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Summary
In their mammalian host trypanosomes generate ‘stumpy’ forms from proliferative ‘slender’ forms as an adaptation for transmission to
their tsetse fly vector. This transition is characterised by the repression of many genes while quiescent stumpy forms accumulate during

each wave of parasitaemia. However, a subset of genes are upregulated either as an adaptation for transmission or to sustain infection
chronicity. Among this group are ESAG9 proteins, whose genes were originally identified as a component of some telomeric variant
surface glycoprotein gene expression sites, although many members of this diverse family are also transcribed elsewhere in the genome.

ESAG9 genes are among the most highly regulated genes in transmissible stumpy forms, encoding a group of secreted proteins of cryptic
function. To understand their developmental silencing in slender forms and activation in stumpy forms, the post-transcriptional control
signals for a well conserved ESAG9 gene have been mapped. This identified a precise RNA sequence element of 34 nucleotides that

contributes to gene expression silencing in slender forms but also acts positively, activating gene expression in stumpy forms. We
predict that this bifunctional RNA sequence element is targeted by competing negative and positive regulatory factors in distinct
developmental forms of the parasite. Analysis of the 39UTR regulatory regions flanking the highly diverse ESAG9 family reveals that
the linear regulatory sequence is not highly conserved, suggesting that RNA structure is important for interactions with regulatory

proteins.

Key words: Differentiation, Gene expression, Trypanosoma brucei

Introduction
African trypanosomes are parasites of sub-Saharan Africa that
survive in the bloodstream of their mammalian hosts through

their expression of a variable surface glycoprotein (VSG) coat
(Rudenko, 2011). In order to evade immunity, this coat can be
changed through the expression of different representatives of a

large repertoire of vsg genes, that are expressed from telomeric
expression sites, only one of which is active at any one time. The
activity of vsg expression sites is controlled at the level of

transcription, this being apparently linked to their physical
association with a sub-nuclear expression site body (Navarro and
Gull, 2001; Navarro et al., 2007), which ensures monoallelic
expression (Borst, 2002). In the tsetse fly vector, responsible for

the transmission of trypanosomes, the VSG coat is replaced by a
coat of procyclin molecules, this also being linked to the
activation of the procyclin gene promoter and the inactivation of

the vsg gene expression site promoter (Landeira and Navarro,
2007). In both the case of vsg and procyclin gene expression,
transcription is unusual in being driven by RNA polymerase I

(Günzl et al., 2003; Rudenko et al., 1989), this being made
possible because all trypanosome mRNAs are capped by trans
splicing of an RNA polymerase II transcribed leader sequence

(Clayton, 2002; Kooter et al., 1987; Zomerdijk et al., 1991).

Although vsg and procyclin mRNAs are the major products
of their respective transcription units, other genes are also

co-transcribed in each locus. Most notably, the vsg expression
site contains a number of expression site associated genes

(ESAG) positioned between the upstream vsg promoter and

telomeric vsg gene (Cully et al., 1985; Kooter et al., 1987; Pays
et al., 1989). The function of these is largely unknown, although

ESAG6 and 7 (positioned closest to the expression site promoter)
encode a heterodimeric transferrin receptor (Salmon et al., 1994),

ESAG4 encodes an adenylate cyclase activity (Paindavoine et al.,

1992) and, exclusively in Trypanosoma brucei rhodesiense, SRA

encodes a gene that enables resistance to the trypanolytic

component of human serum (Pays et al., 2001; Xong et al.,

1998). Although expression site associated genes are defined by
their co-association with the vsg gene, several ESAG gene

families also have representatives positioned outside expression
sites. These are transcribed as part of RNA-polymerase-II-driven

polycistronic arrays that generate the mRNAs for all non-

expression site protein coding genes. These genes are often
termed GRESAGs (gene related to ESAGs) (Pays et al., 2001).

Although positioned outside vsg expression sites, GRESAGs can
also be functional; members of the ESAG4 family have a function

in both cytokinesis and early establishment of trypanosome

infections in the mammalian host, for example (Salmon et al.,
2012a; Salmon et al., 2012b).

One unusual ESAG family is the ESAG9 gene family (Florent

et al., 1991). These genes are highly diverse and rarely found as
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components of conventional vsg expression sites, most copies

being located within polycistronic transcription units positioned

at chromosomal internal and sub-telomeric regions (Barnwell

et al., 2010; Hertz-Fowler et al., 2008). The protein products of

ESAG9 genes are of unknown function, although they are

secreted by bloodstream form parasites, potentially to assist

infection chronicity or transmission (Barnwell et al., 2010). Most

interestingly, however, ESAG9 genes show developmental

expression in the mammalian bloodstream, being expressed

only upon development of the bloodstream parasites toward

stumpy forms (Barnwell et al., 2010; Jensen et al., 2009),

transmission stages that accumulate at the peak of each wave of

parasitaemia (MacGregor et al., 2012). This differentiation event

occurs in response to a density sensing mechanism that the

parasites use to monitor the parasitaemia and thereby ensure the

production of transmission stages (Reuner et al., 1997; Vassella

et al., 1997). This serves both to prevent the parasite from

overwhelming the host and also to prepare the parasite for

transmission. These developmental processes involve a form of

quorum sensing in which a parasite-derived signal (stumpy

induction factor) is detected, this stimulating the cell cycle arrest

of parasites, and their morphological progression from

proliferative slender forms, through intermediate forms to

stumpy forms (Fig. 1A) (MacGregor et al., 2011; MacGregor

et al., 2012). These events occur via a defined developmental

pathway in the bloodstream, some aspects of which can be

mimicked in vitro using cell permeable cAMP or AMP analogues

(Laxman et al., 2006; MacGregor and Matthews, 2012; Vassella

et al., 1997). In vivo, the upregulation of ESAG9 transcripts is one

of the earliest events during stumpy formation, with these genes

being among the most highly expressed mRNAs during the

transition from intermediate to stumpy cells. This involves the

elevated expression of many different ESAG9 family members

and so is not restricted to expression associated copies of the gene

(Barnwell et al., 2010). Hence, the ESAG9 genes provide an

example of a stringently and coordinately regulated gene family

that is developmentally expressed in response to the parasites’

quorum-sensing signal.

In contrast to differential gene regulation between bloodstream

and tsetse midgut forms, developmental gene expression in

stumpy forms presents some interesting challenges to the

parasite. Firstly, stumpy forms are quiescent such that stumpy

expressed molecules must escape the translational repression

enforced on most genes (Brecht and Parsons, 1998; P. Capewell,

S. M., A. Ivens, P. MacGregor, K. Fenn, P. Walrad, F. Bringaud,

T. Smith and K. R. M., unpublished data). Secondly, stumpy-

enriched gene expression is exclusively the product of a

developmental signalling pathway that is parasite intrinsic,

contrasting with the wide-ranging environmental signals that

govern development upon entry to the tsetse fly (e.g. temperature,

glucose levels, pH etc.) (Schwede et al., 2011). Finally, genes

that are activated in stumpy forms must also be held silent in

slender forms, and this repression must be alleviated upon

development in the bloodstream. For these reasons, we have

sought to understand developmental gene expression in the

mammalian bloodstream, particularly focusing on the small set of

genes enriched in stumpy forms. To date, one stumpy enriched

molecule has been characterised – PAD1, a carboxylate

transporter protein important in the perception of the

differentiation signal as stumpy forms enter the tsetse fly (Dean

et al., 2009). For this molecule, an analysis of the regulatory

signals confirmed the importance of its 39UTR, but sequences

important in developmental regulation were difficult to precisely

define, being complex and dispersed (MacGregor and Matthews,

2012).

Here, we have exploited the striking developmental control of

the co-regulated ESAG9 gene family to better understand

developmental regulation in the mammalian bloodstream. This

has identified a highly defined short regulatory RNA motif that

ensures ESAG9 gene silencing in slender forms. Moreover, the

same element is responsive to cAMP analogues that intersect

with the stumpy induction pathway and also to SIF itself, such

that it promotes gene expression in stumpy forms. This identifies

this bifunctional RNA element as among the most precisely

defined post-transcriptional regulatory elements identified in

trypanosomes to date and the first well characterised element

operating in the disease and transmission relevant bloodstream

forms of the parasite.

Results
The ESAG9-EQ 39UTR contributes to gene expression
silencing in slender forms

In order to analyse ESAG9 gene regulation, we used as a model

Tb927.5.4620 (henceforth termed ESAG9-EQ), which is most

closely related to ESAG9 genes originally identified as an

expression site component in Trypanosoma equiperdum [67%

Fig. 1. The biological and experimental basis of this study.

(A) Representation of the events accompanying the differentiation

from slender to stumpy forms during trypanosome development in

the mammalian bloodstream. (B) Schematic diagram of the

subcloning strategy for 39UTR analysis with a CAT reporter gene

assay, showing the region of the CAT449 vector with the

chloramphenicol acetyl transferase (CAT), phleomycin resistance

(BLER), and b-tubulin genes. The aldolase (ALD) 59UTR and

truncated 39UTR (DALD) flank the CAT gene, with the DALD

39UTR conferring constitutive expression (Mayho et al., 2006)

since it is not developmentally regulated (Biebinger et al., 1997).

Replacement of the 39UTR with an experimental UTR used the

BamHI and BbsI restriction enzyme sites. The 39UTR deletion

series (350 nt, 300 nt, 250 nt 39UTR sequences) were generated

with PCRs using forward primers designed to create ,50 nt

sequential deletions along the UTR from the 59 end. The diagram

is not to scale.

T. brucei developmental control 2295
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and 84% amino acid similarity to ESAG9u and ESAG9c (Florent

et al., 1991), respectively], and also highly related to an

expression site linked copy in T. brucei s427 identified by

TAR cloning (Young et al., 2008) (88% similarity). This gene

was also confirmed as being stumpy-enriched in different strains

of T. brucei (Barnwell et al., 2010), with Digital SAGE analysis

indicating fivefold higher mRNA expression in stumpy forms

than in slender forms (data not shown). Initially, a CAT reporter

gene assay approach was used to assess the contributions of the

ESAG9 39UTR sequence to the control of gene expression

(Fig. 1B). This approach has previously been used successfully to

map 39UTR control elements of COX genes (Mayho et al., 2006)

and PAD1 (MacGregor and Matthews, 2012). The nearest gene

annotated downstream of ESAG9-EQ in the T. b. brucei TREU

927/4 genome sequence is Tb927.5.4630, generating an

intergenic region of 3057 bp. Since this provided too large a

region for further manipulation, only 400 nucleotides (nt)

downstream of the ESAG9-EQ gene was included for analysis,

this extending beyond the mapped polyadenylation site for the

ESAG9-EQ transcript (positioned at ,380 nt relative to the stop

codon; K. M. and S. M., unpublished observations). This

generated the construct ‘ESAG9-EQ 39UTR full length’, which

was transfected in to monomorphic bloodstream form T. brucei

Lister 427 in parallel with the same construct bearing the

truncated aldolase 39UTR as a control (DALD; unmodified

vector; Fig. 1B). Monomorphic lines are laboratory-adapted

forms that have lost the ability to produce stumpy forms but

which are much more readily cultured and transfected than

pleomorphic lines that can generate stumpy forms. For this and

all subsequent analyses, at least two independent cell lines were

analysed for each construct, and protein assays were carried out

in triplicate.

In comparison to the DALD construct, the ESAG9-EQ 39UTR

full length construct showed reduced CAT protein (2661.7% of

DALD, which was normalised to 100% in all experiments;

Fig. 2A) and mRNA expression (34.5% of DALD; Fig. 2A,B).

This indicated that the ESAG9-EQ 39UTR repressed CAT

expression in monomorphic slender forms. In order to map

sequences that might contribute to this repression a deletion

series was constructed that progressively deleted, from the CAT

gene stop codon, 50–150 nt of the 400 nt ESAG9 intergenic

sequence. Each of these sequences was predicted to retain the

ESAG9 polyadenylation site. Interestingly, investigation of the

deletion series constructs after transfection into T. brucei

revealed that the repression seen with the intact 39UTR was

reduced with the 350 nt and 250 nt constructs, where CAT

protein expression increased to 4762.5% and 7763.2%,

respectively. In contrast, repression was retained with the

Fig. 2. Deletion analysis of regulatory regions in the ESAG9-

EQ 39UTR. (A). CAT protein (upper panel) and mRNA (lower

panel) expression from the constructs shown, as a percentage of

expression from one clone of the DALD 39UTR control. The

number of biological replicates (independently derived clones)

used was: full-length: 5, 350 nt: 2, 300 nt: 3, 250 nt: 3; each with

1–2 experimental replicates. Values are means 6 standard error

of the mean (s.e.m.) of biological replicates for the protein

expression, and means 6 the lower and upper values from two

replicates is shown for mRNA expression, these being derived

from B). At the left of the graphs are schematic representations of

the sequence analysed in each construct, where ‘A’ indicates the

polyadenylation site location and the red line indicates the

regulatory element location. (B) Northern blot analysis of CAT

mRNA, with RNA from the DALD vector and two biological

replicates of each of the full-length, 350 nt, 300 nt and 250 nt

constructs. The lower panel shows the ethidium bromide staining

of the rRNA present in each sample, analysed to indicate the

loading of each lane. Below the lower blot are values of CAT

mRNA abundance following normalisation to rRNA as a

percentage of that obtained for the unmodified vector. The upper

bands in all lanes represent a bicistronic transcript always

detected using this construct (e.g. Mayho et al., 2006).

Journal of Cell Science 126 (10)2296
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300 nt construct, since CAT protein expression was only 32% of
that seen for the control vector containing the DALD 39UTR

(Fig. 2A), similar to that of the intact ESAG9 39UTR (26%).
Fig. 2B shows that for each deletion construct, the RNA
expression level followed the same trend as the pattern of
protein expression, such that CAT mRNA expression increased

with the 350 nt deletion construct (45% the level CAT mRNA of
DALD), decreased with the 300 nt construct (34%) and increased
again with the 250 nt construct (60%). In each case, the sizes of

the transcripts observed were consistent with the 39UTR deletions
incorporated into the reporter construct, indicating use of the
endogenous polyadenylation site.

These results could indicate that regions that negatively
regulate gene expression are deleted with the first 50 nt
deletion (350 nt) and final 50 nt deletion (250 nt), with an
additional region that positively regulates expression being

deleted within the second 50 nt deletion (300 nt). Alternatively,
the same outcome could be generated if a single negative
regulatory secondary structure was disrupted in the 350 nt and

250 nt deletion, but able to form in the 300 nt deletion.
Therefore, Sfold analysis (Ding et al., 2004) was carried out to
identify potential structures within the ESAG9 39UTR and its

deletion mutants.

The Sfold ensemble centroid RNA structure prediction for the
intact 39UTR is provided in Fig. 3A, whereas the other deletion

mutants are shown in supplementary material Fig. S2.
Interestingly, the two constructs that confer repression of CAT
gene expression, the full length 39UTR and 300 nt 39UTR, are

predicted to possess a stem-loop structure (boxed in Fig. 3A;
supplementary material Fig. S2) that is absent from the other two

ensemble centroid structures, either because it is not predicted to
form (350 nt 39UTR construct) or because some of the sequence
forming the structure has been deleted (250 nt 39UTR construct).
Although such predictions are speculative they provided a

framework for further investigation of regulatory sequences
within the ESAG9-EQ 39UTR. Hereafter, the sequence contained
within the boxed region contributing to the potential structure is

referred to as the ESAG9-EQ regulatory element (‘e’).

Is ESAG9 39UTR ‘e’ responsible for the repression of gene
expression in monomorphic slender forms?

To assess whether the ESAG9-EQ 39UTR potential regulatory
element contributed to the repression of CAT reporter gene
expression, this 34 nt sequence was deleted from the full-length

39UTR sequence, removing nt 132–164. Initially, the predicted
structure of the deleted 39UTR sequence was analysed by Sfold,
the resulting centroid structure demonstrating that the overall

folding prediction for the remaining 39UTR sequence was similar
to that of the intact 39UTR with the exception of the removed
regulatory element (Fig. 3B). The resulting deletion construct

(ESAG9-EQ 39UTR ‘eD’) was therefore transfected into
monomorphic cells and level of CAT reporter protein and RNA
analysed in independent clonal lines.

Fig. 4 demonstrates that in comparison to the full-length
ESAG9 39UTR, the eD construct alleviated some of the
repression of CAT expression, such that the level of CAT

Fig. 3. RNA secondary structure predictions for

ESAG9-EQ 39UTR sequences. The Sfold (http://

sfold.wadsworth.org/cgi-bin/index.pl) software

package Srna was used to predict the structure of the

ESAG9-EQ 39UTR. Shown are the Ensemble

Centroid structures generated for the full-length

ESAG9-EQ 39UTR (A) and the ESAG9-EQ eD

39UTR (B).

T. brucei developmental control 2297
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protein was 5365.2% of the DALD control, compared with

2661.7% for the intact ESAG9-EQ 39UTR. In contrast, when the
34 nt regulatory element was inserted into the 39UTR of the
truncated aldolase 39UTR (generating construct ‘CAT DALD eI’)
at a position predicted to conserve its structure, and the overall

structure of the remainder of the truncated aldolase 39UTR, little
overall repression of reporter expression was observed (CAT
DALD eI 9066% with respect to the DALD expression). RNA

levels also followed the same trend as protein levels (Fig. 4B).

These experiments indicated that in monomorphic cells the
regulatory element contributed to the repression of reporter gene
expression in the ESAG9-EQ 39UTR. However, insertion of this

element into another 39UTR from a constitutively expressed gene
did not repress expression.

Is the ESAG9-EQ 39UTR responsible for the control of gene
expression in ‘stumpy-like’ forms?

The developmental expression of genes in bloodstream stumpy
form trypanosomes could result from a combination of both

repression in slender forms (developmental negative regulation)
and/or activation in stumpy forms (developmental positive
regulation). We decided to examine the potential for positive

regulation in the monomorphic reporter lines generated earlier by
inducing cells to become ‘stumpy-like’ using the cell permeable
cAMP analogue 8-pCPT-29-O-Me-cAMP (Laxman et al., 2006;
MacGregor and Matthews, 2012; Vassella et al., 1997). Although

this analogue provides a limited proxy for stumpy formation, it
promotes cell growth arrest and enhances differentiation to
procyclic forms, and also activates the expression of a reporter

gene linked to another stumpy enriched transcript, PAD1

(MacGregor and Matthews, 2012). Hence, it provided a useful
tool for the analysis of gene expression activation in stumpy-like

forms driven by the ESAG9-EQ 39UTR.

The results for the various 39UTR constructs exposed, or not,
to 10 mM 8-pCPT-29-O-Me-cAMP for 48 hours are shown in

Fig. 5. For each cell line, the response to exposure to the drug is
presented as the fold change in CAT protein levels compared to

cells exposed to DMSO in place of 8-pCPT-29-O-Me-cAMP,
with the analysis being corrected for cell number under each

treatment. For the DALD reporter, treatment with 8-pCPT-29-O-
Me-cAMP generated a 1.3-fold elevation in reporter activity,

which was reproducible between different cell lines
(supplementary material Fig. S1). In contrast, the full-length

ESAG9-EQ 39UTR reporter line exhibited 2.2-fold increase in
CAT protein expression after 8-pCPT-29-O-Me-cAMP treatment,

compared to the same cells exposed to DMSO. This
demonstrated that the ESAG9-EQ 39UTR could confer

enhanced expression of the linked reporter gene when

stimulated to generate stumpy-like forms.

Analysis of the respective deletion mutants of the ESAG9-EQ

39UTR is also shown in Fig. 5. For the 350 nt construct

(removing the first 50 nt of the 39UTR), there was no
difference in CAT protein expression upon 8-pCPT-29-O-Me-

cAMP treatment compared to the full-length construct, with a
2.4-fold increase observed. Similarly, when the next 50 nt of

39UTR sequence was removed, a similar response was seen (2.3-
fold change). However, further deletion of the ESAG9-EQ 39UTR

largely abolished the enhanced expression in response to 8-
pCPT-29-O-Me-cAMP, such that the fold change in CAT

decreased to 1.5-fold with the 250 nt construct, similar to the

DALD 39UTR response (1.3-fold). This indicated that between
100 and 150 nt into the ESAG9-EQ 39UTR there existed a

positive sequence element responsive to 8-pCPT-29-O-Me-
cAMP. Since this region coincided with the regulatory element

observed to repress slender form expression, the response of the
ESAG9-EQ 39UTR eD (which deletes nt 132–164 in the ESAG9-

EQ 39UTR) construct was also analysed, as was the insertion of
the same region into the DALD 39UTR. These analyses

demonstrated that while insertion of the regulatory element into
the DALD 39UTR had no effect out of context, removal of the

Fig. 4. Analysis of the ESAG9-EQ 39UTR element sequence using a

CAT reporter gene assay. (A) CAT protein expression from the

constructs shown, as a percentage of expression from one clone of

unmodified vector (control). The number of biological replicates

(independently derived clones) used was: full-length: 5; element

deletion (eD): 6; and element insertion (eI): 4; each with 1–2

experimental replicates. Values are means 6 s.e.m. of biological

replicates. The data for the full-length 39UTR construct clones from

Fig. 2A is repeated here. At the left of the graph are schematic

representations of the sequence analysed in each construct, where ‘A’

signifies the polyadenylation site location and the red line indicates the

regulatory element location. (B) Northern blot analysis of CAT mRNA,

with RNA from the DALD vector and two biological replicates of each

of the full-length, eD, and eI constructs. The lower panel shows the

ethidium bromide-staining of the rRNA present in each sample

analysed, to indicate the loading of each lane.

Journal of Cell Science 126 (10)2298
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regulatory element from the ESAG9-EQ 39UTR abolished

responsiveness to 8-pCPT-29-O-Me-cAMP (Fig. 5). This

indicated that the regulatory element region in the ESAG9-EQ

39UTR contributed to both gene repression in slender forms and

gene activation when monomorphic slender cells were induced to

generate stumpy-like forms. However, the overall magnitude of

the effect in both cases was relatively modest, with both

repression and enhancement exerting only approximately

twofold regulation. Moreover when RNA expression from the

different constructs was analysed in different experiments quite

variable results were obtained, limiting our ability to usefully

interpret the effects of the 8-pCPT-29-O-Me-cAMP on transcript

levels derived from each construct.

The ESAG9 39UTR regulatory element governs gene

regulation in stumpy forms

Although easier to genetically manipulate, monomorphic cells

have lost the ability to generate stumpy forms and represent a

poor model for gene regulation of trypanosomes in the

mammalian bloodstream. Therefore, having identified a region

potentially important in gene regulation between slender and

stumpy forms, it was important to analyse whether the same

regulatory element functioned in pleomorphic cells capable of

the biologically relevant developmental transition. Hence,

pleomorphic T. brucei AnTat1.1 cells were transfected with

constructs where the reporter gene was under the control of the

ESAG9-EQ 39UTR, the mutant of this 39UTR lacking the 34 nt

regulatory element (eD), or the DALD 39UTR in which the 34 nt

regulatory element had been inserted (DALD eI). The resulting

cell lines (two independent cell lines per construct) were then

inoculated in to mice and RNA and protein isolated either after 3

days of infection (when slender forms predominated) or after 6

days of infection when the cells had uniformly progressed to

morphologically stumpy forms. Fig. 6 demonstrates that the

truncated aldolase 39UTR did not show any developmental

regulation at either the protein or RNA level, as expected. Also as

expected, the intact ESAG9-EQ 39UTR resulted in a strong

developmental regulation, with RNA increasing 4.75-fold

(Fig. 6B) and protein increasing 8.92-fold (Fig. 6A) as the cells

developed from slender to stumpy forms. This profile closely

agrees with the fivefold elevation of ESAG9-EQ mRNA

observed by Digital SAGE transcriptome analysis during the

slender–stumpy transition (K. M., unpublished observations).

However, when the 34 nt regulatory sequence was deleted, the

developmental regulation of the ESAG9-EQ 39UTR was almost

completely lost, such that RNA induction upon stumpy formation

was only 1.3-fold, whereas the reporter protein expression

actually decreased below the level in slender forms.

Interestingly, when the regulatory element sequence was

inserted into the DALD 39UTR (DALD eI), although no

developmental enhancement of reporter protein was observed

upon stumpy formation, the transcript levels from this construct

increased 3.8-fold (Fig. 6B). This revealed an uncoupling

between mRNA and protein levels when the element was out

of its normal context, indicating that other ESAG9 39UTR

sequences may contribute to translational efficiency when the

34 nt element is intact. These results indicated that the regulatory

element acted to repress gene expression in slender forms at the

RNA level and strongly activated gene expression at both the

RNA and protein levels upon development to stumpy forms.

These results contrasted with the relatively subtle effects

observed in monomorphic cells and established that the 34 nt

element in the ESAG9-EQ 39UTR acts as a negative regulatory

element in slender forms and positive regulatory element in

stumpy forms, with translational regulation being particularly

important in the latter. Combined these results indicate that the

element is entirely responsible for developmental gene regulation

of ESAG9-EQ during parasite development in the mammalian

bloodstream.

Folding analysis and conservation of the ESAG9 gene

regulatory element

The ESAG9 gene family comprises at least nine intact genes in

the T. brucei genome, and all tested genes have demonstrated

stumpy-enriched gene expression (Barnwell et al., 2010). Hence,

having defined a precise regulatory element controlling the

developmental gene expression of ESAG9-EQ we investigated

whether the sequence was highly conserved among the 39UTR of

Fig. 5. Response of CAT reporter gene expression to 8-pCPT-29-O-Me-cAMP treatment for ESAG9-EQ 39UTR-based constructs. Fold change in CAT

protein expression levels between cells treated with 10 mM 8-pCPT-29-O-Me-cAMP and control cells are shown. Values are means 6 s.e.m. of biological

replicates; unmodified vector, n51; full-length and eD, n53; other constructs, n52. For each cell line there were two experimental replicates, meaning that the

CAT ELISA assays were performed with samples taken from two separate 8-pCPT-29-O-Me-cAMP treatment experiments, except for the unmodified vector

clone, which had one biological replicate and five experimental replicates, this line being included in each 8-pCPT-29-O-Me-cAMP treatment experiment as a

control. At the left of the graph are schematic representations of the sequence analysed in each construct, with the polyadenylation site location indicated with ‘A’

and the regulatory element location indicated by the red line.

T. brucei developmental control 2299
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other ESAG9 family members. Firstly a linear alignment of the

different 39UTR sequences (up to 250 nucleotides downstream of

the ESAG9 gene in each) was carried out using CLUSTAL

Omega. This revealed that the region of the ESAG9-EQ 39UTR

containing the regulatory element showed 47–91% similarity

between family members. Interestingly, the 39UTR sequence of

the T. brucei ESAG9-EQ gene was most similar to the 39UTR

from both of the characterised T. equiperdum ESAG9 gene copies

(90% and 91% similarity over the regulatory element for

ESAG9u and ESA9c, respectively; 86% and 90% over the first
250 nucleotides of the 39UTR; alignments are shown in Fig. 7A),
matching their coding region similarity. This suggests that these

gene and regulatory sequences have been conserved since the
divergence of these species, and have remained more similar to
each other than to other ESAG9 gene sequences within the same
genome. Apparently therefore, ESAG9 genes and regulatory

sequences are not evolving at a very high frequency despite the
diversity of this sequence family.

Thereafter, we analysed in more detail the potential for

secondary structure within the ESAG9-EQ 39UTR in the presence
or absence of the regulatory region. This was carried out by
comparing the minimum folding energy (MFE) of the wild-type
or eD sequences against 50–100 copies of each sequence

permuted in base order, in each case these being constrained in
order to maintain the dinucleotide frequencies (supplementary
material Table S1). Thereafter, analysis of the difference in MFE

between the sequences (MFED) and the position of the native
sequence in the distribution of control MFE values (Z-score)
provided an indication of its sequence-order-dependent structure

and its dependence on the presence of the regulatory element.
This analysis revealed that the ESAG9-EQ 39UTR shows
evidence for secondary structure (with an MFED value of

around 20% and a Z-score of ,22 (P,0.05), whereas deletion
of the regulatory element abolished this (supplementary material
Table S1). This highlighted that it was only this sequence within
the 39UTR that provided support for a predicted secondary

structure. Confirming the sequence specificity of the predicted
structure in the ESAG9-EQ 39UTR, a control analysis using
antisense copies of sequences (and exploiting G–U asymmetry),

showed no evidence for sequence-order-dependent folding.

Although this analysis provided support for a structural element
coinciding with the ESAG9-EQ regulatory sequence, using the
same analysis for all other ESAG9 family 39UTRs failed to provide

a MFED score consistent with the existence of a conserved
secondary structural element (supplementary material Table S1).
Therefore, we reanalysed the ESAG9 family 39UTRs for common

secondary structures using multiple structural comparisons
through the ‘RNAstructures’ webserver (http://rna.urmc.
rochester.edu/RNAstructureWeb/Servers/Predict3/Predict3.html).

Analysis of the structures with the greatest conservation between
the multiple structural predictions of the ESAG9 family revealed
that the regulatory element sequence had a predicted propensity to

fold into one or two stem loop structures terminated by a common
AAU sequence element at the base of the distal stem (Fig. 7B,
components of the ascending stem and descending stem are
highlighted in yellow and purple, respectively). Hence, consensus

folding analysis has provided evidence for a structural component
to the regulatory element in ESAG9-EQ, although independent
analyses of predicted pseudoknots and tertiary structural elements

via other algorithms did not provide further support for a generally
conserved structure (P. S., unpublished observation).

Discussion
To date, the study of most regulated gene expression in
trypanosomes has focussed on the differentiation between
bloodstream and tsetse midgut procyclic forms. During this

transition, several examples where 39UTRs are important to
lifecycle stage-dependent control of expression have been
identified (reviewed by Schwede et al., 2011). The most

Fig. 6. Analysis of the ESAG9-EQ 39UTR and associated element in true

slender and stumpy forms using a CAT reporter gene assay. (A) CAT

protein expression (upper panel) and mRNA expression (lower panel) from

the constructs in slender form (grey bars) and stumpy form (white bars) cells,

shown as a percentage of expression from cell lines of the unmodified vector

slender form cells. For protein data, values are the means 6 s.e.m. of two

biological replicates (cell lines) for each construct. Therefore, because n52

for each, the standard error bars represent the data range. To the left of the

graph are schematic representations of the sequence analysed in each

construct, with the polyadenylation site location indicated with ‘A’ and

regulatory element location indicated by the red line. mRNA values are

derived by quantification of the signal from the blot shown in B. (B) Northern

blot analysis of CAT mRNA, with RNA from the DALD vector, full-length

ESAG9-EQ 39UTR, element deletion (eD) and element insertion (eI)

constructs in slender (SL) and stumpy (ST) forms. Shown in the lower panel is

the ethidium bromide staining of the rRNA present, to indicate the loading of

each lane.
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extensively characterised 39UTRs are those of the procyclin

genes. For example, the 39UTR of EP procyclin contains three

regulatory elements; two positive elements (loops I and III) and a

negative element (loop II) (Furger et al., 1997). The EP procyclin

gene is positively regulated by a small RNA binding protein,

TbZFP3; when overexpressed TbZFP3 promotes EP procyclin

expression, this being dependent upon sequences in the loop II

element, such that TbZFP3 has been proposed to displace a

negative regulatory protein (Walrad et al., 2009). Another

procyclin isoform, GPEET procyclin, is regulated by glycerol

and hypoxia (Vassella et al., 2000), this being mediated by a

glycerol response element in its 39UTR that is absent in EP

procyclin mRNAs. Other developmentally regulated mRNAs are

also regulated via their 39UTR, though conserved elements

responsible for widespread developmental regulation have

proved difficult to identify. For example, the functionally and

coordinately regulated nuclear encoded components of the

cytochrome oxidase complex are all upregulated upon

differentiation to procyclic forms, but show different emphasis

on either mRNA stability or translational control, and little

evidence for identifiable common regulatory motifs between the

distinct mRNAs (Mayho et al., 2006). Overall, therefore, the

signals governing developmental expression are largely 39UTR

directed, but consensus regulatory motifs and regulatory proteins

have proved elusive.

Here we focussed on a family of co-regulated genes that are

developmentally enriched in bloodstream stumpy forms, thereby

providing a route to identify regulatory signals important for this

transition. Moreover, we anticipated that analysis of the

conservation of identified regulatory regions within the co-

regulated family members would help to decipher cryptic signals

and structures that control expression in a developmental regulon.

Dissection of the 39UTR of ESAG9-EQ identified a highly

defined regulatory region of only 34 nt that governed the

developmental expression of this gene. Interestingly, the

element exhibited both negative and positive regulatory

potential, depending on the developmental stage of the parasite.

Hence, in slender forms, the element contributed to the repression

of ESAG9-EQ gene expression, whereas upon development to

stumpy forms, the element enabled the strong activation of

ESAG9-EQ expression. This identified the 34 nt region as a

tightly defined bifunctional regulatory element, among the

shortest such regions identified to date in trypanosome gene

expression. In Fig. 8 we present a model for how this regulatory

Fig. 7. Identification of potential

conserved elements in the ESAG9 family

39UTRs. (A) The regulatory region in

different ESAG9 gene 39UTRs aligned using

CLUSTAL Omega. Yellow and purple

shaded residues are the nucleotides that

form ascending and descending stem

structures, determined from analysis of

consensus-predicted RNA structures, as

detailed in the text. (B) Predicted RNA

structures of sequences downstream of

ESAG9 genes with similarity to that of the

ESAG9-EQ element. These represent the

region of the ESAG9-EQ regulatory element

folded according to the ‘RNAstructures’

webserver.
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element might function. In the simplest scenario, the element

might be bound by a negative regulator in slender forms, this

being displaced by a positive regulator in stumpy forms. This

scenario would resemble the regulation of EP procyclin by the

small RNA binding protein TbZFP3, where TbZFP3 apparently

counteracts a negative regulator operating upon loop II of the EP

procyclin 39UTR (Walrad et al., 2009). Although the regulatory

element within the 39UTR affects both mRNA levels and protein

levels, insertion of the element in isolation into the 39UTR of a

constitutively expressed gene in pleomorphic cells repressed

mRNA levels but did not strongly affect protein levels. Hence,

the element apparently influences gene expression at more than

one level, this being influenced by the context in which it is

placed. Other sequences in the ESAG9 39UTR might, therefore,

contribute to translation of the mRNA in the presence of the 34 nt

element, for example by engaging or stabilising the association of

positive regulators of translation. Since the protein level

expression in stumpy forms was considerably higher than in

monomorphic forms induced to become stumpy-like by the cell

permeable cAMP analogue, we propose that either monomorphic

cells have lost such factors, or that cell permeable cAMP

analogues drive only an incomplete development to cells with

only some stumpy characteristics.

Although the regulatory element was identified through

analysis of reporter assays in monomorphic forms, the effects

of its deletion, and insertion into other 39UTRs were quite

limited. In contrast, when the element was analysed in

pleomorphic slender and stumpy forms, dramatic changes in

gene expression were conferred by the presence of the regulatory

element, such that almost 10-fold changes in reporter protein

expression were observed. This scenario matches the analysis for

another stumpy enriched gene, PAD1, where the regulation was

more pronounced in true stumpy forms than monomorphic cells-

even when the latter were induced to undergo stumpy-like

formation with cell permeable cAMP analogues (MacGregor and

Matthews, 2012). This reemphasises the distinction between

monomorphic trypanosomes and pleomorphic trypanosomes

(Matthews et al., 2004) and highlights that monomorphic cells

provide a poor model for developmental events in the

mammalian bloodstream even when artificially induced to

generate cells with stumpy characteristics by chemical

treatment. Clearly, developmental events are more dramatic

and robust in cells naturally capable of stumpy formation, and

such cells are necessary to provide an accurate picture of the

regulatory events that prepare the cell for transmission in the

mammalian bloodstream.

The developmental co-regulation of ESAG9 transcripts

suggested that common regulatory sequences would be

uncovered by the dissection of the 39UTR of one family

member. However, linear alignment of all ESAG9 gene

39UTRs did not reveal stringent identity of the different family

members over the key regulatory region identified in the ESAG9-

EQ 39UTR, limiting the value of more detailed mutational

analysis. Rather, this suggests that higher order structures

contribute to the specific recognition of mRNAs of this gene

family. While Sfold comparisons and multiple RNA fold

alignments highlighted that a potential stem loop region is

contained within the 34 nt regulatory section, a strikingly

conserved structural pattern was not observed. This highlights

that predictive approaches to RNA structure are currently

insufficient to uncover the conservation within genes that are

highly likely to share interactions with regulatory RNA binding

proteins. Nonetheless, the identification of a short and dominant

regulatory motif in the ESAG9-EQ 39UTR provides a powerful

ligand to select such regulatory RNA binding proteins from

slender and stumpy forms and their identification will allow

mapping of the contact sites on the ESAG9 39UTR from different

family members. For this reason, the precise identification of the

regulatory element in ESAG9-EQ 39UTR provides an invaluable

reagent to further understanding of developmental gene

expression in trypanosomes.

In summary, the regulation of ESAG9-EQ has uncovered the

most highly defined regulatory motif yet identified as being

important in the developmental control of trypanosome gene

expression in the mammalian bloodstream. This element acts as

both a negative and positive regulator, dependent on the

developmental context of the parasite, indicating that it acts as a

downstream target of the quorum-sensing pathway. As signalling

pathways in trypanosomes become better characterised, the

components of the regulatory network that interact to govern

development of the parasite in its mammalian host can be

connected. Breaking these networks pharmacologically has

obvious potential in manipulating the virulence and transmission

potential of the parasite in a disease relevant stage of its life cycle.

Fig. 8. Proposed model for the mechanisms of regulation of

ESAG9-EQ expression in slender and stumpy forms. In slender

forms (left-hand side), a negative regulator (red oval) binds to the

element sequence (red bar) in the ESAG9-EQ 39UTR and causes

mRNA degradation of the transcript, repressing the expression of

ESAG9-EQ. In stumpy forms (right-hand side), a positive regulator

(purple oval) binds to the element sequence, increasing its mRNA

abundance. Translation of the transcript also increases, potentially

through the association or stabilisation of additional regulators

(green circles) that require other sequences in the ESAG9 39UTR

outside the 34 nt element. Combined, these result in the release of

gene expression repression in the stumpy lifecycle stage. AAAn:

poly(A) tail.
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Materials and Methods
Trypanosomes

Monomorphic bloodstream form T. b. brucei strain Lister 427 were maintained at
37 C̊ with 5% CO2 in HMI-9 medium (Hirumi and Hirumi, 1989) containing 20%
foetal calf serum (FCS; Fetal Bovine Serum Gold, PAA Laboratories Ltd, Yeovil,
Somerset, UK) and penicillin-streptomycin (100 Units/ml penicillin, 100 mg/ml
streptomycin; Invitrogen, Life technologies, Paisley, Scotland).

Mice (male, MF1 strain) were infected with pleomorphic trypanosomes (T.
brucei AnTat1.1 90:13 strain) by intraperitonial (IP) injection. If infected for the
harvest of a stumpy form population, the mouse was injected (IP) with 250 ml
cyclophosphamide (25 mg/ml) the day prior to infection. Infected blood was
collected by cardiac puncture and allowed to pass through a diethylaminoethyl
(DEAE) cellulose (DE-52; GE Healthcare, Little Chalfont, Buckinghamshire)
anion exchange column (Lanham and Godfrey, 1970) equilibrated with PSG
(pH 7.8). All animal experiments were performed according to UK Home Office
approved guidelines as specified under Project licence no. 60/4373.

Subcloning

Reporter constructs used the previously described CAT449 plasmid (Biebinger
et al., 1997) containing the chloramphenicol acetyltransferase (CAT) coding
region (Mayho et al., 2006). Digestion with NotI results in linearisation of the
CAT449 vector in the tubulin targeting sequence. Consequently, integration in to
the T. brucei genome is through the b-tubulin locus and the CAT reporter gene is
transcribed by read-through Pol II transcription of this locus. Investigation of
experimental 39UTRs was made by replacement of the truncated aldolase (DALD)
39UTR present in the CAT449 vector through BamHI and BbsI restriction sites.
This was achieved through PCR amplification of the 39UTR sequence using
genomic DNA from T. b. brucei as template (primer 1: ESAG9-EQ FL forward;
59-cccggatccaaatcattaccgcaattcc-39; primer 2: ESAG9-EQ FL reverse; 59-
cccgaagaccttgctgttatcacgttccc-39). The element deletion (eD) 39UTR sequence
was generated by two PCR reactions performed using the full-length 39UTR
sequence PCR product as template; one reaction with primers 1 and 6 (primer 6;
element deletion R: 59-ggggtctagagttccatccacatgatcttcattg-39) to amplify the region
of the full-length 39UTR sequence upstream of the element sequence, the other
with primers 2 and 7 (primer 7; element deletion F: 59-ggggtctagaactaatgtaatcata-
agtagcgtacatgag-39) to amplify the region of the full-length 39UTR sequence
downstream of the element sequence. To adjoin the two PCR amplicons, XbaI
restriction enzyme sites where included in primers 6 and 7. The two PCR
amplicons were used in a single ligation reaction with BamHI- and BbsI-digested
CAT449 vector. The element insertion (eI) 39UTR sequence was synthesised by
GENEART AG (Invitrogen, Paisley, UK), in their pMA-T vector with flanking
BamHI and BbsI restriction enzyme sites for ligation in to the CAT449 vector.
Each amplicon was initially subcloned in to pGEM T-easy vector (Promega UK,
Southampton, UK) for sequence verification. The deletion series was created using
primer 2 in combination with primer 3 (primer 3: ESAG9-EQ 39UTR 350 nt F; 59-
ggccggatccaacaccgcatgatg-39; 350 nt construct); primer 2 with primer 4 (primer 4;
ESAG9-EQ 39UTR 300 nt F; 59-ggcccggatccctgctttcaatgaag-39; 300 nt construct)
or primer 2 with primer 5 (primer 5: ESAG9-EQ 39UTR 250 nt F; 59-
ggcgcggatccagaggatcgaataac-39; 250 nt construct).

Transfection

Transfection of monomorphic bloodstream form cells was performed as previously
(MacGregor and Matthews, 2012) described with 15 mg of NotI-linearised DNA.
24 hours post-transfection, selection was made with 0.5–2.5 mg/ml phleomycin on
serial dilutions of transfected cells to allow clonal selection, with a control of drug-
treated parental (non-transfected) cells to confirm drug sensitivity. Transfection of
pleomorphic cells was as described previously (MacGregor and Matthews, 2012).

CAT ELISA assay

To determine the level of CAT protein derived from each construct, CAT ELISA
assays (Roche Products Ltd, Welwyn Garden City, UK) were used according to the
manufacturer’s instructions. Absorbance values at 405 nm were measured using a
BioTek ELx808 ELISA microplate reader and for each assay a CAT standard
curve was calculated. Each assay included the same independently derived clone
of the unmodified vector, which was used for comparison between assays. This
clone was representative of several independently derived cell lines for the same
construct (supplementary material Fig. S1).

Northern blot analysis

RNA extraction was performed using an RNeasy RNA purification kit (Qiagen
Ltd, Crawley, UK) according to the manufacturer’s instructions for ‘animal cell
spin’ RNA purification. RNA (typically 2.0 mg per sample) was resolved on
formaldehyde-agarose gels, transferred to nylon membranes using the upward
capillary transfer method and cross-linked on to the membrane at 0.12 joules using
a UV Crosslinker (Uvitec). Riboprobes were generated using the DIG RNA
labeling kit (Roche Products Ltd, Welwyn Garden City, UK) according to the
manufacturer’s instructions. For transcript detection CDP-star (Roche Products

Ltd, Welwyn Garden City, UK) was used and the signal identified by exposure to
X-ray film or using the Chemiluminescence function of a GBOX (Syngene,
Cambridge, UK) for transcript quantification by normalisation to rRNA level.

8-pCPT-29-O-Me-cAMP treatment

8-(4-Chlorophenylthio)-29-O-methyladenosine-39,59-cyclic monophosphate (8-
pCPT-29-O-Me-cAMP; Biolog Life Science Institute, Bremen, Germany)
dissolved in DMSO (DMSO) to a concentration of 10 mM was added to the cell
culture (,56105 cells/ml concentration) to a final concentration of 100 mM. As a
control, to an identical cell culture, the same volume of DMSO alone was added.
Following incubation at 37 C̊ for 48 hours, 5 ml of each culture was used to
generate cell lysate samples for use in a CAT ELISA assay and the remaining
culture used for RNA extraction and then northern blot analysis (as described
above).

Bioinformatics and RNA structure prediction

For basic prediction of RNA secondary structure the Srna application module of
the freely available web-based software package Sfold (Ding et al., 2004) was used
with the default settings (http://sfold.wadsworth.org/cgi-bin/index.pl). Multi-
alignment of DNA sequences was performed using ClustalW2 (Multiple
Sequence Alignment tool, version 2.1) or Clustal Omega with the default settings
(Larkin et al., 2007). For more in-depth analysis, mean folding energies (MFEs)
were calculated for 250 base segments of the 39UTR from each ESAG9 39UTR
using UNAfold (Markham and Zuker, 2005) within the SSE package (Simmonds,
2012). For each sequence, MFE differences from the null expectation (MFEDs)
and Z-scores (Workman and Krogh, 1999) were calculated by parallel submission
of 100 control sequences scrambled using the NDR algorithm in SSE that retains
biases in dinucleotide frequencies (Simmonds et al., 2004). Results were expressed
as MFE differences {MFEDs; i.e. the percentage difference in MFEs of native and
scrambled sequence, calculated as [(MFENATIVE/MFESCRAMBLED)21]6100, and
as Z-scores (the position of the native sequence in the distribution of control values
(Workman and Krogh, 1999)}. Alternative approaches for RNA structure
prediction in nucleotide sequences aligned by the program MUSCLE (Edgar,
2004) used PFOLD, a stochastic context-free grammar method to identify
phylogenetically conserved co-variant sites supportive of an RNA structure model
(Knudsen and Hein, 1999), by STRUCTUREDIST in the SSE package that
identifies conserved paired and unpaired bases in minimum energy fold
(Simmonds, 2012), and a combined minimum energy/covariant site detection
method implemented in ALIFOLD (Gruber et al., 2008).
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