
(Sect. 6). We find that the algorithm effectively provides sug-
gestions, such that most input tuples are fixed with two or
three rounds of interactions only. We also show that it scales
well with the size of master data, and moreover, that the
optimization techniques effectively reduce the latency dur-
ing interactions.

Related work. This work extends [20] by including (1) a
comprehensive analysis of the fundamental problems in con-
nection with certain fixes (Sect. 4); (2) an interactive frame-
work and algorithm for finding certain fixes (Sect. 5), and
(3) its experimental study (Sect. 6). Neither (2) nor (3) was
studied in [20]. All the proofs and some of the results of (1)
were not presented in [20]. Due to the space constraint we
opt to cover these new results by leaving out the deduction
algorithms for certain regions and their experimental study
of [20].

A variety of constraints have been studied for data clean-
ing, such as fds [40], fds and inclusion dependencies
(inds) [6], cfds [14,19], conditional inclusion dependen-
cies (cinds) [8], matching dependencies (mds) [18], and

extensions of cfds and cinds [7,11] (see e.g., [17] for a
survey). (a) These constraints help us determine whether data
are dirty or not, but they do not tell us which attributes are
erroneous or how to fix the errors, as illustrated earlier. (b)
The static analyses of those constraints have been focusing on
the satisfiability and implication problems [7,8,11,18,19],
along the same lines as traditional fds and inds [1]. Editing
rules differ from those constraints in the following: (a) they
are defined in terms of updates, and (b) their reasoning is rel-
ative to master data and is based on its dynamic semantics, a
departure from our familiar terrain of dependency analysis.
The rules aim to fix errors, rather than to detect the presence
of errors only.

Editing rules are also quite different from edits studied
for census data repairing [23,25,28]. Edits (a) are conditions
defined on single records of a single relation and (b) are not
capable of locating and fixing errors.

Closer to editing rules are mds [18]. In contrast to editing
rules (a) mds are for record matching (see e.g., [16] for a
survey), not for data repairing. (b) They only specify what
attributes should be identified, but do not tell us how to update
them. (c) mds neither carry data patterns, nor consider master
data; and hence, their analysis is far less challenging. Indeed,
the static analyses are in ptime for mds [18], but in contrast,
the analyses are intractable for editing rules.

There has also been work on rules for active databases (see
[39] for a survey). Those rules are far more general than edit-
ing rules, specifying events, conditions, and actions. Indeed,
even the termination problem for those rules is undecidable,
as opposed to the conp upper bounds for editing rules. Results
on those rules do not carry over to editing rules.

Prior work on constraint-based data cleaning has mostly
focused on two topics introduced in [2]: repairing is to
find another consistent database that minimally differs from
the original database [2,6,8,10,13,19,23,25,28,30,34,41];
and consistent query answering is to find an answer to a
given query in every possible repair of the original data-
base (e.g., [2,40]). Although the need for finding certain
fixes has long been recognized [25,28], prior methods do
not guarantee that fixes are correct, i.e., new errors may be
introduced while fixing existing ones in the repairing process.
Moreover, master data is not considered in those methods.
We shall evaluate the effectiveness of our approach compared
with the repairing algorithm of [14] (Sect. 6).

This work studies data monitoring, which is advo-
cated in [9,10,22,37], as opposed to prior data repairing
methods [2,6,8,13,19,23,25,28,30,40] that aim to generate
another database as a candidate repair of the original data.
As noted by [37], it is far less costly to correct t at the point
of entry than fixing it afterward. A method for matching
input tuples with master data was presented in [9], without
repairing the tuples.
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Another line of work on data cleaning has focused on
record matching [5,18,23,27], to identify records that refer to
the same real-world object (see [16] for a survey). This work
involves record matching between input tuples and master
tuples. There has also been a host of work on more general
data cleaning and ETL tools (see [4] for a survey), which are
essentially orthogonal, but complementary, to data repairing
and this work.

There have also been efforts to interleave merging and
matching operations [5,21,27,32]: [27] clusters data rather
than repair data, and [5,27] only merge/fuse tuples when
matches are found. Those merge operations are far more
restrictive than value modifications considered in this work
and data repairing. While [21] conducts both repairing and
matching using cfds and mds, these operations cannot assure
the correctness of the repaired data. Indeed, the prior work
neither guarantees certain fixes, nor considers master data.

Our data monitoring framework leverages user feedback,
similar to [10,34,41]. Potter’s Wheel [34] supports interac-
tive data transformations, based on iterative user feedback
on example data. USHER [10] cleans data by asking users
online about erroneous values, identified by a probabilistic
method. GDR [41] develops a cfd-based repairing approach
by soliciting user feedback on the updates that are likely
to improve data quality. Our approach asks users to assure
the correctness of a small number of attributes for an input
tuple, to find a certain fix. While all these methods interact
with users, they differ from each other in what feedback is
requested and how the feedback is used.

Editing rules can be extracted from business rules. They
can also be automatically discovered from sample data along
the same lines as mining constraints for data cleaning, e.g.,
[12,26] for cfds and [38] for mds.

Organization. Section 2 defines editing rules. Section 3
presents certain fixes. Section 4 studies fundamental prob-
lems in connection with certain fixes. An interactive
framework for data monitoring is introduced in Sect. 5. The
experimental study is presented in Sect. 6, followed by con-
clusions in Sect. 7.

2 Editing rules

We study editing rules for data monitoring. Given a master
relation Dm and an input tuple t , we want to fix errors in t
using editing rules and data values in Dm .

We specify input tuples t with a relation schema R and
use A ∈ R to denote that A is an attribute of R. The master
relation Dm is an instance of a relation schema Rm , often
distinct from R. As remarked earlier, Dm can be assumed
consistent and complete [31].

Editing rules. An editing rule (eR) ϕ defined on (R, Rm) is
a pair ((X, Xm) → (B, Bm), tp[X p]), where

◦ X and Xm are two lists of distinct attributes in schemas
R and Rm , respectively, with the same length, i.e., |X | =
|Xm |;

◦ B is an attribute such that B ∈ R \ X , and attribute Bm ∈
Rm ; and

◦ tp is a pattern tuple over a set of distinct attributes X p in
R such that for each A ∈ X p, tp[A] is one of _, a or ā.
Here a is a constant drawn from the domain of A, and _
is an unnamed variable.

Intuitively, a and ā specify Boolean conditions x = a and
x �= a for a value x , respectively, and _ is a wildcard that
imposes no conditions. More specifically, we say that a tuple
t of R matches pattern tuple tp, denoted by t[X p] ≈ tp[X p],
if for each attribute A ∈ X p (1) t[A] = a if tp[A] is a (2)
t[A] �= a if tp[A] is ā, and (3) t[A] is any value from the
domain of A if tp[A] is _.

Example 3 Consider the supplier schema R and master rela-
tion schema Rm shown in Fig. 1. The rules eR1, eR2 and eR3
described in Example 2(b) can be expressed as the following
editing rules ϕ1– ϕ4 defined on (R, Rm).

ϕ1: ((zip, zip) → (B1, B1), tp1 = ());
ϕ2: ((phn,Mphn) → (B2, B2), tp2[type] = (2));
ϕ3: (([AC,phn], [AC,Hphn]) → (B3, B3), tp3[type,AC]

= (1, 0800));
ϕ4: ((AC,AC) → (city, city), tp4[AC] = (0800)).

Here eR1 is expressed as three editing rules of the form ϕ1,
for B1 ranging over {AC, str, city}. In ϕ1, both X and Xm

consist of zip, and B and Bm are B1. Its pattern tuple tp1 poses
no constraints. Similarly, eR2 is expressed as two editing
rules of the form ϕ2, in which B2 is either fn or ln. The
pattern tuple tp2[type] = (2), requiring that phn is mobile
phone. The rule eR3 is written as ϕ3 for B3 ranging over
{str, city, zip}, where tp3[type,AC] requires that type = 1
(home phone) yet AC �= 0800 (toll free, non-geographic).
The eR ϕ4 states that for a tuple t , if t[AC] �= 0800 and
t[AC] is correct, we can update t[city] using the master data.

��

Semantics. We next give the semantics of editing rules.
We say that an eR ϕ and a master tuple tm ∈ Dm apply to

an R tuple t , which results in a tuple t ′, denoted by t →(ϕ,tm)

t ′, if (1) t[X p] ≈ tp[X p] (2) t[X ] = tm[Xm], and (3) t ′ is
obtained by the update t[B] := tm[Bm]. We shall simply say
that (ϕ, tm) apply to t .

That is, if t matches tp and if t[X ] agrees with tm[Xm],
then we assign tm[Bm] to t[B]. Intuitively, if t[X, X p] is
assured correct (referred to as validated), we can safely en-
rich t[B] with master data tm[Bm] as long as (1) t[X ] and
tm[Xm] are identified, and (2) t[X p] matches the pattern in ϕ.
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This yields a new tuple t ′ such that t ′[B] = tm[Bm] and
t ′[R \ {B}] = t[R \ {B}].

We write t →(ϕ,tm ) t if ϕ and tm do not apply to t , i.e., t is
unchanged by ϕ if either t[X p] �≈ tp[X p] or t[X ] �= tm[Xm].

Example 4 As shown in Example 2, we can correct t1 by
applying the eR ϕ1 and master tuple s1 to t1. As a result,
t1[AC, str] is changed from (020, 501 Elm St.) to (131, 51
Elm Row). Furthermore, we can standardize t1[fn] by apply-
ing ϕ2 and s1 to t1, such that t1[fn] is changed from Bob to
Robert.

The eR ϕ3 and master tuple s1 can be applied to t2, to
correct t2[city] and enrich t2[str, zip]. ��

Notations. We shall use the following notations.

(1) Given an eR ϕ = ((X, Xm) → (B, Bm), tp[X p]), we
denote (a) lhs(ϕ) = X, rhs(ϕ) = B; (b) lhsm(ϕ) =
Xm, rhsm(ϕ) = Bm ; and (c) lhsp(ϕ) = X p.

(2) Given a setΣ of eRs, we denote ∪ϕ∈Σlhs(ϕ) by lhs(Σ);
similarly for rhs(Σ), lhsm(Σ) and rhsm(Σ). Here abusing
the notions for sets, we use X ∪Y, X ∩Y and X \Y to denote
the union, intersection and difference of two lists X and Y of
attributes, respectively.

(3) An eR ϕ = ((X, Xm) → (B, Bm), tp[X p]) is said to be in
the normal form if tp[X p] does not contain wildcard _. Every
eR ϕ can be normalized to an eR ϕ′ by removing all such attri-
butes A from tp[X p] that tp[A] = _. From the semantics of
eRs one can readily verify that ϕ and ϕ′ are equivalent: for
any input tuple t , master tuple tm , and tuple t ′, t →(ϕ,tm) t

′ iff
t →(ϕ′,tm ) t

′.
Remarks. (1) As remarked earlier, editing rules are quite
different from cfds [19]. A cfdψ = (X → Y, tp) is defined
on a single relation R, where X → Y is a standard fd and tp

is a pattern tuple on X and Y . It requires that for any tuples
t1, t2 of R, if t1 and t2 match tp, then X → Y is enforced on
t1 and t2. When tp[Y ] consists of constants only, it is referred
to as a constant cfd. It has a static semantics: t1 and t2 either
satisfy or violate ψ , but they are not updated. As shown in
Example 1, when t1 and t2 violate ϕ, one cannot tell which of
t1[X ], t1[Y ] or t2[Y ] is erroneous, and hence, cannot simply
apply ϕ to find a certain fix. The problem remains even when
ϕ is a constant cfd, which can be violated by a single tuple.
In contrast, an eR ϕ specifies an action: applying ϕ and a
master tuple tm to t yields an updated t ′. It is defined in terms
of master data. As will be seen shortly, this yields a certain
fix when ϕ and tm are applied to a region that is validated.

(2) mds of [18] also have a dynamic semantics. An md φ is
of the form ((X, X ′), (Y,Y ′),OP), where X,Y and X ′,Y ′
are lists of attributes in schemas R, R′, respectively, and OP
is a list of similarity operators. For an R1 tuple t1 and an
R2 tuple t2, φ states that if t1[X ] and t2[X ′] match w.r.t. the
operators in OP, then t1[Y ] and t2[Y ′] are identified as the

Table 1 Summary of notations of Sect. 2

R Input relation schema
Rm Master relation schema

Σ A set of eRs on (R, Rm)

Dm Master data on Rm

ā Boolean condition x �= a for a value x
t ≈ tc An input tuple t matches a pattern tuple tc

t →(ϕ,tm ) t ′ Applying eR ϕ and a master tuple tm to an

input tuple t , yielding t ′

same object. As remarked in Sect. 1, eRs differ from mds in
several aspects.

Neither cfds nor mds are expressible as eRs, and vice
versa, because of their different semantics.

(3) To simplify the discussion we consider a single master
relation Dm . Nonetheless, the results of this work readily
carry over to multiple master relations. Indeed, given master
schemas Rm1 , . . . , Rmk , there exists a single master schema
Rm such that each instance Dm of Rm characterizes an
instance of (Dm1, . . . , Dmk ) of those schemas. Here Rm has
a special attribute id such that σid=i(Rm) yields Dmi for
i ∈ [1, k].

We summarize notations of this section in Table 1.

3 Certain fixes and certain regions

Consider a master relation Dm of schema Rm , and a set Σ
of editing rules defined on (R, Rm). Given a tuple t of R,
we want to find a “certain fix” t ′ of t by using Σ and Dm .
That is (1) no matter how eRs of Σ and master tuples in Dm

are applied, Σ and Dm yield a unique t ′ by updating t ; and
(2) all the attributes of t ′ are ensured correct (validated).

To formalize the notion of certain fixes, we first introduce
a notion of regions. When applying an eR ϕ and a master
tuple tm to t , we update t with values in tm . To ensure that
the changes make sense, some attributes of t have to be val-
idated. In addition, we are not able to update t if either it
does not match the pattern tuple of ϕ or it cannot find a mas-
ter tuple tm in Dm that carries the information needed for
correcting t .

Example 5 Consider the master data Dm of Fig. 1b and a
set Σ0 consisting of ϕ1, ϕ2, ϕ3 and ϕ4 of Example 3. Both
(ϕ1, s1) and (ϕ3, s2) apply to tuple t3 of Fig. 1a. However,
they suggest to update t3[city] with distinct values Edi and
Lnd. The conflict arises because t3[AC] and t3[zip] are incon-
sistent. Hence to fix t3, we need to assure that one of t3[AC]
and t3[zip] is correct.

Now consider tuple t4 of Fig. 1a. Since no eRs in Σ0 and
master tuples in Dm can be applied to t4, we cannot tell
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whether t4 is correct. This is because Σ0 and Dm do not
cover all the cases of input tuples. ��

This motivates us to introduce the following notion.

Regions. A region is a pair (Z , Tc), where Z is a list of dis-
tinct attributes in R, Tc is a pattern tableau consisting of a set
of pattern tuples with attributes in Z , and each pattern tuple
is defined as its counterparts in eRs.

We say that a tuple t is marked by (Z , Tc) if there exists
tc ∈ Tc such that t ≈ tc.

Intuitively, a region (Z , Tc) specifies what input tuples can
be corrected with certain fixes by a set Σ of eRs and master
data. As will be seen shortly (1) it tells us that to correctly
fix errors in a tuple t, t[Z ] should be assured correct, and
moreover, t is marked such that there exist an eR and a mas-
ter tuple that can be applied to t . (2) There exist no two eRs

in Σ such that both of them can be applied to t , but they
lead to inconsistent updates. In other words, Tc imposes con-
straints stronger than those specified by pattern tuples in eRs,
to prevent the abnormal cases illustrated in Example 5.

Consider an eR ϕ = ((X, Xm) → (B, Bm), tp[X p]), a
master tuple tm and a region (Z , Tc). When we applyϕ and tm
to a tuple t marked by (Z , Tc), we require that X ⊆ Z , X p ⊆
Z , B �∈ Z . That is, it is justified to apply ϕ and tm to t for
those t marked by (Z , Tc) if t[X, X p] is correct. As t[Z ]
is validated, we make t[B] “protected”, i.e., unchanged, by
enforcing B �∈ Z . We denote this as t →((Z ,Tc),ϕ,tm ) t ′, where
t →(ϕ,tm ) t ′.

Example 6 Referring to Example 5, a region defined on
R is (ZAH, TAH) = ((AC,phn, type), {(0800, _, 1)}). Note
that tuple t3 of Fig. 1a is marked by (ZAH, TAH). Hence,
if t3[AC,phn, type] is validated, then (ϕ3, s2) can be applied
to t3, yielding t3 →((ZAH,TAH),ϕ3,s2) t ′3, where t ′3[str, city, zip]
:= s2[str, city, zip], and t ′3 and t3 agree on all the other attri-
butes of R. ��

Note that if t →((Z ,Tc),ϕ,tm ) t ′, then t ′[B] is validated as a
logical consequence of the application ofϕ and tm , since t[Z ]
is validated. That is, t ′[B] is assured correct when applying
rules to t ′ in the process for fixing t (see below). Hence we
can extend (Z , Tc) by including B in Z and by expanding
each tc in Tc such that tc[B] = _. We denote the extended
region as ext(Z , Tc, ϕ).

Example 7 Consider the region (ZAH, TAH) in Example 6.
Then ext(ZAH, TAH, ϕ3) is (Z ′, T ′), where Z ′ consists of
attributes AC,phn, type, str, city and zip, and T ′ has a sin-
gle pattern tuple t ′c = (0800, _, 1, _, _, _). ��

Fixes. We say that a tuple t ′ is a fix of t by (Σ, Dm) w.r.t.
(Z , Tc), denoted by t →∗

((Z ,Tc),Σ,Dm )
t ′, if there exists a finite

sequence t0 = t, t1, . . . , tk = t ′ of tuples of R such that for
each i ∈ [1, k], there exist ϕi ∈ Σ and tmi ∈ Dm such that

(1) ti−1 →((Zi−1,Ti−1),ϕi ,tmi )
ti , where (Z0, T0) = (Z , Tc)

and (Zi , Ti ) = ext(Zi−1, Ti−1, ϕi ); and
(2) for all ϕ ∈ Σ and tm ∈ Dm, t ′ →((Zk ,Tk ),ϕ,tm ) t ′.

These conditions ensure that (1) each step of the process
is justified; and (2) t ′ is a fixpoint and cannot be further
updated. Note that ti−1 →((Zi−1,Ti−1),ϕi ,tmi )

ti assures that
ti [Z ] = t0[Z ] = t[Z ], i.e., t[Z ] is assumed correct and
hence, remains unchanged in the process.

Unique fixes. We say that an R tuple t has a unique fix by
(Σ, Dm) w.r.t. (Z , Tc) if there exists a unique t ′ such that
t →∗

((Z ,Tc),Σ,Dm )
t ′.

When there exists a unique fix t ′ of t with a finite sequence
t0 = t, t1, . . . , tk = t ′ of tuples of R, we refer to Zk as the
set of attributes of t covered by (Z , Tc,Σ, Dm).

Certain fixes. We say that an R tuple t has a certain fix by
(Σ, Dm) w.r.t. (Z , Tc) if (1) t has a unique fix and (2) the
set of attributes covered by (Z , Tc,Σ, Dm) includes all the
attributes in R.

A notion of deterministic fixes was addressed in [25,28].
It refers to unique fixes, i.e., (1) above, without requiring (2).
Further, it is not defined relative to (Z , Tc).

Intuitively, a unique fix t ′ becomes a certain fix when the
set of attributes covered by (Z , Tc,Σ, Dm) includes all the
attributes in R. We can find a certain fix for a tuple t of R
marked by a region (Z , Tc) if (a) t[Z ] is assured correct (b)
there is a unique fix t ′; and (c) all the remaining values of
t ′[R \ Z ] are correctly fixed.

Example 8 By the set Σ0 of eRs of Example 5 and the mas-
ter data Dm of Fig. 1b, tuple t3 of Fig. 1a has a unique fix
w.r.t. (ZAH, TAH), namely, t ′3 given in Example 6. However,
as observed in Example 5, if we extend the region by adding
zip, denoted by (ZAHZ, TAH), then t3 no longer has a unique
fix by (Σ0, Dm) w.r.t. (ZAHZ, TAH).

As another example, consider a region (Zzm, Tzm), where
Zzm = (zip,phn, type), and Tzm has a single tuple (_, _, 2).
As shown in Example 4, tuple t1 of Fig. 1a has a unique
fix by Σ0 and Dm w.r.t. (Zzm, Tzm), by correctly applying
(ϕ1, s1) and (ϕ2, s2). It is not a certain fix, since the set of
attributes covered by (Zzm, Tzm,Σ0, Dm) does not include
item. Indeed, the master data Dm of Fig. 1b has no infor-
mation about item, and hence, does not help here. To find a
certain fix, one has to extend Zzm by adding item. In other
words, its correctness has to be assured by the users. ��

Certain regions. We next introduce the last notion of this
section. We say that a region (Z , Tc) is a certain region for
(Σ, Dm) if for all tuples t of R that are marked by (Z , Tc), t
has a certain fix by (Σ, Dm) w.r.t. (Z , Tc).

We are naturally interested in certain regions since they
warrant absolute corrections, which are assured either by the
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Table 2 Summary of notations
of Sect. 3 (Z , Tc) A region with a list Z of distinct attributes and a pattern tableau Tc

t →((Z ,Tc),ϕ,tm ) t ′ Applying eR ϕ and master tuple tm to input tuple t w.r.t. (Z , Tc), yielding t ′

t →∗
((Z ,Tc),Σ,Dm )

t ′ Tuple t ′ is a fix of input tuple t by (Σ, Dm ) w.r.t. (Z , Tc)

Attributes covered All those attributes in t ′ that are validated by t →∗
((Z ,Tc),Σ,Dm )

t ′

users (the attributes Z ) or by master data (the remaining attri-
butes R\Z ).

Example 9 As shown in Example 8, (Zzm, Tzm) is not a cer-
tain region. One can verify that a certain region for (Σ0, Dm)

is (Zzmi, Tzmi), where Zzmi extends Zzm by including item,
and Tzmi consists of patterns of the form (z, p, 2, _) for z, p
ranging over s[zip,Mphn] for all master tuples s in Dm . For
those tuples marked by the region, certain fixes are warranted.

Another certain region for (Σ0, Dm) is (ZL, TL), where
ZL = (fn, ln,AC,phn, type, item), TL consists of pat-
tern tuples of the form ( f, l, a, h, 1, _), and ( f, l, a, h) is
s[fn, ln,AC,Hphn] for all s ∈ Dm . ��

We summarize notations in Table 2.

4 Static analyses of fundamental problems

Given a set Σ of eRs and a master relation Dm , we want
to make sure that they can correctly fix all errors in those
input tuples marked by a region (Z , Tc). This motivates us
to study fundamental problems associated with certain fixes
by (Σ, Dm) and (Z , Tc), and establish their complexity and
approximation bounds.

4.1 Reasoning about editing rules

We start with the problems for reasoning about editing rules
when regions are provided. Given (Σ, Dm) and a region
(Z , Tc), we want to know (a) whether (Σ, Dm) and (Z , Tc)

have any conflicts when put together (referred to as the con-
sistency problem), and (b) whether (Z , Tc) makes a certain
region for (Σ, Dm) (known as the coverage problem). We
show that these problems are intractable, but identify ptime
special cases.

The consistency problem. We say that (Σ, Dm) is consis-
tent relative to (Z , Tc) if for each input R tuple t marked
by (Z , Tc), t has a unique fix by (Σ, Dm) w.r.t. (Z , Tc).
Intuitively, this says that Σ and Dm do not have conflicts
w.r.t.(Z , Tc), as illustrated below.

Example 10 There exist (Σ, Dm) and (Z , Tc) that are incon-
sistent. Indeed, (Σ0, Dm) described in Example 5 is not
consistent relative to region (ZAHZ, TAHZ) of Example 8,
since eRs in Σ0 suggest distinct values to update t3[city] for

tuple t3 of Fig. 1a, i.e., conflicts arise, as shown in Exam-
ple 5. Hence t3 does not have a unique fix by (Σ0, Dm)

w.r.t. (ZAHZ, TAHZ). ��
The consistency problem for editing rules is to determine,

given any (Z , Tc) and (Σ, Dm), whether (Σ, Dm) is consis-
tent relative to (Z , Tc).

The problem is obviously important, but is nontrivial.
It is known that for constraints defined with pattern tuples,
the presence of attributes with a finite domain makes their
static analysis hard [8,19]. For instance, when it comes to
the problem for deciding whether a set of cfds can be sat-
isfied by a nonempty database, the problem is np-complete
if attributes in the cfds may have a finite domain, but it be-
comes tractable when all the attributes in the cfds have an
infinite domain [19]. In contrast, below we show that the con-
sistency problem for editing rules is intractable even when
all the attributes involved have an infinite domain.

Theorem 1 The consistency problem for editing rules is
conp-complete, even when data and master relations have
infinite-domain attributes only.

Proof We first show that the complement of the problem is
in np. We then show the problem is conp-hard, even when
only infinite-domain attributes are involved.

(I) We show that the problem is in conp by providing an np
algorithm for its complement. Given (Σ, Dm) and (Z , Tc),
the algorithm returns ‘yes’ iff (Σ, Dm) is not consistent rela-
tive to (Z , Tc). Let dom be the set of all constants appearing
in Dm orΣ , and an additional distinct constant that is not in
dom (if there exists one).

The np algorithm works as follows:

(a) guess a pattern tuple tc in Tc, and an R tuple t such that
for each R attribute A, t[A] is a constant in dom;
(b) if t ≈ tc, then check whether (Σ, Dm) is consistent rela-
tive to region (Z , {t[Z ]}); and
(c) if the answer is ‘no’, the algorithm returns ‘yes’. Other-
wise reject the guess and repeat the process.

Obviously the algorithm returns ‘yes’ iff there exists a
tuple t marked by (Z , Tc) and it serves as a witness of the
inconsistency of (Σ, Dm). The algorithm returns “no” when
there exists no such a witness tuple.

As will be shown by Theorem 4 below, step (b) is in ptime.
From this it follows that the algorithm is in np. Hence the
consistency problem is in conp.
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(II) We next show that the problem is conp-hard, by reduc-
tion from the 3SAT problem to its complement. It is known
that the 3SAT problem is np-complete (cf. [33]).

An instance φ of 3SAT is of the form C1 ∧· · ·∧Cn , where
the variables in φ are x1, . . . , xm , each clause C j ( j ∈ [1, n])
is of the form y j1 ∨ y j2 ∨ y j3 , and moreover, for i ∈ [1, 3], y ji
is either x p ji or x p ji for p ji ∈ [1,m]. Here we use x p ji to
denote the occurrence of a variable in the literal i of clause
C j . The 3SAT problem is to determine whether φ is satisfi-
able.

Given a 3SAT instance φ, we construct an instance of the
consistency problem consisting of: (a) two schemas R and
Rm (b) a master instance Dm of Rm (c) a pattern tableau Tc

consisting of a single pattern tuple tc for a list Z of distinct
attributes of R, and (d) a setΣ of eRs. We show that (Σ, Dm)

is consistent relative to region (Z , Tc) iff the instance φ is not
satisfiable.

(1) We first construct the consistency instance.

(a) The two schemas are R(A, X1, . . . , Xm,C1, . . . ,Cn,

V, B) and Rm(Y0,Y1, A, V, B), respectively, where all attri-
butes have an (infinite) integer domain.

Intuitively, for each R tuple t, t[X1 . . . Xm], t[C1 . . .Cn]
and t[V ] specify a truth assignment ξ for the variables
x1, . . . , xm of φ, the truth values of the clauses C1, . . . ,Cn ,
and the truth value of φ under ξ , respectively. Attributes A
and B will be used to match patterns of eRs in Σ , and to
demonstrate conflicts, respectively.

(b) The master relation Dm consists of three master tuples
tm1 , tm2 and tm3 , given as follows.

Y0 Y1 A V B
tm1 : 0 1 1 1 1
tm2 : 0 1 1 1 0
tm3 : 0 1 1 0 1

As will seen shortly (i) data values 0 and 1 correspond to
Boolean truth values true and false, respectively; (ii) for R
tuples t such that t[V ] = 1, there are two distinct fixes since
tm1 [V ] = tm2 [V ] = 1, but tm1 [B] �= tm2 [V ]; and (iii) for R
tuples t such that t[V ] = 0, there is only one possible fix.

(c) The list of attributes Z = (A, X1, . . . , Xm) and the pat-
tern tuple tc[Z ] = (1, _, . . . , _).

(d) The set Σ is the union of n + 2 sets of eRs: Σ1 ∪ . . . ∪
Σn ∪ΣC,V ∪ΣV,B .

◦ For each j ∈ [1, n],Σ j defines eight eRs for clause
C j of φ. Each eR ϕ( j,〈b1b2b3〉) is of the form ((A, A) →
(C j , Y j ), t(p j ,〈b1b2b3〉)[X p j1 X p j2 X p j3 ] = (b1, b2, b3)), where (1)
for each i ∈ [1, 3], bi ∈ {0, 1}, and (2) Y j = Y0 if
(b1, b2, b3) makes C j false by letting ξ(x p ji ) = bi , and
Y j = Y1 otherwise.
Intuitively, we enumerate all eight distinct truth assign-
ments for each clause C j ( j ∈ [1, n]), and construct an

eR to assign the corresponding truth value of C j for each
truth assignment.

◦ The setΣC,V = {ϕ0, . . . , ϕn} consists of n +1 eRs, where
(1) for j ∈ [1, n], ϕ j = ((A, A) → (V,Y0), tp j [C j ] =
(0)), and (2) ϕ0 = ((A, A) → (V,Y1), tp0 [C1 . . .Cn] =
(1, . . . , 1)).
Intuitively, these eRs define the relationships between
the truth values of φ and the clauses C1, . . . ,Cn . If
there exists a clause C j with truth value 0, then the truth
value of φ is 0; and if all clauses have a truth value 1, then
the truth value of φ is 1.

◦ The set ΣV,B consists of a single eR ϕV,B = ((V, V ) →
(B, B), ()), i.e., with an empty pattern tuple. Intuitively,
this eR says that for an R tuple t , (1) if t[V ] = 0, there
exists a unique fix t ′ of t such that t ′[B] = 1; and (2) if
t[V ] = 1, there exist two fixes t ′1 and t ′2 of t such that
t ′1[B] = 1 and t ′1[B] = 0.

Observe that Dm has a fixed size andΣ consists of 9n +2
eRs. Thus the reduction above is in ptime.

(2) We next show that (Σ, Dm) is consistent relative to
(Z , Tc) iff the 3SAT instance φ is not satisfiable.

Assume first that (Σ, Dm) is consistent relative to (Z , Tc).
We prove that φ is not satisfiable by contradiction. If φ
is satisfiable, then there exists a satisfying truth assign-
ment ξ of the variables x1, . . . , xm . Let t be an R tu-
ple such that t[A, X1, . . . , Xm] = (1, ξ(x1), . . . , ξ(xm)) and
t[C1, . . . ,Cn, V, B] be any (partial) tuple.

Observe the following. (a) By applying the eRs in
Σ1 ∪ . . . ∪ Σn and the master tuple tm1 (or one of
tm2 and tm3 ) in Dm to tuple t , we have a fix t1 of
t such that t1[A, X1, . . . , Xm] = t[A, X1, . . . , Xm] and
t1[C1, . . . ,Cn] = (1, . . . , 1). (b) By applying the eR ϕn+1 in
ΣC,V and the master tuple tm1 (or tm2 ) in Dm to tuple t1, we
have a fix t2 of t1 such that t2[A, X1, . . . , Xm,C1, . . . ,Cn] =
t1[A, X1, . . . , Xm,C1, . . . ,Cn] and t2[V ] = 1. (c) Finally,
by applying the single eR in ΣV,B and the master tuple
tm1 in Dm to tuple t2, we have a fix t3,1 of t2 such that
t3,1[A, X1, . . . , Xm,C1, . . . ,Cn, V ] = t2[A, X1, . . . , Xm,

C1, . . . ,Cn, V ] and t3,1[B] = 1. In contrast, by applying
the eR in ΣV,B and tm2 to t2, we have another distinct fix
t3,2 of t2 such that t3,2[A, X1, . . . , Xm,C1, . . . ,Cn, V ] =
t2[A, X1, . . . , Xm,C1, . . .Cn, V ] and t3,2[B] = 0. That is,
(Σ, Dm) is not consistent relative to (Z , Tc), which contra-
dicts our assumption.

Conversely, assume that φ is not satisfiable. We show that
(Σ, Dm) is consistent relative to (Z , Tc). Let t be an R tuple
such that t[A, X1, . . . , Xm] is assured correct. It suffices to
consider the following two cases.

Case (a). There exists i ∈ [1,m] such that t[Xi ] �∈ {0, 1}.
Then there must exist Σ j (1 ≤ j ≤ n) such that no eRs in
Σ j and master tuples in Dm can be applied to the tuple t .
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In particular, the eR ϕ0 inΣC,V may not be applied to t since
the region (Z , Tc) cannot be expanded to include all attri-
butes C1, . . . ,Cn . Hence it is easy to verify that (Σ, Dm) is
consistent relative to (Z , Tc).

Case (b). For each i ∈ [1,m], t[Xi ] ∈ {0, 1}. Since φ is
not satisfiable, the eR ϕ0 in ΣC,V and any master tuple in
Dm cannot be applied to the tuple t . Thus again (Σ, Dm) is
consistent relative to (Z , Tc).

Taken together, (I) and (II) show that the consistency prob-
lem for editing rules is conp-complete. Moreover, the reduc-
tion of (II) uses infinite-domain attributes only, and hence,
the conp lower bound remains intact when all the attributes
of input tuples and master tuples have an infinite domain. ��

Theorem 1 tells us that the consistency analysis of eRs

is more intricate than its cfd counterpart, which is in ptime
when all attributes involved have an infinite domain. It is also
much harder than mds, since any set of mds is consistent [18].
Nevertheless, it is still decidable, as opposed to the undecid-
ability for reasoning about rules for active databases [39].

The coverage problem. The coverage problem is to decide,
given any (Z , Tc) and (Σ, Dm), whether (Z , Tc) is a certain
region for (Σ, Dm). That is, whether (Σ, Dm) is able to fix
errors in all the attributes of input tuples that are marked by
(Z , Tc).

The coverage problem is, however, also intractable.

Theorem 2 The coverage problem is conp-complete, even
for input tuples and master relations that have infinite-
domain attributes only.

The proof is similar to the proof of Theorem 1: the conp
upper bound is verified by providing a similar conp algo-
rithm, and the conp-hardness is shown by reduction from the
3SAT problem to its complement. As opposed to its counter-
part of Theorem 1, the reduction uses negations in the pattern
tuples of eRs. We defer the proof to the appendix due to the
space constraint.

Remark. Like the consistency and the coverage problems
we have seen earlier, for all the problems to be studied in
the rest of the section, their complexity remains the same in
the presence of finite-domain attributes and in their absence.
Hence in the sequel, we shall simply refer to their complex-
ity bounds without remarking the absence of finite-domain
attributes.

Special cases. To better understand these problems, we fur-
ther investigate the following five special cases.

(1) Fixed Σ . In this setting, the set Σ of eRs is fixed.
Indeed, editing rules are often predefined in practice.

(2) Fixed Dm . In this case, the master data Dm is fixed.
In real-life, master data is changed less frequently than
(input) data relations.

(3) Positive Tc. This case assumes no pattern tuples in Tc

contain ā, i.e., in the absence of negations.
(4) Concrete Tc. This case requires that no pattern tuples

in Tc contain wildcard ‘_’ or ā, i.e., they contain a’s only.
Note that a concrete Tc must be a positive Tc.

(5) Direct fixes. We consider in this setting that (a) for all
eRs ϕ = ((X, Xm) → (B, Bm), tp[X p]) inΣ, X p ⊆ X , i.e.,
the pattern attributes X p are also required to find a match in
Dm , and (b) each step of a fixing process employs (Z , Tc)

without extending (Z , Tc), i.e., ti−1 →((Z ,Tc),ϕi ,tmi )
ti .

Among these, cases (1) and (2) assume thatΣ and Dm are
fixed, respectively; (3) and (4) restrict the form of patterns in
Tc; and case (5) restricts the form of eRs and adopts a simpler
semantics for fixing input tuples.

One might think that fixed master data or positive patterns
would simplify the analysis of eRs. Unfortunately, these do
not help. Observe that in the lower-bound proofs of The-
orems 1 and 2 (a) the master relation Dm is fixed, i.e., it is
independent of 3SAT instances, and (b) the tableau Tc consists
of wildcard and constants only. From these the next corollary
follows.

Corollary 3 The consistency problem and the coverage
problem remain conp-complete even for (1) fixed master data
Dm and (2) a positive tableau Tc.

In contrast, special cases (1) and (4) indeed make our lives
easier, as verified below.

Theorem 4 The consistency problem and the coverage prob-
lem are in ptime for either (1) a fixed set Σ of eRs or (2) a
concrete pattern tableau Tc.

Proof We consider a set Σ of eRs on schemas (R, Rm), a
master relation Dm of Rm , and a region (Z , Tc), where there
is a single tuple tc ∈ Tc only. When there are multiple tuples
in Tc, we can test them one by one by using the ptime algo-
rithms for a single-tuple Tc.

Below we first show that if the consistency problem or the
coverage problem is in ptime for a concrete Tc, the problem
is in ptime for a fixed Σ . We then show that both problems
are in ptime for a concrete Tc.

(I) We first show that when Σ is fixed, we can construct a
concrete T ′

c from Tc such that (1) the size of T ′
c is polynomial-

ly bounded by the size of (Σ, Dm) (2) (Dm,Σ) is consistent
relative to (Z , Tc) iff it is consistent relative to (Z , T ′

c), and
(3) (Z , Tc) is a certain region for (Σ, Dm) iff (Z , T ′

c) is a
certain region for (Σ, Dm).

The tableau T ′
c is constructed as follows.

◦ Let ZΣ be the set of R attributes that appear in Σ, Z ′ =
Z ∩ ZΣ , and let dom be the active domain ofΣ and Dm

as defined in the proof of Theorem 1.
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◦ The tableau T ′
c = { t ′c | t ′c[Z ′] = t[Z ′] for all possible R

tuples t such that t ≈ tc[Z ′], t[B] ∈ dom for each attri-
bute B ∈ Z ′, and t ′c[Z \ Z ′] ≈ tc[Z \ Z ′] consisting
of constants drawn from dom only}. That is, all _ and c̄
in tc are instantiated to all possible values in dom, and
hence all pattern tuples in T ′

c contain concrete data values
only.

Observe that T ′
c contains at most O(|dom||Σ |) pattern

tuples since the number of possible R tuples is bounded by
O(|dom||Σ |). Hence the size of T ′

c is a polynomial of the
size of (Σ, Dm) when Σ is fixed.

We next show that (Dm,Σ) is consistent relative to (Z , Tc)

iff it is consistent relative to (Z , T ′
c).

Consider an R tuple t such that for each attribute B ∈
Z , t[B] ∈ dom. If t �≈ tc[Z ], then it is easy to see that t has
a unique fix, but does not have a certain fix. If t ≈ tc[Z ], we
can verify that t has a unique fix by (Σ, Dm) w.r.t. (Z , Tc)
iff it has a unique fix by (Σ, Dm) w.r.t. (Z , T ′

c ). From these
the statement follows.

Similarly, we show that (Z , Tc) is a certain region for
(Dm,Σ) iff (Z , T ′

c) is a certain region for (Dm,Σ).
Putting these together, we have shown that if the consis-

tency or coverage problem is in ptime for a concrete Tc, the
problem is in ptime for a fixed Σ .

(II) We next show that the consistency problem for a con-
crete Tc is in ptime, by giving a ptime algorithm that takes
(Σ, Dm) and (Z , Tc) as input, and returns ‘yes’ iff (Σ, Dm)

is consistent relative to (Z , Tc). Recall that it suffices to con-
sider single-tuple Tc = {tc}.

Below we first present the algorithm, and then show that
the algorithm runs in ptime. Finally, we verify the correctness
of the algorithm.

(1) We first present the algorithm.

(a) Let t be an R tuple such that t[Z ] = tc and t[R \ Z ] =
(_, . . . , _), and let Zb = Z . As will be seen shortly, any R
tuple t with t[Z ] = tc is allowed. We simply use wildcards
to denote that t is any R tuple marked by tc. Here Zb is used
to store the initial Z , and remains unchanged in the entire
process.

(b) Let a set dep(A) = ∅ for each attribute A ∈ R. Here
dep(A) is used to remember lhs(ϕ) for all ϕ ∈ Σ such that
t[A] is updated and validated by making use of ϕ and some
mater tuple tm in Dm .

(c) Let S = {(ϕ1, tm1), . . . , (ϕk, tmk )} be the set of all rule-
tuple pairs such that for each i ∈ [1, k], (1) tmi ∈ Dm and
ϕi ∈ Σ , (2) (lhs(ϕi ) ∪ lhsp(ϕi )) ⊆ Z , but rhs(ϕi ) �∈ Z ;
(3) t[lhs(ϕi )] = tmi [lhsm(ϕi )]; and (4) tuple t matches the
pattern tuple in ϕi .

(d) The algorithm returns ‘yes’ if the set S is empty, i.e., the
tuple t reaches a fix point. Otherwise it continues.

(e) If there exist i, j ∈ [1, k] such that rhs(ϕi ) = rhs(ϕ j )

and tmi [rhsm(ϕi )] �= tm j [rhsm(ϕ j )], then the algorithm re-
turns ‘no’, and it continues otherwise.

(f) For each i ∈ [1, k], let dep(rhs(ϕi )) := dep(rhs(ϕi ))∪
{lhs(ϕi )}, t[rhs(ϕi )] := tmi [rhsm(ϕi )]; and expand Z :=
Z ∪ {rhs(ϕ1), . . . , rhs(ϕk)}.
(g) If there exist an eR ϕ in Σ and a master tuple tm in Dm

such that (1) ϕ and tm can be applied to tuple t ; (2) lhs(ϕ) ⊆
Z , rhs(ϕ) ∈ Z \ Zb; and (3) tm[rhsm(ϕ)] �= t[rhs(ϕ)], then
the algorithm does the following.

◦ If for each attribute A ∈ lhs(ϕ), there exists an X ∈
dep(A) with rhs(ϕ) �∈ X , then it returns ‘no’.

(h) The algorithm repeats the process from step (c).

(2) To see that the algorithm is in ptime, observe the
following: (i) each time Z is expanded by at least one more
attribute; (ii) there are |Σ | × |Dm | rule-tuple pairs, and once
such a pair is applied to the tuple t at step (c) or (g), it will
not be considered again; and (iii) all steps alone can be done
in ptime. Putting these together, the algorithm indeed runs
in ptime.

(3) We next verify the correctness of the algorithm.
Assume first that the algorithm returns ‘no’. Then we show

that (Σ, Dm) is not consistent relative to (Z , Tc). Note that
the algorithm returns ‘no’ at steps (e) and (g) only. In both
cases, it is obvious that (Σ, Dm) is not consistent relative to
(Z , Tc).

Conversely, assume that the algorithm returns ‘yes’. Then
we prove that (Σ, Dm) is consistent relative to (Z , Tc) by
contradiction. Assume that (Σ, Dm) is not consistent relative
to (Z , Tc). Then there exist two distinct fixes t ′ and s′ for an
R tuple t such that (a) t ′ �= s′, (b) t0 = t →∗

((Z ,Tc),Σ,Dm )

tk = t ′, and (c) s0 = t →∗
((Z ,Tc),Σ,Dm )

sh = s′. That is, there
exist two finite sequences L1 = [t0 = t, t1, . . . , tk = t ′]
and L2 = [s0 = t, s1, . . . , sh = s′] such that k, h ≤ |R|,
and for each i ∈ [1, k], j ∈ [1, h], there exist ϕi , ϕ j ∈ Σ

and tmi , tm j ∈ Dm that satisfy the following:

◦ ti [Z ] = t0[Z ] = t[Z ] and s j [Z ] = s0[Z ] = t[Z ];
◦ ti−1 →((Zi−1,Ti−1),ϕi ,tmi )

ti , where (Z0, T0) = (Z , Tc) and
(Zi , Ti ) = ext(Zi−1, Ti−1, ϕi );

◦ s j−1 →((Z j−1,Tj−1),ϕ j ,tm j )
s j , where (Z0, T0) = (Z , Tc)

and (Z j , Tj ) = ext(Z j−1, Tj−1, ϕ j ); and
◦ for all ϕ ∈ Σ and tm ∈ Dm, t ′ →((Zk ,Tk ),ϕ,tm ) t ′ and

s′ →((Zh ,Th),ϕ,tm ) s′.

To see that these lead to a contradiction, we first define
a partition {P1, . . . , Pg} of the rule-tuple pairs (ϕi , tmi )

(i ∈ [1, k]) and (ϕ j , tm j ) ( j ∈ [1, h]) involved in the two
sequences L1 and L2. Along the same lines as step (c) of
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the algorithm, those pairs that are applicable to t at the same
time are processed together, and form a distinct partition Pl

(1 ≤ l ≤ g). Note that for any l1 �= l2 ∈ [1, g], Pl1 ∩Pl2 = ∅.
To see the contradiction, in L1 and L2, let B be

the first R attribute such that (i) ti [B] �= s j [B] (i ∈
[1, k], j ∈ [1, h]) (ii) ti−1 →((Zi−1,Ti−1),ϕi ,tmi )

ti , and (iii)
s j−1 →((Z j−1,Tj−1),ϕ j ,tm j )

s j . Assume that (ϕi , tmi ) ∈ Pl1

and (ϕ j , tm j ) ∈ Pl2 (l1, l2 ∈ [1, g]). There are three cases to
consider: (i) l1 = l2 (ii) l1 < l2, and (iii) l1 > l2.

(i) If l1 = l2, the conflict can be detected at step (e) of the
algorithm when it updates the attribute B. Thus the algorithm
would have returned ‘no’.

(ii) If l1 < l2, the conflict can be found at step (g) when the
algorithm updates the attribute B using (s j , tm j ). Thus the
algorithm would also have returned ‘no’.

(iii) If l1 > l2, the algorithm would have returned ‘no’ as
well, by the same analysis as (b).

That is, all three cases contradict our assumption.
Putting all these together, we have shown that the algo-

rithm correctly determines whether (Σ, Dm) is consistent
relative to (Z , Tc), in ptime.

(III) Finally, we show that the coverage problem for a con-
crete Tc is also in ptime. Indeed, the ptime algorithm given
above can be adapted and applied here, while it only returns
‘yes’ at step (d) if both the set S is empty and if the tuple t
consists of constants only. ��

Furthermore, special case (5) identified above also sim-
plifies the consistency and coverage analyses.

Theorem 5 The consistency problem and the coverage prob-
lem are in ptime when direct fixes are considered.

Proof Consider a setΣ of eRs defined on schemas (R, Rm),
a master relation Dm of Rm and a region (Z , Tc). As in the
proof of Theorem 4, we assume w.l.o.g. that there is a single
tuple tc ∈ Tc only.

Below we first show that the consistency problem for
direct fixes is in ptime, based on which we then show that
the same result holds for the coverage problem.

(I) We first show how to check the consistency for direct fixes
via a set of sql queries, which yields a ptime algorithm for
the problem.

LetΣZ be the set of eRs ϕ inΣ such that lhs(ϕ) ⊆ Z , but
rhs(ϕ) �∈ Z . For any two eRs ϕ1 and ϕ2 inΣZ with rhs(ϕ1)

= rhs(ϕ2), we define an sql query Qϕ1,ϕ2 such that (Σ, Dm)

is consistent relative to (Z , Tc) iff all the queries return an
empty set.

We first define an sql query Qϕ for an eRϕ = ((X, Xm) →
(B, Bm), tp[X p]) in ΣZ , as follows.

Qϕ : select distinct (Xm , Bm) as (X, B)
from Rm
where Rm.Xpm ≈ tp[X p] and Rm.Xm ≈ tc[X ],

where X pm ⊆ Xm is the list of attributes corresponding to
X p. Recall that X p ⊆ X and X ⊆ Z for direct fixes. Here
Rm.Xpm ≈ tp[X p] is a disjunction of (tp[A]=_)or (tp[A] =
c & Rm.Am = tp[A])or (tp[A] = c̄ & Rm.Am〈〉tp[A]))
for each attribute A ∈ X p, where Am ∈ Xm is the attribute
corresponding to A. It is similar for Rm.Xm ≈ tc[X ]. Intui-
tively, Qϕ returns (partial) master tuples that both match the
pattern tuple tp of ϕ and the pattern tuple tc in Tc. We also
use Qϕ(X, B) and Qϕ(X) to denote the projected results of
Qϕ on X ∪ {B} and X , respectively.

We also define sql query Qϕ1,ϕ2 . Assume w.l.o.g. that
ϕ1 = ((X1 X, Xm1 Xm) → (B, Bm1), tp1 [X p1 ]) and ϕ2 =
((X2 X, Xm2 X ′

m) → (B, Bm2), tp2 [X p2 ]) such that X1 ∩
X2 = ∅ and |X | = |Xm | = |X ′

m |. Note that here X may be
empty.

Qϕ1,ϕ2 : select R1.X1, R1.X, R2.X2
from Qϕ1 (X1 X, B) as R1, Qϕ2 (X2 X, B) as R2
where R1.X = R2.X and R1.B �= R2.B.

Intuitively, Qϕ1,ϕ2 returns those (partial) master tuples that
may introduce conflicts when fixing R tuples.

When the semantics of direct fixes is considered, (Σ, Dm)

is consistent relative to (Z , {tc}) if for all eRsϕ1 andϕ2 inΣZ ,
the query Qϕ1,ϕ2 returns an empty result. Note that (1) Qϕ can
be evaluated by scanning the master relation Dm once, and
hence it can be done in O(|ϕ||Dm |) time, where |ϕ| is the size
of ϕ and |Dm | is the number of master tuples in Dm , respec-
tively; and (2) Qϕ1,ϕ2 can be evaluated in O(|ϕ1||ϕ2||Dm |2)
time. Hence, the consistency problem is in O(|Σ |2|Dm |2)
time (ptime) for direct fixes, where |Σ | is the size of Σ .

(II) For the coverage problem, observe that (Z , Tc) is a
certain region for (Σ, Dm) iff

(1) (Σ, Dm) is consistent relative to (Z , Tc); and

(2) for each B ∈ R \ Z , there exists an eR ϕ = ((X, Xm) →
(B, Bm), tp[X p]) in Σ such that (a) X ⊆ Z (b) tc[X ] con-
sists of constants only (c) tp[X p] ≈ tc[X p], and (d) there is
a master tuple tm ∈ Dm with tm[Xm] = tc[X ].

Conditions (1) and (2) can be checked in O(|Σ |2|Dm |2)
time and O(|R||Σ ||Dm |) time, respectively. Hence the cov-
erage problem for direct fixes is in O(|Σ |2|Dm |2) time
(ptime) since |R| is bounded by |Σ |. ��

4.2 The complexity of computing certain regions

We next study three fundamental problems in connection
with computing certain regions, when regions are either par-
tially given or not given at all.

To derive a certain region (Z , Tc) from (Σ, Dm), one
wants to know whether a given list Z of attributes could
make a certain region by finding a nonempty Tc.

The Z-validating problem is to decide, given (Σ, Dm)

and a list Z of distinct attributes, whether there exists a
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non-empty pattern tableau Tc such that (Z , Tc) is a certain
region for (Σ, Dm).

Another question is to determine, if Z can make a certain
region by finding a nonempty Tc, how large Tc is. Let (Z , Tc)

be a certain region for (Σ, Dm). For any pattern tuple tc ∈ Tc,
we require the following:

(1) tc[A] = _ for all attributes A not appearing in Σ ;

(2) tc[A] is replaced with v (resp. v̄) if tc[A] = c (resp. c̄) and
c is a constant not appearing inΣ or Dm . Here v is a variable
denoting any constant not in Σ or Dm .

Note that these requirements do not lose generality. It is
easy to verify for any certain region (Z , Tc), we can find an
equivalent one (with no more pattern tuples) satisfying the
two conditions. Moreover, these allow us to deal with only a
finite number of pattern tuples, and to focus on the essential
properties of the problems.

The Z-counting problem is to count, given (Σ, Dm) and
a list Z of distinct attributes, the number of distinct pattern
tuples that can be found from (Σ, Dm) to build a tableau Tc

such that (Z , Tc) is a certain region.
Both problems are beyond reach in practice, as shown

below. In particular, the Z -counting problem is as hard as
finding the number of truth assignments that satisfy a given
3SAT instance [33].

Theorem 6 The Z-validating problem is np-complete.

Proof We first show that the problem is in np. We then show
that the problem is np-hard.

(I) We show that the problem is in np, by providing an np algo-
rithm that, given (Σ, Dm) and a list Z of distinct attributes
as input, returns ‘yes’ iff there exists a non-empty pattern
tableau Tc such that (Z , Tc) is a certain region for (Σ, Dm).
Let dom be the active domain dom of Σ and Dm as given
in the proof of Theorem 1.

The np algorithm works as follows.

(a) Guess a tuple tc such that for each attribute A ∈ Z , tc[A] ∈
dom, i.e., tc consists of constants only.

(b) If (Z , {tc}) is a certain region for (Σ, Dm), then the algo-
rithm returns ‘yes’.

By Theorem 4, step (b) can be done in ptime. Hence the
algorithm is in np.

The correctness of the algorithm follows from the obser-
vation below, which can be readily verified. Given Z , there
exists a non-empty pattern tableau Tc such that (Z , Tc) is a
certain region for (Σ, Dm) iff there exists a pattern tuple tc
consisting of values from dom such that (Z , {tc}) is a certain
region for (Σ, Dm).

(II) We next show that the problem is np-hard, by reduc-
tion from 3SAT. Given an instance φ of the 3SAT problem as
described in the proof of Theorem 1, we construct an instance
of the Z -validating problem consisting of: (a) two relational
schemas R and Rm , (b) a master relation Dm of Rm , (c) a set

Σ of eRs, and (d) a list Z of distinct attributes of R. We show
that there exists a non-empty pattern tableau Tc that yields a
certain region (Z , Tc) for (Σ, Dm) iff φ is satisfiable.

(1) We first define the Z -validating instance.

(a) The two schemas are R(X1, . . . , Xm,C1, . . . ,Cn, V )
and Rm(B1, B2, B3,C, V1, V0), respectively, in which all the
attributes have an integer domain.

Intuitively, for each R tuple t, t[X1 . . . Xm], t[C1 . . .Cn]
and t[V ] specify a truth assignment ξ for the variables
x1, . . . , xm of φ, the truth values of the clauses C1, . . . ,Cn ,
and the truth value of φ under ξ , respectively.

(b) The master relation Dm consists of eight tuples:

B1 B2 B3 C V1 V0
tm0 : 0 0 0 1 1 0
tm1 : 0 0 1 1 1 0
tm2 : 0 1 0 1 1 0
tm3 : 0 1 1 1 1 0
tm4 : 1 0 0 1 1 0
tm5 : 1 0 1 1 1 0
tm6 : 1 1 0 1 1 0
tm7 : 1 1 1 1 1 0

Here (1) tm0 [C, V1, V0] = · · · = tm7 [C, V1, V0] = (1, 1, 0),
and (2) tm0 [B1, B2, B3], . . ., and tm7 [B1, B2, B3] together
enumerate the eight truth assignments of a three-variable
clause, ranging from (0, 0, 0) to (1, 1, 1).

(c) The set Σ consists of 3n eRs.
We encode each clause C j = y j1 ∨ y j2 ∨ y j3 ( j ∈ [1, n])

of φ with three eRs: ϕ j,1, ϕ j,2 and ϕ j,3, where

◦ ϕ j,1 = ((X p j1 X p j2 X p j3 , B1 B2 B3) → (C j ,C), ()),
◦ ϕ j,2 = ((X p j1 X p j2 X p j3 , B1 B2 B3) → (V, V1), ()),
◦ ϕ j,3 = ((X p j1 X p j2 X p j3 , B1 B2 B3) → (V, V0), tp j

[X p j1 X p j2 X p j3 ]) such that tp j [X p j1 X p j2 X p j3 ] is the only
truth assignment that makes clause C j false.

(d) We define the attribute list Z as X1, . . . , Xm .

(2) We next show that there exists a non-empty tableau Tc

such that (Z , Tc) is a certain region for (Σ, Dm) iff the 3SAT

instance φ is satisfiable.
Assume first that there exists a non-empty Tc such that

(Z , Tc) is a certain region for (Σ, Dm). We show that the
3SAT instance φ is satisfiable. Observe that for any pattern
tuple tc ∈ Tc, tc[Xi ] ∈ {0, 1} for i ∈ [1,m] since (Z , {tc}) is
a certain region for (Σ, Dm). We prove that tc[X1, . . . , Xm]
is a satisfying truth assignment of φ by contradiction.
If tc[X1, . . . , Xm]does not satisfyφ, then there exists a clause
C j (1 ≤ j ≤ n) such that tc[X p j1 , X p j2 , X p j3 ] makes C j

false. Then eRs ϕ j,2 and ϕ j,3 are both applicable to any R
tuples t if t ≈ tc, which updates t[V ] to 1 by ϕ j,2, but t[V ] to
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0 byϕ j,3. That is, (Z , {tc}) is not a certain region for (Σ, Dm),
which contradicts the assumption above.

Conversely, assume that the instance φ is satisfiable.
We show that there exists a pattern tuple tc such that (Z , {tc})
is a certain region for (Σ, Dm). Let tc[X1, . . . , Xm] be a sat-
isfying truth assignment of φ, which exists since φ is satis-
fiable. One can easily verify that (Z , {tc}) is a certain region
for (Σ, Dm). ��

A closer look at the reduction in the proof of Theorem 6
tells us the following. In particular, in contrast to Theorem 5,
the Z -validating problem remains intractable even when
direct fixes are considered.

Corollary 7 The Z-validating problem remains np-com-
plete even when we consider (1) fixed master data Dm,
(2) a positive pattern tableau Tc, (3) a concrete pattern tab-
leau Tc, or (4) direct fixes.

However, when fixing Σ , the Z -validating problem
becomes much simpler, as shown below.

Proposition 8 The Z-validating problem is in ptime given
a fixed set Σ of eRs.

Proof We show that the problem is in ptime by providing a
ptime algorithm that takes (Σ, Dm) and a list Z of distinct
attributes as input, returns ‘yes’ iff there exists a non-empty
pattern tableau Tc such that (Z , Tc) is a certain region for
(Σ, Dm). Let dom be the active domain dom as given in the
proof of Theorem 1.

The algorithm works as follows. Let tc be a pattern tuple
over attributes Z such that tc[A] = _ for all attributes A ∈ Z
not appearing in Σ , and tc[B] is either c or c̄, where c is a
value drawn from dom, for all the other attributes B. For all
such pattern tuples tc, the algorithm checks whether (Z , {tc})
is a certain region for (Σ, Dm), and if so, it returns ‘yes’.

To see that the algorithm runs in ptime, observe the
following: (1) the number of pattern tuples tc is bounded
by O(|dom||Σ |), a polynomial of Σ and Dm when Σ is
fixed; and (2) by Theorem 4, it is in ptime to check whether
(Z , {tc}) is a certain region.

For the correctness, observe that given Z , there exists a
non-empty pattern tableau Tc such that (Z , Tc) is a certain
region for (Σ, Dm) iff there exists a pattern tuple tc inspected
by the algorithm, such that (Z , {tc}) is a certain region for
(Σ, Dm). ��

We next investigate the Z -counting problem.

Theorem 9 The Z-counting problem is #p-complete.

Proof The Z -counting problem is obviously in #p since it is
the counting version of the Z -validating problem, which is
np-complete as shown by Theorem 6.

We next show that the Z -counting problem is #p-hard by a
parsimonious reduction [3] from the #3SAT problem, which
is #p-complete [3,33]. Given a 3SAT formula, the #3SAT

problem counts the number of satisfying truth assignments,
i.e., the problem is the counting version of the 3SAT prob-
lem. Recall that there exists a parsimonious reduction from
counting problems # A to #B if there is a polynomial time
reduction f such that for all instances x and its solution y of
A, |{y | (x, y) ∈ A}| = |{z | ( f (x), z) ∈ B}| [3].

We show that the reduction given in the proof of
Theorem 6 is already parsimonious. As argued there, for all
pattern tuples tc such that (Z , {tc}) is a certain region for
(Σ, Dm), tc[A1 . . . Am] is a satisfying truth assignment for
the 3SAT formula, and vice versa. This implies that the num-
ber of satisfying truth assignments for the 3SAT formula is
exactly equal to the number of pattern tuples tc in a pattern
tableau Tc such that (Z , Tc) is a certain region for (Σ, Dm).

��
From Theorems 6, 9 and Corollary 7 it follows:

Corollary 10 The Z-counting problem remains #p-complete
even when we consider (1) fixed master data Dm, (2) a posi-
tive pattern tableau Tc, (3) a concrete pattern tableau Tc, or
(4) direct fixes.

When only a fixed set Σ of eRs is considered, the
Z -counting problem becomes easier. This is consistent with
Proposition 8.

Proposition 11 The Z-counting problem is in ptime given
a fixed set Σ of eRs.

Proof We show this by giving a ptime algorithm that counts
the number of pattern tuples tc such that (Z , {tc}) is a certain
region for (Σ, Dm).

The algorithm is a revision of the ptime algorithm given
in the proof of Proposition 8, by simply adding a counter
that keeps track of the number of pattern tuples tc such that
(Z , {tc}) is a certain region for (Σ, Dm). The revised algo-
rithm runs in ptime, and its correctness can be verified along
the same lines as its counterpart given in the proof of Prop-
osition 8. ��

Certain regions with minimum Z . One would naturally
want a certain region (Z , Tc) with a “small” Z , such that the
users only need to assure the correctness of a small number
of attributes in input tuples.

The Z-minimum problem is to decide, given (Σ, Dm) and
a positive integer K , whether there exists a list Z of distinct
attributes such that (a) |Z | ≤ K and (b) there exists a non-
empty pattern tableau Tc such that (Z , Tc) is a certain region
for (Σ, Dm).

This problem is also intractable, as shown below.
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Theorem 12 The Z-minimum problem is np-complete.

Proof We first show that the problem is in np. We then show
that the problem is np-hard.

(I) We show that the problem is in np by giving an np algo-
rithm. Given (Σ, Dm) and a positive integer K , the algorithm
returns ‘yes’ iff there exists a list Z of distinct attributes such
that (a) |Z | ≤ K , and (b) there exists a non-empty pattern
tableau Tc such that (Z , Tc) is a certain region for (Σ, Dm)

The algorithm works as follows.

(a) Guess a list Z of at most K distinct R attributes, and guess
a pattern tuple tc with attributes in Z as described in the proof
of Theorem 6.

(b) If (Z , {tc}) is a certain region for (Σ, Dm), then the algo-
rithm returns ‘yes’.

One can easily verify that the algorithm is correct. In addi-
tion, the algorithm is in np since by Theorem 4, step (b) can
be done in ptime.

(II) We next show the np-hardness of the Z -minimum prob-
lem by reduction from the set covering (SC) problem, which
is known to be np-complete (cf. [33]).

Given a finite set U = {x1, . . . , xn} of elements, a collec-
tion S = {C1, . . . ,Ch} of subsets of U , and a positive integer
K ≤ h, the SC problem asks whether there exists a cover for
S of size K or less, i.e., a subset S′ ⊆ S such that |S′| ≤ K ,
and every element of U belongs to at least one member of
S′.

Given an instance of the SC problem, we construct an
instance of the Z -minimum problem consisting of (a) two
relational schemas R and Rm , and (b) a master relation Dm

of Rm . We show that there exists a list Z of distinct attri-
butes such that (a) |Z | ≤ K and (b) there exists a non-empty
pattern tableau Tc such that (Z , Tc) is a certain region for
(Σ, Dm) iff there is a cover of size K or less for the instance
of the SC problem.

(1) We first define the Z -minimum instance as follows.

(a) We use R(C1, . . . ,Ch, X1,1, . . . , X1,h+1, . . . , Xn,1, . . . ,

Xn,h+1) as the schema of input data, and Rm(B1, B2) as the
master data schema, in which all attributes have an integer
domain.

Intuitively, attribute C j ( j ∈ [1, h]) is to encode the mem-
ber C j in S, and the h + 1 attributes Xi,1, . . . , Xi,h+1 (i ∈
[1, n]) together denote the element xi in U .

(b) The master relation Dm consists of a single master tuple
tm = (1, 1).

(c) The set Σ consists of (h + 1)
∑h

j=1 |C j | + h eRs.
We encode each member C j = {x j1 , . . . , x j|C j | } ( j ∈

[1, h]) of S with (h + 1)|C j | + 1 eRs, where

◦ for each x ji ∈ C j , ϕ j,i,1 = ((C j , B1) → (X ji , B2), ()),
where X ji ranges over {X ji ,1, . . . , X ji ,h+1}, and

◦ ϕ j,2 = ((X j1,1 . . . X j1,h+1 . . . X j|C j |,1 . . . X j|C j |,h+1,

B1 . . . B1) → (C j , B2), ()).

Intuitively, when identifying a list Z of h attributes or
less, these eRs ensure that the attributes are taken from
{C1, . . . ,Ch} only.

(2) We now verify the correctness of the reduction.
Assume first that there exists a list Z of distinct attributes

such that |Z | ≤ K and there exists a non-empty pattern tab-
leau Tc such that (Z , Tc) is a certain region for (Σ, Dm).
Then we construct a cover of size K or less for the instance
of the SC problem. Let Z ′ = Z ∩ {C1, . . . ,Ch} and S′ be the
set of subsets in S of the SC instance denoted by Z ′. We prove
that S′ is a cover for the SC instance by showing that for each
xi ∈ U , there exists a C j ∈ S′ such that xi ∈ C j . Indeed,
if there exists no such C j , the set Σ of eRs requires us to
include all the h + 1 attributes Xil (l ∈ [1, h + 1]) in Z . This,
however, would have made |Z | > h, which contradicts the
assumption that |Z | ≤ K ≤ h.

Conversely, assume that there is a cover S′ of size K or
less for the instance of the SC problem. We show that there
exists a list Z of distinct attributes of size K or less and a
non-empty pattern tableau Tc on Z such that (Z , Tc) is a cer-
tain region for (Σ, Dm). Let Z be the list of distinct attributes
denoted by the cover S′, and tc = (1, . . . , 1) be a pattern tuple.
Then |Z | ≤ K , and (Z , {tc}) is a certain region for (Σ, Dm).

Parts (I) and (II) together show that the Z -minimum prob-
lem is np-complete. ��

Observe that the reduction in the proof of Theorem 12
utilizes a fixed master relation Dm and a concrete tableau Tc.
Hence we have the following.

Corollary 13 The Z-minimum problem remains np-com-
plete even when we consider (1) fixed master data Dm, (2)
a positive pattern tableau Tc, or (3) a concrete pattern tab-
leau Tc.

When direct fixes are considered, the Z -minimum prob-
lem remains intractable, as opposed to Theorem 5.

Theorem 14 The Z-minimum problem remains np-com-
plete even when direct fixes are considered.

The problem is in np by Theorem 12. It is verified np-hard
by reduction from the SC problem along the same lines as the
proof of Theorem 12. We defer the proof to the appendix due
to the space constraint.

Having seen Propositions 8 and 11, it is not surprising to
find that the Z -minimum problem becomes tractable for a
fixed set Σ of eRs, as shown below.

Proposition 15 The Z-minimum problem is in ptime given
a fixed set Σ of eRs.
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Proof Consider a fixed set Σ of eRs defined on schemas
(R, Rm), and a master relation Dm of Rm . We provide a
ptime algorithm that, given K and (Σ, Dm), checks whether
there exists a list Z of no more than K distinct attributes and
a non-empty pattern tableau Tc, such that (Z , Tc) is a certain
region for (Σ, Dm).

Let ZΣ and ZΣ be two sets of R attributes that appear in
Σ and do not appear in Σ , respectively. It is easy to verify
that it suffices to consider Z with ZΣ ⊆ Z , since for any
list Z of distinct R attributes, if ZΣ �⊆ Z , there exists no
non-empty tableau Tc such that (Z , Tc) is a certain region
for (Σ, Dm).

Let S be the collection of all lists of distinct attributes in
ZΣ , i.e., for each Z ′ ∈ S, Z ′ ⊆ ZΣ . When Σ is fixed, both
S and ZΣ have a fixed size.

Based on these we give the algorithm as follows. For
each Z ′ ∈ S, we check whether there exists a non-empty
tableau Tc such that (Z , Tc) is a certain region for (Σ, Dm),
where Z = ZΣ ∪ Z ′. The algorithm is in ptime. Indeed, by
Proposition 8, when Σ is fixed, the checking can be done
in ptime. Moreover, as argued above, the cardinality of S is
fixed. Hence the Z -minimum problem is in ptime if Σ is
fixed. ��

Approximation hardness. Worse still, there exist no approx-
imate algorithms for the (optimization version) Z -minimum
problem with a reasonable bound. To show the approxima-
tion bound, we adopt L-reductions [33].

Let Π1 and Π2 be two minimization problems. An
L-reduction fromΠ1 toΠ2 is a quadruple ( f, g, α, β), where
f and g are two ptime computable functions, and α and β
are two constants, such that

◦ for any instance I1 ofΠ1, I2 = f (I1) is an instance ofΠ2

such that opt
2
(I2) ≤ α ·opt1(I1), where opt1 (resp. opt2)

is the objective of an optimal solution to I1 (resp. I2), and
◦ for any solution s2 to I2, s1 = g(s2) is a solution to I1 such

that obj1(s1) ≤ β · obj2(s2), where obj1() (resp. obj2())
is a function measuring the objective of a solution to I1

(resp. I2).

We say an algorithm A for a minimization problem
has performance guarantee ε (ε ≥ 1) if for any instance
I,obj(A(I )) ≤ ε · opt(I ).

L-reductions retain approximation bounds [33].

Proposition 16 If ( f, g, α, β) is an L-reduction from prob-
lems Π1 to Π2, and there is a ptime algorithm for Π2 with
performance guarantee ε, then there is a ptime algorithm
for Π1 with performance guarantee αβε [33].

Leveraging Proposition 16, we next show the approxima-
tion-hardness of the Z -minimum problem.

Theorem 17 Unless np =p, the Z-minimum problem can-
not be approximated within a factor of c log n in ptime for a
constant c.

Proof It is known that the set covering (SC) problem can-
not be approximated within a factor of c log n in ptime for
a constant c unless np =p [35]. Hence it suffices to show
that there exists an L-reduction from the SC problem to the
Z -minimum problem.

We next construct such an L-reduction ( f, g, α, β).

(1) Let f be the ptime reduction given in the proof of
Theorem 12. Given an SC instance I1 as input, I2 = f (I1)

is a Z -minimum instance. It was shown there that for the
instance I1, there is a cover of size K or less iff for the
instance I2, there exist a |Z | ≤ K and a non-empty pattern
tableau Tc such that (Z , Tc) is a certain region for (Σ, Dm).
That is, the optimal objective opt2(I2) is equal to the optimal
objective opt1(I1).

(2) We next define the function g. Let Z be a solution for the
Z -minimum instance I2, i.e., a list of distinct attributes such
that |Z | ≤ K and there exists a non-empty pattern tableau Tc

such that (Z , Tc) is a certain region for (Σ, Dm). The func-
tion g constructs a cover for the SC instance I1, as follows:
Let Z ′ = Z ∩ {C1, . . . ,Ch} and S′ be the set of subsets in S
of the SC instance I1 denoted by Z ′.

The function g is obviously computable in ptime, and it
was shown in the proof of Theorem 12 that S′ is a cover for
I1 with size K or less. Hence given a solution s2 for I2, s1 =
g(s2) is a solution for I1 such that obj1(s1) ≤ obj2(s2).

(3) Let α = β = 1. Then we have opt2(I2) ≤ α · opt1(I1)

and obj1(s1) ≤ β · obj2(s2).
This completes the construction of the L-reduction. Thus

by the approximation-hardness of SC [35] and Proposition 16,
the Z -minimum problem cannot be approximated within
c log n in ptime unless np = p. ��

From Theorem 17 and Corollary 13, the result below
immediately follows.

Corollary 18 Unless np =p, the Z-minimum problem can-
not be approximated within a factor of c log n in ptime for
a constant c even when we consider (1) a fixed master rela-
tion Dm, (2) a positive pattern tableau Tc, or (3) a concrete
pattern tableau Tc.

Direct fixes do not make our lives easier when approxi-
mation is concerned either, similar to Theorem 14.

Theorem 19 Unless np = p, the Z-minimum problem can-
not be approximated within a factor of c log n in ptime for a
constant c for direct fixes.

The proof is similar to the proof of Theorem 17. It is
verified by a L-reduction ( f, g, α, β) from the SC problem.
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As opposed to its counterpart of Theorem 17, here f is a
ptime function defined in terms of the ptime reduction given
in the proof of Theorem 14. We defer the proof to the appen-
dix for the lack of space.

Theorems 17, 19 and Corollary 18 tell us that to find cer-
tain regions, it is necessary to develop heuristic algorithms.
Such algorithms are provided in [20].

Summary. The complexity results are summarized in
Table 3. Observe the following.

(1) The complexity bounds of all these problems remain
unchanged in the presence of finite-domain attributes and
in the absence of such attributes, as opposed to the analyses
of cfds [19], cinds [8] and mds [18].

(2) For a fixed set Σ of eRs, all the problems become ptime
computable, i.e., fixed eRs simplify the analyses.

(3) For fixed master data Dm or a positive tableau Tc, all the
problems remain intractable. That is, these special cases do
not make our lives easier.

(4) When we consider direct fixes or a concrete tableau Tc,
the consistency problem and the coverage problem become
tractable, while the other problems remain intractable. That
is, these special cases simplify the analyses, but only to an
extent. Due to the space constraint, we encourage the inter-
ested reader to consult [20] for algorithms and experimental
results based on direct fixes, which illustrate the practical
impact of direct fixes.

5 An interactive framework for certain fixes

We next present a framework to find certain fixes for tuples
at the point of data entry, by making use of editing rules and
master data, and by interacting with users.

As depicted in Fig. 2, the framework is provided with a
master relation Dm of schema Rm and a setΣ of eRs defined
on (R, Rm). It takes a tuple t of schema R as input, and
warrants to find a certain fix for t .

The algorithm underlying the framework, referred to as
CertainFix, is shown in Fig. 3. The algorithm interacts with
users and finds a certain fix for t as follows.

Fig. 2 Framework overview

Fig. 3 Algorithm CertainFix

(1) Initialization (lines 1–2). It first picks a precomputed
certain region (Z , Tc), and recommends Z as the first sug-
gestion to the users (line 1). For an input tuple t , if t[Z ] is
assured correct and if t[Z ] matches a pattern tuple in Tc, then
a certain fix can be found for t . It also uses a set Z ′ to keep
track of the attributes of t that are already fixed, which is
initially empty (line 2).

As shown by Theorems 12 and 17, it is intractable and
approximation-hard to find a certain region with a minimum
set Z of attributes. Nevertheless, an efficient heuristic algo-
rithm is provided by [20], which is able to derive a set of
certain regions from Σ and Dm based on a quality metric.
Algorithm CertainFix picks the precomputed region (Z , Tc)

with the highest quality. The region is computed once and is
repeatedly used as long as Σ and Dm are unchanged.

(2) Generating correct fixes (lines 3–7). In each round of
interaction with users, a set sug of attributes is recommended
to the users as a suggestion (line 4), initially Z . The users get
back with a set S of attributes that are asserted correct (line 5),
where S may not necessarily be the same as sug. The algo-
rithm validates t[S] by checking whether t[Z ′ ∪ S] leads to
a unique fix, i.e., whether t[S] is indeed correct. If t[S] is
invalid, the users are requested to revise the set S of attri-
butes assured correct (line 6). If t[Z ′ ∪ S] yields a unique fix,
procedure TransFix is invoked to find the fix, which extends
Z ′ by including the newly corrected attributes (line 7). it finds
the unique fix by invoking a procedure TransFix.

(3) Generating new suggestions (lines 8–9). If at this point,
Z ′ covers all the attributes of R, the entire tuple t is validated
and the fixed t is returned (lines 8, 10). Otherwise it computes
a new suggestion from Σ and Dm via procedure Suggest
(line 9), which is recommended to the users in the next round
of interaction.

This process proceeds until a certain fix is found for t .
All the attributes of t are corrected or validated, by using the
users’ input, the eRs and the master data.

The framework aims to guarantee the following. (a) The
correctness. Each correcting step is justified by using the eRs

and the master data. (b) Minimizing user efforts. It requires
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Table 3 Summary of complexity results

Problems General setting/infinite-domain attributes only

General Fixed Σ Fixed Dm Positive Tc Concrete Tc Direct fixes

conp-complete ptime conp-complete conp-complete ptime ptime
Consistency

(Theorem 1) (Theorem 4) (Corollary 3) (Corollary 3) (Theorem 4) (Theorem 5)

conp-complete ptime conp-complete conp-complete ptime ptime
Coverage

(Theorem 2) (Theorem 4) (Corollary 3) (Corollary 3) (Theorem 4) (Theorem 5)

np-complete ptime np-complete np-complete np-complete np-complete
Z -validating

(Theorem 6) (Proposition 8) (Corollary 7) (Corollary 7) (Corollary 7) (Corollary 7)

#p-complete ptime #p-complete #p-complete #p-complete #p-complete
Z -counting

(Theorem 9) (Proposition 11) (Corollary 10) (Corollary 10) (Corollary 10) (Corollary 10)

np-complete ptime np-complete np-complete np-complete np-complete

(Theorem 12) (Proposition 15) (Corollary 13) (Corollary 13) (Corollary 13) (Theorem 14)

Z -minimum non-approx∗ ptime non-approx non-approx non-approx non-approx

(Theorem 17) (Proposition 15) (Corollary 18) (Corollary 18) (Corollary 18) (Theorem 19)

non-approx: cannot be approximated within c log n in ptime for a constant c, unless p = np

the users to validate a minimal number of attributes, while
automatically deducing other attributes that are entailed cor-
rect. (c) Minimal delays. It improves the response time by
reducing the latency for generating new suggestions at each
interactive step.

Note that the users are not necessarily domain experts, as
long as they can assure the correctness of certain attributes of
input tuples that are required to match eRs and master tuples.
In practice, different people may be responsible for entering
and interpreting different attributes. Hence distinct attributes
are often inspected and validated by different people.

In the rest of the section we present the details of the proce-
dures and optimization techniques employed by CertainFix.
Note that it is in ptime to check whether t[Z ′ ∪ S] leads to
a unique fix. Indeed, the ptime algorithm given in the proof
of Theorem 4 suffices to do the checking when t[Z ′ ∪ S] is
treated as a pattern tuple, which consists of constants only and
is hence concrete. Therefore, below we focus on TransFix
and Suggest.

5.1 TransFix: Generating correct fixes

We first present procedure TransFix. It takes as input a tuple
t , a master relation Dm , a set Σ of eRs, a set Z ′ of attributes
such that t[Z ′] has been validated. It finds a unique fix for
t and extends Z ′ by including those newly validated attri-
butes. While not all of the attributes of t may be validated,
the procedure ensures that the attributes updated are correct.

Procedure TransFix represents Σ as a dependency graph
G, which tells us the order of applying eRs.

Dependency graph. The dependency graph G of a setΣ of
eRs is a directed graph (V, E). Each node v ∈ V denotes an

eR ϕv = ((Xv, Xmv ) → (Bv, Bmv ), tpv [X pv ]). There exists
an edge (u, v) ∈ E from node u to v if Bu ∩(Xv∪ X pv ) �= ∅.
Intuitively, (u, v) indicates that whether ϕv can be applied to
t depends on the outcome of applying ϕu to t . Hence ϕu is
applied before ϕv .

The dependency graph of Σ remains unchanged as long
asΣ is not changed. Hence it is computed once, and is used
to repair all input tuples until Σ is updated.

Example 11 The set Σ0 of eRs given in Example 3 consists
of 9 eRs, fully expressed as follows:

ϕ1: ((zip, zip) → (AC,AC), tp1 = ());
ϕ2: ((zip, zip) → (str, str), tp2 = ());
ϕ3: ((zip, zip) → (city, city), tp3 = ());
ϕ4: ((phn,Mphn) → (FN,FN), tp4[type] = (2));
ϕ5: ((phn,Mphn) → (LN,LN), tp5[type] = (2));
ϕ6: (([AC,phn], [AC,Hphn])→(str, str), tp6[type,AC]=(1,0800));
ϕ7: (([AC,phn], [AC,Hphn])→(city, city), tp7[type,AC]=(1,0800));
ϕ8: (([AC,phn], [AC,Hphn])→(zip, zip), tp8[type,AC]=(1,0800));
ϕ9: ((AC,AC) → (city, city), tp9[AC] = (0800)).

The dependency graph of Σ0 is depicted in Fig. 4. Note
that, for instance, there is an edge from ϕ1 to ϕ6 since the
rhs of ϕ1 (i.e., {AC}) is the subset of lhs of ϕ6 (i.e., {AC,
phn}); similarly for the other edges. ��

Procedure. Procedure TransFix is given in Fig. 5. It validates
attributes of t as follows. It first marks all the nodes in the
dependency graph as unusable (line 1). It then collects those
nodes (eRs) whose lhs and pattern attributes are validated,
puts them in a set vset (line 2), and marks them as usable
(line 3). Intuitively, for the eR ϕv represented by a usable v,
the attributes in t[Xv∪ X pv ] have already been validated, and
hence, ϕv can be possibly applied to t . The procedure uses
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Fig. 4 An example dependency graph

Fig. 5 Procedure TransFix

another set uset to maintain those eRs that are not yet usable
but may become usable later on (line 4).

The procedure iteratively makes use of eRs in vset to fix
attributes of t , and upgrades eRs from uset to vset (lines
5–15). In each iteration, a node v is randomly picked and
removed from vset (line 6). If a master tuple tm can be found
such that (tm, ϕv) applies to t , and moreover, if for the rhs
attribute Bv of ϕv, t[Bv] is not yet validated (line 7), then
t[Bv] is fixed using ϕv and tm , and Bv is included in Z ′
(line 8).

The procedure then inspects each edge (v, u) emanating
from v, to examine whether ϕu becomes usable (lines 9–15).
If u is in the candidate set uset, and moreover, if rhs(ϕu) and
rhsp(ϕu) are included in the extended Z ′ (line 10), then u is
added to vset, removed from uset (line 11), and is marked
usable (line 12). Otherwise, if u is in neither vset nor uset
(line 13), node u is added to vset if Xu ∪ X pu is a singleton
set containing Bv (line 14), or to uset if Xu ∪ X pu contains
other attributes besides Bv (line 15). Finally, the tuple t is
returned along with the extended Z ′ (line 16).

Example 12 Consider tuple t1 and the master data Dm of
Fig. 1, and the set Σ0 of eRs given in Example 11. Assume
that Z consists of zip only. Given Dm, Z and the dependency
graph G of Fig. 4, we show how procedure TransFix fixes

attributes of t1. As indicated in the table below, in iteration 0,
uset is empty, while ϕ1 is in vset since its X ∪ X p ⊆ Z ′;
similarly for ϕ2 and ϕ3.

iteration Z ′ vset uset
0 zip ϕ1, ϕ2, ϕ3 ∅
1 zip,AC ϕ2, ϕ3, ϕ9 ϕ6, ϕ7, ϕ8

2 zip,AC, str ϕ3, ϕ9 ϕ6, ϕ7, ϕ8

3 zip,AC, str, city ϕ9 ϕ6, ϕ7, ϕ8

4 zip,AC, str, city ∅ ϕ6, ϕ7, ϕ8

In iteration 1, TransFix picks and removes ϕ1 from vset.
It finds that ϕ1 and master tuple s1 (in Fig. 1) can be applied
to t1. Hence it normalizes t1[AC] := s1[AC] = 131, and
expands Z ′ by including AC. It adds ϕ9 to vset since X ∪ X p

of ϕ9, i.e., {AC}, is validated. Moreover, ϕ6–ϕ8 are added to
uset, since while AC is validated, attributes phn and type
are not yet. In iteration 2 (resp. 3), ϕ2 (resp. ϕ3) is selected
from vset, and str (resp. city) is fixed by matching s1. Here
t1 is updated by t1[str] := s1[str] = 51 Elm Row.

In iteration 4, ϕ9 is selected and removed from vset.
No change is incurred to t since city is already validated.
TransFix terminates since vset is now empty. ��
Correctness. Observe the following. (1) Each eR is used
at most once. When a node is removed from vset, it will
not be put back. Since the size of vset is at most the num-
ber card(Σ) of eRs in Σ , the while loop (lines 5–15) iter-
ates at most card(Σ) times. (2) When applying (tm, ϕ) to
t, t[X ∪X p] have already been validated; thus t[B] is ensured
correct. (3) All the eRs that are possibly usable are examined.
Hence, when TransFix terminates, no more attributes of t
could be fixed given Z .

Complexity. Let G(V, E) be the dependency graph of Σ .
Note that |V | = card(Σ). The initialization of TransFix
runs in O(|Σ |) time (lines 1–4), by employing a hash table.
As argued above, at most |V | iterations of the outer loop
(lines 6–15) are executed, since each iteration consumes at
least one eR inΣ . The inner loop (lines 10–15) is run at most
|V | times for each outer iteration (i.e., checking all eRs inΣ).
In addition, observe the following: (a) checking containment
and intersection of two attribute sets (Xu ∪ X pu ) and Z ′ is in
O(|Xu ∪ X pu |) time if we use a hash table; and (b) it takes
constant time to check whether there exists a master tuple
that is applicable to t with an eR, by using a hash table that
stores tm[Xm] as a key for tm ∈ Dm . Putting these together,
each outer iteration is in O(|Σ |) time, and hence, TransFix
is in O(|V ||Σ |) time, which is at most O(|Σ |2). In practice,
|Σ | is typically small.

5.2 Suggest: Generating new suggestions

To present procedure Suggest, we first define suggestions
and state the problem of finding suggestions.
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Suggestions. Consider a tuple t , where t[Z ] has been vali-
dated. A suggestion for t w.r.t. t[Z ] is a set S of attributes
such that there exists a certain region (Z ∪ S, {tc}), where tc
is a pattern and t[Z ] satisfies tc[Z ].

That is, if the users additionally assert that t[S] is correct
and t[Z ∪ S] matches some certain region, then a certain fix
is warranted for t .

Example 13 Recall from Example 12 that t1[Z ] is fixed by
using Σ0 and Dm , where Z = {zip,AC, str, city}. Let S =
{phn, type, item}. One can verify that S is a suggestion for
t1 w.r.t. t1[Z ]. Indeed, (Z ∪ S, {tc}) is a certain region for
(Σ0, Dm), where tc =
(EH7 4AH, 131, 51 Elm Row,Edi
︸ ︷︷ ︸

Z

, 079172485, 2, _
︸ ︷︷ ︸

S

). ��

The users would naturally want a suggestion as “small” as
possible, so that they need to make minimal efforts to ensure
some attributes of t to be correct. This motivates us to study
the following problem.

The S-minimum problem is to decide, given (Σ, Dm), a
set t[Z ] of attributes that has been validated, and a positive
integer K , whether there exists a non-empty set S of attri-
butes such that (a) Z ∩ S = ∅ (b) |S| ≤ K and (c) S is a
suggestion for t w.r.t. t[Z ].

Observe that the Z -minimum problem (Sect. 4) is a special
case of the S-minimum problem when no attribute is fixed
initially (i.e., Z = ∅). From this and Theorems 12 and 17
it follows that the S-minimum problem is np-complete and
approximation-hard.

These complexity bounds suggest that we develop heuris-
tic algorithms to compute suggestions, along the same lines
as computing certain regions, as discussed in [20]. When
computing Z -minimum certain regions, all eRs need to be
considered [20]. When it comes to suggestions, in contrast,
attributes t[Z ] are already validated, which can be used to
reduce the search space of eRs by refining some eRs and
leaving the others out.

To do this we use the following notations. For an eR

ϕ = ((X, Xm) → (B, Bm), tp[X p]) and a list Xi of
attributes in X , we use λϕ(Xi ) to denote the correspond-
ing attributes in Xm . For instance, when (Xi , Xmi ) =
(ABC, Am BmCm), λϕ(AC) = AmCm . We also write ϕ+ =
((X, Xm) → (B, Bm), t+p [X+

p ]), where X p ⊆ X+
p , i.e., ϕ+

differs from ϕ only in the pattern.
Consider a setΣ of eRs, a master relation Dm , an input tu-

ple t , and attributes Z such that t[Z ] is fixed using TransFix.
For an eR ϕ inΣ (1) if there exists no tuple tm ∈ Dm such that
(ϕ, tm) applies to t , then ϕ cannot be used to fix t ; otherwise
(2) we may extend the pattern of ϕ and refine its values with
t[Z ], which yields ϕ+. Hence we introduce the following
notion.

The set of applicable rules for t[Z ] w.r.t. Σ , denoted as
Σt[Z ], consists of eRs ϕ+ defined as follows. For each ϕ in

Σ,ϕ+ is derived from ϕ if (a) B �∈ Z ; (b) tp[X p ∩ Z ] ≈
t[X p ∩ Z ]; and (c) there exists a master tuple tm ∈ Dm ,
where tm[λϕ(X p ∩ X)] ≈ tp[X p ∩ X ] and tm[λϕ(X ∩ Z)] =
t[X ∩ Z ]. Here in ϕ+ (i) X+

p = X p ∪ (X ∩ Z) and (ii)
t+p [X+

p ∩ Z ] = t[X+
p ∩ Z ].

Intuitively, ϕ+ can be derived from ϕ if ϕ does not
change the validated attributes (i.e., (a) above), matches them
(i.e., (b)), and moreover, if there exists some master tuple that
can be applied to t with ϕ (i.e., (c)). The refined rule ϕ+ ex-
tends the pattern attributes of ϕ with Z (i.e., (i) above), and
enriches its pattern values using the specific values of t[Z ]
(i.e., (ii)).

Example 14 For t1[zip,AC, str, city] validated in Exam-
ple 12, applicable rules in Σt1[zip,AC,str,city] include:

ϕ4: ((phn,Mphn) → (FN,FN), tp4[type] = (2));
ϕ5: ((phn,Mphn) → (LN,LN), tp5[type] = (2));
ϕ+

6 :(([AC,phn], [AC,Hphn]) → (str, str), tp6[type,AC]=(1,131));
ϕ+

7 :(([AC,phn], [AC,Hphn])→(city, city), tp7[type,AC]=(1,131));
ϕ+

8 :(([AC,phn], [AC,Hphn]) → (zip, zip), tp8[type,AC]=(1,131));

Here ϕ4 and ϕ5 are taken fromΣ0, while ϕ+
6 is derived from

ϕ6 by refining tp6[AC] (from 0800 to 131), when t1[AC] is
known to be 131; similarly for ϕ+

7 and ϕ+
8 . ��

We show below that it suffices to consider Σt[Z ].

Proposition 20 When t[Z ] is assured correct, S is a sug-
gestion for t iff there exists a pattern tuple tc such that (Z ∪
S, {tc}) is a certain region for (Σt[Z ], Dm).

Proof Assume that there exists tc such that (Z ∪ S, {tc}) is a
certain region for (Σt[Z ], Dm). We show that S is a suggestion
by constructing a pattern tuple t ′c such that (Z ∪ S, {t ′c}) is a
certain region for (Σ, Dm). Consider t ′c, where t ′c[Z ] = t[Z ]
and t ′c[S] = tc[S]. One can easily verify the following. (1)
(Z ∪ S, {t ′c}) is a certain region for (Σt[Z ], Dm); (2) the set of
attributes covered by (Z ∪ S, {t ′c},Σ, Dm) is the same as the
set covered by (Z ∪ S, {t ′c},Σt[Z ], Dm); and (3) (Σt[Z ], Dm)

is consistent w.r.t. (Z ∪S, {t ′c}) iff (Σ, Dm) is consistent w.r.t.
(Z ∪ S, {t ′c}). From these it follows that (Z ∪ S, {t ′c}) is also
a certain region for (Σ, Dm).

Conversely, assume that S is a suggestion. Then there
exists a certain region (Z ∪ S, {tc}) for (Σ, Dm). We define a
pattern tuple t ′c, where t ′c[Z ] = t[Z ] and t ′c[S] = tc[S]. One
can show that (Z ∪S, {t ′c}) is a certain region for (Σt[Z ], Dm).
Indeed, this can be verified along the same lines as the argu-
ment given above. ��

Procedure Suggest. Leveraging Proposition 20, we outline
procedure Suggest in Fig. 6. It takes Σ, Dm, Z and t as
input, and finds a suggestion as follows. It first derives appli-
cable rulesΣt[Z ] fromΣ and t[Z ] (line 1). It then computes
a certain region for (Σt[Z ], Dm) (line 2), by employing the
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Fig. 6 Procedure Suggest

algorithm provided in [20]. Finally, it constructs and returns
a new suggestion (line 3).

Correctness and complexity. The correctness of Suggest
follows from the definition of suggestions and Proposi-
tion 20. For its complexity, observe the following. (1) The set
Σt[Z ] can be derived fromΣ and t[Z ] in O(|Σ | + |t |) time,
by employing the indices developed for Procedure TransFix.
Indeed, the conditions for applicable rules can be checked in
constant time. (2) The algorithm of [20] computes a certain
region in O(|Σt[Z ]|2|Dm |log(|Dm |)) time, where |Σt[Z ]| ≤
|Σ |. Hence Suggest is in O(|Σ |2|Dm |log(|Dm |)) time.

Optimization. It is quite costly to compute a certain region in
each round of user interactions. This motivates us to develop
an optimization strategy, which aims to minimize unneces-
sary recomputation by reusing certain regions computed ear-
lier. In a nutshell, when processing a stream of input tuples of
schema R, we maintain certain regions generated for them.
When a new input tuple t arrives, we check whether some
region computed previously remains a certain region for fix-
ing t . If so, we simply reuse the region, without computing a
new one starting from scratch. We compute new suggestions
only when necessary. As will be verified by our experimental
study, this reduces the cost significantly, since it is far less
costly to check whether a region is certain than computing
new certain regions [20].

We maintain previously computed certain regions by
using a binary decision diagram (BDD) [29]. A BDD is a
directed acyclic graph Gb = (Vb, Eb). Each node u in Vb

represents either a condition or a call for Suggest, and it
has at most two outgoing edges. The root of Gb is denoted

as start. Each edge (u, v) is labeled with a pair (bval,act),
where bval is either Boolean value true or false; and act is
an action, which provides a suggestion if bval is true, and
generates new suggestions otherwise.

Example 15 Consider the evolution of a BDD depicted in
Fig. 7. When no tuples have been processed, the BDD is
shown in Fig. 7a. Here the set Z of attributes taken from the
precomputed certain region is treated as the first suggestion,
as described in procedure TransFix. For the first input tuple
t1, if t1[Z ] does not match any certain region, a new sug-
gestion needs to be computed; hence the call for procedure
Suggest.

Assume that t1 is fixed with two suggestions S1 and S2.
Then BDD is expanded, as shown in Fig. 7b. Consider a
newly arrived tuple t2. If t2[Z ] does not satisfy any certain
region, TransFix expands the set Z ′ of validated attributes.
We check whether S1 is a suggestion w.r.t. t2[Z ′]. If so, the
true branch is followed and S1 is recommended to the users;
otherwise Suggest is invoked to generate a new suggestion.
Similarly, S2 is checked. If t2 still cannot be fixed with S2,
Suggest is invoked for both the true and the false branches
to produce a new suggestion. The new suggestion is added to
the BDD. After more tuples are fixed, the BDD may evolve to
Fig. 7c, which collects those certain regions generated when
processing these tuples. As shown above, these regions are
reused when processing new tuples. ��

Capitalizing on BDD, we present an optimized Suggest,
denoted as Suggest+, which is outlined in Fig. 8. It takes
t, Z ,Σ, Dm , a BDD Gb and a node u on Gb as input, and
finds a suggestion as follows.

Suggest+ traverses Gb top-down starting from its root,
i.e., the input u is initialized at start node. At each round
of interaction, a node u of Gb is visited, at which it checks
whether a precomputed suggestion associated with u remains
a suggestion for t . If not, it checks other previously com-
puted regions via a false branch (lines 1–2). Otherwise, it
recommends the same suggestion to the users, and moves

(a) (b) (c)

Fig. 7 A sample BDD, a initial state, b after a tuple t1 is fixed, c after several tuples are fixed
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Fig. 8 Procedure Suggest+

to the child of u via a true branch (lines 3–4). In the next
round of interaction, if needed, checking resumes at node u.
Suggest is invoked to compute new suggestions when no
known regions can be reused, and Gb is also maintained
(line 5). Finally, a suggestion is returned (line 6).

It implements a strategy to decide what suggestions are
maintained by a BDD (line 5), to strike a balance between
checking a set of suggestions and recomputing a certain re-
gion. It also compresses BDD to reduce the space cost. We
omit the details for space limit.

We revise CertainFix by using Suggest + instead of
Suggest, and refer to it as CertainFix+.

6 Experimental study

We next present an experimental study, using real-life data.
Two sets of experiments were conducted, to verify (1) the
effectiveness of our method in terms of the quality of sug-
gestions generated, measured by the number of attributes that
are correctly fixed in a round of user interactions; and (2) the
efficiency and scalability of our algorithm for finding fixes
and suggestions.

For the effectiveness study, we compared with the
following: (a) GRegion that greedily finds a certain region. It
chooses attributes according to one rule: at each stage, choose
an attribute which may fix the largest number of uncovered
attributes; and (b) IncRep, the algorithm in [14] for data
repairing; given a dirty database D and a set of constraints, it
is a heuristic method to make D consistent, i.e., finds a repair
D′ that satisfies the constraints and “minimally” differs from
D. It adopts a metric to minimize (1) the distance between
the original values and the new values of changed attributes
and (2) the weights of the attributes modified.

Experimental data. Real-life datasets were employed to
examine the applicability of our method in practice.
(1) hosp (Hospital Compare) is publicly available
from U.S. Department of Health & Human Services1.
We used three tables: HOSP, HOSP_MSR_XWLK, and
STATE_MSR_AVG, which record the hospital information,
the score of measurement of each hospital and the average

1 http://www.hospitalcompare.hhs.gov/.

score of each hospital measurement, respectively. We created
a big table by joining the three tables with natural join, among
which we chose 19 attributes for the schema of both the
master relation Rm and the relation R: zip, ST (state), phn,
mCode (measure code), measure name, sAvg (StateAvg),
hName (hospital name), hospital type, hospital owner,
provider number, city, emergency service, condition,
Score, sample, id, address1, address2, address3.

We designed 21 eRs for the hosp data, with five represen-
tative ones as follows:

ϕ1 : ((zip, zip) → (ST,ST), tp1[zip] = (nil));
ϕ2 : ((phn, phn) → (zip, zip), tp2[phn] = (nil));
ϕ3 : (((mCode, ST), (mCode, ST)) → (sAvg,sAvg), tp3 = ());
ϕ4 : (((id, mCode), (id, mCode)) → (Score,Score), tp4 = ());
ϕ5 : ((id, id) → (hName,hName), tp5 = ()).

(2) dblp is from the dblp Bibliography2. We first trans-
formed the xml data into relations. We then created a big
table by joining the inproceedings data (conference papers)
with the proceedings data (conferences) on the crossref attri-
bute (a foreign key). Besides, we also included the homepage
info (hp) for authors, which was joined by the homepage en-
tries in the dblp data.

From the big table, we chose 12 attributes to specify the
schema of both the master relation Rm and the data relation
R, including ptitle (paper title), a1 (the first author), a2 (the
second author), hp1 (the homepage of a1), hp2 (the home-
page of a2), btitle (book title), publisher, isbn, crossref,
year, type, and pages.

We designed 16 eRs for the dblp data, shown below.

φ1 : ((a1, a1) → (hp1, hp1), tp1[a1] = (nil));
φ2 : ((a2, a1) → (hp2, hp1), tp2[a2] = (nil));
φ3 : ((a2, a2) → (hp2, hp2), tp3[a2] = (nil));
φ4 : ((a1, a2) → (hp1,hp2), tp4[a1] = (nil));
φ5 : (((type, btitle, year), (type, btitle, year)) →

(A, A), tp5[type] = (‘inproceeding’));
φ6 : (((type, crossref), (type, crossref) →

(B, B), tp6[type] = (‘inproceeding’));
φ7 : (((type, a1, a2, title, pages), (type, a1, a2, title, pages)) →

(C, C), tp7[type] = (‘inproceeding’)).

where the attributes A,B and C range over the sets {isbn,
publisher, crossref}, {btitle, year, isbn,publisher} and
{isbn,publisher, year,btitle, crossref}, respectively.

Observe that in eRs φ2 and φ4, the attributes are mapped
to different attributes. That is, even when the master relation
Rm and the relation R share the same schema, some eRs still
could not be syntactically expressed as cfds, not to mention
their semantics.

A dirty data generator was developed. Given a clean data-
set (hosp or dblp), it generated dirty data controlled by three
parameters: (a) duplicate rate d%, which is the probability
that an input tuple matches a tuple in master data Dm , indi-
cating the relevance and completeness of Dm ; (b) noise rate

2 http://www.informatik.uni-trier.de/~ley/db/.
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n%, which is the percentage of erroneous attributes in input
tuples; and (c) the cardinality |Dm | of master dataset Dm .

User interactions. User feedback was simulated by provid-
ing the correct values of the given suggestions.

Implementation. All algorithms were implemented in C++.
The experiments were run on a machine with an Intel(R)
Core(TM)2 Duo P8700 (2.53 GHz) CPU and 4 GB of mem-
ory. Each experiment was repeated 5 times and the average
is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness. The tests were conducted by vary-
ing d%, |Dm | and n%, The default values for d%, |Dm | and
n% were 30%, 10K and 20%, respectively. When all these
parameters were fixed, we generated 10K tuples for this set
of experiments, but allowed the dataset to scale to 10M tuples
in the scalability study.

This set of experiments includes (1) the effectiveness of
certain regions generated by our algorithm compared with
GRegion; (2) the initial suggestion selection; (3) the effec-
tiveness of suggestions in terms of the number of interaction
rounds needed; (4) the impact of duplicate rate d%; (5) the
impact of master data size |Dm |; (6) the impact of noise rate
n%; and (7) the effectiveness of our method compared with
IncRep.

The studies were quantified at both the tuple level and
the attribute level. Since we assure that each fixed tuple is
correct, we have a 100% precision. Hence the first measure
we used is recall, defined as follows:

recallt = #-corrected tuples / #-erroneous tuples
recalla = #-corrected attributes / #-erroneous attributes

The number of corrected attributes does not include those
fixed by the users.

To compare with IncRep, we also used F-measure 3 to
combine recall and precision, since the precision of repairs
produced by IncRep is not 100%. Precision and F-measure
are given as follows:

precisiona = #-corrected attributes / #-changed attributes
F-measure = 2 · (recalla · precisiona)/(recalla + precisiona)

(1) The effectiveness of certain regions. The table below
shows the number of attributes in the certain region found by
our method CompCRegion [20] and its counterpart found
by GRegion. It shows that the certain region computed by
CompCRegion has far less attributes than its counterpart by
GRegion, which thus minimizes user efforts, as expected.
Indeed, CompCRegion found the best certain region (i.e.,
with the least number of attributes) for both datasets as a
suggestion.

3 http://www.en.wikipedia.org/wiki/F-measure.

(a) (b)

Fig. 9 Recall values w.r.t. the number of interactions a tuple-level
recalls, b attribute-level recalls

Dataset CompCRegion GRegion
HOSP 2 4
DBLP 5 9

(2) The initial suggestion selection. We evaluated the impact
of initial suggestions by using the certain region with the
highest quality (denoted by CRHQ) vs. the one with the me-
dian quality (CRMQ). As shown in the table below, when
CRHQ is used as the initial suggestion, CertainFix yields
higher F-measure values than its CRMQ counterpart. That
is, CRHQ allows CertainFix to automatically fix more attri-
butes than CRMQ.

Dataset F-measure
CRHQ CRMQ

HOSP 0.74 0.70
DBLP 0.79 0.69

(3) The effectiveness of suggestions. Fixing the three param-
eters, we studied recall w.r.t. user interactions.

Figure 9a shows the tuple-level recalls. The x-axis indi-
cates the number of interactions and the y-axis represents
recall values. It tells us that few rounds of interactions are
required to fix the entire set of attributes of an input tuple,
e.g., at most 4 (resp. 3) rounds for hosp (resp. dblp). Most
tuples could be correctly fixed within few interactions, e.g.,
93% (resp. 100%) of tuples are fixed in the third round for
hosp (resp. dblp).

Figure 9b reports the attribute-level recalls, to comple-
ment Fig. 9a. Among the errors fixed, some were automat-
ically corrected by our algorithm, while the others by user
feedback during the interactions. As remarked earlier, the
errors fixed by the users were not counted in our recall val-
ues. Hence recalla is typically below 100%. As shown in
Fig. 9b, our method could fix at least 50% of the errors within
2 rounds of interactions, although the errors were distributed
across all attributes, and moreover, only a portion of the errors
were fixable by the givenΣ and Dm given that the duplicate
rate d% is only 30%. One can see that the recall value at the
4th (resp. 3rd) round of interaction for hosp (resp. dblp) is
unchanged, indicating that the users corrected the attributes
that are irrelevant to Σ and Dm . As will be seen later, when
d% is increased, the attribute-level recall gets higher.
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(a) (b) (c)

(f)(e)(d)

Fig. 10 Tuple-level fixes when varying one of d%, |Dm | and n%. a varying d% for hosp, b varying |Dm | for hosp, c varying n% for hosp,
d varying d% for dblp, e varying |Dm | for dblp, f varying n% for dblp

(a) (b) (c)

(d) (e) (f)

Fig. 11 Attribute-level fixes when varying one of d%, |Dm | and n%. a varying d% for hosp, b varying |Dm | for hosp, chosp attribute-level w.r.t.
n%, d varying d% for dblp, e varying |Dm | for dblp, fdblp attribute-level w.r.t. n%

These experimental results verify that our method is able
to provide effective suggestions, such that all errors could be
fixed within few rounds of user interactions, by using eRs and
master data, even when the master data is not very relevant
(when d% = 30%).
(4) Impact of d%. Fixing |Dm | = 10K and n% = 20%,
we varied duplicate rate d% from 10 to 50%. Figures 10a

and d (resp. Figs. 11a, d) report the tuple-level recalls (resp.
F-measure) after k rounds of interactions for hosp and
dblp, respectively.

Figures 10a and d show that the larger d% is, the higher the
recall is, as expected, since a larger d% means a higher prob-
ability that an input tuple matches some master tuple such
that its errors can be fixed. A closer examination reveals that
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early interactions are more sensitive to d%, e.g., when k = 1,
the percentage of fixed tuples increases from 0.1 to 0.5, when
d% varies from 10 to 50%. In later interactions, e.g., the last
round when k = 4, the users have to ensure the correctness
of those attributes that cannot be fixed by eRs and Dm . Hence
recallt remains unchanged there.

Figures 11a and d further verify this observation: most
attributes are fixed by our method in early interactions, while
those fixed in later rounds are by the users’ feedback. More-
over, the gap between the first two rounds of interactions
(when k = 1 and k = 2) shows that the suggestions gener-
ated are effective.

The results tell us that our method is sensitive to dupli-
cate rate d%: the higher d% is, the more errors could be
automatically fixed, in early interactions.
(5) Impact of |Dm |. Fixing d% = 30% and n% = 20%,
we varied |Dm | from 5K to 25K . The tuple-level recalls
(resp. F-measure values) are reported in Figs. 10b and e
(resp. Figs. 11b, e) after k rounds of interactions for hosp
and dblp, respectively.

Figures 10b and e show that in the first round of inter-
actions, i.e., k = 1, recallt is insensitive to |Dm |. Indeed,
whether a certain fix exists or not in the first interaction
is determined by the duplicate rate d%, rather than |Dm |.
As shown in both figures, the recallt is 0.3 when k = 1,
exactly the same as d%. However, when interacting with the
users, the recall values increase for larger Dm . This verifies
that TransFix is effective, which identifies eRs and master
data to fix errors.

Figures 11b and e show that more attributes can be fixed
by increasing |Dm |, i.e., F-measure gets higher, even when
the recallt is unchanged (e.g., k = 1), i.e., when not the
entire tuple could be fixed. These results also confirm the
observations above about the sensitivity of later rounds of
interactions to |Dm |.

These results tell us that the amount of master data is
important to generating effective suggestions. The more the
master data, the higher possibility that eRs could find master
tuples to fix attributes, as expected.
(6) Impact of n%. Fixing d% = 30% and |Dm | = 10K ,
we varied the noise rate n% from 0.1 to 0.5. Figures 10c
and f (resp. Figs. 11c, f) show the tuple-level recalls (resp.
F-measure) after k rounds of interactions for hosp and
dblp, respectively.

The results show that our method is sensitive to n%
at neither the tuple level nor the attribute level. At the
tuple level (Figs. 10c, f), recallt is the ratio of the
number of corrected tuples to the number of erroneous
tuples. For a set of attributes asserted by the users, the attri-
butes fixed by our algorithm remain the same for all input
tuples, irrelevant to what attributes are originally erroneous.
At the attribute-level (Figs. 11c, f), since the precision
of our algorithm is 100%, F-measure is determined by

the recall values. As recallt is insensitive to n%, so is
F-measure.

(7) Comparison with IncRep. To favor IncRep, we fixed
k = 1, since IncRep does not interact with the users. Since
IncRep measures recall at the attribute level only [14], we
focus on F-measure. Figures 11a and d (resp. Figs. 11b, e)
show the F-measure values when varying d% (resp. |Dm |)
while fixing the other two parameters. The results tell us
that IncRep has slightly higher F-measure values than our
method. This is because IncRep attempts to repair the entire
tuple, while our method only corrects those attributes when
the fixes are certain in the first round of interaction, and defers
the repairing of the other attributes to later rounds upon the
availability of user feedback.

Figures 11c and f show that when the noise rate n% is
increased, the F-measure values of IncRep get substantially
lower, and are worse than ours. This is because IncRep intro-
duces more errors when the noise rate is higher. Our method,
in contrast, ensures that each fix is correct, and hence is insen-
sitive to n%.

Exp-2: Efficiency and scalability. This set of experiments
evaluated the efficiency of our method by varying the size
of Dm (resp. a set D of input tuples) in Figs. 12a and b
for hosp (resp. Figs. 12b, d for dblp). We report the average
elapsed time for each round of interaction, i.e., the time spent
on fixing tuples in D and for generating a suggestion. Here
CertainFix and CertainFix+ denote the algorithm that does
not use BDD and employs BDD, respectively.

Figures 12a and b show that our method takes no more
than a second to fix attributes of a tuple and to come up
with a suggestion. Further, the optimization strategy by using
BDD is effective: it substantially reduces the response time.
Moreover, both CertainFix and CertainFix+ scale well with
master data.

As shown in Figures 12c and d, CertainFix is insen-
sitive to |D|, since each input tuple is processed indepen-
dently. For CertainFix+, when |D| is very small (e.g., 10),
BDD does not help us find suggestions, and the elapsed time
of CertainFix+ is similar to the time of CertainFix; when
|D| increases from 10 to 100, the response time is signifi-
cantly reduced since more suggestions could be found with
BDD; when |D| > 100, BDD can provide effective sugges-
tions such that the average elapsed time remains unchanged,
around 0.1 s.

Summary. The experimental results show the followings.
(1) The initial suggestions computed by our method are more
effective than those found by greedy approaches. (2) Our
method is effective: it mostly takes less than four rounds
of user interactions to find a certain fix for an input tuple.
(3) The number of interactions highly depends on the rele-
vance of an input tuple to the master data, i.e., d%, and |Dm |
to a lesser extent. (4) Our method is insensitive to the error
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(a) (b) (c) (d)

Fig. 12 Efficiency and scalability. a varying |Dm | for hosp, b Varying |Dm | for dblp, c varying |D| for hosp, d varying |D| for dblp

rate n%. It outperforms the repairing method of [14] when
the error rate is high, even with two or three rounds of inter-
actions. (5) Our algorithm scales well with the size of Dm .
(6) The optimization strategy with BDD is effective in finding
suggestions with low latency.

It should be remarked that data monitoring incurs extra
overhead of fixing input tuples for the database engine. Nev-
ertheless, as pointed out by [37], it is far less costly to correct
a tuple at the point of data entry than fixing it afterward. The
need for this is particularly evident when it comes to critical
data. In addition, as verified by our experimental results, the
extra cost is rather small since effective suggestions (Exp-1
(1–3)) and certain fixes (Exp-2) can be generated efficiently,
below 0.2 s in average with CertainFix+ (Fig. 12).

7 Conclusion

We have proposed editing rules that, in contrast to constraints
used in data cleaning, are able to find certain fixes for in-
put tuples by leveraging master data. We have identified
fundamental problems for deciding certain fixes and certain
regions, and established their complexity bounds. We have
also developed a framework to compute certain fixes at the
point of data entry, by interacting with users, along with
its underlying algorithm and optimization techniques. Our
experimental results with real-life data have verified the
effectiveness, efficiency and scalability of our method. These
yield a promising method for data monitoring.

This work is just a first step toward repairing data with cor-
rectness guarantees. One topic for future work is to efficiently
find certain fixes for data in a database, i.e., certain fixes in
data repairing rather than monitoring. Another topic is to
develop data repairing and monitoring methods with correct-
ness guarantees in the absence of high-quality master data.
Finally, effective algorithms have to be in place for discover-
ing editing rules from sample inputs and master data, along
the same lines as discovering other data quality rules [12,26].
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