View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Edinburgh Research Explorer

slippery chicken

Generated with ROBODoc Version 4.99.41 (Jan 14 2012)

October 20, 2014

Contents

https://core.ac.uk/display/28971247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 SC/ALL.LSP

1 sc/all.lsp

[Modules |
NAME:

all
File:
Version:
Project:

Purpose:

Author:

Creation date:

all.lsp

1.0.5

slippery chicken (algorithmic composition)

Load all the lisp files associated with slippery-chicken
export of its symbols.

No public interface envisaged (so no robodoc entries).

Michael Edwards: m@michael-edwards.org

5th December 2000

$$ Last modified: 14:57:04 Thu May 8 2014 BST

SVN ID: $Id: all.lsp 5048 2014-10-20 17:10:38Z medward2 $

2 sc/cm

[Modules |
NAME:

cm

File:

Class Hierarchy:

Version:
Project:

Purpose:

cm.1lsp

none (no classes defined)

1.0.5

slippery chicken (algorithmic composition)

Definition of common-music related and other functions

like transposition of notes/chords, enharmonic
equivalents etc.

2 SC/CM

Author: Michael Edwards: m@michael-edwards.org
Creation date: 1st March 2001
$$ Last modified: 16:47:22 Thu May 1 2014 BST

SVN ID: $Id: cm.lsp 5048 2014-10-20 17:10:38Z medward2 $

2.1 cm/degree-to-note

[¢m | [Functions]
DESCRIPTION:
Get the specified scale degree number as a note-name pitch symbol within
the current scale. An optional argument allows the user to specify that the
scale degree number should be used to get the note-name pitch from a
different scale.
ARGUMENTS:

An integer that is a scale degree number.

OPTIONAL ARGUMENTS:

- The scale from which the note-name pitch symbol associated with the
specified scale degree is to be drawn.

RETURN VALUE:

A note-name pitch symbol.
EXAMPLE:

(degree-to-note 127 ’chromatic-scale)
=> G9

(degree-to-note 127 ’twelfth-tone)

=> ATSO

(degree-to-note 127 ’quarter-tone)

=> EQF4

2 SC/CM

SYNOPSIS:

(defun degree-to-note (degree &optional (scale cm::*scalex))

2.2 cm/degrees-per-octave

[em | [Functions |
DESCRIPTION:

Return the number of scale degrees in the span of one octave within the
current tuning system.

ARGUMENTS:

- No arguments.

RETURN VALUE:

- An integer that is the number of scale degrees in each octave.

EXAMPLE:

(in-scale :chromatic)
(degrees-per-octave)

=> 12

(in-scale :quarter-tone)
(degrees-per-octave)

=> 24
SYNOPSIS:

(defun degrees-per-octave ()

2.3 cm/degrees-per-semitone

[¢m] [Functions |

DESCRIPTION:

Get the number of scale degrees per equal-tempered semitone in the current
tuning scale.

2 SC/CM

ARGUMENTS:
- No arguments
OPTIONAL ARGUMENTS:

- The scale for which the number of degrees per semitone is to be
retrieved.

RETURN VALUE:

An integer.

EXAMPLE:

(degrees-per-semitone ’chromatic-scale)
=> 1

(degrees-per-semitone ’twelfth-tone)

=> 6

(degrees-per-semitone ’quarter-tone)

=> 2

SYNOPSIS:

(defun degrees-per-semitone (&optional (scale cm::*scalex*))

2.4 cm/degrees-to-notes

[cm | [Functions |
DESCRIPTION:

NB: If the specified scale-degree number within the current scale would
result in pitch outside of the maximum MIDI pitch range for that tuning
(chromatic: C-1 to B10; quarter-tone: C-1 to BQS10; twelfth-tone: C-1
to CTF11), the function will return an error.

ARGUMENTS:

An integer that is a scale degree number in the current tuning.

2 SC/CM

RETURN VALUE:
A list of note-name pitch symbols.
EXAMPLE:

(in-scale :chromatic)
(degrees-to-notes ’(0 143 116 127 38))

=> (C-1 B10 AF8 G9 D2)

(in-scale :twelfth-tone)
(degrees-to-notes ’(0 144 116 127 38 287 863))

=> (C-1 C1 GSSO ATSO FSSS-1 CTF3 CTF11)

(in-scale :quarter-tone)
(degrees-to-notes ’(0 144 116 127 38 287))

=> (C-1 C5 BF3 EQF4 GO BQS10)
SYNOPSIS:

(defun degrees-to-notes (degrees)

2.5 cm/event-list-to-midi-file

[¢m | [Functions]

DESCRIPTION:
Write the events in a list to a mid-file.

ARGUMENTS:

A list of events objects

the path to the midi-file

- the starting tempo (integer: BPM)

- a time-offset for the events (seconds)

OPTIONAL ARGUMENTS:

- whether to overwrite events’ amplitude slots and use a single
velocity/amplitude value given here (0-1.0 (float) or 0-127 (integer)

2 SC/CM

RETURN VALUE: EXAMPLE: SYNOPSIS:

(defun event-list-to-midi-file (event-list midi-file start-tempo time-offset
&optional force-velocity)

2.6 cm/freq-to-degree

[em | [Functions |

DESCRIPTION:

Get the scale degree of the specified frequency in Hertz within the current
scale.

NB: This method will return fractional scale degrees.
ARGUMENTS:

A frequency in Hertz.

OPTIONAL ARGUMENTS:

- The scale in which to find the corresponding scale degree.
RETURN VALUE:

A scale degree number. This may be a decimal number.
EXAMPLE:

(freq-to-degree 423 ’chromatic-scale)

=> 68.317856

(freq-to-degree 423 ’twelfth-tone)

=> 409.9071

(freq-to-degree 423 ’quarter-tone)

=> 136.63571

SYNOPSIS:

(defun freq-to-degree (degree &optional (scale cm::*scalex))

2 SC/CM

2.7 cm/freqg-to-note

[¢m | [Functions]
DESCRIPTION:

Get the note-name pitch equivalent of the specified frequency, rounded to
the nearest scale degree of the current scale.

ARGUMENTS:

A number that is a frequency in Hertz.
OPTIONAL ARGUMENTS:

- The scale in which the note-name pitch equivalent is to be sought.
RETURN VALUE:

A note-name pitch symbol.

EXAMPLE:

(freq-to-note 423 ’chromatic-scale)

=> AF4

(freq-to-note 423 ’twelfth-tone)

=> GSSS4

(freq-to-note 423 ’quarter-tone)

=> AQF4

SYNOPSIS:

(defun freq-to-note (freq &optional (scale cm::*scalex))

2.8 cm/get-pitch-bend

[¢cm] [Functions |

DESCRIPTION:

2 SC/CM

Get the MIDI pitch-bend value necessary for application to a MIDI pitch in

order to achieve the specified frequency.

NB: This will always return a positive value between 0.0 and 1.0, as
slippery-chicken always applies pitch-bends upwards from the nearest
chromatic note below the specified frequency.

NB: This value will be the same in all tuning scales.

ARGUMENTS:
A frequency in Hertz.

RETURN VALUE:

A two-digit decimal number that is the pitch-bend value required to achieve
the specified frequency in MIDI.

EXAMPLE:
(get-pitch-bend 423)
=> 0.32

SYNOPSIS:

(defun get-pitch-bend (freq)

2.9 cm/in-scale

[em | [Functions]
DESCRIPTION:

Set the global scale (tuning) for the current slippery-chicken
environment. Current options are :chromatic, :quarter-tone or
:twelfth-tone. See the file cm-load.lsp for specifications and the html
manual page "More about note-names and scales" for more details on use.

ARGUMENTS:
- A scale (tuning) designation.

RETURN VALUE:

2 SC/CM 10

Lisp REPL feedback on the tuning now set.
EXAMPLE:

(in-scale :chromatic)

=> #<tuning "chromatic-scale">

(in-scale :quarter-tone)

=> #<tuning "quarter-tone">

(in-scale :twelfth-tone)

=> #<tuning "twelfth-tone">

SYNOPSIS:

(defun in-scale (scale)

2.10 cm/midi-file-high-low
[em | [Functions |
DATE:
30-Dec-2010
DESCRIPTION:

Print the highest and lowest pitch in a specified MIDI file as a MIDI note
number.

NB: This is a Common Music function and as such must be called with the
package qualifier cm:: if used within slippery chicken.

ARGUMENTS:
- The path (including the name) to the MIDI file.

OPTIONAL ARGUMENTS:

- An integer or NIL to indicate which track in the specified MIDI file is
to be accessed. If NIL, all tracks will be accessed. NB: CM (and
therefore slippery-chicken too) generates some MIDI files by writing each
channel to a different track, so the "track" would seem synonymous with
"channel" here.

2 SC/CM 11

RETURN VALUE:

Two integer values (using the values function) that are the highest and
lowest pitches in the specified MIDI file.

EXAMPLE:

(cm::midi-file-high-low "/tmp/multi-ps.mid")
=> 72, 60

SYNOPSIS:

(defun midi-file-high-low (file &optional track)

2.11 cm/midi-file-one-note

[cm | [Functions |

DESCRIPTION:

Write all midi notes in the file out to a new one-channel file using the
single pitch <note> and channel number <channel>.

ARGUMENTS:

- A string that is the file path, including file-name and extension.

- A note-name symbol or MIDI-note integer that is the pitch to write.

- An integer that is the channel to which the output should be written
(1-based)

OPTIONAL ARGUMENTS:

- An integer that is the an existing MIDI channel in the original file. If
this argument is given, only notes on this channel of the original file
will be written (1-based).

RETURN VALUE:

The path to the new file.

EXAMPLE:

(cm::midi-file-one-note "/tmp/multi-ps.mid" ’c4 1)
SYNOPSIS:

(defun midi-file-one-note (file note channel &optional old-channel)

2 SC/CM

2.12 cm/midi-to-degree

[¢m | [Functions]
DESCRIPTION:

Convert the specified MIDI note number to the degree number of the current
scale.

ARGUMENTS:
- A MIDI note number.

RETURN VALUE:

- An integer that is the scale-degree equivalent of the specified MIDI note
number in the current scale.

EXAMPLE:

(in-scale :chromatic)
(midi-to-degree 64)

=> 64

(in-scale :twelfth-tone)
(midi-to-degree 64)

=> 384

(in-scale :quarter-tone)
(midi-to-degree 64)

=> 128
SYNOPSIS:

(defun midi-to-degree (midi-note)

2.13 cm/midi-to-freq

[em | [Functions]
DESCRIPTION:

Get the frequency equivalent in Hertz to the specified MIDI note number.

2 SC/CM

ARGUMENTS:

- A number (can be a decimal) that is a MIDI note number.
RETURN VALUE:

A decimal number that is a frequency in Hertz.
EXAMPLE:

(midi-to-freq 67)
=> 391.99542

(midi-to-freq 67.9)
=> 412.91272
SYNOPSIS:

(defun midi-to-freq (midi-note)

2.14 cm/midi-to-note

[cm | [Functions |

DESCRIPTION:

Get the note-name pitch symbol equivalent of the specified MIDI note
number.

ARGUMENTS:

- An integer that is a MIDI note number.
RETURN VALUE:

A note-name pitch symbol.

EXAMPLE:

(midi-to-note 67)

=> G4

SYNOPSIS:

(defun midi-to-note (midi-note)

2 SC/CM 14

2.15 cm/note-to-degree

[¢m | [Functions]
DESCRIPTION:

Get the scale degree number of the specified note-name pitch symbol within
the current scale.

ARGUMENTS:

- A note-name pitch symbol.

OPTIONAL ARGUMENTS:

- The scale in which to find the scale-degree of the specified pitch.
RETURN VALUE:

An integer that is a scale degree in the current scale.
EXAMPLE:

(note-to-degree ’AF4 ’chromatic-scale)

=> 68

(note-to-degree ’AF4 ’twelfth-tone)

=> 408

(note-to-degree ’AF4 ’quarter-tone)

=> 136
SYNOPSIS:

(defun note-to-degree (note &optional (scale cm::*scalex))

2.16 cm/note-to-freq

[¢cm] [Functions |

DESCRIPTION:

2 SC/CM

Get the frequency in Hertz of the specified note-name pitch symbol.
ARGUMENTS:

- A note-name pitch symbol.

RETURN VALUE:

A frequency in Hertz.

EXAMPLE:

(in-scale :chromatic)
(note-to-freq ’AF4)

=> 415.3047

(in-scale :twelfth-tone)
(note-to-freq ’GSSS4)

=> 423.37845

(in-scale :quarter-tone)
(note-to-freq ’AQF4)

=> 427.47403
SYNOPSIS:

(defun note-to-freq (note)

2.17 cm/note-to-midi

[em | [Functions]
DESCRIPTION:

Get the MIDI note number equivalent for a chromatic note-name pitch
symbol.

ARGUMENTS:
- A chromatic note-name pitch symbol.

RETURN VALUE:

2 SC/CM 16

An integer.
EXAMPLE:
(note-to-midi ’g4)
=> 67
SYNOPSIS:

(defun note-to-midi (midi-note)

2.18 cm/parse-midi-file

[em | [Functions]
DESCRIPTION:

Print the MIDI event slots in the specified file to the Lisp listener.

NB: This is a Common Music function and as such must be called with the
package qualifier cm:: if used within slippery chicken.

ARGUMENTS:
- The path (including the file name) to the MIDI file.

OPTIONAL ARGUMENTS:

- An integer or NIL to indicate which track in the specified MIDI file is
to be accessed. If NIL, all tracks will be accessed. NB: CM (and
therefore slippery-chicken too) generates some MIDI files by writing each
channel to a different track, so the "track" would seem synonymous with
"channel" here.

RETURN VALUE:

The CM data for the MIDI events in the specified file, and the number of events.
EXAMPLE:

(cm: :parse-midi-file "/tmp/multi-ps.mid")

=>

3 SC/CM-LOAD

(#i(midi-tempo-change time 0.0 usecs 357142)

#i(midi-time-signature time 0.0 numerator 2 denominator 4 clocks 24 32nds 8)
#i(midi time 0.0 keynum 36 duration 0.357142 amplitude 0.09448819 channel 15)

#i(midi-tempo-change time 0.0 usecs 357142)

#i(midi-time-signature time 0.0 numerator 2 denominator 4 clocks 24 32nds 8)

#i(midi-tempo-change time 0.0 usecs 357142)
#i(midi time 0.178571 keynum 66 duration 0.178571 amplitude 0.09448819 channel 15)
#i(midi time 0.357142 keynum 68 duration 0.0892855 amplitude 0.09448819 channel 15)
#i(midi time 0.357142 keynum 40 duration 0.357142 amplitude 0.09448819 channel 15)
#i(midi time 0.6249985 keynum 66 duration 0.0892855 amplitude 0.09448819 channel 15)
#i(midi-time-signature time 0.714284 numerator 3 denominator 4 clocks 24 32nds 8)

SYNOPSIS:

(defun parse-midi-file (file &optional track)

3 sc/cm-load

[Modules |
NAME:

cm-load

File:

Class Hierarchy:
Version:
Project:

Purpose:

Author:
Creation date:

$$ Last modified:

cm-load.lsp

none (no classes defined)

1.0.5

slippery chicken (algorithmic composition)

Definition of the common-music quarter-tone scale and

twelfth-tone scale which should be loaded and not
compiled. The quarter tone scale is our default

No public interface envisaged (so no robodoc entries).

Michael Edwards: m@michael-edwards.org
7th February 2003

21:11:47 Thu Aug 22 2013 BST

SVN ID: $Id: cm-load.lsp 5048 2014-10-20 17:10:38Z medward2 $

17

4 SC/CMN

4 sc/cmn

[Modules |
NAME:

cmn

File:

Class Hierarchy:
Version:
Project:

Purpose:

Author:

Creation date:

$$ Last modified:

cmn.lsp

None: no classes defined.

1.0.5

slippery chicken (algorithmic composition)

Interface from complete-set to Bill’s CMN package for
displaying of sets in musical notation.

Michael Edwards: m@michael-edwards.org
11th February 2002

11:39:48 Sat Dec 28 2013 WIT

SVN ID: $Id: cmn.lsp 5048 2014-10-20 17:10:38Z medward2 $

5 sc/cmn-glyphs

[Modules |
NAME:

cmn-glyphs

File:

Class Hierarchy:
Version:
Project:

Purpose:

cmn-glyphs.1lsp

none, no classes defined

1.0.5

slippery chicken (algorithmic composition)

Definition of various postscript glyphs (accidentals
etc.) for cmn.

18

6 SC/GLOBALS.LSP

Author: Michael Edwards: m@michael-edwards.org
Creation date: 10th November 2002
$$ Last modified: 09:01:19 Mon Dec 12 2011 ICT

SVN ID: $Id: cmn-glyphs.lsp 5048 2014-10-20 17:10:38Z medward2 $

6 sc/globals.Isp

[Modules |
NAME:

globals
File: globals.1lsp

Class Hierarchy: None: no classes defined.

Version: 1.0.5
Project: slippery chicken (algorithmic composition)
Purpose: Definition of the user-changeable configuration data and

globals for internal programme use.
Author: Michael Edwards: m@michael-edwards.org
Creation date: 30th May 2013
$$ Last modified: 10:08:03 Tue May 13 2014 BST

SVN ID: $Id: sclist.lsp 963 2010-04-08 20:58:32Z medward2 $

7 sc/instruments

[Modules |
NAME:

instrument

7 SC/INSTRUMENTS 20

File: instruments.lsp

Class Hierarchy: mnone (no classes defined)

Version: 1.0.5
Project: slippery chicken (algorithmic composition)
Purpose: Definition of various standard instruments and other

data/functions useful to slippery-chicken users.
Author: Michael Edwards: m@michael-edwards.org
Creation date: 30th December 2010
$$ Last modified: 20:21:50 Mon Mar 24 2014 GMT

SVN ID: $Id: instruments.lsp 5048 2014-10-20 17:10:38Z medward2 $

7.1 instruments/+slippery-chicken-standard-instrument-palette+

[instruments | [Global Parameters |

DESCRIPTION:

A palette of standard instruments (by no means exhaustive...) for use
directly in projects or for combining with user palettes e.g.

(combine
+slippery-chicken-standard-instrument-palette+
(make-instrument-palette

’esoteric-stuff
> ((toy-piano
(:staff-name "toy piano"

SYNOPSIS:

(defparameter +slippery-chicken-standard-instrument-palette+
(make-instrument-palette
’slippery-chicken-standard-instrument-palette
;5 SAR Fri Jan 20 11:43:32 GMT 2012: Re-ordering these to Adler’s "standard"
;; score order for easier look-up
> ((piccolo
(:staff-name "piccolo" :staff-short-name "picc"
:lowest-written d4 :highest-written c7 :transposition-semitones 12

7 SC/INSTRUMENTS 21

:missing-notes nil
:largest-fast-leap 19
:starting-clef treble
:chords nil
:microtones t
:midi-program 73))
(flute
(:staff-name "flute" :staff-short-name "f1"
:lowest-written c4 :highest-written d7
:missing-notes (cqs4 dqf4)
:largest-fast-leap 19
:starting-clef treble
:chords nil
:microtones t
:midi-program 74))
(alto-flute
(:staff-name "alto flute" :staff-short-name "alt f1"
:lowest-written c4 :highest-written c7 :transposition-semitones -5
:missing-notes (cqs4 dqf4)
:largest-fast-leap 17
:starting-clef treble
:chords nil
:microtones t
:midi-program 74))
;; SAR Fri Jan 20 11:46:45 GMT 2012: Modified bass flute range to that
;; stated by Adler.
(bass-flute
(:staff-name "bass flute" :staff-short-name "bass f1"
:lowest-written c4 :highest-written c7 :transposition-semitones -12
:missing-notes (cqs4 dqf4)
:largest-fast-leap 15
:clefs-in-c (treble bass) :starting-clef treble
:chords nil
:microtones t
:midi-program 74))
;3 SAR Fri Jan 20 12:01:37 GMT 2012: Added oboe. Conservative range taken
;; from the Adler
(oboe
(:staff-name "oboe" :staff-short-name "ob"
:lowest-written bf3 :highest-written a6
:largest-fast-leap 19
:starting-clef treble
:chords nil
:midi-program 69))
(e-flat-clarinet
(:staff-name "E-flat clarinet" :staff-short-name "E-flat cl"

7 SC/INSTRUMENTS 22

:lowest-written e3 :highest-written a6 :transposition-semitones 3
:missing-notes (ags4 bqf4 bgs4 cqs5 dqfb5 gqf3 fqs3 fqf3)
:largest-fast-leap 15
:starting-clef treble
:chords nil
:microtones t
:midi-program 72))
(b-flat-clarinet
(:staff-name "B-flat clarinet" :staff-short-name "B-flat cl"
:lowest-written e3 :highest-written a6 :transposition-semitones -2
:missing-notes (ags4 bqf4 bgs4 cqsb dqfb gqf3 fqs3 fqf3)
:largest-fast-leap 15
:starting-clef treble
:chords nil
:microtones t
:midi-program 72))
(a-clarinet
(:staff-name "A clarinet" :staff-short-name "A cl"
:lowest-written e3 :highest-written a6 :transposition-semitones -3
:missing-notes (ags4 bqf4 bgs4 cqsb dqf5 gqf3 fgs3 fqf3)
:largest-fast-leap 15
:starting-clef treble
:chords nil
:microtones t
:midi-program 72))
(bass-clarinet
(:staff-name "bass clarinet" :staff-short-name "bass cl"
:lowest-written c3 :highest-written g6 :transposition-semitones -14
:missing-notes (ags4 bqgf4 bgs4 cqsb dqf5 gqf3 fqgs3 fqf3 eqf3 dgs3 dqf3
cqs3)
:largest-fast-leap 13
:prefers-notes low
:clefs (treble) :clefs-in-c (treble bass) :starting-clef treble
:chords nil
:microtones t
:midi-program 72))
(soprano-sax
(:staff-name "soprano saxophone" :staff-short-name "sop sax"
:lowest-written bf3 :highest-written fs6 :transposition-semitones -2
:missing-notes (ggs4 ggsb5)
:largest-fast-leap 15
:starting-clef treble
:chords nil
:microtones t
:midi-program 65))
(alto-sax

7 SC/INSTRUMENTS 23

(:staff-name "alto saxophone" :staff-short-name "alt sax"
;; altissimo extra....by hand...
:lowest-written bf3 :highest-written fs6 :transposition-semitones -9
:missing-notes (ggs4 ggsb)
:largest-fast-leap 15
:starting-clef treble
:chords nil
:microtones t
:midi-program 66))
(tenor-sax
(:staff-name "tenor sax" :staff-short-name "ten sax"
:lowest-written bf3 :highest-written fs6 :transposition-semitones -14
:missing-notes (ggs4 ggsb5)
:largest-fast-leap 13
:starting-clef treble :clefs-in-c (treble bass)
:chords nil
:microtones t
:midi-program 67))
(baritone-sax
(:staff-name "baritone sax" :staff-short-name "bar sax"
:lowest-written bf3 :highest-written fs6 :transposition-semitones -21
:missing-notes (ggs4 ggsb)
:largest-fast-leap 11
:clefs-in-c (treble bass) :starting-clef treble
:chords nil
:microtones t
:midi-program 68))
(bassoon
(:staff-name "bassoon" :staff-short-name "bsn"
;; of course it can go higher but best not to algorithmically select
;; these
:lowest-written bfl :highest-written cb
;; Wolfgang Ruediger says all 1/4 tones are 0K above low E
:missing-notes (bqfl bgsl cqs2 dqf2 dgs2 eqf2)
:largest-fast-leap 13
:clefs (bass tenor) :starting-clef bass
:chords nil
:microtones t
:midi-program 71))
(french-horn
(:staff-name "french horn" :staff-short-name "hn"
:lowest-written c3 :highest-written c6 :transposition-semitones -7
:largest-fast-leap 9
:clefs (treble bass) :starting-clef treble
:chords nil
:microtones t

7 SC/INSTRUMENTS

:midi-program 61))
(c-trumpet
(:staff-name "trumpet in c" :staff-short-name "c tpt"
:lowest-written fs3 :highest-written c6
:largest-fast-leap 9
:clefs (treble) :starting-clef treble
:chords nil
:microtones t
:midi-program 57))
;5 SAR Fri Jan 20 12:09:41 GMT 2012: Added b-flat-trumpet from Adler
;; MDE Mon Feb 20 20:02:55 2012 -- modified to keep in line with clarinet
(b-flat-trumpet
(:staff-name "B-flat trumpet" :staff-short-name "b-flat tpt"
;; the —-flat should be converted in CMN and LilyPond to the flat sign
:lowest-written fs3 :highest-written d6 :transposition-semitones -2
:largest-fast-leap 9
:starting-clef treble
:chords nil
:midi-program 57))
53 SAR Fri Jan 20 12:17:24 GMT 2012: Added tenor trombone from Adler
(tenor-trombone
(:staff-name "trombone" :staff-short-name "tbn"
:lowest-written e2 :highest-written bf4
:largest-fast-leap 7
:clefs (bass tenor) :starting-clef bass
:chords nil
:midi-program 58))
;55 SAR Fri Jul 13 12:35:35 BST 2012
(tuba
(:staff-name "tuba" :staff-short-name "tba"
:lowest-written dl :highest-written g4
:largest-fast-leap 5
:clefs (bass) :starting-clef bass
:chords nil
:midi-program 59))
(marimba
(:staff-name "marimba" :staff-short-name "mba"
:lowest-written c3 :highest-written c7
:starting-clef treble :clefs (treble) ; (treble bass)
:chords t
:microtones nil
:midi-program 13))
(vibraphone
(:staff-name "vibraphone" :staff-short-name "vib"
:lowest-written £3 :highest-written f6
:starting-clef treble

24

7 SC/INSTRUMENTS

:chords t
:microtones nil
:midi-program 12))
;3 MDE Mon Mar 24 20:21:08 2014 -- following three added from data given
;3 by Zach Howell (thanks).
(glockenspiel
(:staff-name "glockenspiel" :staff-short-name "glk"
:lowest-written f3 :highest-written c6
:transposition-semitones +24
:starting-clef treble
:chords nil :microtones nil :missing-notes nil
:midi-program 10))
(xylophone
(:staff-name "xylophone" :staff-short-name "xyl"
:lowest-written £3 :highest-written c7
:transposition-semitones +12
:starting-clef treble
:chords nil :microtones nil :missing-notes nil
:midi-program 14))
(celesta
(:staff-name "celesta" :staff-short-name "cel"
:lowest-written c3 :highest-written c7
:transposition-semitones +12
:starting-clef treble
:chords t :microtones nil :missing-notes nil
:midi-program 9))
(piano
(:staff-name "piano" :staff-short-name "pno"
:lowest-written a0 :highest-written c8
:largest-fast-leap 9
:clefs (treble bass double-treble double-bass) :starting-clef treble
:chords t :chord-function piano-chord-fun
:microtones nil
:midi-program 1))
;3 We generally treat the piano as two instruments (LH, RH), generating
;3 lines separately. So this is the same as the piano instrument but has
;3 no staff-name and starts with bass clef. Use set-limits to change the
;; range of the two hands, as they’re both set to be full piano range
;3 here.
(piano-1h
(:lowest-written a0 :highest-written c8
;3 MDE Tue Aug 21 17:47:07 2012 -- to avoid the NIL ins name in CMN
:staff-name "" :staff-short-name "'
:largest-fast-leap 9
:chords t :chord-function piano-chord-fun
:clefs (treble bass double-treble double-bass) :starting-clef bass

25

7 SC/INSTRUMENTS 26

:microtones nil
:midi-program 1))
(tambourine
(:staff-name "tambourine" :staff-short-name "tmb"
:lowest-written c4 :highest-written c4
:starting-clef percussion
:midi-program 1))
(guitar
(:staff-name "guitar" :staff-short-name "gtr"
:lowest-written e3 :highest-written b6 :transposition-semitones -12
:largest-fast-leap 31
:starting-clef treble
:chords t :chord-function guitar-chord-selection-fun
:microtones nil
:midi-program 25))
;; MDE Wed Oct 9 12:21:22 2013
(mandolin
(:staff-name "mandolin" :staff-short-name "mln"
:lowest-written g3 :highest-written c7
:largest-fast-leap 25
:starting-clef treble
;; mandolin has same tuning as the violin
:chords t :chord-function violin-chord-selection-fun
;; there is no GM programme for mandolin so use either steel string
;5 guitar (26) or banjo 106 perhaps
:microtones nil :midi-program 26))
(soprano
(:staff-name "soprano" :staff-short-name "s"
:lowest-written c4 :highest-written c6
:starting-clef treble
:midi-program 54))
(violin
(:staff-name "violin" :staff-short-name "vln"
:lowest-written g3 :highest-written c7
:largest-fast-leap 13
:starting-clef treble
:chords t :chord-function violin-chord-selection-fun
:microtones t
:midi-program 41))
(viola
(:staff-name "viola" :staff-short-name "vla"
:lowest-written c3 :highest-written f6
:largest-fast-leap 13
:clefs (alto treble) :starting-clef alto
:chords t :chord-function viola-chord-selection-fun
:microtones t

7 SC/INSTRUMENTS 27

:midi-program 42))
(viola-d-amore
(:staff-name "viola d’amore" :staff-short-name "vla d’am"
:lowest-written a2 :highest-written f7
:largest-fast-leap 13
:clefs (alto treble) :starting-clef alto
:chords t :chord-function nil
:microtones t
:midi-program 41))
(cello
(:staff-name "cello" :staff-short-name "vc"
;; of course it can go higher but best not to algorithmically select
;; these
:lowest-written c2 :highest-written ab
:largest-fast-leap 12
:clefs (bass tenor treble) :starting-clef bass
:chords t :chord-function cello-chord-selection-fun
:microtones t
:midi-program 43))
(double-bass
(:staff-name "double bass" :staff-short-name "db"
:lowest-written e2 :highest-written gb :transposition-semitones -12
:prefers-notes low
:largest-fast-leap 10
:clefs (bass tenor treble) :starting-clef bass
:chords nil
:microtones t
:midi-program 44))
(bass-guitar
(:staff-name "bass guitar" :staff-short-name "b. gtr"
:lowest-written e2 :highest-written g4 :transposition-semitones -12
:prefers-notes low
:largest-fast-leap 10
:clefs (bass treble) :starting-clef bass
:chords t
:microtones nil
:midi-program 33))
;5 SAR Thu Apr 12 18:19:21 BST 2012: Added "computer" part for "silent"
;; parts in case the user would like to create rhythmically independent
;5 computer parts.
;5 MDE Jul 2012 -- changed to reflect more clefs (and removed percussion)
(computer
(:staff-name "computer" :staff-short-name "comp"
:lowest-sounding C-1 :highest-sounding bf8
:clefs (treble bass double-treble double-bass)
:starting-clef treble)))))

7 SC/INSTRUMENTS

7.2 instruments/cello-chord-selection-fun

[instruments | [Functions |

DESCRIPTION:

Create a double-stop chord object using the core string-chord-selection-fun
and a value of ’G2 for the open III string.

SYNOPSIS:

(let ((vc-III (make-pitch ’g2)))
(defun cello-chord-selection-fun (curve-num index pitch-list pitch-seq
instrument set)

7.3 instruments/chord-fun-aux

[instruments | [Functions |

DESCRIPTION:

An auxiliary function that allows users to create moderately tailored chord
functions by setting values for the number of notes in the current set to
skip, the number of desired notes in the resulting chord, and the maximum
span of the resulting chord in semitones.

This function must be called within a call to the defun macro to create a
new chord function, as demonstrated below.

ARGUMENTS:
The first six arguments -- curve-num, index, pitch-list, pitch-seq,
instrument, and set —-- are inherited and not required to be directly

accessed by the user.

- An integer that is the step by which the function skips through the
subset of currently available pitches. A value of 2, for example, will
instruct the method to build chords from every second pitch in that
subset.

- An integer that is the number of pitches that should be in each resulting
chord. If the list of pitches available to an instrument is too short to
make a chord with x notes, a chord with fewer pitches may be made
instead.

- An integer that is the largest interval in semitones allowed between the
bottom and top notes of the chord. If a chord made with the specified

28

7 SC/INSTRUMENTS

number of notes surpasses this span, a chord with fewer pitches may be
made instead.

EXAMPLE:

(defun new-chord-function (curve-num index pitch-list pitch-seq instrument set)
(chord-fun-aux curve-num index pitch-list pitch-seq instrument set 4 3 14))

=> NEW-CHORD-FUNCTION

SYNOPSIS:

(defun chord-fun-aux (curve-num index pitch-list pitch-seq instrument set
skip num-notes max-span)

7.4 instruments/chord-funl

[instruments | [Functions |

DESCRIPTION:

Generate three-note chords where possible, using every second pitch from
the list of pitches currently available to the given instrument from the
current set, and ensuring that none of the chords it makes span more than
an octave.

SYNOPSIS:

(defun chord-funl (curve-num index pitch-list pitch-seq instrument set)

7.5 instruments/chord-fun2

[instruments | [Functions |

DESCRIPTION:

Generates 4-note chords where possible, using every third pitch from the
list of pitches currently available to the given instrument from the
current set, with (almost) no limit on the total span of the chord.

SYNOPSIS:

(defun chord-fun2 (curve-num index pitch-list pitch-seq instrument set)

7 SC/INSTRUMENTS

7.6 instruments/guitar-chord-selection-fun

[instruments | [Functions |

DESCRIPTION:

Create chord objects with differing numbers of pitches, drawing the pitches
from set-palette object subsets with the ID ’guitar.

This function was written for the composition "Cheat Sheet", in which the
pitch sets were defined explicitly such that all of the pitches available
to the guitar at any moment were playable as a guitar chord. As such, this
function always assumes that the pitch-list it is drawing from contains
pitches that are already playable as a guitar chord. It also adds the

fingering as mark above each chord when outputting to CMN, which may or may
not be desirable.

SYNOPSIS:

(let ((last-chord ’()))
(defun guitar-chord-selection-fun (curve-num index pitch-list pitch-seq
instrument set)

7.7 instruments/natural-harmonic

[instruments | [Functions |

DATE:
December 24th 2013
DESCRIPTION:

Determine whether a pitch can be played as a natural harmonic on a string
instrument (with the guitar as default).

ARGUMENTS:
- the pitch (symbol or pitch object)
OPTIONAL ARGUMENTS:

keyword arguments:
- :tuning. a list of the fundamentals of the open strings, as pitch objects
or symbols. These should descend from the highest string. Default:

30

7 SC/INSTRUMENTS 31

guitar tuning.

- :highest-partial. Integer. What we consider the highest harmonic possible
(counting the fundamental as 1).

- :tolerance. The deviation in cents that we can accept for the frequency
comparison. Default = 10.

- :debug. Print data for debugging/testing purposes. Default = NIL.

RETURN VALUE:

The string number and partial number as a list if possible as a harmonic,
or NIL if not.

EXAMPLE:

(NATURAL-HARMONIC ’b5) ; octave harmonic of B string

= (2 2)

SC> (NATURAL-HARMONIC °’b6) ; octave + 5th of high E string
=> (1 3)

SYNOPSIS:

(defun natural-harmonic (pitch &key (tuning ’(eb b4 g4 d4 a3 e3))
(highest-partial 6) (tolerance 15) debug)

7.8 instruments/piano-chord-fun

[instruments | [Functions |

DESCRIPTION:

Generate four-note chords, where possible, from consecutive notes in the
current set, with the number enclosed in parentheses in the pitch-seq being
the top note of that chord, where possible.

SYNOPSIS:

(defun piano-chord-fun (curve-num index pitch-list pitch-seq instrument set)

7.9 instruments/string-chord-selection-fun

[instruments | [Functions |

DESCRIPTION:

7 SC/INSTRUMENTS

This is the core function for creating instances of double-stop chords for
strings, ensuring that the highest note of the double-stop is not lower
than the open III string. The pitch of the open III string is passed as an
argument in the chord-selection functions for the individual stringed
instruments.

This function uses the best-string-diad function. If no double-stops
instances can be created using best-string-diad, two-note chords will be
created using the default-chord-function. If neither of these are possible,
a chord of a single pitch will be returned instead.

SYNOPSIS:

(defun string-chord-selection-fun (curve-num index pitch-list pitch-seq
instrument set string-III)

7.10 instruments/viola-chord-selection-fun

[instruments | [Functions |

DESCRIPTION:

Create a double-stop chord object using the core string-chord-selection-fun
and a value of ’G3 for the open III string.

SYNOPSIS:
(let ((vla-IIT (make-pitch ’g3)))
(defun viola-chord-selection-fun (curve-num index pitch-list pitch-seq
instrument set)

7.11 instruments/violin-chord-selection-fun

[instruments | [Functions |

DESCRIPTION:

Create a double-stop chord object using the core string-chord-selection-fun
and a value of ’D4 for the open III string.

SYNOPSIS:
(let ((vln-IIT (make-pitch ’d4)))

(defun violin-chord-selection-fun (curve-num index pitch-list pitch-seq
instrument set)

8 SC/LILYPOND

8 sc/lilypond

[Modules |

8.1 lilypond/lp-get-mark

[lilypond | [Functions |
DESCRIPTION:

lp-get-mark:

Translation function for LilyPond marks (dynamics, accents, etc.). Not
generally called by the user but the list of symbols that can be used will
be useful. If <silent> then non-existing marks will not produce
warnings/errors (but we’ll return nil).

SYNOPSIS:

(a "> ") ; accent

(1hp "-+ ")

;; see p229 of lilypond.pdf: need to define this command in file
;; this is done for us in lilypond.ly, which will be included if we
;53 call write-lp-data-for-all with :use-custom—markup T
(bartok "~\\snapPizzicato ")

(pizz "~\"pizz.\" ")

(ord ""\"ord.\" ")

(pizzp "~\"(pizz.)\" ")

(Clb n*\uclb\un)

(c1 "~\"cI1\" ")

(col-legno "~\"col legno\" ")

(clt "~\"clt\" ")

(arco ""\"arco\" ")

(batt "~\"batt.\" ")

(Spe ll”\llspe\ll ll)

(sp ""\"sul pont.\" ")

(mv ""\"molto vib.\" ")

(sv ""\"senza vib.\" ")

(poco-crini "~\"poco crini\" ")

(S ll_‘ Il)

(nail (no-lp-mark ’nail))

(stopped (no-lp-mark ’stopped))

(as noy— u)
(at (L u)
(tS u__ u)

(te n__ u)

8 SC/LILYPOND

;; S0 unmeasured is implicit

(t3 (format nil ":%a " (* 32 (expt 2 num-flags))))
(flag "\\flageolet ")

(niente "“\markup { niente } ")

(pppp "\\PPPP ")

(ppp "\\ppp ")

(pp "\\pp ")

(p II\\p II)

(mp "\\mp ")

(mf "\\mf ")

(£ "\\f ")

(£f "\\ff ")

(££f "\\fff ")

(££££f "\\ffff ")

;; MDE Sat Aug 11 15:51:16 2012 -- dynamics in parentheses
(ffff-p "\\parenFFFF ")

(f£ff-p "\\parenFFF ")

(ff-p "\\parenFF ")

(f-p "\\parenF ")

(mf-p "\\parenMF ")

(mp-p "\\parenMP ")

(p-p "\\parenP ")

(pp-p "\\parenPP ")

(ppp-p "\\parenPPP ")

(pppp-p "\\parenPPPP ")

(sfz "\\sfz ")

(downbow "\\downbow ")

(upbow "\\upbow ")

(open "\\open ")

(I ""\\markup { \\teeny \"I\" } ")

(IT ""\\markup { \\teeny \"II\" } ")
(IIT "“\\markup { \\teeny \"III\" } ")
(IV ""\\markup { \\teeny \"IV\" } ")
;; MDE Thu Dec 26 14:14:34 2013 -- guitar string numbers
(ct ™\\1 ")

(c2 "™\\2 ")

(3 "™\\3 ")

(c4 "\\¢ ")

(c5 "\\5 ")

(c6 "\\6 ")

(beg-s1 "(")

(end-s1 ") ")

;; MDE Fri Apr 6 21:57:59 2012 -- apparently LP can’t have nested
;; slurs but it does have phrase marks:
(beg-phrase "\\(")

(end-phrase "\\) ")

34

8 SC/LILYPOND

;; there’s no start gliss / end gliss in lilypond

(beg-gliss "\\glissando ")

(end-gliss "")

;3 13.4.11

(beg-8va "\\ottava #1 ")

(end-8va "\\ottava #0 ")

(beg-8vb "\\ottava #-1 ")

(end-8vb "\\ottava #0 ")

;; NB note heads should be added via (add-mark-before ... so if
;; adding new, add the mark symbol to the move-elements call in
;; event::get-lp-data

(circled-x "\\once \\override NoteHead #’style = #’xcircle ")
;3 (x~head "\\once \\override NoteHead #’style = #’cross ")
(x-head " \\xNote ")

(triangle "\\once \\override NoteHead #’style = #’triangle ")
(triangle-up "\\once \\override NoteHead #’style = #’do ")
(airy-head (no-lp-mark ’airy-head))

;; this has to be added to the event _before_ the one which needs to
;; start with these noteheads.

(improvOn "\\improvisationOn ")

(improvOff "\\improvisationOff ")

;; MDE Sat Nov 9 20:21:19 2013 -- in CMN it’s :breath-in: a

;; triangle on its side (pointing left)

(wedge "\\once \\override NoteHead #’style = #’fa ")

(square "\\once \\override NoteHead #’style = #’la ")

;; (mensural "\\once \\override NoteHead #’style = #’slash ")
;; (flag-head "\\once \\override NoteHead #’style = #’harmonic-mixed
)

;; MDE Mon Apr 30 20:46:06 2012 -- see event::get-lp-data for how
;3 this is handled

(flag-head "\\harmonic ")

;; MDE Mon Apr 30 20:46:31 2012 -- flag-heads by default don’t
;; display dots so we need to add-mark-before to get these to
;; display or turn them off again

(flag-dots-on "\\set harmonicDots = ##t ")

(flag-dots-off "\\set harmonicDots = ##f ")

;3 circle head but stem extends through it like a vertical slash
(none (no-lp-mark ’none))

(trill-f (no-lp-mark ’trill-f))

(trill-n (no-lp-mark ’trill-n))

(trill-s (no-lp-mark ’trill-s))

(beg-trill-a "\\pitchedTrill ") ; must be before note

;; we’ll also need e.g. (trill-note gb) to give the note in ()
(end-trill-a "\\stopTrillSpan ") ; after note

;5 (no-lp-mark ’square))

(slash (no-lp-mark ’slash))

8 SC/LILYPOND

;; MDE Sat Dec 28 11:37:22 2013 -- up and down arrows on arpeggio
;5 lines will need more complex treatment (need a note-before mark
VD

(arp "\\arpeggio ")

(arrow-up (no-lp-mark ’arrow-up))

(arrow-down (no-lp-mark ’arrow-down))

(cresc-beg "\\< ")

(cresc-end "\\! ")

(dim-beg "\\> ")

(dim-end "\\! ")

(k< "< ™M)

> ">)

;3 NB this override has to come exactly before the note/dynamic it
;3 applies to

(hairpinO "\\once \\override Hairpin #’circled-tip = ##t ")

;5 (dimO-beg "\\once \\override Hairpin #’circled-tip = ##t \\> ")
(pause "\\fermata ")

(short-pause

"“\\markup { \\musicglyph #\"scripts.ushortfermata\" } ")

;; MDE Thu Apr 5 16:17:11 2012 -- these need the graphics files in
;3 lilypond-graphics.zip to be in the same directory as the

;; generated lilypond files

(aeolian-light "~\\aeolianLight ")

(aeolian-dark "“\\aeolianDark ")

;; this one uses the graphic for close bracket

(bracket-end "“\\bracketEnd ")

(mphonic "~\\mphonic ")

(mphonic-arr "“\\mphonicArr ")

(mphonic-cons "“\\mphonicCons ")

(mphonic-diss "~\\mphonicDiss ")

(mphonic-cluster "“\\mphonicCluster ")

(sing "“\\sing ")

(high-sine "~\\high-sine ")

(noise "“\\noise ")

(focus "~\\focus ")

(alternate "~\\alternate ")

(sing-arr ""“\\singArr ")

(arrow-up-down "~\\arrowUpDown ")

;; end lilypond-graphics.zip files

;; these must have been set up with the event::add-arrow method
(start-arrow "\\startTextSpan ")

(end-arrow "\\stopTextSpan ")

(harm "~\\flageolet ")

;; 2.3.11

;; write sost. pedal as text (usually held for long time so brackets
;3 not a good idea)

9 SC/PACKAGE 37

(ped "\\sustainOn ")

(ped” "\\sustainOff\\sustainOn ")
(ped-up "\\sustainOff ")

(uc "\\unaCorda ")

(tc "\\treCorde ")

9 sc/package

[Modules |

10 sc/permutations

[Modules |
NAME:

permutations
File: permutations.lsp

Class Hierarchy: none, no classes defined.

Version: 1.0.5

Project: slippery chicken (algorithmic composition)
Purpose: Various permutation functions.

Author: Michael Edwards: m@michael-edwards.org
Creation date: 10th November 2002

$$ Last modified: 14:56:58 Tue Mar 25 2014 GMT

SVN ID: $Id: permutations.lsp 5048 2014-10-20 17:10:38Z medward2 $

10.1 permutations/permutations

[permutations | [Functions |

DESCRIPTION:

Systematically produce a list of all possible permutations of a set of

10 SC/PERMUTATIONS

consecutive integers beginning with zero. The function’s only argument,
<level>, is an integer that determines how many consecutive integers from 0
are to be used for the process.

This is a more efficient permutation algorithm, but the results will always

be in a certain order, with the same number at the end until that
permutation is exhausted, then the number below that etc.

ARGUMENTS:

An integer that indicates how many consecutive integers from O are to be
used for the process.

RETURN VALUE:

A list of sequences (lists), each of which is a permutation of the
original.

EXAMPLE:

;5 Produce a list consisting of all permutations that can be made of 4
;; consecutive integers starting with 0 (i.e., (0 1 2 3))
(permutations 4)

=>
((0123)(1023)((0M213)((R2013) (1203 (2103) (132
(1032 (0312 (3012 (1302) 3102 (0231) (031

(0321) (3021)(2301) (3201 (1230 (2130 (1320
(3120) (2310) (3210))

SYNOPSIS:

(defun permutations (level)

10.1.1 permutations/inefficient-permutations

[permutations | [Functions |

DESCRIPTION:

Return a shuffled, non-systematic list of all possible permutations of a
set of consecutive integers beginning with zero.

The function’s first argument, <level>, is an integer that determines how
many consecutive integers from O are to be used for the process. An

38

10 SC/PERMUTATIONS

optional keyword argument <max> allows the user to specify the maximum
number of permutations to return.

This function differs from the "permutations" function in that it’s result
is not ordered systematically.

The function simply returns a list of <max> permutations of the numbers
less than <level>; it does not permutate a given list.

The function is inefficient in so far as it simply shuffles the numbers and
so always has to check whether the new list already contains the shuffled
before storing it.

The order of the permutations returned will always be the same unless <fix>
is set to NIL.

Keyword argument <skip> allows the user to skip a number of permutations,
which is only sensible if :fix is set to T.

ARGUMENTS:

An integer that indicates how many consecutive integers from O are to be
used for the process.

OPTIONAL ARGUMENTS:

keyword arguments:

- :max. An integer that indicates the maximum number of permutations to be
returned.

- :skip. An integer that indicates a number of permutations to skip.

- :fix. T or NIL to indicate whether the given sequence should always be
shuffled with the same (fixed) random seed (thus always producing the
same result). T = fixed seed. Default = T.

- :if-not-enough. A function object (or NIL) to call when :max was
requested but we can’t return that many results. Default = #’error.

RETURN VALUE:
A list.

EXAMPLE:

;; Creating a shuffled, non-systematic list of all permutations of consecutive

;; integers 0 to 4
(inefficient-permutations 4)

39

10 SC/PERMUTATIONS 40

=> ((2301) (3120)(2031)((1023) (1230 (231 (21023)
(0123 (2310 (1203)(3012) (3102 (1320) (1032
(2013 (3210)(2130) (3201 (1302 (0213)(B021)
(0132 (0321) (0312))

;; Using O to 4 again, but limiting the number of results returned to a maximum
;3 of 7
(inefficient-permutations 4 :max 7)

=>((2301) (3120 (2031) (1023) (1230 (0231) (210 3))

;; The same call will return the same "random" results each time by default
(loop repeat 4 do (print (inefficient-permutations 3 :max 5)))

=>

((201) (210 (021) (102) (120))
((201) (210 (021) (102) (120)
((201) (210 (021) (102) (120))
((201) (210 (021) (102) (120))

;; Setting the :fix argument to NIL will result in different returns
(loop repeat 4 do (print (inefficient-permutations 3 :max 5 :fix nil)))

=>

((102) (012 120 (210 (021))
(120 (201) (210 (102) (012))
((012) 102 (201 (120 (210))
((021) 120 (012 (201) (102)

SYNOPSIS:

(defun inefficient-permutations (level &key (max nil) (skip 0) (fix t)
(if-not-enough #’error))

10.1.2 permutations/inefficiently-permutate

[permutations | [Functions |

DESCRIPTION:

Return a shuffled, non-systematically ordered list of all possible
permutations of an original list of elements of any type. An optional
keyword argument <max> allows the user to specify the maximum number of
permutations to return.

10 SC/PERMUTATIONS

As opposed to the function "permutate", inefficiently-permutate returns the
elements of the specified <list> as a flat list, unless the keyword
argument <sublists> is set to T, whereupon the function returns the result
as a list of lists, each one being a permutation of <list>.

The function is inefficient in so far as it simply shuffles the numbers and
so always has to check whether the new list already contains the shuffled
sublist before storing it.

The order of the permutations returned will always be the same unless <fix>
is set to NIL.

ARGUMENTS:
- A list.
OPTIONAL ARGUMENTS:

keyword arguments:

- :max. An integer that indicates the maximum number of permutations to be
returned.

- :skip. An integer that indicates a number of permutations to skip.

- :fix. T or NIL to indicate whether the given sequence should always be
shuffled with the same (fixed) random seed (thus always producing the
same result). T = fixed seed. Default = T.

- :sublists. T or NIL to indicate whether the returned result should be
flattened into a one-dimensional list or should be left as a list of
lists. T = leave as list of lists. Default = NIL.

- :clone. T or NIL to indicate whether objects in the list should be cloned

as they are permutated (so that they are unique objects rather than

shared data space). Useful perhaps if e.g. you’re cloning chords which
will then have their own marks. etc. If T then the list must contain
slippery-chicken named-objects or types subclassed from them (as is every
slippery-chicken class).

:if-not-enough. A function object (or NIL) to call when :max was

requested but we can’t return that many results. Default = #’error.

RETURN VALUE:
A list.
EXAMPLE:

;; By default the function returns a flattened list of all possible

41

10 SC/PERMUTATIONS

;3 permutations in a shuffled (random) order
(inefficiently-permutate ’(a b c))

=> (CABCBAACBBACBCAABOC

;; The length of the list returned can be potentially shortened using the :max
;; keyword argument. Note here that the value given here refers to the number
;3 of permutations before the list is flattened, not to the number of

;3 individual items in the flattened list.

(inefficiently-permutate ’(a b c¢) :max 3)

=> (CABCBAACB)

;; By default the function is set to using a fixed random seed, causing it to
;; return the same result each time
(loop repeat 4 do (print (inefficiently-permutate ’(a b c¢))))

(CABCBAACBBACBCAABDO
(CABCBAACBBACBCAABD®)
(CABCBAACBBACBCAABDO
(CABCBAACBBACBCAABDOC)

;; Setting the :fix keyword argument to NIL allows the function to produce
;3 different output each time
(loop repeat 4 do (print (inefficiently-permutate ’(a b c¢) :fix nil)))

=>

(BACACBBCAABCCBACAB)
(ALCBBACCBACABBCAABD®)
(ACBBACBCAABCCABGCBA)
(BACABCCABCBABCAACB)

;; Setting the :sublists keyword argument to T causes the function to return a
;3 list of lists instead
(inefficiently-permutate ’(a b c) :sublists t)

=> ((CAB) (CBA) (ACB) (BAC) (BCA (ABC)
SYNOPSIS:

(defun inefficiently-permutate (list &key (max nil) (skip 0) (fix t)
clone (sublists nil) (if-not-enough #’error))

10 SC/PERMUTATIONS

10.1.3 permutations/move-repeats

[permutations | [Functions |

DESCRIPTION:

Move, when possible, any elements within a given list that are repeated
consecutively.

When two consecutive elements repeat, such as the ¢ in ’(a b c ¢ b a),

the function moves the repeated element to the next place in the given

list that won’t produce a repetition. When no such place can be found in
the remainder of the list, the offending element is moved to the end of the
given list and a warning is printed.

This function can be applied to simple lists and lists with sublists.
However, due to this function being designed for--but not limited to--use
with the results of permutations, if the list has sublists, then instead of
repeating sublists being moved, the last element of a sublist is checked
for repetition with the first element of the next sublist. See the first

example below.

NB: This function only move elements further along the list; it won’t place
them earlier than their original position. Thus:

(move-repeats (3 3 1))
will return (3 1 3), while
(move-repeats ’(1 3 3))
will leave the list untouched and print a warning.

ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

- A function that serves as the comparison test. Default = #’eq.

RETURN VALUE:

A list.

EXAMPLE:

43

10 SC/PERMUTATIONS 44

;55 Used with a list of lists. Note that the repeating C, end of sublist 1,
;3; beginning of sublist 2, is moved, not the whole repeating sublist (c a b).
(move-repeats ((a b c) (cab) (cab) (de f) (abc) (gh 1)))

=>((ABC) DEF) (CAB) (CAB) (ABC (GHI))

;55 Works with simple lists too:
(move-repeats (1 2334567 889 10))

=> (1234356738938 10)

;; Moves the offending element to the end of the list and prints a warning when
;3 no solution can be found

(move-repeats ((abcd) (dcba (bcad (cabd)

=> ((ABCD) (BCAD) (CABD) (DCB A

WARNING:

move-repeats: can’t find non-repeating place!
present element: (D C B A), elements left: 1

SYNOPSIS:

(defun move-repeats (list &optional (test #’eq))

10.1.4 permutations/multi-shuffle

[permutations | [Functions |

DESCRIPTION:

Applies the shuffle function a specified number of times to a specified
list.

NB: As with the plain shuffle function, the order of the permutations

returned will always be the same unless the keyword argument
:fix is set to NIL.

ARGUMENTS:
- A sequence.
OPTIONAL ARGUMENTS:

keyword arguments:
- :start. A zero-based index integer indicating the first element of a

10 SC/PERMUTATIONS

subsequence to be shuffled. Default = O.

- :end. A zero-based index integer indicating the last element of a
subsequence to be shuffled. Default = the length of the given sequence.

- :copy. T or NIL to indicate whether the given sequence should be copied
before it is modified or should be destructively shuffled.

T = copy. Default = T.

- :fix. T or NIL to indicate whether the given sequence should always be
shuffled with the same (fixed) random seed (thus always producing the
same result). T = fixed seed. Default = T.

- :reset. T or NIL to indicate whether the random state should be reset
before the function is performed. T = reset. Default = T.

RETURN VALUE:
- A sequence.

EXAMPLE:

;3 Simple multi-shuffle with default keywords.
(multi-shuffle *(abcdef g) 3)

=> (BACEDGTF)

;3 Always returns the same result by default.
(loop repeat 4 do (print (multi-shuffle (a b cde f g) 3)))

=>

;5 Set keyword argument :fix to NIL to return different results each time
(loop repeat 4 do (print (multi-shuffle ’(a b c d e f g) 3 :fix nil)))

=>

(GCFBDEA
(AGFBDCE)
(ABDGCFE)
(GCADEFB)

;3 Set keyword arguments :start and :end to shuffle just a subsequence of the
;5 given sequence
(loop repeat 4
do (print (multi-shuffle ’(abcdef g) 3
:fix nil

10 SC/PERMUTATIONS 46

:start 2
:end 5)))

SYNOPSIS:

(defun multi-shuffle (seq num-shuffles &key
(start 0)
(end (length seq))
(copy t)
(fix t)
(reset t))

10.1.5 permutations/multi-shuffle-with-perms

[permutations | [Functions |

DESCRIPTION:

Return one permutation from a shuffled list of permutations of the
specified list. The second argument determines how many shuffled
permutations will be in the list from which the resulting permutation is
selected. Similar to the "multi-shuffle" function, but uses the function
"inefficient-permutations" as part of the process.

The <num-shuffles> argument allows the user to always return the same
specific permutation.

NB: This function always uses a fixed random seed and has no optional
arguments to allow the user to alter that setting.

ARGUMENTS:

- A list.

- An integer that is the number of consecutive shuffles to be collected in
the list from which the resulting permutation is selected.

RETURN VALUE:

- A list that is a single permutation of the specified list.

10 SC/PERMUTATIONS

EXAMPLE:

;; Returns a permutation of a shuffled version of the specified list
(let ((1 °(0 12 3 4)))
(multi-shuffle-with-perms 1 7))

=> (31420

;5 Always returns the same result
(loop repeat 4 do (print (multi-shuffle-with-perms (0 1 2 3 4) 7)))

=>
(3
(3
3
3

T
NN NN
NN NN
O O O O
N S

;; Different <num-shuffles> values return different permutations
(loop for i from O to 5
do (print (multi-shuffle-with-perms ’(0 1 2 3 4) 1i)))

=>
(01234
(14203
(03142
(40213
(12340
(21304
SYNOPSIS:

(defun multi-shuffle-with-perms (seq num-shuffles)

10.1.6 permutations/permutate

[permutations | [Functions |
DESCRIPTION:

Systematically produce a list of all possible permutations of an original
list of elements of any type.

NB: Such lists can quickly become very long, so slippery-chicken
automatically defaults to outputting the resulting list to a file and
printing a warning when the results exceed a certain length.

47

10 SC/PERMUTATIONS

ARGUMENTS:
- A list with elements of any type.
RETURN VALUE:

A list of lists that are all possible permutations of the original,
specified list.

Interrupts with an error if the method is passed anything but a list.

EXAMPLE:

;5 Simple usage
(permutate ’(a b c))

=> ((ABC) (BAC) (ACB) (CAB) (BCA) (CBA)

;; When the list is more than 8 elements long, the resulting permutations are
;; written to a file due to the very high number of results

(permutate (1 2 34567 8 9))

=>

WARNING: permutations::permutations: This call will return 362880

results so they are being written to the file

’/tmp/permutations.txt’.

SYNOPSIS:

(defun permutate (list)

10.1.7 permutations/random-rep

[permutations | [Functions |

DESCRIPTION:

Return a random non-negative number that is less than the specified
value. An optional argument allows for the random state to be reset.

ARGUMENTS:
- A number.

OPTIONAL ARGUMENTS:

48

10 SC/PERMUTATIONS

- T or NIL to indicate whether the random state should be reset before the
function is performed. T = reset. Default = NIL.

RETURN VALUE:
A number.
EXAMPLE:

;3 By default returns a different value each time
(loop repeat 10 do (print (random-rep 5)))

\4

ONON P WP P»PWF

;; Setting the optional argument to T resets the random state before
;3 performing the function
(loop repeat 10 do (print (random-rep 5 t)))

\4

W W wWwwwwwwwowl

SYNOPSIS:

(defun random-rep (below &optional (reset nil))

49

10 SC/PERMUTATIONS

10.1.8 permutations/shuffle

[permutations | [Functions |

DESCRIPTION:

Create a random ordering of a given sequence or a subsequence of a given
sequence. By default we used fixed-seed randomness so we can guarantee the
same results each time (perhaps counter-intuitively). So the order of the
permutations returned will always be the same unless keyword argument :fix
is set to NIL.

NB: This function is a modified form of Common Music’s shuffle function.
ARGUMENTS:
- A sequence (list, vector (string)).

OPTIONAL ARGUMENTS:

keyword arguments:

- :start. A zero-based index integer indicating the first element of a
subsequence to be shuffled. Default = O.

- :end. A zero-based index integer indicating the last element of a
subsequence to be shuffled. Default = the length of the given sequence.

- :copy. T or NIL to indicate whether the given sequence should be copied
before it is modified or should be destructively shuffled.

T = copy. Default = T.

- :fix. T or NIL to indicate whether the given sequence should always be
shuffled with the same (fixed) random seed (thus always producing the
same result). T = fixed seed. Default = T.

- :reset. T or NIL to indicate whether the random state should be reset
before the function is performed. T = reset. Default = T.

RETURN VALUE:
A list.
EXAMPLE:

;5 Simple shuffle with default keywords.
(shuffle ’(1 2 3456 7))

= (6436712)

50

10 SC/PERMUTATIONS 51

;5 Always returns the same result by default.
(loop repeat 4 do (print (shuffle (1 2 3 45 6 7))))

\4
N

(
(
(
(

oo 1 o
NG NN
w W w w
oo oo
~N NN~
= e e
NN N

N

;5 Set keyword argument :fix to NIL to return different results each time
(loop repeat 4 do (print (shuffle (1 2 3 4 5 6 7) :fix nil)))

=>

(1263547)
(1352746)
(472516 3)
(1537426)

;; Set the keyword argument :reset to t only at the beginning so we get the
;; same result that time but different (but repeatable) results thereafter.
(loop repeat 3 do
(print ’start)
(loop for i below 4
do (print (shuffle ’(1 2 3 4 5 6 7) :reset (zerop i)))))

=>

START

(5436712)
(4652317
(3416572)
(3274165)
START

(5436712)
(4652317
(341657 2)
(3274165)
START

(5436712)
4652317
(3416572
(3274165)

;5 Set keyword arguments :start and :end to shuffle just a subsequence of the
;5 given sequence
(loop repeat 4

11 SC/SAMP5

do (print (shuffle (1 23 45 6 7)
:fix nil
:start 2
:end 5)))

(125436T7)

(1235467

(124536T7)

(1234567

SYNOPSIS:

(defun shuffle (seq &key
(start 0)
(end (length seq))
(copy t)
(fix t)
(reset t)

&aux (width (- end start)))

11 sc/sampb

[Modules |
NAME:

sampb
File: samp5.1sp

Class Hierarchy: none, no classes defined

Version: 1.0.5
Project: slippery chicken (algorithmic composition)
Purpose: clm instrument for sample processing; called by

slippery-chicken: :clm-play
Author: Michael Edwards: m@michael-edwards.org
Creation date: 12th June 2004

$$ Last modified: 11:32:09 Mon Nov 4 2013 GMT

12 SC/SINE

SVN ID: $Id: samp5.lsp 5048 2014-10-20 17:10:38Z medward2 $

12 sc/sine

[Modules |
NAME:

sampb

File:

Class Hierarchy:

Version:
Project:

Purpose:

Author:

Creation date:

$$ Last modified:

sine.lsp

none, no classes defined

1.0.5

slippery chicken (algorithmic composition)

clm instrument for simple sine wave generation. This is
used mainly as an example to show how user instruments
can be used in clm-play but it may also be useful for a
quick sinewave rendition of a piece.

Michael Edwards: m@michael-edwards.org

12th June 2004

11:23:12 Tue Dec 3 2013 GMT

SVN ID: $Id: samp5.lsp 4223 2013-10-29 10:57:09Z medward2 $

13 sc/slippery-chicken-edit

[Modules |
NAME:

slippery-chicken-edit

File:

Class Hierarchy:

slippery-chicken-edit.lsp

named-object —-> slippery-chicken

53

13 SC/SLIPPERY-CHICKEN-EDIT

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Post-generation editing methods for the slippery-chicken
class.

Author: Michael Edwards: m@michael-edwards.org

Creation date: April 7th 2012

$$ Last modified: 16:41:40 Mon Sep 1 2014 BST

SVN ID: $Id: slippery-chicken-edit.lsp 5048 2014-10-20 17:10:38Z medward2 $

13.1 slippery-chicken-edit/add-arrow-to-events

[slippery-chicken-edit | [Methods |
DATE:

April 9th 2012
DESCRIPTION:

Adds an arrow above the specified notes of a slippery-chicken object,
coupled with text to be printed in the score at the start and end of the
arrow. Can be used, for example, for transitions from one playing state to
another.

If no text is desired, this must be indicated by a space in quotes (" ")
rather than empty quotes ("").

See also the add-arrow method in the event class.
ARGUMENTS:

- A slippery-chicken object.

- A text string for the beginning of the arrow.

- A text string for the end of the arrow.

A list that is the starting event reference, in the form (bar-number
event-number). Event numbers count from 1 and include rests and tied
notes.

A list that is the end event reference, in the form (bar-number
event-number) .

The ID of the player to whose part the arrow should be attached.

54

13 SC/SLIPPERY-CHICKEN-EDIT 55

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not to print a warning when trying to
attach an arrow and accompanying marks to a rest.
T = print warning. Default = NIL.

RETURN VALUE:
T
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:title "mini"
:ensemble ’(((pno (piano :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette > ((1 ((c4 d4 f4 g4 a4 c5 d5 f5 gb ab c6)))
(2 ((cs4 ds4 fs4 gs4 as4 csb dsb fsb gsb asb))))
iset-map *((1 (1 1111 1))
:rthm-seq-palette *((1 ((((2 4) q @))
:pitch-seq-palette ((1 (2))))))
:rthm-seq-map ’((1 ((pno (1 1 1 1 1 1IN
(add-arrow-to-events mini "here" "there" ’(1 1) ’(5 1) ’pno)
(write-lp-data-for-all mini))

SYNOPSIS:

(defmethod add-arrow-to-events ((sc slippery-chicken) start-text end-text
eventl-ref event2-ref player
&optional warn-rest)

13.2 slippery-chicken-edit /add-clef

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Attach a specified clef symbol to a specified clef object within a given
slippery-chicken object.

ARGUMENTS:

13 SC/SLIPPERY-CHICKEN-EDIT 56

- A slippery-chicken object.
- The ID of the player to whose part the clef symbol is to be added.

NB: The optional arguments are actually required.

OPTIONAL ARGUMENTS:

- An integer that is the bar number in which the clef symbol is to be
placed.

- An integer that is the event number within the given bar to which the
clef symbol is to be attached.

- A symbol that is the clef type to be attached. See the documentation for
the make-instrument function of the instrument class for a list of
possible clef types.

RETURN VALUE:
Returns the new value of the MARKS-BEFORE slot of the given event object.
EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:title "mini"

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 gb ab c6)))

(2 ((cs4 ds4 fs4 gs4 as4d csb dsb fsb gsb asb))))

iset-map *((1 (11111 1))

:rthm-seqg-palette > ((1 ((((2 4) q e s 8))

:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map *((1 ((vn (1 1 1 11 1NN
(add-clef mini ’vn 3 2 ’alto))

=> ((CLEF ALTOQ))
SYNOPSIS:

(defmethod add-clef ((sc slippery-chicken) player &optional
bar-num event-num clef)

13.3 slippery-chicken-edit /add-event-to-bar

[slippery-chicken-edit | [Methods |

13 SC/SLIPPERY-CHICKEN-EDIT o7

DESCRIPTION:

Add an event object to a specified bar either at the end of that bar or at
a specified position within that bar.

ARGUMENTS:

- A slippery-chicken object.

- An event object.

- An integer that is the bar number or a list that is the reference to the
bar in the form ’(section sequence bar), where sequence and bar are
numbers counting from 1)

The ID of the player to whose part the event should be added.

OPTIONAL ARGUMENTS:

keyword argument:

- :position. NIL or an integer indicating the position in the bar (0O-based)
where the event should be added. If NIL, the new event is placed at the
end of the bar. Default = NIL.

RETURN VALUE:
T

EXAMPLE:

;55 Adding two events to separate bars, once using a bar number with
;35 :position’s default to NIL, and once using a bar number reference list with
;55 :position specified as 2. Print the bars after adding to see the changes.

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 gb ab c6)))
(2 ((cs4 ds4 fs4 gs4 as4d csb dsb fsb gsb asb ¢s6))))
tset-map *((1 (1 1111 1))
(2 (222222))
:rthm-seq-palette > ((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4))))
(2 ((((2 4) e s s q)
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vn (1 1111 1))))

13 SC/SLIPPERY-CHICKEN-EDIT

(2 ((vn (22222 2))))))))
(add-event-to-bar mini (make-event ’cs4 ’e) 2 ’vn)
(print-simple (first (get-bar mini 2)))
(add-event-to-bar mini (make-event ’c4 ’q) ’(2 2 1) ’vn :position 2)
(print-simple (first (get-bar mini ’(2 2 1)))))

=>
(24): C4Q, DA E, F4 S, G4 S, CS4 E
(2 4): CS4 E, DS4 S, C4 Q, FS4 S, Gs4 Q

SYNOPSIS:

(defmethod add-event-to-bar ((sc slippery-chicken) event bar-num-or-ref player

&key (position nil))

13.4 slippery-chicken-edit /add-mark-all-players

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Add a specified mark to a specified event in the parts of all players. The
event can either be specified as a 1-based integer, in which case the mark
will be attached to the same event in all parts, or as a list of integers,
in which the mark is attached to different events in the same bar for each
player, passing from the top of the ensemble downwards.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the bar number or a list of integers that is a
reference to the bar number in the form (section sequence bar).

- An integer that is the event to which to attach the specified mark in all
parts, or a list of integers that are the individual events to which to
attach the mark in the consecutive players.

- The mark to be added.

RETURN VALUE:
Always returns T.
EXAMPLE:

;55 Apply the method twice: Once using an integer to attach the mark to the
;;; same event in all players, and once using a list to attach the mark to

58

13 SC/SLIPPERY-CHICKEN-EDIT

;;; different events in the consecutive players. Print the corresponding marks
;33 slots to see the results.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))
(hn (french-horn :midi-channel 2))
(vc (cello :midi-channel 3))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((£3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 cb))))
:set-map *((1 (1 111 1))
2 @111 0N
:rthm-seq-palette *((1 ((((4 4) h q e s s))
:pitch-seq-palette ((1 2 3 4 5)))))
:rthm-seq-map ’((1 ((cl (1 111 1))

(hn (1111 1))
(ve (1111 1))
(2 (el (1111 1)
(hn (1111 1))
(ve (L1121 1D

(add-mark-all-players mini 3 1 ’ppp)
(add-mark-all-players mini °(2 2 1) >(1 2 3) ’fff)
(loop for i in ’(cl hn vc)

do (print (marks (get-event mini 3 1 i))))
(loop for i in ’(cl hn vc)

for e in (1 2 3)

do (print (marks (get-event mini ’(2 2 1) e i)))))

=>

(PPP)
(PPP)
(PPP)
(FFF)
(FFF)
(FFF)

SYNOPSIS:
(defmethod add-mark-all-players ((sc slippery-chicken)
bar-num event-num mark)

13.5 slippery-chicken-edit /add-mark-before-note

[slippery-chicken-edit | [Methods |
DESCRIPTION:

13 SC/SLIPPERY-CHICKEN-EDIT

Add the specified mark to the MARKS-BEFORE slot of the specified note
object within the given slippery-chicken object.

NB: This method counts notes, not events; i.e., rests are not counted.

ARGUMENTS:

- A slippery-chicken object.

An integer that is the bar number in which the mark is to be added.

- An integer that is the NOTE number to which the mark is to be added (not
the event number; i.e., rests are not counted).

The ID of the player to which the mark is to be added.

- The mark to be added.

RETURN VALUE:
Returns the new value of the MARKS-BEFORE slot of the given event object.

EXAMPLE:

;55 The method adds the mark to the specified note, not event. Add the mark to
;33 note 2, print the MARKS-BEFORE slots of events 2 (which is a rest) and 3.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 5 gb ab c6))))
iset-map *((1 (1 1111 1))
:rthm-seq-palette ’((1 ((((2 4) q (e) s 8))
:pitch-seq-palette ((1 2 3)))))
:rthm-seq-map ’((1 ((vn (1 1111 1))))))))
(add-mark-before-note mini 3 2 ’vn ’ppp)
(print (marks-before (get-event mini 3 2 ’vn)))
(print (marks-before (get-event mini 3 3 ’vn))))

=>

NIL
(PPP)

SYNOPSIS:

(defmethod add-mark-before-note ((sc slippery-chicken)
bar-num note-num player mark)

60

13 SC/SLIPPERY-CHICKEN-EDIT

13.6 slippery-chicken-edit/add-mark-to-event

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Add the specified mark to the MARKS slot of the specified event within the
given slippery-chicken object.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the bar number to which the mark is to be added.

- An integer that is the event number in the specified bar to which the
mark is to be added.

The ID of the player to which to add the mark.

- The mark to add.

RETURN VALUE:
Returns T.
EXAMPLE:

;;; Add a mark to an event object then read the value of the MARKS slot of that
;3 event to see the result
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 £f5 gb ab c6))))
iset-map *((1 (1 1111 1)))
:rthm-seq-palette ’((1 ((((2 4) q (e) s s8))
:pitch-seq-palette ((1 2 3)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1NN
(add-mark-to-event mini 3 2 ’vn ’ppp)
(marks (get-event mini 3 2 ’vn)))

=> (PPP)

SYNOPSIS:

(defmethod add-mark-to-event ((sc slippery-chicken) bar-num event-num player
mark)

13 SC/SLIPPERY-CHICKEN-EDIT

13.7 slippery-chicken-edit /add-mark-to-note

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Add the specified mark to the specified note of a given slippery-chicken
object.

NB: This method counts notes, not events; i.e., not rests.
ARGUMENTS:

- A slippery-chicken object.

An integer that is the bar number to which to add the mark

- An integer that is the note number two which to add the mark. This is
1-based, and counts notes not events; i.e., not rests.

The ID of the player to whose part the mark is to be added.

- The mark to add.

RETURN VALUE:
Returns T.
EXAMPLE:

;55 Add a mark to a note in a bar with a rest. Print the corresponding event
;55 object to see the result.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 gb ab c6))))
:set-map *((1 (1 1111 1))
:rthm-seq-palette ’((1 ((((2 4) q (e) s s))
:pitch-seq-palette ((1 2 3)))))
:rthm-seq-map *((1 ((vn (1 11 1 1 1))))NN)
(add-mark-to-note mini 3 2 ’vn ’ppp)
(print (marks (get-event mini 3 2 ’vn)))
(print (marks (get-event mini 3 3 ’vn))))

=>
NIL
(PPP)

62

13 SC/SLIPPERY-CHICKEN-EDIT

SYNOPSIS:

(defmethod add-mark-to-note ((sc slippery-chicken)
bar-num note-num player mark)

13.8 slippery-chicken-edit/add-marks-sh

[slippery-chicken-edit | [Methods |
DATE:

27-Jun-2011
DESCRIPTION:

Add marks in a somewhat more free list form, with the option of
implementing a user-defined shorthand.

ARGUMENTS:

- A slippery-chicken object.

- A list of lists containing the players, bar and note refs, and marks to
be added. The first element of each contained list will be the ID of the
player to whose part the marks are to be added followed by a pattern of
<mark bar-number note-number> triplets, or if a mark is to be added
repeatedly then <mark bar note bar note... >. A mark can be a string or a
symbol.

OPTIONAL ARGUMENTS:

keyword arguments:

- For marks given as symbols, the user can supply a shorthand table that
will expand an abbreviation, such as sp, to the full mark name, such as
short-pause. This table takes the form of a simple Lisp association list,
e.g.: ’((al aeolian-light)

(ad aeolian-dark)
(wt "WT")
(h harm))

- :warn. T or NIL to indicate whether to print a warning for unrecognized
marks. T = print warning. Default = T.

- :verbose. T or NIL to indicate whether the method is to print verbose
feedback about each mark added to the Listener. T = print feedback.
Default = NIL.

RETURN VALUE:

63

13 SC/SLIPPERY-CHICKEN-EDIT

Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 £5))))
tset-map ’((1 (1 1111 1)))
:rthm-seq-palette ((1 ((((4 4) e e e ec e e e e))
:pitch-seq-palette ((1 2 345 6 7 8)))))
:rthm-seq-map ’((1 ((vn (1 1111 1))
(va (11111 1))))))))
(add-marks-sh mini
’(vnal111231s212225)
(va pizz 1 32 3 sp 3 1))
:shorthand ’((sp short-pause))
:verbose t))

=> NIL

SYNOPSIS:

(defmethod add-marks-sh ((sc slippery-chicken) player-data
&key shorthand (warn t) verbose)

13.9 slippery-chicken-edit/add-marks-to-note

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Add one or more specified marks to a specified note within a given
slippery-chicken object.

NB: This method counts notes, not events; i.e., rests are not counted.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the bar number to which the mark or marks should to be

added.

64

13 SC/SLIPPERY-CHICKEN-EDIT 65

- An integer that is the note within the specified bar to which the mark or
marks should be added.

- The ID of the player to whose part the mark or marks should be added.

- The mark or marks to add.

RETURN VALUE:
Returns T.

EXAMPLE:

;55 Add several marks to one note, then print the corresponding MARKS slot to
;33 see the difference.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 £5))))
:set-map *((1 (1 1111 1))
:rthm-seqg-palette *((1 ((((4 4) e (e) e e (e) e e e))
:pitch-seq-palette ((1 2 3 4 5 6)))))
:rthm-seq-map ’((1 ((vn (1 1111 1))
(va (1 11111)))))))
(add-marks-to-note mini 2 3 ’va ’a ’s ’lhp ’pizz)
(print (marks (get-note mini 2 3 ’va))))

=> (PIZZ LHP S A)

SYNOPSIS:

(defmethod add-marks-to-note ((sc slippery-chicken) bar-num note-num
player &rest marks)

13.10 slippery-chicken-edit /add-marks-to-notes

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Add the specified mark or marks to a consecutive sequence of multiple notes
within the given slippery-chicken object.

ARGUMENTS:

13 SC/SLIPPERY-CHICKEN-EDIT

- A slippery-chicken object.

- An integer or a list consisting of two numbers to indicate the start
bar/note. If this is an integer, all notes in this bar will receive the
specified mark or marks. If this is a two-number list, the first number
determines the bar, the second the note within that bar.

- An integer or a list consisting of two numbers to indicate the end
bar/note. If this is an integer, all notes in this bar will receive the
specified mark or marks. If this is a two—number list, the first number
determines the bar, the second the note within that bar.

- The ID of the player or players to whose parts the mark or marks should
be attached. This can be a single symbol or a list.

- T or NIL to indicate whether the mark should be added to the MARKS slot
or the MARKS-BEFORE slot of the given events objects.

- The mark or marks to be added.

RETURN VALUE:
Returns T.

EXAMPLE:

;55 This example calls the method twice: Once using the single-integer
;33 indication for full bars, with one instrument and one mark; and once using
;33 the bar/mote reference lists for more specific placement, a list of several
;55 players that should all receive the marks, and multiple marks to add.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 £5))))
tset-map *((1 (11111 1))
:rthm-seq-palette ((1 ((((4 4) e e e ec e e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((vn (1 1111 1))
(va (11111 1)0)0))N
(add-marks-to-notes mini 2 3 ’vn nil ’1hp)
(add-marks-to-notes mini (1 3) ’(2 2) ’(vn va) nil ’s ’a))

=> T
SYNOPSIS:

(defmethod add-marks-to-notes ((sc slippery-chicken) start end players before
&rest marks)

13 SC/SLIPPERY-CHICKEN-EDIT 67

13.11 slippery-chicken-edit /add-pitches-to-chord

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Add specified pitches to an existing chord object.

ARGUMENTS:

- The slippery-chicken object which contains the given chord object.

- The ID of the player whose part is to be affected.

- An integer that is the number of the bar that contains the chord object
that is to be modified.

- An integer that is the number of the note that is the chord object to be
modified.

- The pitches to be added. These can be pitch objects or any data that can
be passed to make-pitch, or indeed lists of these, as they will be
flattened.

RETURN VALUE:
The chord object that has been changed.
EXAMPLE:

(let* ((ip-clone (clone +slippery-chicken-standard-instrument-palette+)))
(set-slot ’chord-function ’chord-funl ’guitar ip-clone)

(let* ((mini

(make-slippery-chicken

’+mini+

:instrument-palette ip-clone

:ensemble ’ (((gtr (guitar :midi-channel 1))))

:set-palette > ((1 ((e3 £3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5 d5 e5 £5
gh ab b5 c6 d6 e6))))

:set-map ’((1 (1)))

:rthm-seq-palette

((1 ((((44) eeeecececece))

:pitch-seq-palette ((1 (2) 3 (4) 5 (6) 7 (8))))))

:rthm-seq-map ’ ((1 ((gtr (1))))))))

(print (get-pitch-symbols

(pitch-or-chord (get-event mini 1 2 ’gtr))))

(add-pitches-to-chord mini ’gtr 1 2 ’cs4 ’ds4)

(print (get-pitch-symbols

(pitch-or-chord (get-event mini 1 2 ’gtr))))))

13 SC/SLIPPERY-CHICKEN-EDIT

=>
(E3 G3 B3)
(E3 G3 B3 CS4 DS4)

SYNOPSIS:

(defmethod add-pitches-to-chord ((sc slippery-chicken) player bar-num note-num
&rest pitches)

13.12 slippery-chicken-edit /add-tuplet-bracket-to-bar

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Add a tuplet bracket (with number) to a specified bar in a slippery-chicken
object. This method adds only one tuplet bracket of one tuplet type
(triplet, quintuplet etc.) at a time.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar to which the tuplet bracket is
to be added.

- The ID of the player to whose part the tuplet bracket is to be added.

- The bracket info defining the tuplet bracket to be added. This takes the
form of a three-element list specifying tuplet value, number of the event
(zero-based) on which the bracket is to begin, and number of the event on
which the bracket is to end, e.g. (3 0 2).

OPTIONAL ARGUMENTS:

T or NIL to indicate whether all existing tuplet brackets in the given bar
are to be deleted first. T = delete. Default = NIL>

RETURN VALUE:
T
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+sc-object+

13 SC/SLIPPERY-CHICKEN-EDIT 69

:ensemble ’(((va (viola :midi-channel 2))))

:set-palette ’((1 ((c3 d3 e3 £3 g3 a3 b3 c4 d4))))

:set-map > ((1 (1 1 1)))

:rthm-seq-palette > ((1 ((((3 4) (te) - te te - { 3 te ts+ts te }

- fs fs fs fs fs -))
:pitch-seq-palette ((1 234567 89 8)))))

:rthm-seg-map ’((1 ((va (1 1 1))))))))
(add-tuplet-bracket-to-bar mini 1 ’va (3 0 2))
(add-tuplet-bracket-to-bar mini 2 ’va (5 7 11))
(add-tuplet-bracket-to-bar mini 3 ’va ’(3 3 4) t)
(add-tuplet-bracket-to-bar mini 3 ’va ’(3 5 6)))

=> T
SYNOPSIS:

(defmethod add-tuplet-bracket-to-bar ((sc slippery-chicken) bar-num player
bracket-info
&optional (delete-all-tuplets-first nil))

13.13 slippery-chicken-edit/add-tuplet-brackets-to-beats

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Add the specified tuplet brackets (and numbers) to the specified event
objects in the specified bars within the given slippery-chicken object.

ARGUMENTS:

- A slippery-chicken object.

- The ID of the player to whose part the tuplet brackets are to be added.

- A list of 4-element sublists that is the bracket info. Each sublist must
consist of: the number of the bar to which the bracket is to be added;
the number that is the tuplet type (3 = triplet, 5 = quintuplet etc.);
the zero-based number of the event where the bracket is to begin; the
zero-based number that is the number of the event where the bracket is to
end; e.g. ’((2305) (3303) (650 4))

OPTIONAL ARGUMENTS:

T or NIL to indicate whether all existing tuplet bracket info in the given
bars is to first be deleted. T = delete. Default = NIL.

13 SC/SLIPPERY-CHICKEN-EDIT

RETURN VALUE:
NIL.
EXAMPLE:

(let ((mini

(make-slippery-chicken

’+sc-object+

:ensemble ’(((va (viola :midi-channel 2))))

:set-palette ’((1 ((c3 e3 g3 c4))))

:set-map *((1 (1 1 1)))

:rthm-seq-palette *((1 ((((3 4) - te te te - - fs fs fs fs fs -

- 28 28 28 28 28 28 28 -))
:pitch-seq-palette ((1 234123412341
2.3))))
:rthm-seq-map ’((1 ((va (1 1 1))))))))
(add-tuplet-brackets-to-beats mini ’va >((1 3 0 2) (2 53 7) (37 8 14))))

=> NIL
SYNOPSIS:

(defmethod add-tuplet-brackets-to-beats
((sc slippery-chicken) player bracket-info
&optional (delete-all-tuplets-first nil))

13.14 slippery-chicken-edit /auto-accidentals

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Automatically determine which notes in each bar need accidentals and which
don’t.

This method also places cautionary accidentals (in parentheses) based on
how many notes back the last occurrence of that note/accidental combination
appeared in the bar. The first optional argument to the method allows the
user to specify how many notes back to look.

NB: As both cmn-display and write-lp-data-for-all call respell-notes by
default, that option must be set to NIL for this method to be
effective (see below).

70

13 SC/SLIPPERY-CHICKEN-EDIT 71

ARGUMENTS:
- A slippery-chicken object.
OPTIONAL ARGUMENTS:

- An integer that is the number of notes back to look when placing
cautionary accidentals in parentheses. If the last occurrence of a given
repeated note/accidental combination was farther back than this number,
the accidental will be placed in the score in parentheses.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:set-palette ’((1 ((fs4 gs4 as4))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ((1 ((((4 4) e e e ec e e e e))
:pitch-seqg-palette ((1 23 21 2 3 2)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1))))))))
(auto-accidentals mini 4)
(cmn-display mini :respell-notes nil))

=> NIL

SYNOPSIS:

(defmethod auto-accidentals ((sc slippery-chicken) &optional
(cautionary-distance 3)
ignorel ignore2)

13.15 slippery-chicken-edit/auto-beam

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Automatically places indications for beam start- and end-points (1 and 0)

13 SC/SLIPPERY-CHICKEN-EDIT 72

in the BEAMS slot of the corresponding event objects.

By default, this method determines the start and end indications for beams
on the basis of the beat found in the time signature, but the user can
specify a different beat basis using the first optional argument.

ARGUMENTS:
- A slippery-chicken object.

OPTIONAL ARGUMENTS:

- NIL, an integer that is a power-of-two rhythmic duration, or the
alphabetic representation of such a rhythm to specify the beat basis for
setting beams (e.g. 4 or ’h).

- T or NIL to indicate whether the method is to check whether an exact beat
of rhythms can be found for each beat of the bar. If T, a warning will be
printed when an exact beat cannot be found for each beat of the bar.
Default = T.

RETURN VALUE:
Returns NIL.

EXAMPLE:

;; Auto-beam the events of the given slippery-chicken object on the basis of a ;
;; half note: ;
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (g 60)))
:set-palette ’((1 ((fs4 gs4 as4))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))
:pitch-seq-palette ((1 2 321 2 3 2)))))
:rthm-seq-map *((1 ((vn (1 1 1 1))))))))
(auto-beam mini ’h))

=> NIL
SYNOPSIS:

(defmethod auto-beam ((sc slippery-chicken) &optional (beat nil) (check-dur t))

13 SC/SLIPPERY-CHICKEN-EDIT

13.16 slippery-chicken-edit/auto-clefs

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Automatically create clef changes in the specified player’s or players’
part or parts by adding the appropriate clef symbol to the MARKS-BEFORE
slot of the corresponding event object.

This routine will only place clef symbols that are present in the given
instrument object’s CLEFS slot.

This method is called automatically by cmn-display and
write-lp-data-for-all, with the delete-clefs option set to T.

NB: While this routine generally does a good job of putting the proper
clefs in place, it will get confused if the pitches in a given player’s
part jump from very high to very low (e.g. over the complete range of
the piano).

ARGUMENTS:
- A slippery-chicken object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :verbose. T or NIL to indicate whether the method is to print feedback
about its operations to the Listener. T = print feedback. Default = NIL.

- :in-c. T or NIL to indicate whether the pitches processed are to be
handled as sounding or written pitches. T = sounding. Default = T.

- :players. A list containing the IDs of the players whose parts are to be
to have clefs automatically added.

- :delete-clefs. T or NIL to indicate whether the method should first
delete all clef symbols from the MARKS-BEFORE slots of all event objects
it is processing before setting the automatic clef changes.

- :delete-marks-before. T or NIL to indicate whether the MARKS-BEFORE slot
of all event objects processed should first be set to NIL.

T = set to NIL. Default = NIL.

RETURN VALUE:
Returns T

EXAMPLE:

73

13 SC/SLIPPERY-CHICKEN-EDIT

;55 Straightforward usage applied to just the VC player ;
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(vc (cello :midi-channel 2))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1))
(ve (1111333000

(auto-clefs mini :players ’(vc)))
=> T
SYNOPSIS:

(defmethod auto-clefs ((sc slippery-chicken)
&key verbose in-c players
(delete-clefs t)
(delete-marks-before nil))

13.17 slippery-chicken-edit/auto-slur

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Automatically add slurs to note groups in the specified measure range of a
given player’s part.

This method places slurs above all consecutive notes between rests. If a
value is specified for :end-bar and the last event in the end bar is not a
rest, the final sequence of attacked notes in that bar will not be
slurred.

NB: Slurs will automatically stop at repeated pitches. Staccato marks will
not stop the auto-slurring process but staccatos can be removed (see

below) .

ARGUMENTS:

- A slippery-chicken object.

74

13

SC/SLIPPERY-CHICKEN-EDIT 75

A player ID or list of player IDs for the parts in which the slurs are to
be placed.

OPTIONAL ARGUMENTS:

keyword arguments:

:start-bar. An integer that is the first bar in which to automatically
place slurs.

:end-bar. An integer that is the last bar in which to automatically place
slurs.

:rm-slurs-first. T or NIL to indicate whether to first remove existing
slurs from the specified region. NB: If you already have slur marks
attached to events, setting this to NIL can produce unwanted results
caused by orphaned beg-slur or end-slur marks. T = remove existing slurs
first. Default = T.

:rm-staccatos. T or NIL to indicate whether to first remove existing
staccato, tenuto, and accented staccato marks from the specified

region. T = remove staccatos. Default = NIL.

:over-accents. T or NIL. Default = T.

:verbose. T or NIL to indicate whether to print feedback from the process
to the Lisp listener. T = print. Default = NIL.

RETURN VALUE:

A

list of sublists, each of which contains the start and end event, plus

the number of notes under the slur, for each slur added.

EXAMPLE:

(let ((mini

(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c3 d3 e3 £3 g4 a3 b3
cd d4 ed f4 g4 ad b4 cb))))
:set-map > ((1 (1 1 1)))
:rthm-seqg-palette *((1 ((((4 4) - e e - (8) e.
-sse--s8(s)ss-))
:pitch-seq-palette ((1 234567 8 9))
:marks (a 4))))
:rthm-seq-map ’((1 ((vn (1 1 1))))))))
(auto-slur mini ’vn
:start-bar 1
tend-bar 2))

13 SC/SLIPPERY-CHICKEN-EDIT 76

SYNOPSIS:

(defmethod auto-slur ((sc slippery-chicken) players
&key start-bar end-bar
(rm-slurs-first t)
(rm-staccatos t)
;3 5.4.11
(over-accents t)
verbose)

13.18 slippery-chicken-edit /bars-to-sc

[slippery-chicken-edit] [Functions]
DESCRIPTION:

Take a list of rthm-seq-bars and add them to a new or existing
slippery-chicken object. If already existing, we assume it’s one you’re
creating part by part with this function, as it’s not currently possible to
add a part like this in the middle of the score--the new part will be added
to the end of the last group of the ensemble (bottom of score) so make sure
to add parts in the order you want them.

NB Bear in mind that if you want to use midi-play, then the events in the
bars will need to have their midi-channel set (e.g. via make-event).
It’s the caller’s responsibility that any parts added have the same
time-signature structure as any existing part.

ARGUMENTS:
- A list of rthm-seqg-bars

OPTIONAL ARGUMENTS:

keyword arguments:

- :sc. Either an existing slippery-chicken object or nil if one should be
created automatically. If nil, the following three arguments must be
specified, otherwise they will be ignored. Default = NIL.

- :sc-name. The name (symbol) for the slippery-chicken object to be
created. This will become a global variable. Default = ’*autox*.

- :player. The name (symbol) of the player to create. Default =
’player-one. (Remember that Lilypond has problems with player names

with numbers in them :/)

- :instrument. The id (symbol) of an already existing instrument in the
instrument-palette. Default = ’flute.

13 SC/SLIPPERY-CHICKEN-EDIT

- :update. Whether to call update-slots on the new slippery-chicken
object. Default = t.

- :section-id. The section id. Default = 1.

RETURN VALUE:

A slippery-chicken object.

EXAMPLE: SYNOPSIS:

(defun bars-to-sc (bars &key sc (sc-name ’*autox*) (player ’player-one)

(instrument-palette

+slippery-chicken-standard-instrument-palette+)
(instrument ’flute) (section-id 1) (update t))

13.19 slippery-chicken-edit/change-pitch

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Change the pitch of a specified event to a new specified pitch. The new
pitch is not required to be a member of the current set.

NB The new pitch is the sounding pitch if a transposing instrument.
NB This doesn’t update following tied-to notes.

ARGUMENTS:

A slippery-chicken object.

- An integer that is the bar number in which the pitch is to be changed.

- An integer that is the number of the note in the specified bar whose
pitch is to be changed.

- The ID of the player for whom the pitch is to be changed.

A note-name symbol that is the new pitch.

OPTIONAL ARGUMENTS:

T or NIL to indicate whether the written or sounding pitch should be
changed. Default = NIL (sounding).

RETURN VALUE:

Returns T.

7

13 SC/SLIPPERY-CHICKEN-EDIT 78

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4 e4))))
tset-map *((1 (1 11 1)))

:rthm-seq-palette *((1 ((((4 4) ee e e e e e e))

:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map > ((1 ((ve (1 11 1))))))))
(change-pitch mini 1 3 ’vc ’£s3))

=> T
SYNOPSIS:

(defmethod change-pitch ((sc slippery-chicken) bar-num note-num player
new-pitch &optional written)

13.20 slippery-chicken-edit/change-pitches

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Change the pitches of the specified event objects for a given player to the
specified new pitches.

If the new pitches are passed as a simple flat list, the method will just
change the pitch of each consecutive attacked event object (with NIL
indicating no change), moving from bar to bar as necessary, until all of
the specified new pitches are used up. Also, if a flat list is passed, each
new pitch specified will be applied to each consecutive attacked note;
i.e., ties don’t count as new pitches.

Tied-to events are left with the old pitch information, which is of course
a potential problem. When generating scores though, we usually call
respell-notes, which calls check-ties, which corrects spellings of tied-to
notes and therefore in effect changes those notes too. So generally, we
don’t have to worry about this, but if you explicitly tell slippery chicken
not to respell notes, you’ll need to call check-ties with the first
optional argument as T.

13 SC/SLIPPERY-CHICKEN-EDIT

Also see the documentation in the bar-holder class for the method of the
same name.

ARGUMENTS:

- A slippery-chicken object.

The ID of the player whose part is to be modified.

- An integer that is the number of the first bar whose pitches are to be
modified.

- A list note-name symbols and NILs, or a list of lists of note-name
symbols and NILs, which are the new pitches. If a simple flat list, see
the comment in the description above. If a list of lists, each sub-list
will represent a full bar; e.g., (change-pitches bh ’vla 5 ’((g3 gs4) nil
(nil nil aqf5))) will change the pitches in bars 5 and 7 (for the player
’vla), whereas bar six, indicated by nil, wouldn’t be changed; similarly
the first two notes of bar 7, being nil, will also not be changed, but
note 3 will.

OPTIONAL ARGUMENTS:

keyword arguments:

- :use-last-octave. T or NIL to indicate whether or not each consecutive
new pitch listed will automatically take the most recent octave number
specified; e.g. ’((a3 b g cs4)). T = use last octave number. Default = T.

- :marks. A list of marks to be added to the events objects. This option
can only be used in conjunction with the simple flat list of pitches. In
this case the list of pitches and list of marks must be the same length
and correspond to each other item by item. Sub-lists can be used to add
several marks to a single event. NB: See cmn.lsp::get-cmn-marks for the
list of recognised marks. If NIL, no marks will be added. Default = NIL.

- :written. T or NIL to indicate whether these are the written or sounding
notes for a transposing instrument. Default = NIL.

- :warn. If there are more pitches in the given list than there are events
in the slippery-chicken structure, issue a warning, unless NIL.

Default = T.

RETURN VALUE:

If a the new pitches are passed as a simple flat list, the method returns
the number of the bar in which the pitches were changed;
otherwise returns T.

EXAMPLE:

(let ((mini

79

13 SC/SLIPPERY-CHICKEN-EDIT

(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4 e4))))
iset-map *((1 (1 1111 1))
:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((ve (1 111 1 1NN
(change-pitches mini ’vc 2 ’((£s3 gs3 as3)))
(change-pitches mini ’vc 3 ’((nil nil fs3 gs as ds fs gs)
nil
(cs4 ds £s))))

=T
SYNOPSIS:

(defmethod change-pitches ((sc slippery-chicken) player start-bar new-pitches
&key (use-last-octave t) marks written
(warn t))

13.21 slippery-chicken-edit/change-time-sig

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Force a change of the time-sig associated with a specified bar.

NB: This method does not check to see if the rhythms in the bar add up to a
complete bar in the new time-sig.

Also see rthm-seq-bar (setf time-sig).
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar whose time signature should be
changed or a list that is a reference to the bar whose time signature is
to be changed in the format (section sequence bar).

- The new signature in the format (number-of-beats beat-unit).

RETURN VALUE:

80

13 SC/SLIPPERY-CHICKEN-EDIT 81

Returns T.
EXAMPLE:

;5; Changing two time signatures; once using the integer bar reference, the
;;; second time using the list reference to the bar number.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4 e4))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ((1 ((((4 4) e e e ec e e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((ve (1 1 1 1))))))))
(change-time-sig mini 2 ’(3 8))
(change-time-sig mini (1 1 1) °(5 8)))

=T
SYNOPSIS:

(defmethod change-time-sig ((sc slippery-chicken) bar-num-or-ref new-time-sig)

13.22 slippery-chicken-edit/consolidate-all-notes

[slippery-chicken-edit | [Methods |
DESCRIPTION:

A convenience method which just calls the consolidate-notes method from the
rthm-seq-bar class for all the bars specified in the arguments.

ARGUMENTS:

- the slippery-chicken object

the first bar number in which consolidation should take place

the last bar number in which consolidation should take place (inclusive)

- A list of the IDs of the players to whose parts the consolidation should
be applied. Can also be a single symbol.

RETURN VALUE:

- A list of the rthm-seq-bar objects that were modified. See map-over-bars
for more details.

13 SC/SLIPPERY-CHICKEN-EDIT 82

SYNOPSIS:

(defmethod consolidate-all-notes ((sc slippery-chicken) start-bar end-bar
players)

13.23 slippery-chicken-edit/consolidate-all-rests

[slippery-chicken-edit | [Methods |
DESCRIPTION:

A convenience method which just calls the consolidate-rests method from the
rthm-seq-bar class for all the bars specified in the arguments.

ARGUMENTS:

- the slippery-chicken object

- the first bar number in which consolidation should take place

the last bar number in which consolidation should take place (inclusive)

- A list of the IDs of the players to whose parts the consolidation should
be applied. Can also be a single symbol.

OPTIONAL ARGUMENTS:

T or NIL to indicate whether the method should print a warning to the Lisp
listener if it is mathematically unable to consolidate the rests. T = print
warning. Default = NIL.

RETURN VALUE:

- A list of the rthm-seq-bar objects that were modified. See map-over-bars
for more details.

SYNOPSIS:

(defmethod consolidate-all-rests ((sc slippery-chicken) start-bar end-bar
players &optional warn)

13.24 slippery-chicken-edit/delete-bars

[slippery-chicken-edit | [Methods |
DESCRIPTION:

13 SC/SLIPPERY-CHICKEN-EDIT 83

Delete a sequence of consecutive bars from the given slippery-chicken
object.

NB This might delete rehearsal letters, instrument changes (and maybe other
things) attached to a bar/event.

ARGUMENTS:

- A slippery-chicken object.
- An integer that is the first bar to delete.

OPTIONAL ARGUMENTS:

keyword arguments:

- :num-bars. An integer that is the number of consecutive bars, including
the start-bar, to delete. This argument cannot be used simultaneously
with :end-bar

- :end-bar. An integer that is the number of the last of the consecutive
bars to delete. This argument cannot be used simultaneously with
:num-bars.

- :print. Print feedback of the process to the Listener, including a
print-simple of the bars deleted.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4 e4))))
:set-map ((1 (1 11 1)))
:rthm-seq-palette ((1 ((((4 4) e e e ec e e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((ve (1 1 1 1))))))))
(delete-bars mini 2 :end-bar 3)
(delete-bars mini 2 :num-bars 1))

=T

SYNOPSIS:

13 SC/SLIPPERY-CHICKEN-EDIT

(defmethod delete-bars ((sc slippery-chicken) start-bar
&key num-bars end-bar print)

13.25 slippery-chicken-edit /delete-clefs

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Delete the clef symbol held in the MARKS-BEFORE slot of the specified event
object within the given slippery-chicken object.

ARGUMENTS:

NB: The optional arguments are actually required.

- A slippery-chicken object.

- The ID of the player from whose part the clef symbol is to be deleted.

- An integer that is the number of the bar from which the clef symbol is to
be deleted.

- An integer that is the number of the event object within the specified
from whose MARKS-BEFORE slot the clef symbol is to be deleted. This is a
1-based index but counts rests and ties.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
tset-map *((1 (1 11 1)))
:rthm-seq-palette *((1 ((((4 4) ee e e e e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))

:rthm-seq-map > ((1 ((ve (1 11 1))))))))

(auto-clefs mini)

(delete-clefs mini ’vc 1 3))

=> NIL

SYNOPSIS:

84

13

SC/SLIPPERY-CHICKEN-EDIT 85

(defmethod delete-clefs ((sc slippery-chicken) &optional

player bar-num event-num)

13.26 slippery-chicken-edit/delete-events

[slippery-chicken-edit | [Methods |
DATE:

21-Jul-2011 (Pula)

DESCRIPTION:

Turn notes into rests by setting the IS-REST slots of the specified
consecutive event objects within the given slippery-chicken object to T.

ARGUMENTS:

A slippery-chicken object.

An integer that is the number of the first bar for which the notes are to
be changed to rests.

An integer that is the index of the first event object within the
specified start bar for which the IS-REST slot is to be changed to

T. This number is 1-based and counts rests and ties.

An integer that is the number of the last bar for which the notes are to
be changed to rests.

An integer that is the index of the last event object within the
specified end bar for which the IS-REST slot is to be changed to T. This
number is 1-based and counts rests and ties. If NIL, apply the change to
all events in the given bar.

OPTIONAL ARGUMENTS:

A list of the IDs of the players whose parts are to be modified. If NIL,
apply the method to the parts of all players.

T or NIL to indicate whether to consolidate resulting consecutive rests
into one longer rest each. T = consolidate. Default = T.

RETURN VALUE:

Returns T.

EXAMPLE:

13 SC/SLIPPERY-CHICKEN-EDIT

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
tset-map *((1 (1 11 1)))

:rthm-seq-palette *((1 ((((4 4) ee e e e e e e))

:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((vec (1 11 1))))))))
(delete-events mini 2 2 3 nil ’vc))

=T
SYNOPSIS:

(defmethod delete-events ((sc slippery-chicken) start-bar start-event end-bar
end-event &optional players (consolidate-rests t))

13.27 slippery-chicken-edit /delete-rehearsal-letter

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Delete the rehearsal letter from a specified bar of on or more specified
players’ parts by setting the REHEARSAL-LETTER slot of the corresponding
rthm-seq-bar object to NIL.

NB: This deletes the given rehearsal letter without resetting and
re-ordering the remaining rehearsal letters.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which the rehearsal letter
is to be deleted. NB: The rehearsal letter for a given bar is internally
actually attached to the previous bar. The number given here is the
number from the user’s perspective, but the change will be reflected in
the bar with the number specified -1.

OPTIONAL ARGUMENTS:

- A list consisting of the IDs of the players from whose parts the
rehearsal letter is to be deleted.

86

13 SC/SLIPPERY-CHICKEN-EDIT

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
tset-map *((1 (11111 1))

:rthm-seq-palette *((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((ve (1 1111 1)))))
:rehearsal-letters (2 4 6))))
(delete-rehearsal-letter mini 2 ’(vc)))

=> NIL
SYNOPSIS:

(defmethod delete-rehearsal-letter ((sc slippery-chicken) bar-num
&optional players)
13.28 slippery-chicken-edit/delete-slur

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Delete a slur mark that starts on a specified note within a specified bar
of a specified player’s part by deleting the BEG-SL and END-SL marks from

the corresponding event objects.

ARGUMENTS:

A slippery-chicken object.

- An integer that is the number of the bar from which the slur is to be
deleted.

- An integer that is the number of the note on which the slur to be deleted
starts within the given bar. This number counts tied-notes but not
rests.

- The ID of the player from whose part the slur is to be deleted.

87

13 SC/SLIPPERY-CHICKEN-EDIT 88

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
iset-map *((1 (1 1111 1)))
:rthm-seq-palette *((1 ((((4 4) ee e e e e e e))
:pitch-seq-palette ((1 2 3456 7 8))
:marks (slur 1 8))))
:rthm-seq-map > ((1 ((ve (1 11 11 1))
(delete-slur mini 1 1 ’vc)
(delete-slur mini 3 1 ’vc))

=> NIL

SYNOPSIS:

(defmethod delete-slur ((sc slippery-chicken) bar-num note-num player)

13.29 slippery-chicken-edit/double-events

[slippery-chicken-edit | [Methods |
DATE:

20-Jul-2011 (Pula)

DESCRIPTION:

Copy the specified events from one player to the corresponding bars of one
or more other players.

NB: Although partial bars can be copied from the source player, the entire
bars of the target players are always overwritten, resulting in rests
in those segments of the target players’ bars that do not contain the
copied material. This method thus best lends itself to copying into
target players parts that have rests in the corresponding bars.

13

SC/SLIPPERY-CHICKEN-EDIT

ARGUMENTS:

A slippery-chicken object.

The ID of the player from whose part the events are to be copied.

The ID or a list of IDs of the player or players into whose parts the
copied events are to be placed.

An integer that is the number of the first bar from which the events are
to be copied.

An integer that is the number of the first event to be copied from the
specified start bar. This number is 1-based and counts rests and ties.
An integer that is the number of the last bar from which the events are
to be copied.

NIL or an integer that is the number of the last event to be copied from
the specified end bar. This number is 1-based and counts rests and

ties. If NIL, all event from the given bar will be copied.

OPTIONAL ARGUMENTS:

keyword arguments:

:transposition. A positive or negative number that is the number of
semitones by which the copied material is to be first transposed. This
number can be a decimal number, in which case the resulting pitches will
be rounded to the nearest microtone (if the current tuning environment is
capable of microtones).

:consolidate-rests. T or NIL to indicate whether resulting consecutive
rests should be consolidated each into one longer rest.

T = consolidate. Default = T.

:update. T or NIL to indicate whether to update the slots of the given
slippery-chicken object after copying. T = update. Default = T.

RETURN VALUE:

Returns T

EXAMPLE:

(let ((mini

(make-slippery-chicken
’+mini+
:ensemble ’(((bsn (bassoon :midi-channel 1))
(tbn (tenor-trombone :midi-channel 2))
(vlc (cello :midi-channel 3))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
:set-map *((1 (1 1111 1))

89

13 SC/SLIPPERY-CHICKEN-EDIT

:rthm-seq-palette ’((1 ((((4 4) (w)))))
(2 ((((44) ececeeceecece)
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((bsn (1 1 111 1))
(tbn (1 1111 1))
(vlc (22222 2))))))))
(double-events mini ’vlc ’(bsn tbn) 2 3 4 2)
(double-events mini ’vlc ’bsn 5 1 5 nil :transposition 3.5))

=> T
SYNOPSIS:

(defmethod double-events ((sc slippery-chicken) master-player doubling-players
start-bar start-event end-bar end-event
&key transposition (consolidate-rests t) (update t))

13.30 slippery-chicken-edit /enharmonic-spellings

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Change the pitch of specified event objects to their emharmonic
equivalents.

This takes as its second argument a list of lists, each of which consists
of the ID of the player whose part is to be altered and a series of
bar-number/event-number pairs, where (2 3) indicates that the pitch of the
third event of the second bar is to be changed to its enharmonic
equivalent.

Pitches within chords are specified by following the bar number with a
2-item list consisting of the event number and the number of the pitch
within the chord, counting from low to high, where (2 (2 4)) indicates that
the fourth pitch from the bottom of the chord located in the second event
object of bar 2 should be changed to its enharmonic equivalent.

An optional T can be included to indicate that the written pitch is to be
changed, but not the sounding pitch, as in (cl (3 4 t)).

NB: In order for this method to work, the :respell-notes option of
cmn-display and write-lp-data-for-all must be set to NIL.

ARGUMENTS:

90

13 SC/SLIPPERY-CHICKEN-EDIT

- A slippery-chicken object.
- The list of changes to be made, in the format ’((player changes...)),

e.g.:

((cl (33 t) (341t))
(pn (2 (2 D))
(ve (1 1) (13) (14 (186)))

RETURN VALUE:
Returns T.
EXAMPLE: SYNOPSIS:

(defmethod enharmonic-spellings ((sc slippery-chicken) corrections)

13.31 slippery-chicken-edit/enharmonics

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Change the sharp/flat pitches of a specified region of a specified player’s
part to their enharmonic equivalent.

NB: This method only affects pitches that already have sharp/flat
accidentals. It does not affect "white-key" notes (e.g. C-natural =
B-sharp etc.)

NB: As the cmn-display and write-lp-data-for-all methods call
:respell-notes by default, this option must be explicitly set to NIL for
this method to be effective.

ARGUMENTS:

- A slippery-chicken object.

- An integer or a 2-item list of integers that indicates the first bar in
which the enharmonics are to be changed. If an integer, the method will
be applied to all sharp/flat pitches in the bar of that number. If a
2-item list of integers, these represent ’(bar-number note-number). The
note number is l-based and counts ties.

- An integer or a 2-item list of integers that indicates the last bar in
which the enharmonics are to be changed. If an integer, the method will
be applied to all sharp/flat pitches in the bar of that number. If a
2-item list of integers, these represent ’(bar-number note-number). The

91

13 SC/SLIPPERY-CHICKEN-EDIT

note number is l-based and counts ties.
- The ID of the player whose part is to be changed.

OPTIONAL ARGUMENTS:

keyword arguments

- :written. T or NIL to indicate whether to change written-only pitches or
sounding-only pitches. T = written-only. Default = T.

- :pitches. NIL or a list of note-name symbols. If NIL, all sharp/flat
pitches in the specified region will be changed to their enharmonic
equivalents. If a list of one or more note-name symbols, only those
pitches will be affected.

- :force-naturals. T or NIL to indicate whether to force '"natural" note
names that contain no F or S in their name to convert to their enharmonic
equivalent (ie, B3 = CF4). NB double-flats/sharps are not implemented so
this will only work on F/E B/C.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))
(pn (piano :midi-channel 2))
(vn (violin :midi-channel 3))))
:set-palette ’((1 ((cs4 ds4 e4 fs4 gs4 as4d b4 csb))))
:set-map *((1 (1 111 1)))
:rthm-seq-palette ((1 ((((4 4) ~-eeee - -eeee -))
:pitch-seq-palette ((1 (2) 3 4 (5) 6 (7) 8)))))
:rthm-seq-map ’((1 ((cl (1 111 1))
(pn (1 111 1))
(vp (1111 1))
(enharmonics mini 1 2 ’vn)
(enharmonics mini 2 3 ’pn :pitches ’(cs4 ds4))
(enharmonics mini 3 4 ’cl :written nil))

=> T
SYNOPSIS:

(defmethod enharmonics ((sc slippery-chicken) start end player
&key (written t) pitches force-naturals)

13 SC/SLIPPERY-CHICKEN-EDIT 93

13.32 slippery-chicken-edit /force-artificial-harmonics

[slippery-chicken-edit | [Methods |
DESCRIPTION:

For string scoring purposes only: Transpose the pitch of the given event
object down two octaves and add the harmonic symbol at the perfect fourth.

If this results in a fingered pitch (or even a touched perfect fourth) that
is out of the range of the instrument, a warning will be printed to the
Listener, the pitch will not be transposed, and the harmonic diamond will
not be added.

ARGUMENTS:

- A slippery-chicken object.

- The ID of the player whose part is to be changed.

- An integer that is the number of the first bar in which artificial
harmonics are to be created.

- An integer that is the number of the first event in that bar that is to
be changed into an artificial harmonic.

- An integer that is the number of the last bar in which artificial
harmonics are to be created.

OPTIONAL ARGUMENTS:

- An integer that is the number of the first event in that bar that is to
be changed into an artificial harmonic. If no end-event is specified, all
event objects in the last bar will be changed to artificial harmonics.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 f4 b4 e5 ab d6 g7 c8))))
:set-map ’((1 (1 1 1)))
:rthm-seq-palette ((1 ((((4 4) e e e ec e e e e))

13 SC/SLIPPERY-CHICKEN-EDIT 94

:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((vn (1 1 1))))))))
(force-artificial-harmonics mini ’vn 2 3 3 2))

=> T
SYNOPSIS:

(defmethod force-artificial-harmonics ((sc slippery-chicken) player start-bar
start-event end-bar &optional end-event)

13.33 slippery-chicken-edit /force-rest-bars

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Delete all notes from the specified bars and replace them with full-bar
rests.

NB: The start-bar and end-bar index numbers are inclusive

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the first bar to change to a full bar of
rest.

- An integer that is the number of the last bar to change to a full bar of
rest.

- A list containing the IDs of the players in whose parts the full-bar
rests are to be forced.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))
(vc (cello :midi-channel 3))))
:tempo-map ’((1 (q 60)))

13 SC/SLIPPERY-CHICKEN-EDIT

:set-palette ’((1 ((c4 e4 g4 b4 d5 £f5 ab c6))))
tset-map ’((1 (1 1111 1)))
:rthm-seq-palette "((1 ((((4 4) eeecee e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((vn (1 1 11 1 1))
(va (1 11111))
(ve (11111 1))

(force-rest-bars mini 3 5 ’(vn vc)))
=> NIL
SYNOPSIS:

(defmethod force-rest-bars ((sc slippery-chicken) start-bar end-bar players)

13.34 slippery-chicken-edit /map-over-bars

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Apply the specified method/function to the bars (all rthm-seq-bar objects)
of one or more players’ parts in the given slippery-chicken object.

ARGUMENTS:

- A slippery-chicken object.

- A number that is the first bar to which the function should be applied.

- A number that is the last bar to which the function should be applied.

- A list of the IDs of the players to whose parts the function should be
applied. Can also be a single symbol.

- The method or function itself. This can be a user-defined function or the
name of an existing method or function. It should take at least one
argument, a rthm-seq-bar, and any other arguments as supplied.

OPTIONAL ARGUMENTS:

- Any additional argument values the specified method/function may
take or require.

RETURN VALUE:
- A list of the rthm-seq-bar objects that were modified. NB This might be

a long list, and, depending on your Lisp implementation, formatting of the
bars might cause Lisp to appear to ’hang’.

95

13 SC/SLIPPERY-CHICKEN-EDIT

EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((sax ((alto-sax tenor-sax) :midi-channel 1))))
:instrument-change-map ’((1 ((sax ((1 alto-sax) (3 temnor-sax)))))
(2 ((sax ((2 alto-sax) (5 tenor-sax)))))
(3 ((sax ((3 alto-sax) (4 tenor-sax))))))
:set-palette > ((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 dsb £f5 bfb))))
:set-map *((1 (1111 1))
(2 (11111
(3 (11111))
:rthm-seq-palette > ((1 ((((4 4) h e (s) (8) e+s+s))
:pitch-seq-palette ((1 2 3)))))
:rthm-seq-map ’((1 ((sax (1 1 11 1))))
(2 ((sax (1111 1))
(3 ((sax (1111 DM

(print (map-over-bars mini 1 nil nil #’consolidate-notes nil ’q)))

=>

(

RTHM-SEQ-BAR: time-sig: 2 (4 4), time-sig-given: T, bar-num: 1,
[...]

RTHM-SEQ-BAR: time-sig: 2 (4 4), time-sig-given: T, bar-num: 2,
[...]

RTHM-SEQ-BAR: time-sig: 2 (4 4), time-sig-given: T, bar-num: 3,
[...]

RTHM-SEQ-BAR: time-sig: 2 (4 4), time-sig-given: T, bar-num: 4,
[...]

)

SYNOPSIS:

(defmethod map-over-bars ((sc slippery-chicken) start-bar end-bar players
function &rest further-args)

13.35 slippery-chicken-edit/move-clef

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Move a specified clef from a specified event object to another.

13 SC/SLIPPERY-CHICKEN-EDIT

NB: As the :auto-clefs option of cmn-display and write-lp-data-for all
first deletes all clefs before automatically placing them, this
argument must be set to NIL. The auto-clefs method can be called
outside of the cmn-display or write-lp-data-for-all methods instead.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the given clef is
located.

- An integer that is the number of the event object in the given bar to
which the given clef is attached.

- An integer that is the number of the bar to which the given clef is
to be moved (this can be the same bar).

- An integer that is the number of the event object in the new bar to
which the given clef is to attached.

- The ID of the player in whose part the clef is to be moved.

RETURN VALUE:

Returns the value of the MARKS-BEFORE slot of the event object to which the
clef is moved.

EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ((1 ((((4 4) e e e ec e e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((ve (1 1 1 1))))))))
(auto-clefs mini)
(move-clef mini 1 6 1 8 ’vc)
(cmn-display mini :auto-clefs nil))

SYNOPSIS:

(defmethod move-clef ((sc slippery-chicken) from-bar from-event
to-bar to-event player)

97

13 SC/SLIPPERY-CHICKEN-EDIT

13.36 slippery-chicken-edit/move-events

[slippery-chicken-edit | [Methods |

DATE:

20-Jul-2011 (Pula)

DESCRIPTION:

Move a specified sequence of consecutive event objects from one player to
another, deleting the events from the source player.

NB: Although partial bars can be moved from the source player, the entire

bars of the target

players are always overwritten, resulting in rests

in those segments of the target players’ bars that do not contain the
moved material. This method thus best lends itself to moving into
target players parts that have rests in the corresponding bars.

ARGUMENTS:

- A slippery-chicken object.

The ID of the source
- The ID of the target
A number that is the
A number that is the
moved.

A number that is the
A number that is the
moved.

player.

player.

first bar from which events are to be moved.
first event within the start-bar that is to be

last bar from which events are to be moved.
last event within the end-bar that is to be

OPTIONAL ARGUMENTS:

keyword arguments:

- :transposition. A positive or negative number that is the number of
semitones by which the copied material is to be first transposed. This
number can be a decimal number, in which case the resulting pitches will
be rounded to the nearest microtone (if the current tuning environment is
capable of microtones).

- :consolidate-rests. T or NIL to indicate whether resulting consecutive
rests should be consolidated each into one longer rest.

T = consolidate. Default = T.

RETURN VALUE:

Returns T.

98

13 SC/SLIPPERY-CHICKEN-EDIT

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((bn (bassoon :midi-channel 1))

(vc (cello :midi-channel 2))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))

iset-map *((1 (1 11 1)))

:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3456 7 8))))

(2 (4 4 @HNN
:rthm-seq-map ’((1 ((bn (1 1 1 1))
(ve (2222))))))))

(move-events mini ’bn ’vc 2 3 3 2)
(move-events mini ’bn ’vc 4 1 4 2 :transposition 4.5))

=> T
SYNOPSIS:
(defmethod move-events ((sc slippery-chicken) from-player to-player

start-bar start-event end-bar end-event
&key transposition (consolidate-rests t))

13.37 slippery-chicken-edit /note-add-bracket-offset

[slippery-chicken-edit | [Methods |
DESCRIPTION:

For CMN only: Adjust the position, lengths, and angles of the tuplet
bracket attached to a specified event object.

NB: The bracket data is stored in the BRACKET slot of the first event
object of a given tuplet figure.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the tuplet bracket is
located.

- An integer that is the event to which the tuplet bracket is
attached. Tuplet brackets are attached to the first event object of a

13 SC/SLIPPERY-CHICKEN-EDIT 100

given tuplet figure.
- The ID of the player in whose part the tuplet bracket is located.

OPTIONAL ARGUMENTS:

keyword arguments:
NB: At least one of these arguments must be set in order to create a
change.

- :dx. A positive or negative decimal number to indicate the horizontal
offset of the entire bracket.

- :dy. A positive or negative decimal number to indicate the vertical
offset of the entire bracket.

- :dx0. A positive or negative decimal number to indicate the horizontal
offset of the left corner of the bracket.

- :dy0.A positive or negative decimal number to indicate the vertical
offset of the left corner of the bracket.

- :dxl. A positive or negative decimal number to indicate the horizontal
offset of the right corner of the bracket.

- :dyl. A positive or negative decimal number to indicate the vertical
offset of the right corner of the bracket.

- :index. An integer that indicates which bracket of a nested bracket on
the same event is to be affected. O = outermost bracket, 1 = first nested
bracket, etc. Default = 0.

RETURN VALUE:

Returns a list of the bracket start/end indicator and the tuplet value
followed by the offset values passed to the keyword arguments.

EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette > ((1 ((£3 g3 a3 b3))))
:set-map ’((1 (1)))
:rthm-seq-palette > ((1 ((((2 4) { 3 te te te } q))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seg-map ’((1 ((vc (1))))))))
(note-add-bracket-offset mini 1 1 ’vc
:dx -.1 :dy -.3
:dx0 -.1 :dy0 -.4
:dx1 .3 :dyl -.1))

13 SC/SLIPPERY-CHICKEN-EDIT 101

=> (1 3 -0.1 -0.3 -0.1 -0.4 0.3 -0.1)
SYNOPSIS:

(defmethod note-add-bracket-offset ((sc slippery-chicken)
bar-num note-num player
&key (dx nil) (dy nil)
(dx0 nil) (dyO nil)
(dx1 nil) (dyl nil)
(index 0))

13.38 slippery-chicken-edit /process-events-by-time

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Apply the given function to all event objects within the given measure
range in order of their chronological occurrence. The function can take
one argument only: the current event object. NB If the time of the event
is needed it can be accessed in the given function via the event’s
start-time slot.

ARGUMENTS:

- A slippery-chicken object.
- A function (or variable to which a function has been assigned).

OPTIONAL ARGUMENTS:

keyword arguments:

- :start-bar. An integer that is the first bar in which the function is to
be applied to event objects. Default = 1.

- :end-bar. NIL or an integer that is the last bar in which the function is
to be applied to event objects. If NIL, the last bar of the
slippery-chicken object is used. Default = NIL.

RETURN VALUE:
T

EXAMPLE:

13 SC/SLIPPERY-CHICKEN-EDIT

(let ((marks (make-cscl ’(a s as te ts at))))
(defun add-random-marks (event)
(unless (is-rest event)
(setf (marks event) (list (get-next marks))))))

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))
(vc (cello :midi-channel 3))))
:set-palette ’((1 ((£3 g3 a3 b3 c4 d4 e4 £4))))
:set-map ((1 (1 1 1)))
:rthm-seq-palette ’((1 ((((3 4) s (e.) (s) s (e) (e) s (s)))
:pitch-seq-palette ((1 2 3))))
(2 ((((34) () s (e) (e) s (8) s (e.)))
:pitch-seq-palette ((1 2 3))))
(8 ((((34) (e) s () s (e.) (s) s (e)))
:pitch-seq-palette ((1 2 3)))))
:rthm-seg-map ’((1 ((vn (1 2 3))
(va (2 3 1))
(ve (3 1.2))))N)

(process-events-by-time mini #’add-random-marks))
SYNOPSIS:

(defmethod process-events-by-time ((sc slippery-chicken) function
&key (start-bar 1) end-bar)

13.39 slippery-chicken-edit/re-bar

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Arrange the events of specified consecutive bars in a given
slippery-chicken object into new bars of a different time signature. If the
number of beats in the specified series of events does not fit evenly into
full measures of the the specified time signature, the method will do its
best to create occasional bars of a different time-signature that are as
close as possible to the desired length.

This method will only combine existing short bars into longer omnes; it
won’t split up longer bars and recombine them.

NB: This method should not be confused with the rebar method.

102

13

SC/SLIPPERY-CHICKEN-EDIT

ARGUMENTS:

A slippery-chicken object.

OPTIONAL ARGUMENTS:

keyword arguments

:start-bar. An integer that is the number of the first bar whose events
are to be re-barred.

:end-bar. An integer that is the number of the last bar whose events are
to be re-barred.

:min-time-sig. A time signature in the form of a 2-item list containing
the number of beats and the beat unit; e.g. ’(3 4). This is a target time
signature from which the method may occasionally deviate if the number of
events does not fit evenly into full bars of the specified time
signature.

:verbose. T or NIL to indicate whether to print feedback on the
re-barring process to the Listener. T = print feedback. Default = NIL.
:check-ties. T or NIL to indicate whether to force the method to ensure
that all ties have a beginning and ending. T = check.

Default = T.

:auto-beam. T, NIL, or an integer. If T, the method will automatically
attach beam indications to the corresponding events according to the beat
unit of the time signature. If an integer, the method will beam in
accordance with a beat unit that is equal to that integer. If NIL, the
method will not automatically place beams. Default = T.

:update-slots. T or NIL to indicate whether to update all slots of the
given slippery-chicken object after applying the method. This is an
internal argument and will generally not be needed by the user.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))

tset-map ’((1 (1 111111)))

:rthm-seq-palette > ((1 ((((2 4) q e s s8))

:pitch-seq-palette ((1 2 3 4)))))

103

13 SC/SLIPPERY-CHICKEN-EDIT

:rthm-seq-map *((1 ((vn (1 11111 1))
(re-bar mini :start-bar 2 :end-bar 5 :min-time-sig ’(4 4) :auto-beam 4))

=>T
SYNOPSIS:

(defmethod re-bar ((sc slippery-chicken)
&key start-bar
end-bar
;3 the following is just a list like ’(3 8) ’(5 8)
min-time-sig
verbose
;3 MDE Thu Feb 9 10:36:02 2012 -- seems if we don’t
;; update-slots then the new bar structure isn’t displayed
(update-slots t)
(check-ties t)
;3 could also be a beat rhythmic unit
(auto-beam t))

13.40 slippery-chicken-edit /remove-extraneous-dynamics

[slippery-chicken-edit | [Methods |
DESCRIPTION:

A post-generation editing method: If two or more consecutive event objects

have the same dynamic, remove that dynamic marking from all but the first
of these.

ARGUMENTS:

- A slippery-chicken object.
RETURN VALUE:

Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’ (((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))

104

13 SC/SLIPPERY-CHICKEN-EDIT

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
tset-map *((1 (1 111111)))
:rthm-seq-palette ’((1 ((((2 4) g e s 8))
:pitch-seq-palette ((1 2 3 4))
:marks (f 1 £ 2 f 3 £ 4))))
:rthm-seq-map ’((1 ((vn (1 11111 1)))))))
(remove-extraneous-dynamics mini))

=T
SYNOPSIS:

(defmethod remove-extraneous-dynamics ((sc slippery-chicken))

13.41 slippery-chicken-edit /replace-events

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Replace one or more consecutive existing event objects with new event
objects. All references are 1-based. This method can be applied to only one
bar at a time.

One or more new event objects can be specified as a replacement for one
single original event object.

ARGUMENTS:

- A slippery-chicken object.

- The ID of the player whose part is to be modified.

- An integer that is the number of the bar in which the change is to be
made; or a reference to the bar in the format ’(section sequence bar).

- An integer that is the number of the first event object in the given bar
to replace.

- An integer that is the total number of consecutive original event objects
to replace.

- A list of the new event objects, each in turn specified as a 2-item list
in the format (pitch rhythm), e.g. ’((c4 e)). Rests are indicated with
NIL or ’r, e.g. (nil s) (r h). Chords are indicated by enclosing the
pitches of the chord in a list, e.g. ((c4 e4) e).

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to automatically re-beam the given bar after

105

13 SC/SLIPPERY-CHICKEN-EDIT 106

replacing the events. T = beam. Default = NIL.

- A list of integers to indicate tuplet bracket placement, in the format
> (tuplet-value start-event end-event). These numbers are O-based and
inclusive and count rests.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ’((1 ((((2 4) q (e) s s))
:pitch-seq-palette ((1 2 3)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1))))))))
(replace-events mini ’vn 1 2 1 ’((nil s) ((ds5 £sb5) s)) t)
(replace-events mini ’vn 2 2 1 ’((csb e)))
(replace-events mini ’vn ’(1 3 1) 3 1 ’((df4 s)))
(replace-events mini ’vn 4 1 1 ’((ds4 te) (r te) (b3 te)) t ’(3 0 2)))

=T
SYNOPSIS:

(defmethod replace-events ((sc slippery-chicken) player bar-num start-event
replace-num-events new-events
&optional (auto-beam nil) tuplet-brackets)

13.42 slippery-chicken-edit /replace-multi-bar-events

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Replace specified consecutive event objects across several bars.
The new rhythms provided must produce full bars for all bars specified;

i.e., if only a quarter note is provided as the new event for a 2/4 bar,
the method will not automatically fill up the remainder of the bar.

13

SC/SLIPPERY-CHICKEN-EDIT

ARGUMENTS:

A slippery-chicken object.

The ID of the player whose part is to be modified.

An integer that is the number of the first bar in which event objects are
to be replaced. This can be an absolute bar number or a list in the form
’(section sequence bar); or with subsections then e.g. ’((3 1) 4 2)).

An integer that is the number of bars in which event objects will be
replaced.

The list of new event objects. The new event objects can be passed as
complete event objects; as a list of 2-item lists that are
note-name/rhythm pairs, e.g: >((c4 q) (d4 e)); or as a list with two
sub-lists, the first being just the sequence of rhythms and the second
being just the sequence of pitches, e.g: ’((q e) (c4 d4)). For the
latter, :interleaved must be set to NIL. (see :interleaved below). Pitch
data is the usual cs4 or (cs4 cd3) for chords, and NIL or ’r indicate a
rest. NB: All pitches are sounding pitches; written pitches will be
created for transposing instruments where necessary.

OPTIONAL ARGUMENTS:

keyword arguments:

:interleaved. T or NIL to indicate whether the new event data is to be
processed as a list of note-name/rhythm pairs (or existing event
objects), or if it is to be processed as a list with two sub-lists, the
first containing the sequence of rhythms and the second containing the
sequence of pitches (see above). T = interleaved, i.e. already existing
event objects or a list of note-name/rhythm pairs. NIL = separate lists
for rhythms and pitches. Default = T.

If this argument is T, the list of 2-element lists (note-name/rhythm
pairs) is passed to make-events, but such a list can contain no ties. If
the argument is set to NIL, the rhythm and pitch data is passed as two
separate lists to make-events2 where + can be used to indicate ties.
:consolidate-rests. T or NIL to indicate whether shorter rests should
automatically be consolidated into a single longer rest.

T = consolidate. Default = T.

NB: slippery chicken will always consolidate full bars of rest into
measure-rests, regardless of the value of this argument.

:beat. NIL or an integer (rhythm symbol) that indicates which beat basis
will be used when consolidating rests. If NIL, the beat of the time
signature will be used (e.g. quarter in 4/4). Default = NIL.

:auto-beam. T or NIL to indicate whether to automatically beam the new
events. T = automatically beam. Default = T.

:tuplet-bracket. NIL or an integer to indicate whether to automatically
add tuplet (e.g. triplet/quintuplet) brackets to the new events where
applicable. If this is an integer, all tuplets in the given bar will be

107

13 SC/SLIPPERY-CHICKEN-EDIT 108

given a tuplet bracket with that integer as the tuplet number. NB: This
option does not allow for setting tuplets of different numbers for the
same bar. To do that, set :tuplet-bracket to NIL and add the
tuplet-brackets manually. NIL = place no brackets. Default = NIL.

RETURN VALUE:
The number of new events used to replace the old omes.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:set-palette > ((1 ((d4 e4 £4 g4))))
:set-map *((1 (1 1111 1))
2 @111110D)
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4))))
(2 ((((24) essq
(s s e +e e))
:pitch-seq-palette ((1 2 343 2 4 1)))))
:rthm-seq-map ’((1 ((vn (1 111 1 1))))
(2 (vn (222222))))))
(replace-multi-bar-events mini ’vn 2 3
’((cs5 h) ((dsb5 £s5) h) (nil h)))
(replace-multi-bar-events mini ’vn (2 2 2) ’3
>((h b h) (csb (dsb £sb) nil))
:interleaved nil)
(replace-multi-bar-events mini ’vn 1 1
’((nil e) (nil e) (nil e) (cs4 e))
:consolidate-rests t)
(replace-multi-bar-events mini ’vn 8 1
?((nil q) (b3 e) (cs4 s) (dsd s))
rauto-beam t))

=>4
SYNOPSIS:

(defmethod replace-multi-bar-events ((sc slippery-chicken)
player start-bar num-bars new-events
&key
;; 24.3.11: see above.

13 SC/SLIPPERY-CHICKEN-EDIT

109

(interleaved t)

;3 MDE Mon Apr 23 12:36:08 2012 -- changed
;; default to nil

(consolidate-rests nil)

;; for consolidate rests

(beat nil)

;3 MDE Mon Apr 23 12:36:08 2012 -- changed
;; default to nil

(auto-beam nil)

;3 MDE Fri Aug 29 10:18:29 2014

(warn t)

;; MDE Mon Sep 1 16:41:02 2014
(delete-beams t)

(delete-tuplets t)

;; 31.3.11: if this is t, then rthms > a
;; beat will case an error
(auto-beam-check-dur t)

(tuplet-bracket nil))

13.43 slippery-chicken-edit /replace-tempo-map

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Replace the tempo data for a given slippery-chicken object with new

specified tempo indications.

Calls not only the setf method - which converts bar references like
(section-num sequence-num bar-num) to numbers and makes a tempo-map object,
but also updates all event objects to reflect new start times etc.

ARGUMENTS:

- A slippery-chicken object

- A list that is the new tempo-map.

RETURN VALUE:
T
EXAMPLE:

(let ((mini
(make-slippery-chicken

13 SC/SLIPPERY-CHICKEN-EDIT 110

’+mini+

:ensemble ’(((pno (piano :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette *((1 ((c4 d4 f4 g4 a4 c5 d5 £f5 gb ab c6))))

;set-map *((1 (1111111 1))

:rthm-seq-palette *((1 ((((2 4) q @)

:pitch-seq-palette ((1 (2))))))

:rthm-seq-map ’((1 ((pno (1 1 11111 1))))))))

(replace-tempo-map mini ’((1 (q 60 "Andante")) ((1 3 1) (e 80)))))

=> T
SYNOPSIS:

(defmethod replace-tempo-map ((sc slippery-chicken) tm)

13.44 slippery-chicken-edit/respell-bars

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Look for enharmonically equivalent pitches in the same bar and try to unify
their spelling. The method applies this process to every bar in the given
slippery-chicken object.

Also see rthm-seq-bar/respell-bar and slippery-chicken/respell-notes.
ARGUMENTS:

- A slippery-chicken object.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
tensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((cs4 ds4 df5 efb5))))
:set-map *((1 (1 111 1))

13 SC/SLIPPERY-CHICKEN-EDIT 111

:rthm-seg-palette ’((1 ((((2 4) g e s s))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1 1))))))))
(respell-bars mini))

=> T
SYNOPSIS:

(defmethod respell-bars ((sc slippery-chicken))

13.45 slippery-chicken-edit /respell-notes

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Pass through the entire given slippery-chicken object and change some of
the pitch objects to their enharmonic equivalents to produce more sensible
spellings of consecutive pitches in the score.

An optional argument takes a list specifying which pitches to change in the
same format found in the method enharmonic-spellings; i.e.

>((player (bar note-num))). These notes are changed after the respelling
routine has run.

NB: If a list of corrections is specified, the :respell-notes argument of
any subsequent call to cmn-display or write-lp-data-for-all must be set
NIL, otherwise the modified pitches may be overwritten. Also, although
this algorithm corrects tied notes when respelling, notes referenced in

the corrections list will not be followed through to any subsequent
ties.

ARGUMENTS:
- A slippery-chicken object.
OPTIONAL ARGUMENTS:

- A list of specific notes whose pitches are to be enharmonically flipped,
in the format, e.g. *((vn (1 1) (1 4)) (vc (2 3) (3 3)))

RETURN VALUE:

Returns T.

13 SC/SLIPPERY-CHICKEN-EDIT 112

EXAMPLE:

;; An example using respell-notes for the whole slippery-chicken object.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((cs4 ds4 df5 ef5))))
tset-map *((1 (1111 1))
:rthm-seq-palette >((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1 1)))))))
(respell-notes mini))

;; An example specifying which pitches are to be enharmonically changed.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((cs4 ds4 df5 efb))))
:set-map *((1 (1 111 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1 1))))))))
(respell-notes mini ’((vn (1 1) (1 4))))
(cmn-display mini :respell-notes nil))

=> T
SYNOPSIS:

(defmethod respell-notes ((sc slippery-chicken) &optional corrections)

13.46 slippery-chicken-edit /respell-notes-for-player

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Pass through the pitches of a specified player’s part and change some of
the pitches to their enharmonic equivalents in order to produce more
sensible spellings of consecutive notes.

13 SC/SLIPPERY-CHICKEN-EDIT 113

This is just a very simple attempt to better spell notes by comparing each
note to the previous two and making it the same accidental type. It
doesn’t look further back or ahead as of yet.

If the optional argument is set to T, then look at the written notes
instead of the sounding notes.

NB: Since both the cmn-display and write-lp-data-for-all methods
automatically call respell-notes for all players of an entire
sc-object, their :respell-notes argument may need to be set to NIL for
this method to produce the desired results.

ARGUMENTS:

- A slippery-chicken object.
- The ID of the player whose pitches are to be modified.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to change written pitches only or sounding
pitches only. T = change written pitches only. Default = NIL.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))
(vn (violin :midi-channel 2))))
:tempo-map ’((1 (q 60)))
:set-palette > ((1 ((b3 cs4 b4 csb))))
:set-map *((1 (1 111 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((cl (1 111 1))
(vn (111113110000
(respell-notes-for-player mini ’cl t)
(cmn-display mini :respell-notes nil :in-c nil))

=> T

SYNOPSIS:

13 SC/SLIPPERY-CHICKEN-EDIT 114

(defmethod respell-notes-for-player ((sc slippery-chicken) player
&optional written)

13.47 slippery-chicken-edit /rest-to-note

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Change a specified event object from a rest into a note by supplying a
pitch or chord (as objects or symbols).

Marks to be attached to the new note can be supplied as a symbol or a list
as an optional argument.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the rest is to be
changed to a note.

- An integer that is the number of the rest in the given bar that is to be
changed. This number counts rests only, not sounding notes or events.

- The ID of the player whose part is to be changed.

- A note-name symbol that is to be the pitch of the new note, or a list of
note-name symbols that will make up a chord.

OPTIONAL ARGUMENTS:

- A mark or list of marks to be attached to the new note.
RETURN VALUE:

Returns the new event object created.

EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((cs4 ds4 £s4))))
:set-map *((1 (1111 1))
:rthm-seq-palette ’((1 ((((2 4) q (e) s 8))
:pitch-seq-palette ((1 2 3)))))

13 SC/SLIPPERY-CHICKEN-EDIT 115

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))))))))
(rest-to-note mini 2 1 ’vn ’gsb)
(rest-to-note mini 3 1 ’vn ’(gsb b5))
(rest-to-note mini 4 1 ’vn ’(gs4 b4) ’ppp)
(rest-to-note mini 5 1 ’vn ’(gs4 b4) ’(£ff pizz)))

EVENT: start-time: 9.000, end-time: 9.500,
duration-in-tempo: 0.500,
compound-duration-in-tempo: 0.500,
amplitude: 0.900
bar-num: 5, marks-before: NIL,
tempo-change: NIL
instrument-change: NIL
display-tempo: NIL, start-time-qtrs: 9.000,
midi-time-sig: NIL, midi-program-changes: NIL,
8va: 0
pitch-or-chord:

CHORD: auto-sort: T, marks: NIL, micro-tone: NIL

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (

[...]

SYNOPSIS:

(defmethod rest-to-note ((sc slippery-chicken) bar-num rest-num player new-note
&rest marks)

13.48 slippery-chicken-edit /rm-marks-from-note

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Remove one or more specific marks from the MARKS slot of a specified event
object.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which the marks are to be
removed.

- An integer that is the number of the note in that bar from which the

13 SC/SLIPPERY-CHICKEN-EDIT 116

marks are to be removed.
- The ID of the player from whose part the marks are to be removed.

OPTIONAL ARGUMENTS:

- A specific mark or list of specific marks that are to be removed. If this
argument is not specified, no marks will be removed.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((cs4 ds4 fs4))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4))
:marks (a 2 s 2 fff 2 pizz 2))))
:rthm-seq-map ’*((1 ((vn (1 11 1))))))))
(rm-marks-from-note mini 2 2 ’vn ’pizz)
(rm-marks-from-note mini 3 2 ’vn ’(pizz fff))
(rm-marks-from-note mini 3 2 ’vn))

=> T
SYNOPSIS:

(defmethod rm-marks-from-note ((sc slippery-chicken) bar-num note-num
player &rest marks)

13.49 slippery-chicken-edit /rm-marks-from-notes

[slippery-chicken-edit | [Methods |
DESCRIPTION:
Remove only the specified marks from the MARKS slots of specified events in

the parts of specified players. If the <players> argument is set to NIL,
remove the mark or marks from all players.

13

SC/SLIPPERY-CHICKEN-EDIT

ARGUMENTS:

A slippery-chicken object.

An integer or a 2-item list of integers indicating the first bar and note
from which to remove marks. If an integer, this is the bar number and the
mark will be removed from all notes in the bar. If a 2-item list, this is
a reference to the bar number and number of the first note in the bar
from which to start removing marks, in the form e.g. ’(3 1).

An integer or a 2-item list of integers indicating the last bar and note
from which to remove marks. If an integer, this is the bar number and the
mark will be removed from all notes in the bar. If this is a 2-item list,
this is a reference to the bar number and number of the first note in the
bar from which to start removing marks, in the form e.g. ’(3 1).

The ID or a list of IDs of the players from whose parts the marks are to
be removed.

OPTIONAL ARGUMENTS:

NB: The <marks> argument is a required argument for this method.

The mark or a list of the marks to remove. This method will only remove
specified marks.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken
’+mini+
:ensemble ’ (((f1 (flute :midi-channel 1))
(hn (french-horn :midi-channel 2))
(vn (violin :midi-channel 3))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((cs4 ds4 £s4))))
iset-map *((1 (1 111 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4))
:marks (a 2 s 2 fff 2))))
:rthm-seq-map ’((1 ((f1 (1 11 1 1))
(hn (1 111 1))
(v (11112 1)D)NDN
(rm-marks-from-notes mini 1 2 *f1 ’fff)
(rm-marks-from-notes mini (1 2) ’(2 1) ’hn ’(fff a))

117

13 SC/SLIPPERY-CHICKEN-EDIT 118

(rm-marks-from-notes mini 3 ’(4 3) ’(hn vn) ’(fff s a))
(rm-marks-from-notes mini 5 5 nil ’fff))

=> T
SYNOPSIS:

(defmethod rm-marks-from-notes ((sc slippery-chicken) start end
players &rest marks)

13.50 slippery-chicken-edit /rm-pitches-from-chord

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Remove the specified pitches from an existing chord object.
ARGUMENTS:

- The slippery-chicken object which contains the given chord object.

- The ID of the player whose part is to be affected.

- An integer that is the number of the bar that contains the chord object
that is to be modified.

- An integer that is the number of the note that is the chord object to be
modified.

- The pitches to be removed. These can be pitch objects or any data that
can be passed to make-pitch, or indeed lists of these, as they will be
flattened.

RETURN VALUE:
The chord object that has been changed.

EXAMPLE:

(let* ((ip-clone (clone +slippery-chicken-standard-instrument-palette+)))
(set-slot ’chord-function ’chord-fun2 ’guitar ip-clone)

(let* ((mini

(make-slippery-chicken

’+mini+

:instrument-palette ip-clone

:ensemble ’ (((gtr (guitar :midi-channel 1))))

:set-palette > ((1 ((e3 £3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5 d5 e5 £5

gh ab b5 c6 d6 e6))))

13 SC/SLIPPERY-CHICKEN-EDIT 119

:set-map ’((1 (1)))

:rthm-seq-palette

(1 ((((44) eeeeceeceee))
:pitch-seq-palette ((1 (2) 3 (4) 5 (6) 7 (8))))))
:rthm-seq-map ’ ((1 ((gtr (1))))))))

(print (get-pitch-symbols

(pitch-or-chord (get-event mini 1 2 ’gtr))))
(rm-pitches-from-chord mini ’gtr 1 2 ’a3 ’d4)
(print (get-pitch-symbols

(pitch-or-chord (get-event mini 1 2 ’gtr))))))

=>
(E3 A3 D4 G4)
(E3 G4)

SYNOPSIS:

(defmethod rm-pitches-from-chord ((sc slippery-chicken) player bar-num note-num
&rest pitches)

13.51 slippery-chicken-edit /rm-slurs

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Remove the specified slurs from the MARKS slots of specified events in
the parts of specified players. If the <players> argument is set to NIL,
remove the specified slurs from all players.

ARGUMENTS:

- A slippery-chicken object.

- An integer or a 2-item list of integers indicating the first bar and note
from which to remove slurs. If an integer, this is the bar number and the
slurs will be removed from all notes in the bar. If a 2-item list, this is
a reference to the bar number and number of the first note in the bar
from which to start removing slurs, in the form e.g. ’(3 1).

- An integer or a 2-item list of integers indicating the last bar and note
from which to remove slurs. If an integer, this is the bar number and the
slurs will be removed from all notes in the bar. If this is a 2-item 1list,
this is a reference to the bar number and number of the first note in the
bar from which to start removing slurs, in the form e.g. (3 1).

- The ID or a list of IDs of the players from whose parts the marks are to
be removed.

13 SC/SLIPPERY-CHICKEN-EDIT 120

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’ (((f1 (flute :midi-channel 1))
(hn (french-horn :midi-channel 2))
(vn (violin :midi-channel 3))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 e4 fs4 gs4 as4d cb d5))))
:set-map *((1 (1 111 1))
:rthm-seq-palette ((1 ((((4 4) e e e ec e e e e))
:pitch-seq-palette ((1 2 3 45 6 7 8))
:marks (slur 1 2 slur 3 4 slur 5 6 slur 7 8))))
:rthm-segq-map ’((1 ((f1 (1 1 1 1 1))
(hn (1111 1))
(vn (1111 1))
(rm-slurs mini 1 2 ’f1)
(rm-slurs mini ’(1 3) ’(2 1) ’hn)
(rm-slurs mini 3 ’(4 3) ’(hn vn))
(rm-slurs mini 5 5 nil))

=>T
SYNOPSIS:

(defmethod rm-slurs ((sc slippery-chicken) start end players)

13.52 slippery-chicken-edit /sc-delete-beams

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Delete beam indications from specified notes. If only a bar number is
specified, this method deletes all beams in the bar.

NB: If specifying start and end notes, the start notes specified must be
the first note of a beamed group of notes (i.e. the BEAMS slot of the
corresponding event object must be 1), and the end note must be the
last note of a beamed group of notes (i.e., the BEAMS slot of the

13 SC/SLIPPERY-CHICKEN-EDIT

corresponding event object must be 0), otherwise errors may
occur. Also, if specifying one of these arguments, both must be
specified.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the beams are to be
deleted.

- The ID of the player from whose part the beams are to be deleted.

OPTIONAL ARGUMENTS:

- An integer that is the number of the note that currently holds the
start-beam information (i.e., the BEAMS slot is 1). This number is
1-based and counts ties.

- An integer that is the number of the note that currently holds the

end-beam information (i.e., the BEAMS slot is 0). This number is 1-based

and counts ties.
RETURN VALUE:
If deleting all beams in a bar, returns T, otherwise returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4d e4))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ((1 ((((4 4) ~-ee--ee--ee--ee -))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((ve (1 1 1 1))))))))
(sc-delete-beams mini 2 ’vc)
(sc-delete-beams mini 3 ’vc 3 4))

=> NIL

SYNOPSIS:

(defmethod sc-delete-beams ((sc slippery-chicken) bar-num player
&optional start-note end-note)

121

13 SC/SLIPPERY-CHICKEN-EDIT 122

13.53 slippery-chicken-edit/sc-delete-marks

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Delete all marks from the MARKS slot of a given note event object and
set the slot to NIL.

NB: This method counts notes, not rests, and is 1-based.
ARGUMENTS:

- A slippery-chicken object.

An integer that is the number of the bar in which the marks are to be
deleted.

- An integer that is the number of the note from which the marks are to be
deleted.

The ID of the player from whose part the marks are to be deleted.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:set-palette ’((1 ((cs4 ds4 fs4))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ’((1 ((((2 4) q (e) s s))
:pitch-seq-palette ((1 2 3))
:marks (a 2 s 2 £fff 2 pizz 2))))
:rthm-seq-map ’((1 ((vn (1 1 1 1))))))))
(sc-delete-marks mini 2 2 ’vn))

=T
SYNOPSIS:

(defmethod sc-delete-marks ((sc slippery-chicken) bar-num note-num player)

13 SC/SLIPPERY-CHICKEN-EDIT

13.54 slippery-chicken-edit /sc-delete-marks-before

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Deletes all data from the MARKS-BEFORE slot of a specified event object and
replaces it with NIL.

NB: In addition to clef symbol data, the MARKS-BEFORE slot also stores part
of the required data for trills and arrows. Deleting just the
MARKS-BEFORE components of those markings may result in unwanted
results.

ARGUMENTS:

- A slippery-chicken object.

An integer that is the number of the bar in which the event object is to
be modified.

An integer that is the number of the note within the given bar for which
the MARKS-BEFORE slot is to be set to NIL.

The ID of the player whose part is to be affected.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4 e4))))
:set-map *((1 (1 1 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vc (1 1 1))))))))
(add-mark-before-note mini 2 3 ’vc ’fff)
(add-mark-before-note mini 2 3 ’vc ’s)
(add-mark-before-note mini 2 3 ’vc ’1lhp)
(sc-delete-marks-before mini 2 3 ’vc))

=> NIL

123

13 SC/SLIPPERY-CHICKEN-EDIT 124

SYNOPSIS:

(defmethod sc-delete-marks-before ((sc slippery-chicken)
bar-num note-num player)

13.55 slippery-chicken-edit/sc-delete-marks-from-event

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Delete all data from the MARKS slot of the specified event object and
replace it with NIL.

ARGUMENTS:

- A slippery-chicken object.

An integer that is the number of the bar from which the marks are to be
deleted.

An integer that is the number of the event within the given bar from
which the marks are to be deleted.

The ID of the player from whose part the marks are to be deleted.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4d e4))))
:set-map *((1 (1 1 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4))
:marks (a 1 4 lhp 4 s 3 4 slur 1 2))))
:rthm-seq-map ’((1 ((vc (1 1 1))))))))
(sc-delete-marks-from-event mini 2 4 ’vc))

=> NIL

SYNOPSIS:

13 SC/SLIPPERY-CHICKEN-EDIT

(defmethod sc-delete-marks-from-event ((sc slippery-chicken)
bar-num event-num player)

13.56 slippery-chicken-edit /sc-force-rest

[slippery-chicken-edit | [Methods |
DATE:

23-Jul-2011 (Pula)
DESCRIPTION:

Change the specified event object to a rest. If events tied from this
event should automatically be forced to rests also, use the sc-force-rest2
method instead.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the rest is to be
forced.

- An integer that is the number of the event within that bar which is to be
changed into a rest. This number is 1-based and counts tied notes but not
rests.

- The ID of the player whose part is to be modified.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the specified bar should be automatically
beamed after the change has been made. NB: In general, calling auto-beam
is a good idea (esp. when deleting notes under an existing beam) ;
however, auto-beam may fail when addressing bars that contain notes
longer than one beat. T = automatically beam. Default = NIL.

RETURN VALUE:
The new rthm-seq-bar object.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+

125

13 SC/SLIPPERY-CHICKEN-EDIT

:ensemble ’ (((vc (cello :midi-channel 1))))
:set-palette > ((1 ((a3 b3 c4 e4))))
:set-map > ((1 (1 1 1)))
:rthm-seq-palette > ((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((ve (1 1 1))))))))
(sc-force-rest mini 2 3 ’vc)
(sc-force-rest mini 3 3 ’vc t))

=>

RTHM-SEQ-BAR: time-sig: 3 (2 4), time-sig-given: T, bar-num: 3,
old-bar-nums: NIL, write-bar-num: NIL, start-time: 4.000,
start-time-qtrs: 4.0, is-rest-bar: NIL, multi-bar-rest: NIL,
show-rest: T, notes—needed: 3,
tuplets: NIL, nudge-factor: 0.35, beams: ((1 2)),
current-time-sig: 3, write-time-sig: NIL, num-rests: 1,
num-rhythms: 4, num-score-notes: 3, parent-start-end: NIL,
missing-duration: NIL, bar-line-type: 2,
player-section-ref: (1 VC), nth-seq: 2, nth-bar: O,
rehearsal-letter: NIL, all-time-sigs: (too long to print)
sounding-duration: 1.750,
rhythms: (

[...]

SYNOPSIS:

(defmethod sc-force-rest ((sc slippery-chicken) bar-num note-num player
&optional (auto-beam nil))

13.57 slippery-chicken-edit /sc-force-rest2

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Turn events into rests, doing the same with any following tied events.

NB As it is foreseen that this method may be called many times iteratively,
there is no call to check-ties, auto-beam, consolidate-rests, or
update-instrument-slots (for statistics)--it is advised that these methods
are called once the last call to this method has been made. gen-stats is
however called for each affected bar, so the number of rests vs. notes
should be consistent with the new data.

ARGUMENTS:

126

13 SC/SLIPPERY-CHICKEN-EDIT 127

- A slippery-chicken object

- The bar number (integer)

- The event number in the bar (integer, counting from 1)
The player name (symbol)

OPTIONAL ARGUMENTS:

- A function object to be called on error (could be #’error (default),
#’warn, #’print or simply NIL for no error)

RETURN VALUE:
The number of events turned into rests.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:set-palette *((1 ((a3 b3 c4 e4))))
tset-map *((1 (1 1 1)))
:rthm-seq-palette
7((1 ((((4 4) -e.. 32 - h.) (+w) (+w) (W) ((h) (e) q e)
(+q - +s e. - +h) (+w) (G+w) ((w))))))
:rthm-seq-map ’((1 ((ve (1 1 1))))))))
(sc-force-rest2 mini 1 3 ’vc))
=> 3

SYNOPSIS:

(defmethod sc-force-rest2 ((sc slippery-chicken) bar-num event-num player
&optional (on-error #’error))

13.58 slippery-chicken-edit/sc-move-dynamic

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Move the dynamic attached to a specified event object to another specified
event object.

By default the dynamics are moved between events within the same bar. An
optional argument allows for dynamics to be moved to events in a different
bar.

13 SC/SLIPPERY-CHICKEN-EDIT 128

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which to move the dynamic.

- The ID of the player in whose part the dynamic is located.

- An integer that is the number of the event object from which the dynamic
is to be moved. This number is 1-based and counts both rests and ties.

- An integer that is the number of the event object to which the dynamic
is to be moved. This number is 1-based and counts both rests and ties.

OPTIONAL ARGUMENTS:

- An integer that is the number of the bar to which the dynamic should be
moved. If this is not specified, the dynamic will be moved to the
specified event within the same bar.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:set-palette ’((1 ((a3 b3 c4 e4))))
:set-map *((1 (1 1 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4))
:marks (££f 1))))
:rthm-seq-map ’((1 ((vc (1 1 1))))))))
(sc-move-dynamic mini 1 ’vc 1 3)
(sc-move-dynamic mini 2 ’vc 1 4 3))

=> T
SYNOPSIS:
(defmethod sc-move-dynamic ((sc slippery-chicken) bar-num player
;; event numbers l-based but counting rests and ties
from to &optional to-bar)

13.59 slippery-chicken-edit /sc-remove-dynamic

[slippery-chicken-edit | [Methods |

13 SC/SLIPPERY-CHICKEN-EDIT

DESCRIPTION:

Remove all dynamics from the MARKS slot of one or more specified event
objects.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which the dynamics are to
be removed.

- The ID of the player from whose part the dynamics are to be removed.

- An integer or a list of integers that are the numbers of the events from
which the dynamics are to be removed. Event numbers include ties and
rests.

RETURN VALUE:
Returns the last dynamic removed.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:set-palette ’((1 ((a3 b3 c4 e4))))
:set-map *((1 (1 1 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4))
:marks (£fff 1 ppp 3))))
:rthm-seq-map ’((1 ((ve (1 1 1IN
(sc-remove-dynamic mini 2 ’vc 1)
(sc-remove-dynamic mini 3 ’vc ’(1 3)))

=> PPP
SYNOPSIS:

(defmethod sc-remove-dynamic ((sc slippery-chicken) bar-num player
&rest event-nums)

13.60 slippery-chicken-edit/sc-remove-dynamics

[slippery-chicken-edit | [Methods |
DATE:

129

13 SC/SLIPPERY-CHICKEN-EDIT 130

16-Mar-2011

DESCRIPTION:

Remove all dynamic marks from the MARKS slots of all consecutive event
objects within a specified region of bars.

ARGUMENTS:

- A slippery-chicken object.

- An integer or a list of two integers. If a single integer, this is the
number of the first bar from which the dynamics will be removed, and all
dynamics will be removed from the full bar. If this is a list of two
integers, they are the numbers of the first bar and first note within
that bar from which the dynamics will be removed, in the form ’(bar-num
note-num). Note numbers are l-based and count ties but not rests.

- An integer or a list of two integers. If a single integer, this is the
number of the last bar from which the dynamics will be removed, and all
dynamics will be removed from the full bar. If this is a list of two
integers, they are the numbers of the last bar and last note within that
bar from which the dynamics will be removed, in the form ’(bar-num
note-num). Note numbers are l-based and count ties but not rests.

- A single ID or a list of IDs of the players from whose parts the dynamics
are to be removed.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))
(vc (cello :midi-channel 3))))
:set-palette ’((1 ((d3 e3 £f3 g3 a3 b3 c4 e4 f4 g4 a4 b4))))
:set-map ’((1 (1 1 1)))
:rthm-seq-palette >((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4))
:marks (£ff 1 ppp 3))))
:rthm-seg-map ’((1 ((vn (1 1 1))
(va (1 1 1))
(ve (11211

13 SC/SLIPPERY-CHICKEN-EDIT

(sc-remove-dynamics mini ’(1 2) ’(2 2) ’vn)
(sc-remove-dynamics mini 2 3 ’(va vc)))

=>T

SYNOPSIS:

(defmethod sc-remove-dynamics ((sc slippery-chicken) start end players)

13.61 slippery-chicken-edit/set-cautionary-accidental

[slippery-chicken-edit | [Methods |
DATE:

2

8-Sep-2011

DESCRIPTION:

Place a cautionary accidental (sharp/flat/matural sign in parentheses)
before a specified note.

NB: Adding cautionary accidentals to pitches within chords is currently

N

only possible in LilyPond output. Adding cautionary accidentals to
single pitches is possible in both CMN and LilyPond.

B: Since the cmn-display and write-lp-data-for-all methods call
respell-notes by default, that option must be explicitly set to NIL
within the calls to those methods in order for this method to be
effective.

ARGUMENTS:

A slippery-chicken object.

An integer that is the number of the bar in which to add the cautionary
accidental.

An integer or a 2-item list of integers that is the number of the note
within that bar to which to add the cautionary accidental. This number is
1-based and counts ties. If a 2-item list such, this indicates that the
pitch is within a chord; e.g., ’(1 2) indicates that a cautionary
accidental should be added to the 2nd pitch up from the bottom of the
chord located at the 1st note position in the bar.

The ID of the player to whose part the cautionary accidental is to be
added.

131

13 SC/SLIPPERY-CHICKEN-EDIT 132

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to add the cautionary accidental to only the
written pitch or only the sounding pitch. T = written only.
Default = NIL.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))
(pn (piano :midi-channel 2))))
:set-palette ’((1 ((ds3 e3 fs3 af3 bf3 c4 ef4d fs4))))
:set-map *((1 (1 1 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 (3) 4))
:marks (£ff 1 ppp 3))))
:rthm-seq-map ’((1 ((cl (1 1 1))
(pn (1 1 1))))))))
(respell-notes mini)
(set-cautionary-accidental mini 3 2 ’cl t)
(set-cautionary-accidental mini 2 1 ’pn)
(set-cautionary-accidental mini 2 2 ’pn)
(set-cautionary-accidental mini 3 ’(3 3) ’pn)
(write-lp-data-for-all mini :respell-notes nil))

=T
SYNOPSIS:

(defmethod set-cautionary-accidental ((sc slippery-chicken) bar-num note-num
player &optional written)

13.62 slippery-chicken-edit /set-rehearsal-letter

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Add the specified rehearsal letter/number to the specified bar in one or

13 SC/SLIPPERY-CHICKEN-EDIT

more specified players.

NB: Since internally this method actually attaches the rehearsal
letter/number to the REHEARSAL-LETTER slot of the preceding bar
(bar-num - 1), no rehearsal letter/number can be attached to the first
bar.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar to which the rehearsal
letter/number is to be added.

- A symbol that is the rehearsal letter/number to be added (e.g. ’A or ’1)

OPTIONAL ARGUMENTS:

- The player ID or a list of player IDs to whose parts the rehearsal
letter/number is to be added. If no value is given here, the rehearsal
letter/number will be added to the first (top) instrument in each group
of the ensemble, as specified in staff-groupings.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))
(vc (cello :midi-channel 3))))
:set-palette ’((1 ((ds3 e3 fs3 af3 bf3 c4 ef4d fs4))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1))
(va (111 1))
(ve (11 12.1O0DMHN
(set-rehearsal-letter mini 2 ’A)
(set-rehearsal-letter mini 3 ’2 ’(va vc))
(set-rehearsal-letter mini 4 ’Z3))

=T

133

13 SC/SLIPPERY-CHICKEN-EDIT

SYNOPSIS:

(defmethod set-rehearsal-letter ((sc slippery-chicken) bar-num letter
&optional players)

13.63 slippery-chicken-edit /tie

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Add a tie to a specified event object. The new tie will be placed starting
from the specified event object and spanning to the next event object. If
the next event object does not have the same pitch, its pitch will be
changed to that of the first event object.

An optional argument allows the user to adjust the steepness of the tie’s
curvature.

NB: This method will not automatically update ties in MIDI output. To make
sure that MIDI ties are also updated, use the handle-ties method.

NB: If the next event object is a rest and not a note, an error will be
produced.

ARGUMENTS:

A slippery-chicken object.

- An integer that is the number of the bar in which the tie is to be
placed.

- An integer that is the number of the note to which the tie is to be

attached.

The ID of the player whose part is to be changed.

OPTIONAL ARGUMENTS:

- A positive or negative decimal number to indicate the steepness of the
tie’s curvature.

RETURN VALUE:
Returns T.

EXAMPLE:

134

13 SC/SLIPPERY-CHICKEN-EDIT

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’ (((vn (violin :midi-channel 1))))
:set-palette ’((1 ((c4 d4 e4))))
rset-map *((1 (1 11 1)))
:rthm-seq-palette ’((1 ((((2 4) q s s (s) s))
:pitch-seq-palette ((1 1 2 3)))))
:rthm-seq-map *((1 ((vn (1 1 1 1))))))))
(tie mini 2 1 ’vn)
(tie mini 3 2 ’vn)
(tie mini 4 2 ’vn -.5))

=> T
SYNOPSIS:

(defmethod tie ((sc slippery-chicken) bar-num note-num player
&optional curvature)

13.64 slippery-chicken-edit /tie-all-last-notes-over-rests

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Extend the duration of the last note of any bar that precedes a bar which
starts with a rest in the specified region, such that the rest that begins
the next measure is changed to a note and the last note of the first
measure is tied to it.

NB: This method will not automatically update ties in MIDI output. To make
sure that MIDI ties are also updated, use the handle-ties method.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the first bar in which changes are to be made.
- An integer that is the last bar in which changes are to be made.
- A player ID or list of player IDs.

OPTIONAL ARGUMENTS:

keyword arguments:
- :to—next-attack. T or NIL to indicate whether ties are to extend over

135

13 SC/SLIPPERY-CHICKEN-EDIT 136

only full bars of rest or also over partial bars (until the next attacked
note). T = until the next attacked note. Default = T.

- :tie—next-attack. T or NIL to indicate whether the new tied notes created
should also be further extended over the next attacked note if that note
has the same pitch as the starting note of the tie. T = also tie next
attacked note if same pitch. Default = NIL.

- :auto-beam. T or NIL to indicate whether the new events should be
automatically beamed after placement. T = automatically beam.

Default = NIL.

- :last-rhythm. NIL or a rhythmic duration. If a rhythmic duration, the
last duration of the tie will be forced to this length. Useful, for
example, when tying into a rest bar without filling that whole
bar. NIL = fill the bar with a tied note. Default = NIL.

- :update. T or NIL to indicate whether all slots for all events in the
piece should be updated. This is an expensive operation so set to NIL if
you plan on calling other similar methds, and call (update-slots sc)
explicitly at the end. Default = T.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))
(vc (cello :midi-channel 3))))
:set-palette > ((1 ((£3 g3 a3 b3 c4 d4 f4 g4 a4 c5 d5 £5))))
:set-map *((1 (1 1 1)))
:rthm-seq-palette *((1 ((((4 4) e (e) e e (e) (e) e €)

(Gn)

(th.) @
(Gn)

(Gn)

((e) e h.))

:pitch-seq-palette ((1 23456 7 7)))))
:rthm-seq-map ’((1 ((vn (1 1 1))

(va (11 1))

(ve (21 1))NN
(tie-all-last-notes-over-rests mini 2 6 ’vn)
(tie-all-last-notes-over-rests mini 9 12 ’vn :auto-beam t)
(tie-all-last-notes-over-rests mini 3 5 ’(va vc) :to-next-attack nil)
(tie-all-last-notes—over-rests mini 9 12 ’vc :tie-next-attack t)

13 SC/SLIPPERY-CHICKEN-EDIT 137
(tie-all-last-notes-over-rests mini 13 15 ’vn :last-rhythm ’e))

=> NIL
SYNOPSIS:

(defmethod tie-all-last-notes-over-rests

((sc slippery-chicken)

start-bar end-bar players

&key
;; use up all rests until next attack or (if nil)
;3 just the rest bars?
(to-next-attack t)
;; if the next attack is the same note/chord as
;3 the previous, tie to it too?
(tie-next-attack nil)
(last-rhythm nil)
(update t)
(auto-beam nil))

13.65 slippery-chicken-edit/tie-over-all-rests

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Extend the durations of all notes that immediately precede rests in the
specified region by changing the rests to notes and tying the previous notes
to them.

NB: This method will not automatically update ties in MIDI output. To make
sure that MIDI ties are also updated, use the handle-ties method.

ARGUMENTS:

A slippery-chicken object.

- The ID of the player whose part is to be changed.

- An integer that is the number of the first bar in which notes are to be
tied over rests.

- An integer that is the number of the last bar in which notes are to be

tied over rests. NB: This argument does not necessarily indicate the bar

in which the ties will stop, but rather the last bar in which a tie will

be begun; the ties created may extend into the next bar.

OPTIONAL ARGUMENTS:

13

SC/SLIPPERY-CHICKEN-EDIT

keyword arguments:

:start-note. An integer that is the number of the first attacked note

(not counting rests) in the given start-bar for which ties can be placed.

:end-note. An integer that is the number of the last attacked note (not
counting rests) in the given end-bar for which ties can be placed.

NB: This argument does not necessarily indicate the note on which the
ties will stop, but rather the last not on which a tie can begin; the
ties created may extend to the next note.

:auto-beam. T or NIL to indicate whether the method should automatically
place beams for the notes of the affected measure after the ties over
rests have been created. T = automatically beam. Default = NIL.
:consolidate-notes. T or NIL to indicate whether the tied note are to be
consolidated into single rhythmic units of longer durations after the
ties over rests have been created. T = consolidate notes. Default = NIL.
:update. T or NIL to indicate whether all slots for all events in the
piece should be updated. This is an expensive operation so set to NIL if
you plan on calling other similar methds, and call (update-slots sc)
explicitly at the end. Default = T.

RETURN VALUE:

Returns T.

EXAMPLE:

1

et ((mini
(make-slippery-chicken
’+mini+
:ensemble ’ (((vn (violin :midi-channel 1))))
:set-palette ’((1 ((c4 d4 e4))))
tset-map *((1 (111111 1))
:rthm-seq-palette ’((1 ((((2 4) (q) e (s) s))
:pitch-seq-palette ((1 2)))))
:rthm-seq-map *((1 ((vn (1 11111 1))
(tie-over-all-rests mini ’vn 2 3 :start-note 2 :auto-beam t)
(tie-over-all-rests mini ’vn 5 6 :end-note 1 :consolidate-notes t))

=T

SYNOPSIS:

(defmethod tie-over-all-rests ((sc slippery-chicken) player

start-bar end-bar
&key
(start-note 1)

138

13

SC/SLIPPERY-CHICKEN-EDIT

(end-note 9999999)
(auto-beam nil)

(update t)
(consolidate-notes nil))

13.66 slippery-chicken-edit /tie-over-rest-bars

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Extend the duration of the last note in a specified bar by changing
immediately subsequent full-rest bars to notes of the same pitch and tying
them to that note.

NB: This method will not automatically update ties in MIDI output. To make

sure that MIDI ties are also updated, use the handle-ties method.

ARGUMENTS:

A slippery-chicken object.

An integer that is the number of the bar in which the last note is to be
tied.

An ID or list of IDs of the players whose parts are to be modified.

OPTIONAL ARGUMENTS:

keyword arguments:

:end-bar. An integer or NIL. If an integer, this is the number of the
last bar of full-rests that is to be changed to a note. This can be
helpful for tying into passages of multiple bars of full-rest.
:tie-next-attack. T or NIL to indicate whether the new tied notes created
should also be further extended over the next attacked note if that note
has the same pitch as the starting note of the tie. T = also tie next
attacked note if same pitch. Default = NIL.

:to-next-attack. T or NIL to indicate whether ties are to extend over
only full bars of rest or also over partial bars (until the next attacked
note). T = until the next attacked note. Default = T.

:auto-beam. T or NIL to indicate whether the method should automatically
place beams for the notes of the affected measure after the ties over
rests have been created. T = automatically beam. Default = NIL.
:last-rhythm. NIL or a rhythmic duration. If a rhythmic duration, the
last duration of the tie will be forced to this length. Useful, for
example, when tying into a rest bar without filling that whole

bar. NIL = fill the bar with a tied note. Default = NIL.

139

13 SC/SLIPPERY-CHICKEN-EDIT 140

- :update. T or NIL to indicate whether all slots for all events in the
piece should be updated. This is an expensive operation so set to NIL if
you plan on calling other similar methds, and call (update-slots sc)
explicitly at the end. Default = T.

RETURN VALUE:
Returns t.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))
(ve (cello :midi-channel 3))))
:set-palette > ((1 ((c4 d4 e4))))
:set-map ’((1 (1 1)))
:rthm-seq-palette ’((1 ((((2 4) (@) e (s) s)
((h))
((s) e. e e)
((h))
((h))
(Ce) g s (8)))
:pitch-seq-palette ((1 2 2 1 3 3 1)))))
:rthm-seq-map ’((1 ((vn (1 1))
(va (1 1))
(ve (2 1NN
(tie-over-rest-bars mini 1 ’vn :end-bar 2)
(tie-over-rest-bars mini 3 ’va :end-bar 5)
(tie-over-rest-bars mini 3 ’(vn vc) :end-bar 6 :tie-next-attack t)
(tie-over-rest-bars mini 7 ’vc
:end-bar 9
:to—next-attack t
:auto-beam t)
(tie-over-rest-bars mini 9 ’vn :end-bar 11 :last-rhythm ’e))

SYNOPSIS:

(defmethod tie-over-rest-bars ((sc slippery-chicken) bar-num players
&key (end-bar nil) ;; num of empty bars
(tie-next-attack nil)

13 SC/SLIPPERY-CHICKEN-EDIT 141

(to-next-attack t)
(last-rhythm nil)
(update t)
(auto-beam nil))

13.67 slippery-chicken-edit/tie-over-rests

[slippery-chicken-edit | [Methods |
DESCRIPTION:

Extend the duration of a specified note that precedes a rest by changing
the rest to a note with the same pitch and adding a tie between them.

NB: This method will not automatically update ties in MIDI output. To make
sure that MIDI ties are also updated, use the handle-ties method.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the note is located.

- An integer that is the number of the note within that bar which is to be
extended. This number is 1-based and also counts already tied notes. If
NIL, then the last note in the bar will be used.

The ID of the player whose part is to be modified.

OPTIONAL ARGUMENTS:

keyword arguments

- :end-bar. An integer that is the number of the last bar into which the
tie is to extend. This can be helpful if the user wants to tie into only
the first of several comsecutive full-rest bars.

- :auto-beam. T or NIL to indicate whether the method should automatically
beam the beats of the modified bars after the ties have been added.

T = automatically beam. Default = NIL.

- :consolidate-notes. T or NIL to indicate whether the method should
consolidate tied notes into single rhythm units of longer duration.
T = consolidate. Default = T.

- :update. T or NIL to indicate whether all slots for all events in the
piece should be updated. This is an expensive operation so set to NIL if
you plan on calling other similar methds, and call (update-slots sc)
explicitly at the end. Default = T.

RETURN VALUE:

13 SC/SLIPPERY-CHICKEN-EDIT 142

Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:set-palette ’((1 ((c4 d4 e4))))
:set-map *((1 (1 1 1)))
:rthm-seq-palette ’((1 ((((2 4) (q) e (s) s)
((h))
((s) e. (e) e)
((h))
((h))
(e) gs ()N
:pitch-seq-palette ((1 2 2 3 3 1)))))
:rthm-seq-map ’((1 ((vn (1 1 1))
(tie-over-rests mini 1 2 ’vn)
(tie-over-rests mini 7 1 ’vn)
(tie-over-rests mini 9 2 ’vn :end-bar 10)
(tie-over-rests mini 13 1 ’vn :auto-beam t :consolidate-notes nil))

=> T
SYNOPSIS:
(defmethod tie-over-rests ((sc slippery-chicken) bar-num note-num player
&key end-bar auto-beam (consolidate-notes t)
(update t))

13.68 slippery-chicken-edit /trill

[slippery-chicken-edit | [Methods |
DESCRIPTION:
Attach a trill mark to a specified event object by adding ’BEG-TRILL-A to

the MARKS-BEFORE slot and TRILL-NOTE with the pitch to the MARKS slot. This
method requires a specified trill pitch.

By default trills are set to span from the specified note to the next note,
though the length of the span can be specified using the optional
arguments.

NB: This is a LilyPond-only method and will not affect CMN output.

13 SC/SLIPPERY-CHICKEN-EDIT 143

ARGUMENTS:

A slippery-chicken object.

- The player to whose part the trill is to be added.

- An integer that is the number of the bar in which the trill is to start.

- An integer that is the number of the event object in that bar on which
the trill is to be placed.

- A note-name symbol that is the pitch of the trill note.

OPTIONAL ARGUMENTS:

- An integer that is the number of the event object on which the trill span

is to stop.
- An integer that is the number of the bar in which the trill span is to
stop.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:set-palette ’((1 ((c4 d4 e4))))
:set-map *((1 (1 111 1)))
:rthm-seq-palette *((1 ((((2 4) q. s s))
:pitch-seq-palette ((1 3 2)))))

:rthm-seq-map ’((1 ((vn (1 1 11 1))))))))

(trill mini ’vn 2 1 ’e4)

(trill mini ’vn 3 1 ’e4 3)

(trill mini ’vn 4 1 ’e4 3 5))

=>T
SYNOPSIS:

(defmethod trill ((sc slippery-chicken) player start-bar start-event trill-note
&optional end-event end-bar)

13.69 slippery-chicken-edit /unset-cautionary-accidental

[slippery-chicken-edit | [Methods |

13 SC/SLIPPERY-CHICKEN-EDIT 144

DESCRIPTION:

Remove the parentheses from a cautionary accidental (leaving the accidental
itself) by setting the ACCIDENTAL-IN-PARENTHESES slot of the contained
pitch object to NIL.

NB: Since respell-notes is called by default within cmn-display and
write-lp-data-for-all, that option must be explicitly set to NIL for
this method to be effective.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the cautionary
accidental is to be unset.

- An integer that is the number of the note in that bar for which the
cautionary accidental is to be unset.

- The ID of the player whose part is to be changed.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to unset the cautionary accidental for the
written part only (for transposing instruments).
T = written only. Default = NIL.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))
(vn (violin :midi-channel 2))))
:set-palette ’((1 ((cs4 ds4 £s4))))
:set-map ’((1 (1 1)))
:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))
:pitch-seq-palette ((1 2321 2 3 2)))))
:rthm-seq-map ’((1 ((cl (1 1))
(vn (1 1))))))))
(respell-notes mini)
(unset-cautionary-accidental mini 2 5 ’vn)
(unset-cautionary-accidental mini 2 7 ’cl t)
(cmn-display mini :respell-notes nil))

14 SC/UTILITIES

SYNOPSIS:

(defmethod unset-cautionary-accidental ((sc slippery-chicken) bar-num note-num

player &optional written)

14 sc/utilities

[Modules |
NAME:

utilities
File: utilities.1lsp

Class Hierarchy: none: no classes defined

Version: 1.0.5

Project: slippery chicken (algorithmic composition)
Purpose: Various helper functions of a general nature.
Author: Michael Edwards: m@michael-edwards.org
Creation date: June 24th 2002

$$ Last modified: 18:18:34 Tue Jul 1 2014 BST

SVN ID: $Id: utilities.lsp 5048 2014-10-20 17:10:38Z medward2 $

14.1 utilities/a-weighting

[utilities | [Functions |
DESCRIPTION:

Implementation of A-weighting loudness compensation. Formula taken from
http://en.wikipedia.org/wiki/A-weighting. This doesn’t take 1000Hz
loudness into account, rather it implements the 40-phon Fletcher-Munson
curve only.

ARGUMENTS:

The frequency in Hertz for which to find the loudness weighting.

145

14 SC/UTILITIES

OPTIONAL ARGUMENTS:

keyword aguments:

- :expt. A power (exponent) to raise the result to in order to
tame/exaggerate the curve (make the db weightings less/more
extreme). This only really makes sense if :linear t though will work
with db values also of course. Values < 1 result in linear values
closer to 1 (less extreme). Values > 1 are further from 1. Default = NIL
i.e. no exponential function.

- :linear. If T return amplitude values as linear scalers rather than
logarithmic decibel values. NB If this is NIL then returned values are
likely to be negative (db) values. Default = T.

- :invert. As the weighting routine tries to tell us what relative
loudness we’ll perceive given constant amplitudes, low and high
frequencies will return negative values as we perceive them Xdb less
than our most sensitive frequency area. If :invert t, just flip this
negatives to positives so that if :linear T you get a scaler to make
lower/higher frequences equally loud as the most sensitive frequencies.

RETURN VALUE:
The linear or db weighting value for the given frequency.

EXAMPLE:

;33 Decibels:

(a-weighting 50 :invert nil :linear nil) => -30.274979
(a-weighting 50 :invert t :linear nil) => 30.274979
;5> Linear amplitude scalers:

(a-weighting 50) => 32.639904

(a-weighting 50 :invert nil) => 0.030637344

;55 Exaggeration:

(a-weighting 50 :expt 1.1) => 46.251286

;35 Smoothing:

(a-weighting 50 :expt .5) => 5.7131343

;53 Looping through the MIDI note range by tritones returning decibel values:
(loop for midi from O to 127 by 6
for freq = (midi-to-freq midi)
collect (list (midi-to-note midi)
(a-weighting freq :linear nil :invert nil)))
=>
((C-1 -76.85258) (FS-1 -65.94491) (CO -55.819363) (FSO -46.71565)
(C1 -38.714867) (FS1 -31.724197) (C2 -25.598646) (FS2 -20.247103)
(C3 -15.622625) (FS3 -11.657975) (C4 -8.258142) (FS4 -5.358156)

146

14 SC/UTILITIES 147

(C5 -2.9644737) (FS5 -1.1277018) (C6 0.13445985) (FS6 0.8842882) (C7 1.226917)
(FS7 1.2351798) (C8 0.89729404) (FS8 0.09495151) (C9 -1.3861179)
(FS9 -3.7814288))

;55 Similar but returning linear amplitude scalers:
(loop for midi from O to 127 by 6
for freq = (midi-to-freq midi)
collect (list (midi-to-note midi) (a-weighting freq)))
=>
((C-1 6960.316) (FS-1 1982.6475) (CO 617.9711) (FSO 216.6619) (Cl1 86.246864)
(FS1 38.56647) (C2 19.051636) (FS2 10.288571) (C3 6.041312) (FS3 3.827355)
(C4 2.5876594) (FS4 1.8531382) (C5 1.4067719) (FS5 1.1386365) (C6 0.9846389)
(FS6 0.9032034) (C7 0.8682687) (FS7 0.86744314) (C8 0.9018521) (FS8 0.9891278)
(C9 1.1730213) (FS9 1.5455086))

SYNOPSIS:

(defun a-weighting (f &key expt (linear t) (invert t))

14.2 utilities/all-members

[utilities | [Functions |
DESCRIPTION:

Find out whether the members of the list given as the second argument are
all present in the list given as the first argument.

ARGUMENTS:

- A list in which the members of the second argument will be sought.
- A list whose members will be sought in the first argument.

OPTIONAL ARGUMENT
- A comparison function.

RETURN VALUE:

T or NIL.

EXAMPLE:

(all-members (1 234567 °(1237))

=> T

14 SC/UTILITIES 148

SYNOPSIS:

(defun all-members (list test-list &optional (test #’equal))

14.3 utilities/almost-flatten

[utilities | [Functions |
DATE:

September 4th 2013

DESCRIPTION:

Similar to flatten but allows one level of nesting

ARGUMENTS:

A list with an arbitrary level of nesting.

RETURN VALUE:

A list with a maximum of one level of nesting

EXAMPLE:

(almost-flatten ’*((1 (2 3 4) (5 (6 7) (8 9 10 (11) 12)) 13) 14 15 (16 17)))
SYNOPSIS:

(defun almost-flatten (nested-list)

14.4 utilities/almost-zero

[utilities | [Functions |
DESCRIPTION:

Return T if a given decimal is within 0.000001 of 0.0.

ARGUMENTS:

- A number.

14 SC/UTILITIES

OPTIONAL ARGUMENTS:

- A number that is a user-specified difference for the comparison test.
RETURN VALUE:

T if the number is within the tolerance difference to zero, otherwise NIL.
EXAMPLE:

(almost-zero 0.0000007)

=T

SYNOPSIS:

(defun almost-zero (num &optional (tolerance 0.000001))

14.5 utilities/amp2db

[utilities | [Methods |
DESCRIPTION:

Convert a standard digital amplitude value (>0.0 to 1.0) to a corresponding
decibel value.

ARGUMENTS:

- A decimal number between >0.0 and 1.0.
RETURN VALUE:

A decimal number that is a value in decibel.
EXAMPLE:

(amp2db 0.3)

=> -10.457575

SYNOPSIS:

(defmacro amp2db (amp)

149

14 SC/UTILITIES 150

14.6 utilities/amplitude-to-dynamic

[utilities | [Functions |
DESCRIPTION:

Convert a specified digital amplitude between 0.0 and 1.0 to a
corresponding dynamic between niente and ffff.

ARGUMENTS:
- A decimal number between 0.0 and 1.0.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to print a warning if the specified
amplitude is <0.0 or >1.0. T = warn. Default = T.

RETURN VALUE:
A symbol that is a dynamic level.
EXAMPLE:
(amplitude-to-dynamic 0.3)
=> PP
SYNOPSIS:

(defun amplitude-to-dynamic (amp &optional (warn t))

14.7 utilities/auto-scale-env

[utilities | [Functions |
DATE:

August 29th 2013
DESCRIPTION:

Automatically scale both the x and y values of an envelope to fit within
the given ranges.

14 SC/UTILITIES 151

ARGUMENTS:
- The envelope: a list of x y pairs
OPTIONAL ARGUMENTS:

keyword arguments:

- :x-min: The new minimum (starting) x value

- :x-max: The new maximum (last) x value

- :y-min: The new minimum (not necessarily starting!) y value
- :y-max: The new maximum (not necessarily starting!) y value

RETURN VALUE:
The new envelope (list).
EXAMPLE:

(AUTO-SCALE-ENV ’(0 0 10 1))
=>
(0.0 0.0 100.0 10.0)

(AUTO-SCALE-ENV ’(-1 0 .3 -3 1 1) :y-min 5 :y-max 6 :x-min 2)
=>
(2.0 5.75 65.7 5.0 100.0 6.0))

(AUTO-SCALE-ENV (0 1 5 1.5 7 0 10 1) :y-min -15 :y-max -4)
=>
(0.0 -7.6666665 50.0 -4.0 70.0 -15.0 100.0 -7.6666665))

SYNOPSIS:

(defun auto-scale-env (env &key
(x-min 0.0) (x-max 100.0)
(y-min 0.0) (y-max 10.0))

14.8 utilities/between

[utilities | [Functions |
DESCRIPTION:

Return a random number between two specified numbers. If the two numbers

are integers, the random selection is inclusive. If either are floating-point
(decimal) numbers, the result will be a float between the first (inclusive)
and just less than the second (i.e. exclusive).

14 SC/UTILITIES 152

ARGUMENTS:

- A first, lower, number.
- A second, higher, number.

NB: The first number must always be lower than the second.
OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the random seed should be fixed.

- T or NIL to indicate whether, when fixed-random is set to T, we should
reset the random number generator (to guarantee the same random
sequences). This would generally only be called once, perhaps at the
start of a gemeration procedure.

RETURN VALUE:

An integer if both numbers are integers, or a float if one or both are
decimal numbers.

EXAMPLE:

;55 Using the defaults. This will produce a different result each time.
(loop repeat 10 collect (between 1 100))

=> (43 63 26 47 28 2 99 93 66 23)
;55 Setting fixed-random to T and using zerop to reset the random when i is O
(loop repeat 5
collect (loop for i from O to 9 collect (between 1 100 t (zerop i))))
=> ((93 2 38 81 43 19 70 18 44 26) (93 2 38 81 43 19 70 18 44 26)

(93 2 38 81 43 19 70 18 44 26) (93 2 38 81 43 19 70 18 44 26)
(93 2 38 81 43 19 70 18 44 26))

SYNOPSIS:

(defun between (low high &optional fixed-random restart)

14.9 utilities/combine-into-symbol

[utilities | [Functions |
DESCRIPTION:

14 SC/UTILITIES 153

Combine a sequence of elements of any combination of type string, number,
or symbol into a symbol.

ARGUMENTS:
- A sequence of elements.

RETURN VALUE:

A symbol as the primary value, with the length of that symbol as a
secondary value.

EXAMPLE:
(combine-into-symbol "test" 1 ’a)
=> TEST1A, 6
SYNOPSIS:

(defun combine-into-symbol (&rest params)

14.10 utilities/db2amp

[utilities | [Functions |
DESCRIPTION:

Convert a decibel value to a standard digital amplitude value (>0.0 to 1.0),
whereby 0dB = 1.0.

ARGUMENTS:

- A number that is a value in decibel.
RETURN VALUE:

A decimal number between >0.0 and 1.0.
EXAMPLE:

(db2amp -3)

=> 0.70794576

SYNOPSIS:

(defmacro db2amp (db)

14 SC/UTILITIES 154

14.11 utilities/decimal-places

[utilities | [Functions |
DATE:

19-Mar-2012

DESCRIPTION:

Round the given number to the specified number of decimal places.
ARGUMENTS:

- A number.
- An integer that is the number of decimal places to which to round the
given number.

RETURN VALUE:
A decimal number.
EXAMPLE:

(decimal-places 1.1478349092347 2)

=> 1.15
SYNOPSIS:

(defun decimal-places (num places)

14.12 utilities/decimate-env

[utilities | [Functions |
DESCRIPTION:

Reduce the number of x,y pairs in an envelope. In

all three, the envelope is first stretched along the x-axis to fit the new
number of points required. Then we proceed by one of three methods:

1) average: for every new output x value, interpolate 100 times from -0.5
to +0.5 around the point, then average the y value. This will catch
clustering but round out spikes caused by them

2) points: also an averaging method but only using the existing points in

14 SC/UTILITIES 155

the original envelope (unless none is present for a new x value, whereupon
interpolation is used): Take an average of the (several) points nearest the
new output point. This might not recreate the extremes of the original
envelope but clustering is captured, albeit averaged.

3) interpolate: for each new output point, interpolate the new y value from
the original envelope. This will leave out details in the case of
clustering, but accurately catch peaks if there are enough output points.
In each case we create an even spread of x values, rather than clustering
where clusters exist in the original.

ARGUMENTS:

- the original envelope (list of x,y values on any scales).
- the number of points required in the output list.

OPTIONAL ARGUMENTS:

- the method to be applied (symbol): ’points, ’average, ’interpolate.
Default = ’points.

RETURN VALUE:

A list representing the x,y values of the new envelope
EXAMPLE:

(decimate-env (0 0 4 4 56 55.15.15.315.65.66 6 10 10) 6)
=>

(0.0 0.0 1 2.024.534.425 4 8.0 5.0 10.0)

SYNOPSIS:

(defun decimate-env (env num-points &optional (method ’points))

14.13 utilities/dynamic-to-amplitude

[utilities | [Functions |
DESCRIPTION:

Convert a symbol that is a dynamic level between niente and ffff to a
corresponding digital amplitude value between 0.0 and 1.0.

ARGUMENTS:

14 SC/UTILITIES 156

- A symbol that is a dynamic level between niente and fff.
OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to print a warning when the symbol specified
is not recognized as a dynamic. T = warn. Default = T.

RETURN VALUE:

A decimal number between 0.0 and 1.0.
EXAMPLE:

(dynamic-to-amplitude ’fff)

=> 0.9

SYNOPSIS:

(defun dynamic-to-amplitude (dynamic &optional (warn t))

14.14 utilities/econs

[utilities | [Functions |
DESCRIPTION:

Add a specified element to the end of an existing list.
ARGUMENTS:

- A list.
- An element to add to the end of the list.

RETURN VALUE:
A new list.
EXAMPLE:

(econs (1 2 3 4) 5)
=> ’(12345)
SYNOPSIS:

(defun econs (list new-back)

14 SC/UTILITIES 157

14.15 utilities/env-plus

[utilities | [Functions |
DESCRIPTION:

Increase all y values of a given list of break-point pairs by a specified
amount .

ARGUMENTS:

- An envelope in the form of a list of break-point pairs.
- A number that is the amount by which all y values of the given envelope
are to be increased.

RETURN VALUE:

A list of break-point pairs.

EXAMPLE:

(env-plus (0 0 25 11 50 13 75 19 100 23) 7.1)
=> (0 7.1 25 18.1 50 20.1 75 26.1 100 30.1)

SYNOPSIS:

(defun env-plus (env add)

14.16 utilities/env-symmetrical

[utilities | [Functions |
DESCRIPTION:

Create a new list of break-point pairs that is symmetrical to the original
around a specified center. If no center is specified, the center value
defaults to 0.5

ARGUMENTS:

- An envelope in the form of a list of break-point pairs.

OPTIONAL ARGUMENTS:

14 SC/UTILITIES 158

- A number that is the center value around which the values of the
new list are to be symmetrical.

- A number that is to be the minimum value for the y values returned.

- A number that is to be the maximum value for the y values returned.

RETURN VALUE:

An envelope in the form of a list of break-point pairs.

EXAMPLE:

;33 Default center is 0.5
(env-symmetrical (0 0 25 11 50 13 75 19 100 23))

=> (0 1.0 25 -10.0 50 -12.0 75 -18.0 100 -22.0)

;; Specifying a center of O
(env-symmetrical >(0 0 25 11 50 13 75 19 100 23) 0)

=> (0 0.0 25 -11.0 50 -13.0 75 -19.0 100 -23.0)

;35 Specifying minimum and maximum y values for the envelope returned
(env-symmetrical (0 0 25 11 50 13 75 19 100 23) 0 -20 -7)

=> (0 -7 25 -11.0 50 -13.0 75 -19.0 100 -20)
SYNOPSIS:
(defun env-symmetrical (env &optional (centre .5)

(min most-negative-double-float)
(max most-positive-double-float))

14.17 utilities/env2gnuplot

[utilities | [Functions |
DATE:

24th December 2013
DESCRIPTION:
Write a data file of x,y envelope values for use with gnuplit. Once called

start gnuplot and issue a command such as gnuplot> plot ’/tmp/env.txt’ with
lines.

14 SC/UTILITIES

ARGUMENTS:
- The envelope as the usual list of x y pairs

OPTIONAL ARGUMENTS:

- The pathname of the data file to write. Default = "/tmp/env.txt".

RETURN VALUE:
Always T
SYNOPSIS:

(defun env2gnuplot (env &optional (file "/tmp/env.txt"))

14.18 utilities/envelope-boundaries

[utilities | [Functions |
DESCRIPTION:

Find sharp changes in envelope values. These are defined as when a y value
rises or falls over 30} (by default) of it’s overall range within 5%

(again, by default) of its overall x axis range.
ARGUMENTS:
The envelope (a list of x y pairs).

OPTIONAL ARGUMENTS:

- jump-threshold: the minimum percentage change in y value that is deemed a

sharp change.
- steepness-min: the maximum percentage of the overall x axis that
constitutes a ’quick’ change.

RETURN VALUE:
A list of x values at which boundaries are deemed to lie.

EXAMPLE:

(ENVELOPE-BOUNDARIES *(0 10 20 10 21 3 256 4 26 9 50 7 51 1 55 2 56 7 70 10

100 10))
--> (21 26 51 56)

159

14 SC/UTILITIES

SYNOPSIS:

(defun envelope-boundaries (envelope &optional (jump-threshold 30)
(steepness-min 5))

14.19 utilities/equal-within-tolerance
[utilities | [Functions |

DESCRIPTION:

Test whether the difference between two decimal numbers falls within a
specified tolerance.

This test is designed to compensate for calculation discrepancies caused by
floating-point errors (such as 2.0 vs. 1.9999997), in which the equations

should yield equal numbers. It is intended to be used in place of = in such
circumstances.

ARGUMENTS:

- A first number.
- A second number.

OPTIONAL ARGUMENTS:

- A decimal value that is the maximum difference allowed between the two
numbers that will still return T. Default = 0.000001dO.

RETURN VALUE:

T if the two tested numbers are equal within the specified tolerance,
otherwise NIL.

EXAMPLE:

;5 An example of floating-point error
(loop for i from 0.0 below 1.1 by 0.1 collect i)

=> (0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70000005 0.8000001 0.9000001 1.0000001)
;; Using =

(loop for i from 0.0 below 1.1 by 0.1
for j in ’(0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0)

160

14 SC/UTILITIES

collect (= i j))
=> (TTTTTTT NIL NIL NIL NIL)
;; Using equal-within-tolerance
(loop for i from 0.0 below 1.1 by 0.1
for j in (0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0)

collect (equal-within-tolerance i j))

= (TTTTTTTTTTT
SYNOPSIS:

(defun equal-within-tolerance (a b &optional (tolerance 0.000001d0))

14.20 utilities/factor

[utilities | [Functions |
DESCRIPTION:

Boolean test to check if a specified number is a multiple of a second
specified number.

ARGUMENTS:

- A number that will be tested to see if it is a multiple of the second
number.
- A second number that is the base number for the factor test.

RETURN VALUE:

T if the first number is a multiple of the second number, otherwise NIL.

EXAMPLE:

(factor 14 7)

=> T

SYNOPSIS:

(defun factor (num fac)

161

14 SC/UTILITIES 162

14.21 utilities/flatten

[utilities | [Functions |
DESCRIPTION:

Return a list of nested lists of any depth as a flat list.
ARGUMENTS:

- A list of nested lists.

RETURN VALUE:

A flat list.

EXAMPLE:

(flatten *((1 (2 3 4) (5 (6 7) (8 9 10 (11) 12)) 13) 14 15 (16 17)))
=> (12345678910 11 12 13 14 15 16 17)

SYNOPSIS:

(defun flatten (nested-list)

14.22 utilities/force-length

[utilities | [Functions |
DATE:

03-FEB-2011

DESCRIPTION:

Create a new a list of a specified new length by adding or removing items
at regular intervals from the original list. If adding items and the list
contains numbers, linear interpolation will be used, but only between two
adjacent items; i.e. not with a partial increment.

NB: The function can only create new lists that have a length between 1 and
1 less than double the length of the original list.

ARGUMENTS:

14 SC/UTILITIES

- A flat list.
- A number that is the new length of the new list to be derived from the
original list. This number must be a value between 1 and 1 less than

double the length of the original list.

RETURN VALUE: EXAMPLE:

;53 Shortening a list
(force-length (loop for i from 1 to 100 collect i) 17)

=> (1 7 13 20 26 32 39 45 51 57 63 70 76 82 89 95 100)

;55 Lengthening a list
(force-length (loop

=> (11.52
12.5 13
21.5 22
30.5 31
39.5 40
48.5 49
57.5 58
66.5 67
75.5 76
84.5 85
93.5 94

SYNOPSIS:

2.5 3 3.
13.5 14
22.5 23
31.5 32
40.5 41
49.5 50
58.5 59
67.5 68
76.5 77
85.5 86
94.5 95

for i from 1 to 100 collect i) 199)

54 4.5
14.5 15
23.5 24
32.5 33
41.5 42
50.5 51
59.5 60
68.5 69
77.5 78
86.5 87
95.5 96

55.56
15.5 16
24.5 25
33.5 34
42.5 43
51.5 52
60.5 61
69.5 70
78.5 79
87.5 88
96.5 97

(defun force-length (list new-len)

14.23 utilities/get-clusters

[utilities | [Functions |
DESCRIPTION:

Takes a list with (ascending) numbers and creates sublists of those numbers

within <threshold> of each other.

ARGUMENTS:

A 1list of (ascending) numbers. NB Though the numbers don’t have to be in
ascending order, the design application of the function makes most sense if

they are.

6.57 7.
16.5 17
25.5 26
34.5 35
43.5 44
52.5 53
61.5 62
70.5 71
79.5 80
88.5 89
97.5 98

58 8.5
17.5 18
26.5 27
35.5 36
44 .5 45
53.5 54
62.5 63
71.5 72
80.5 81
89.5 90
98.5 99

9 9.5 10 10.5 11 11.5 12
20.
29.
38.
4a7.
56.
65.
4.
83.
92.

18.
27.
36.
45.
54.
63.
72.
81.
90.
99.

oo oo oo o1 O OOt

19
28
37
46
55
64
73
82
91

19.
28.
37.
46.
55.
64.
73.
82.
91.

100)

oo oo oo 01O

20
29
38
47
56
65
74
83
92

oo oo oo o1

21
30
39
48
57
66
75
84
93

163

14 SC/UTILITIES 164

OPTIONAL ARGUMENTS:

The maximum distance between two numbers in order for them to be considered
as part of the same cluster.

RETURN VALUE:

A list with clusters in sublists.

EXAMPLE:

(get-clusters ’(24 55 58 59 60 81 97 102 106 116 118 119 145 149 151 200 210
211 214 217 226 233 235 236 237 238 239 383 411 415 419))

--> (24 (55 58 59 60) 81 (97 102 106) (116 118 119) (145 149 151) 200

(210 211 214 217) 226 (233 235 236 237 238 239) 383 (411 415 419))

(get-clusters (0 .1 .3 .7 1.5 1.55 2 4.3 6.3 6.4) 1)
--> ((0 0.1 0.3 0.7 1.5 1.55 2) 4.3 (6.3 6.4))

(get-clusters ’(0 .1 .3 .7 1.5 1.55 2 4.3 6.3 6.4) 0.5)
--> ((0 0.1 0.3 0.7) (1.5 1.55 2) 4.3 (6.3 6.4))

SYNOPSIS:

(defun get-clusters (list &optional (threshold 5))

14.24 utilities/get-harmonics

[utilities | [Functions |
DESCRIPTION:

Return a list of the harmonic partial frequencies in Hertz from a
specified (usually fundamental) frequency.

ARGUMENTS:
- A number that is the fundamental or starting frequency in Hertz.
OPTIONAL ARGUMENTS:

keyword arguments
- :start-partial. An integer that is the number of the first harmonic
partial to return. Default = 1.

14 SC/UTILITIES

- :min-freq. A number that is the lowest frequency in Hertz to
return. Default = 20.
- :max-freq. A number that is the highest frequency in Hertz to
return. Default = 20000.
:start-freq-is-partial. Rather than treating the first argument as the
fundamental, treat it as the partial number indicated by this argument.
Default = 1.
- :max-results. The maximum number of harmonics to return. Default =
most-positive-fixnum
- :skip. The increment for the harmonics. If 1, then we ascend the

harmonics series one partial at a time; 2 would mean skipping every other

Default = 1.

RETURN VALUE:

A list of numbers that are the frequencies in Hertz of harmonic partials
above the same fundamental frequency.

EXAMPLE:

;55 Get the first 15 harmonic partials above a fundamental pitch of 64 Hertz,

;;; starting with partial 2, and specifying an upper cut-off of 1010 Hz.
(get-harmonics 63 :start-partial 2 :max-freq 1010)

=> (126 189 252 315 378 441 504 567 630 693 756 819 882 945 1008)
SYNOPSIS:

(defun get-harmonics (start-freq &key (start-partial 1) (min-freq 20)

(start-freq-is-partial 1) (max-freq 20000) (skip 1)
(max-results most-positive-fixnum))

14.25 utilities/get-sublist-indices

[utilities | [Functions |
DESCRIPTION:

Get the starting position of sublists within a list as though the complete

set of items were a flat list.

ARGUMENTS:

- A list of lists.

165

14 SC/UTILITIES

RETURN VALUE:

A list of integers that are the indices of the sublists.

EXAMPLE:

(get-sublist-indices *((1 2) (3 4 5 6) (7 8 9) (10 11 12 13 14) (15)))
=> (0269 14)

SYNOPSIS:

(defun get-sublist-indices (list)

14.26 utilities/get-sublist-lengths

[utilities | [Functions |
DESCRIPTION:

Get the lengths of all sublists in a given list.
ARGUMENTS:

- A list of lists.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to first remove zeros caused by empty
sublists from the result.

RETURN VALUE:
A list of integers.

EXAMPLE:

;5 Straightforward usage allows zeros in the result
(get-sublist-lengths *((1 2) (3 4 5 6) (7 8 9) (10 11 12 13 14) O))

=> (24350)
;53 Setting the optional argument to T removes zeros from the result
(get-sublist-lengths >((1 2) (3 4 5 6) (7 8 9) (10 11 12 13 14)) t)

=> (2 4 3 5)

166

14 SC/UTILITIES

SYNOPSIS:

(defun get-sublist-lengths (list &optional (remove-zeros nil))

14.27 utilities/hailstone

[utilities | [Functions |
DESCRIPTION:

Implementation of the Collatz conjecture (see
http://en.wikipedia.org/wiki/Collatz_conjecture)

The Collatz conjecture suggests that by starting with a given number, and
if it is even dividing it by two or if it is odd multiplying it by three
and adding one, then repeating with the new result, the process will
eventually always result in one.

ARGUMENTS:

- A number to start with.

RETURN VALUE:

A list of the results collected from each iteration starting with the
specified number and ending with ome.

EXAMPLE:

(hailstone 11)

=> (11 34 17 52 26 13 40 20 10 5 16 8 4 2 1)
SYNOPSIS:

(defun hailstone (n)

14.28 utilities/hz2ms

[utilities | [Functions |
DESCRIPTION:

Convert a frequency in Hertz to the equivalent number of milliseconds.

167

14 SC/UTILITIES 168

ARGUMENTS:
- A number that is a Hertz frequency.
RETURN VALUE:

A number that is the millisecond equivalent of the specified Hertz
frequency.

EXAMPLE:

(hz2ms 261.63)

=> 3.8221915
SYNOPSIS:

(defun hz2ms (hertz)

14.29 utilities/interleave

[utilities | [Functions |
DESCRIPTION:

Interleave the elements of an aribitrary number of lists. Should the lists
not be of the same length, this function will only use up as many elements
as in the shortest list.

ARGUMENTS:

As many lists as need to be interleaved.
RETURN VALUE:

A new list of interleaved elements.
EXAMPLE:

(INTERLEAVE °(1 234 5) ’(abcd (&xy2)
--> (1 AX2BY3C2)

(INTERLEAVE (1 23 45) ’(abcde) (vwzxyz))
-—>(1AV2BW3CX4DYS5EZ

SYNOPSIS:

(defun interleave (&rest lists)

14 SC/UTILITIES

14.30 utilities/interpolate

[utilities | [Functions |
DESCRIPTION:

Get the interpolated value at a specified point within an envelope. The
envelope must be specified in the form of a list of break-point pairs.

ARGUMENTS:

- A number that is the point within the specified envelope for which to
return the interpolated value.
- A list of break-point pairs.

OPTIONAL ARGUMENTS:

keyword arguments:

- :scaler. A number that is the factor by which to scale the values of
the break-point pairs in the given envelope before retrieving the
interpolated value. Default = 1.

- :exp. A number that is the exponent to which the result should be
raised. Default = 1.

- :warn. T or NIL to indicate whether the method should print a warning if
the specified point is outside of the bounds of the x-axis specified in
the list of break-point pairs. T = warn. Default = T.

RETURN VALUE: EXAMPLE:

;55 Using the defaults
(interpolate 50 ’(0 0 100 1))

=> 0.5

;55 Specifying a different scaler
(interpolate 50 ’(0 O 100 1) :scaler 2)

=> 1.0

;55 Specifying a different exponent by which the result is to be raised
(interpolate 50 ’(0 0 100 1) :exp 2)

=> 0.25
SYNOPSIS:

(defun interpolate (point env &key (scaler 1) (exp 1) (warn t))

169

14 SC/UTILITIES

14.31 utilities/list-to-string

[utilities | [Functions |
DESCRIPTION:

Convert a list to a string.
ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

- A string that will serve as a separator between the elements.
Default = " ".

- T or NIL to indicate whether a list value of NIL is to be returned as
"NIL" or NIL. T = "NIL" as a string. Default = T.

RETURN VALUE: EXAMPLE:

;55 Using defaults
(list-to-string (1 2 3 4 5))

=>"12345"

;55 Specifying a different separator
(list-to-string (1 2 3 4 5) "-")

=> "1-2-3-4-5"

;55 A NIL list returns "NIL" as a string by default
(list-to-string NIL)

=> "npil"

;55 Setting the second optional argument to NIL returns a NIL list as NIL
;53 rather than as "NIL" as a string

(list-to-string NIL "" nil)

=> NIL

SYNOPSIS:

(defun list-to-string (list &optional (separator " ") (nil-as-string t))

170

14 SC/UTILITIES 171

14.32 utilities/logarithmic-steps

[utilities | [Functions |

DESCRIPTION:
Create a list of numbers progressing from the first specified argument to
the second specified argument over the specified number of steps using an
exponential curve rather than linear interpolation.

ARGUMENTS:
- A number that is the starting value in the resulting list.
- A number that is the ending value in the resulting list.
- An integer that will be the length of the resulting list - 1.

OPTIONAL ARGUMENTS:

- A number that will be used as the exponent when determining the
exponential interpolation between values. Default = 2.

RETURN VALUE:
A list of numbers.
EXAMPLE:

(logarithmic-steps 1 100 19)

=> (1.0 1.3055556 2.2222223 3.75 5.888889 8.638889 12.0 15.972222 20.555555
25.75 31.555555 37.97222 45.0 52.63889 60.88889 69.75 79.22222 89.30556
100.0)

SYNOPSIS:

(defun logarithmic-steps (low high num-steps &optional (exponent 2))

14.33 utilities/middle

[utilities | [Functions |
DESCRIPTION:

Get the number value that is middle of two number values.

14 SC/UTILITIES 172

ARGUMENTS:

- A first number.
- A second number.

RETURN VALUE:
A number.
EXAMPLE:
(middle 7 92)

=> 49.5
SYNOPSIS:

(defun middle (lower upper)

14.34 utilities/mins-secs-to-secs

[utilities | [Functions |
DESCRIPTION:

Derive the number of seconds from a minutes-seconds value that is indicated
as a two-item list in the form ’ (minutes seconds).

ARGUMENTS:

- A two-item list of integers in the form ’(minutes seconds).
RETURN VALUE:

A decimal number that is a number in seconds.

EXAMPLE:

(mins-secs-to-secs ’(2 1))

=> 121.0

SYNOPSIS:

(defun mins-secs-to-secs (list)

14 SC/UTILITIES 173

14.35 utilities/move-elements

[utilities | [Functions |
DATE:

02-Mar-2011
DESCRIPTION:

Move the specified elements from one list (if they are present in that
list) to another, deleting them from the first.

ARGUMENTS:

- A list of elements that are the elements to be moved.

- A list from which the specified elements are to be moved and deleted.
- A list to which the specified elements are to be moved.

OPTIONAL ARGUMENTS:

- A predicate by which to test that the specified elements are equal to
elements of the source list. Default = #’eq.

RETURN VALUE:

Two values: A first list that is the source list after the items have been
moved; a second list that is the target list after the items have been
moved.

EXAMPLE:

(move-elements (3 58) (1 234567889) ’(abcde))

=> (124679, (853ABCDE)

SYNOPSIS:

(defun move-elements (what from to &optional (test #’eq))

14.36 utilities/move-to-end

[utilities | [Functions |
DATE:

14 SC/UTILITIES 174

22-May-2011
DESCRIPTION:

Move a specified element of a given list to the end of the list, returning
the new list.

NB: If the element exists more than once in the given list, all but on of

the occurrences will be removed and only one of them will be placed at
the end.

ARGUMENTS:

- An item that is an element of the list that is the second argument.
- A list.

RETURN VALUE:
A list.
EXAMPLE:

;55 All unique items
(move-to-end 2 (1 2 3 4 5))

=> (1345 2)

;55 Duplicate items
(move-to-end 2 (1 2 3 2 4 2 5))

=> (1345 2)
SYNOPSIS:

(defun move-to-end (what list &optional (test #’eql))

14.37 utilities/nconc-sublists

[utilities | [Functions |
DESCRIPTION:

Concatenate corresponding sublists of a given list. Each sublist in the
argument should have the same length and number of sublists etc.

14 SC/UTILITIES 175

ARGUMENTS:

A list of lists.

RETURN VALUE:

A list of lists.

EXAMPLE:

(nconc-sublists ’(((1 2) (a b) (cat dog))

((3 4) (c d) (bird fish))
((5 6) (e £) (pig cow))))

=>((123456) (ABCDEF) (CAT DOG BIRD FISH PIG COW))
SYNOPSIS:

(defun nconc-sublists (lists)

14.38 utilities/nearest-power-of-2

[utilities | [Functions |
DESCRIPTION:

Return the closest number to the specified value that is a power of two but
not greater than the specified value.

ARGUMENTS:

- A number.

RETURN VALUE:

An integer that is a power of two.
EXAMPLE:

(nearest-power-of-2 31)
=> 16

(nearest-power-of-2 32)

14 SC/UTILITIES 176

=> 32
(nearest-power-of-2 33)
=> 32

SYNOPSIS:

(defun nearest-power-of-2 (num)

14.39 utilities/octave-fregs

[utilities | [Functions |
DESCRIPTION:

A boolean test to determine whether two specified frequencies are octave
transpositions of the same pitch class.

ARGUMENTS:

- A first number that is a frequency in Hertz.
- A second number that is a frequency in Hertz.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether identical frequencies ("unison") are also
to be considered octave transpositions of the same pitch class.
T = unisons are also octaves. Default = T.

RETURN VALUE:

T or NIL.

EXAMPLE:

(octave-freqs 261.63 2093.04)

=>T

(octave-freqs 261.63 3000.00)

=> NIL

14 SC/UTILITIES

(octave-fregs 261.63 261.63)

= T

(octave-freqs 261.63 261.63 nil)
=> NIL

SYNOPSIS:

(defun octave-freqs (freql freq2 &optional (unison-also t))

14.40 utilities/parse-audacity-label-file-for-loops

[utilities | [Functions |
DESCRIPTION:

Read an audacity label file and return its loop points as groups.

NB: If this fails it’s probably because there’s a tab between time and
label instead of spaces: save in emacs to detab.

NB: Beware that marker files created on different operating systems from
the one on which this function is called might trigger errors due to
newline character mismatches.

ARGUMENTS:

- A string that is the name of the label file to be parsed, including
directory path and extension.

RETURN VALUE:

Returns a list of lists which are the grouped time points.

Also prints separate feedback to the listener.

EXAMPLE:

(parse-audacity-label-file-for-loops "/path/to/24-7loopsl.txt")

=>
313 markers, 50 loops read

177

14 SC/UTILITIES

((25.674559 25.829296 26.116327 26.649048 27.038843)

(32.211884 32.33669 32.481815 32.618233 32.716915 32.902676 33.227757
33.61959)

(36.893604 37.059048 37.160633 37.27383 37.439274 37.4683 37.627937)
(39.52907 39.81932 39.999275 40.2634 40.338867 40.605896)

(45.612698 45.818775 46.050976 46.145306 46.275192)

(46.4566 46.644535 46.76934 46.886894 46.971066 47.16553)

(84.15927 84.260864 84.292786 84.355194 84.47274 84.52789 84.556915
84.65415)

(676.1075 676.79114 677.1503 677.57904 678.12366)

(799.29205 799.8019 800.58984 800.96063 801.13446 801.45886)
(804.98145 805.2016 805.5724 805.83887 806.31396))

SYNOPSIS:

(defun parse-audacity-label-file-for-loops (label-file)

14.41 utilities/parse-wavelab-marker-file-for-loops

[utilities | [Functions |
DESCRIPTION:

Read a wavelab marker file and return its loop points as groups.

The marker file must contain markers with the word "loop". A marker with
that name will start a new set of loop points, and nameless markers will
belong to the group until the next "loop" marker.

ARGUMENTS:

- A string that is the name of the marker file to be parsed, including
directory path and extension.

OPTIONAL ARGUMENTS:

keyword arguments:

- :sampling-rate. An integer that is the sampling rate of the sound file to
which the marker file refers. This value will affect the resulting time
points. Default = 44100.

- :max-length. The maximum duration in seconds between two points: anything
greater than this will result in a warning being printed.

178

14 SC/UTILITIES 179

RETURN VALUE:

Returns a list of lists which are the grouped time points.

Also prints separate feedback to the listener.

EXAMPLE:

(parse-wavelab-marker-file-for-loops "/path/to/24-7loopsi.mrk")

=>

WARNING:

utilities::parse-wavelab-marker-file-for-loops

loop points 10:13.213 to 10:14.475 are too long (1.2620239)
WARNING:

utilities::parse-wavelab-marker-file-for-loops

loop points 10:33.223 to 10:34.486 are too long (1.2630615)
WARNING:

utilities::parse-wavelab-marker-file-for-loops

loop points 10:36.456 to 10:37.522 are too long (1.06604)

312 markers, 50 loops read

((25.
(32.
33.

(36

(39.
(45.

(46

(84.
84.

674559 25.829296 26.116327 26.649048 27.038843)

211884 32.33669 32.481815 32.618233 32.716915 32.902676 33.227757
61959)

.893604 37.059048 37.160633 37.27383 37.439274 37.4683 37.627937)
52907 39.81932 39.999275 40.2634 40.338867 40.605896)

612698 45.818775 46.050976 46.145306 46.275192)

.4566 46.644535 46.76934 46.886894 46.971066 47.16553)

15927 84.260864 84.292786 84.355194 84.47274 84.52789 84.556915
65415)

(655.91077 656.4554 656.80304 657.4519 658.04285 658.8192)
(676.1075 676.79114 677.1503 677.57904 678.12366)

(799.29205 799.8019 800.58984 800.96063 801.13446 801.45886)
(804.98145 805.2016 805.5724 805.83887 806.31396))

SYNOPSIS:

(defun parse-wavelab-marker-file-for-loops

(marker-file &key (sampling-rate 44100) (max-length 1.0))

14 SC/UTILITIES 180

14.42 utilities/partial-freqs

[utilities | [Functions |
DATE:

13-Dec-2011
DESCRIPTION:

A Boolean test to determine whether either of two specified frequencies
can be considered a harmonic partial of the other.

ARGUMENTS:

- A first frequency in Hertz.
- A second frequency in Hertz.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether identical frequencies ("unison") are also to
be considered partials of each other. T = unison are partials.
Default = T.

RETURN VALUE:

T if one of the frequencies has the ratio of a harmonic partial to the
other, otherwise NIL.

EXAMPLE:

(partial-fregs 300 900)

= T

(partial-freqgs 300 700)

=> NIL

(partial-freqs 300 300)
=T

(partial-freqs 300 300 nil)

=> NIL

14 SC/UTILITIES 181

SYNOPSIS:

(defun partial-freqs (freql freq2 &optional (unison-also t))

14.43 utilities/pdivide

[utilities | [Functions |
DESCRIPTION:

Creates a list of proportional times, dividing a starting duration into a
number of smaller durations a specified number of times. We start with a
proportion as a ratio (e.g. 3/2) and divide the given duration into two
parts according to that ratio. Then those two parts will be divided into
the same ratios. This will iterate the number of times indicated by the
second argument.

The following are some classical proportions:
Latin (Greek)

(3 : 2) Sesquialtera (Diapente)

(4 : 3) Sesquitertia (Diatessaron)

(5 : 4) Sesquiquarta (Diatonus Semitonus)

(8 : 3) Duplasuperbipartiens (Diapson Diatesseron)

(9 : 8) Sesquioctava (Tonus)

ARGUMENTS:

- an integer or ratio (in Lisp terms, a rational) e.g. 3/2
- an integer >=1 specifying the number of times to iterate the process of
dividing the duration into proportions.

OPTIONAL ARGUMENTS:

keyword arguments:

- :duration. The overall duration to apply the proportional divisions to.
Units are arbitrary of course as this is just a number. Default 1.0.

- :print. If T, print each level of division as we proceed. Default NIL.

- :reverse. If T reverse the proportion (so 3/2 becomes 2/3). Default NIL.

:alternate. If T, reverse the proportion every other division (not

iteration) so that if we have a proportion of 3/2 on the second iteration

we divide into 3/2 then 2/3. Default NIL.

- :increment. If T, then each time we divide we increment both sides of the
proportion, so 3:2 becomes 4:3 which becomes 5:4 etc. Default NIL.

- :halves. This will only make a difference if :increment is T: As results
tend overall towards increasing (when numerator < denominator e.g. 2/3) or

14 SC/UTILITIES 182

decreasing (numerator > denominator e.g. 3/2) numbers, we can mix things
up by dividing the resultant list into two halves and splicing their
elements one after the other. Default NIL.

- :shuffle. Mix things up by shuffling the resultant list. As this uses
the shuffle algorithm we have fixed-seed randomness so results will be
the same upon each call within the same Lisp implementation/version.
Default NIL.

RETURN VALUE:

Three values: the list of ascending timings from the last generation of the
calculated proportions; the durations of each part for the last generation;
the list of ascending timings for _each_ generation of the calculated
proportions (a list of lists).

EXAMPLE:

Notice here that each generation prints the proportions along with the
durations these correspond to and the start time of each (cumulative durations).

(pdivide 3/2 4 :duration 35 :print t)

PRINTS:
Generation 1: 3 (21.00=21.00), 2 (14.00=35.00),

Generation 2: 3 (12.60=12.60), 2 (8.40=21.00), 3 (8.40=29.40), 2 (5.60=35.00),

Generation 3: 3 (7.56=7.56), 2 (5.04=12.60), 3 (5.04=17.64), 2 (3.36=21.00),
3 (5.04=26.04), 2 (3.36=29.40), 3 (3.36=32.76), 2 (2.24=35.00),

Generation 4: 3 (4.54=4.54), 2 (3.02=7.56), 3 (3.02=10.58), 2 (2.02=12.60),

3 (3.02=15.62), 2 (2.02=17.64), 3 (2.02=19.66), 2 (1.34=21.00), 3 (3.02=24.02),
2 (2.02=26.04), 3 (2.02=28.06), 2 (1.34=29.40), 3 (2.02=31.42), 2 (1.34=32.76),
3 (1.34=34.10), 2 (0.90=35.00),

RETURNS:

(0.0 4.5360003 7.5600004 10.584001 12.6 15.624001 17.640001 19.656002 21.000002
24.024002 26.040003 28.056004 29.400003 31.416004 32.760006 34.104008
35.000008)

(4.5360003 3.0240002 3.0240004 2.0160003 3.0240004 2.0160003 2.0160003
1.3440002 3.0240004 2.0160003 2.0160003 1.3440002 2.0160003 1.3440001
1.3440001 0.896)

((0.0 4.5360003 7.5600004 10.584001 12.6 15.624001 17.640001 19.656002
21.000002 24.024002 26.040003 28.056004 29.400003 31.416004 32.760006
34.104008 35.000008)

(0.0 7.5600004 12.6 17.640001 21.000002 26.040003 29.400003 32.760002

14 SC/UTILITIES 183

35.000004)
(0.0 12.6 21.0 29.400002 35.0) (0.0 21.0 35.0))

(pdivide 3/2 4 :duration 35 :print t :increment t :halves t)

PRINTS:
Generation 1: 3 (21.00=21.00), 2 (14.00=35.00),

Generation 2: 4 (12.00=12.00), 3 (9.00=21.00), 5 (7.78=28.78), 4 (6.22=35.00),

Generation 3: 6 (6.55=6.55), 5 (5.45=12.00), 7 (4.85=16.85), 6 (4.15=21.00),
8 (4.15=25.15), 7 (3.63=28.78), 9 (3.29=32.07), 8 (2.93=35.00),

Generation 4: 10 (3.44=3.44), 9 (3.10=6.55), 11 (2.86=9.40), 10 (2.60=12.00),
12 (2.53=14.53), 11 (2.32=16.85), 13 (2.16=19.01), 12 (1.99=21.00),
14 (2.15=23.15), 13 (2.00=25.15), 15 (1.88=27.03), 14 (1.75=28.78),
16 (1.70=30.48), 15 (1.59=32.07), 17 (1.51=33.58), 16 (1.42=35.00),

RETURNS:

(0.0 3.4449766 5.595868 8.696347 10.6936035 13.550747 15.428142 18.025545
19.77778 22.30621 24.0064 26.324125 27.918053 30.078053 31.58647 33.580315
35.0)

(3.4449766 2.1508918 3.100479 1.9972568 2.8571434 1.8773947 2.5974028 1.752235
2.5284283 1.7001898 2.317726 1.593928 2.16 1.5084175 1.9938462 1.4196872)

((0.0 3.4449766 6.5454555 9.402599 12.000002 14.52843 16.846155 19.006155

21.000002 23.150894 25.148151 27.025547 28.777782 30.477972 32.0719 33.58032
35.000004)

(0.0 6.5454555 12.000002 16.846157 21.000004 25.148151 28.77778 32.0719
35.000004)

(0.0 12.000001 21.0 28.777779 35.0) (0.0 21.0 35.0))

SYNOPSIS:

(defun pdivide (start levels &key (duration 1.0) print reverse alternate
halves shuffle increment)

14.44 utilities/pexpand

[utilities | [Functions |
DESCRIPTION:

Instead of dividing an overall duration (pdivide) we start with a
proportion and expand outwards from there, keeping each newly created part

14 SC/UTILITIES 184

in the same proportion. This is repeated the number of times specified in
the first argument. Useful for generating maps (section structure).

ARGUMENTS:
The number of times to expand proportionally.
OPTIONAL ARGUMENTS:

As many integer proportions as required. If the last argument here is t,
then instead of using letters to denote sections we use numbers instead.

RETURN VALUE:

3 values:

1) a list showing the cumulative count (e.g. bar numbers) of where major
and minor sections occur. Topmost sections will have the labels A, B, C,
etc. with subsections such as A.A, A.B, ... C.C.C.C. O0Of course, wherever a
major section starts, an arbitrary number of subsections also begin, but
only the most major section is present in the list.

2) the structure of the sections and subsections in the form of a list of
sublists for each, and containing the section labels paired with their
length. The bottommost subsection will have a length of the sum of the
proportions, with higher subsection groupings showing multiples of this.
3) the overall length of the structure produced (also the first element of
the second returned value).

EXAMPLE:

555 2 generations:
(pexpand 2 3 2) =>
(1 (A) 6 (AAAB) 11 (AAAC) 16 (A AB) 21 (A ABB) 26 (AB) 31 (ABAB)
36 (ABAC) 41 (ABB) 46 (ABBB) 51 (AC) 56 (ACAB) 61 (ACAC) 66
(ACB) 71 (ACBB) 76 (B) 81 (BAAB) 8 (BAAC) 91 (BAB) 96 (B ABB)
101 (B B) 106 (B B A B) 111 (B B A C) 116 (B B B) 121 (B B B B))
(125
(((a) 75)
(((A A) 25) ((CA A A) 15) ((AAAA) B) ((AAAB)B) ((AAAC B))
(((AAB) 10) ((AABA) 5 ((AABB) 5))
(((AB) 25) (((ABA) 15) ((ABAA) 5 ((ABAB)5) ((ABAC)B5))
(((A BB) 10) ((A BB A) 5) ((ABBB) 5))
(((AC) 25) (((ACA) 15) ((ACAA) 5 ((ACAB)SB) ((ACAC B))
(((ACB) 10) ((ACBA) 5 ((ACBB) 5))
(((B) 50)
(((B A) 25) (((BAA) 15) ((BAAA) 5 ((BAAB)S5) ((BAAC)B))

14 SC/UTILITIES 185

(((B AB) 10) ((BABA) 5 ((BABB)B))
(((BB) 25) (((BBA) 15) ((BBAA) 5) ((BBAB)5) ((BBAC)B5))
(((B B B) 10) ((B BB A) 5 ((BBBB) 5))))

125

;55 3 generations:

(pexpand 3 3 2) =>

(1 (A) 6 (AAAAAB) 11 (AAAAAC) 16 (AAAAB) 21 (AAAABB) 26
(AAAB) 31 (AAABAB) 36 (AAABAC) 41 (AAABB) 46 (AAABBB)S51
(AAAC)S6 (AAACAB) 61 (AAACAC)66 (AAACB) 71 (AAACBB) 76

581 (BBBAAB) 58 (BBBAAC) 591 (BBBAB) 596 (B BB A B B) 601
(BBBB) 606 (BBBBAB) 611 (BBBBAC) 616 (B BB B B) 621
(B BBBBB))
(625
(((a) 375)
(((A A) 125)
(((A A) 75)
(((A A AAD) 25)
((CAAAAA) 15) ((AAAAAA DB ((AAAAAB)S ((AAAAAC B))
(((AAAAB) 10) ((AAAABA 5 ((AAAABB) 5))

(((B B B) 50)

(((B BB A) 25)
((BBBAA) 15) ((BBBAAA) 5 ((BBBAAB) S5 ((BBBAAC 5)
(((BBBAB) 10) ((BBB ABA) 5 ((BBBABB) 5)))

(((B B B B) 25)
((BBBBA) 15) ((BBBBAA) 5 ((BBBBAB) 5 ((BBBBAC) 5)
(((BBBBB) 10) ((BBBBBA) 5 ((BBBBBB) 5))))

625

;55 2 generations of 3 proportional values, returning numbers for labels

(pexpand 2 3 2 4 t) =>

(1 (1) 10 (1 112)19 (1 113)28 (112)37 (1122)46 (113) 55

(1132)64((1133)73 (113482 (1291 (1212 100 (1 21 3) 109

(1 22) 118 (1 22 2) 127 (1 2 3) 136 (1 2 3 2) 145 (1 2 3 3) 154 (1 2 3 4)
. (3422) 694 (343) 703 (3432) 712 (343 3) 721 (34 3 4))

(729
(((1) 243)
(((1 1)y 81) (((111)27) ((1111)9) (11129 ((1113)9)
(((112)18) (1 121) 9 ((1122)9)
(((113)36) ((1131)9 ((1132)9 ((1133)9 (1134 9N

..(((3 22)18) ((3221)9) ((3222) 9)
(((323)36) ((3231) 9 ((3232)9) ((3233)9) ((3234) 9N

14 SC/UTILITIES 186

(((33)81) (((331)27) ((3311)9) ((3312)9) ((3313)9)
(((332) 18) ((3321) 9 ((3322)9)
(((333)36) ((3331)9) ((3332)9) ((3333)9) ((3334)9))
(((34) 81) (((341)27) ((3411)9) ((3412)9) ((3413)9)
(((342) 18) ((3421) 9 (3422 9)
(((343) 36) ((3431)9) ((3432)9) ((3433)9) ((3434) 99NN
729
SYNOPSIS:

(defun pexpand (generations &rest proportions)

14.45 utilities/pexpand-find

[utilities | [Functions |
DESCRIPTION:

Find the cumulative number of where a label occurs in a list returned by
pexpand.

ARGUMENTS:

- the label we’re looking for
- a list of the type returned by pexpand (first returned value).

OPTIONAL ARGUMENTS:

- a function to be called when the label cannot be found. Default =
#’error but could also be #’warn or NIL.

RETURN VALUE:
An integer.
SYNOPSIS:

(defun pexpand-find (label list &optional (on-error #’error))

14.46 utilities/power-of-2

[utilities | [Functions |
DESCRIPTION:

14 SC/UTILITIES 187

Test whether the specified number is a power of two and return the
logarithm of the specified number to base 2.

This method returns two values: T or NIL for the test and a decimal that is
the logarithm of the specified number to base 2.

ARGUMENTS:
- A number.

RETURN VALUE:

Two values: T or NIL for the test and a decimal number that is the
logarithm of the specified number to base 2.

EXAMPLE:
(power-of-2 16)
=> T, 4.0
(power-of-2 17.3)
=> NIL, 4.1127
SYNOPSIS:

(defun power-of-2 (float)

14.47 utilities/pts2cm

[utilities | [Functions |
DESCRIPTION:

Convert a specified number of points to a length in centimeters at a
resolution of 72ppi.

ARGUMENTS:
- A number.

RETURN VALUE:

A number.

14 SC/UTILITIES 188

EXAMPLE:
(pts2cm 150)
=> 5.2916665
SYNOPSIS:

(defun pts2cm (points)

14.48 utilities/random-amount

[utilities | [Functions |
DESCRIPTION:

Return a random number from within a total range of <percent> of the given
number, centering around zero. Thus, if the <number> is 100, and the
<percent> is 5, the results will be a random number between -2.5 and +2.5.
ARGUMENTS:

A number.

OPTIONAL ARGUMENTS:

A number that will be a percent of the given number.
RETURN VALUE:

A random positive or negative number.

EXAMPLE:

;55 Using the default will return numbers within a 5% span of the given number,
;55 centering around zero. With 100 that means between -2.5 and +2.5.
(loop repeat 10 collect (random-amount 100))

=> (0.7424975 -1.4954442 -1.7126495 1.5918689 -0.43478793 -1.7916341 -1.9115914
0.8541988 0.057197176 2.0713913)

;33 Specifying 10% of 80 will return random numbers between -4.0 and +4.0
(loop repeat 10 collect (random-amount 80 10))

=> (-0.66686153 3.0387697 3.4737322 -2.3753185 -0.8495751 -0.47580242
-0.25743783 -1.1395472 1.3560238 -0.5958566)

14 SC/UTILITIES 189

SYNOPSIS:

(defun random-amount (number &optional (percent 5))

14.49 utilities/random-from-list

[utilities | [Functions |
DESCRIPTION:

Return a random element from a specified list of elements.
ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

- An integer can be passed stating the length of the list, for more
efficient processing. NB: There is no check to ensure this number is
indeed the length of the list. If the number is less than the length of
the list, only elements from the first part of the list will be
returned. If it is greater than the length of the list, the method may
return NIL.

RETURN VALUE:

An element from the specified list.
EXAMPLE:

(random-from-list ’(3 5 7 11 13 17 19 23 29))
=> 13

SYNOPSIS:

(defun random-from-list (list &optional list-length) ; for efficiency

14.50 utilities/randomise

[utilities | [Functions |
DESCRIPTION:

14 SC/UTILITIES 190

Return a random decimal number close to the number specified (within a
certain percentage of that number’s value).

ARGUMENTS:

- A number.

OPTIONAL ARGUMENTS:

- A number that is a percentage value, such that any random number returned
will be within that percentage of the original number’s value.
Default = 5.

RETURN VALUE:

A decimal number.

EXAMPLE:

(loop repeat 10 collect (randomise 100))

=> (99.413795 99.15346 98.682014 100.76199 97.74929 99.05693 100.59494 97.96452
100.42091 100.01329)

SYNOPSIS:

(defun randomise (number &optional (percent 5))

14.51 utilities/read-from-file

[utilities | [Functions |
DESCRIPTION:

Read a Lisp expression from a file. This is determined by the Lisp
parenthetical syntax.

ARGUMENTS:
- A string that is a file name including directory path and extension.

RETURN VALUE:

The Lisp expression contained in the file.

14 SC/UTILITIES 191

EXAMPLE:
(read-from-file "/path/to/lisp-lorem-ipsum.txt")

=> (LOREM IPSUM DOLOR SIT AMET CONSECTETUR ADIPISCING ELIT CRAS CONSEQUAT
CONVALLIS JUSTO VITAE CONSECTETUR MAURIS IN NIBH VEL EST TEMPUS LOBORTIS
SUSPENDISSE POTENTI SED MAURIS MASSA ADIPISCING VITAE DIGNISSIM CONDIMENTUM
VOLUTPAT VEL FELIS FUSCE AUGUE DUI PULVINAR ULTRICIES IMPERDIET SED
PHARETRA EU QUAM INTEGER IN VULPUTATE VELIT ALIQUAM ERAT VOLUTPAT VIVAMUS
SIT AMET ORCI EGET EROS CONSEQUAT TINCIDUNT NUNC ELEMENTUM ADIPISCING
LOBORTIS MORBI AT LOREM EST EGET MATTIS ERAT DONEC AC RISUS A DUI MALESUADA
LOBORTIS AC AT EST INTEGER AT INTERDUM TORTOR VIVAMUS HENDRERIT CONSEQUAT
AUGUE QUISQUE ALIQUAM TELLUS NEC VESTIBULUM LOBORTIS RISUS TURPIS LUCTUS
LIGULA IN BIBENDUM FELIS SEM PULVINAR DOLOR VIVAMUS RHONCUS NISI GRAVIDA
PORTA VULPUTATE IPSUM LACUS PORTA RISUS A VULPUTATE MAGNA JUSTO A EST)

SYNOPSIS:

(defun read-from-file (file)

14.52 utilities/reflect-list

[utilities | [Functions |
DESCRIPTION:

Order a list of numbers from least to greatest, then transpose the list so
that if an element is the second lowest, it will be replaced by the second
highest etc.

ARGUMENTS:

- A list or numbers.

RETURN VALUE:

A list of numbers.

EXAMPLE:

(reflect-1list ’(1 4 3596 27 88 9))

=>(96751483221)

SYNOPSIS:

(defun reflect-list (list)

14 SC/UTILITIES 192

14.53 utilities/remove-all

[utilities | [Functions |
DESCRIPTION:

Remove all of the specified elements from a list, returning a list
containing only those elements that are not in the first argument list.

ARGUMENTS:

- A first list that is the list of items to remove.
- A second list that is the original list.

OPTIONAL ARGUMENTS:

- A predicate for testing equality between the elements of the two lists.
Default = #’eq.

RETURN VALUE:

A list.

EXAMPLE:

(remove-all (3 5 8 13) (1 23456789 10 11 12 13))
=> (12467910 11 12)

SYNOPSIS:

(defun remove-all (rm-list list &optional (test #’ eq))

14.54 utilities/remove-elements

[utilities | [Functions |
DESCRIPTION:

Remove a specified number of elements from a given list starting at a
specified position (O-based) within the list.

ARGUMENTS:

14 SC/UTILITIES

- A list.

- An integer that is the O-based position within that list that will be the
first element to be removed.

- An integer that is the number of elements to remove.

RETURN VALUE:

A list.

EXAMPLE:

(remove-elements (1 2 3456 7) 2 4)

=> (127

SYNOPSIS:

(defun remove-elements (list start how-many)

14.55 utilities/remove-more

[utilities | [Functions |
DESCRIPTION:

Remove all instances of a list of specified elements from an original
list. The predicate used to test the presence of the specified elements in
the original list must be specified by the user (such as #’eq, #’equalp,
#’= etc.)

ARGUMENTS:

- A list.

- A predicate with which to test the presence of the specified elements.
- A sequence of elements to be removed from the given list.

RETURN VALUE:

A list.

EXAMPLE:

(remove-more (1 23455567 78) #=57 2)

=> (1346 8)

193

14 SC/UTILITIES 194

SYNOPSIS:

(defun remove-more (list test &rest remove)

14.56 utilities/replace-elements

[utilities | [Functions |
DESCRIPTION:

Replace the elements in list between start and end (inclusive) with the new
list.

ARGUMENTS:

- A list.

- An integer that is first position of the segment of the original list to
be replaced.

- An integer that is the last position of the segment of the original list
to be replaced.

- A list that is to replace the specified segment of the original
list. This list can be of a different length than that of the segment
of the original specified by the start and end positioms.

RETURN VALUE:

A list.

EXAMPLE:

(replace-elements (1 2 34567 8 9) 37 ’(dog cat goldfish))

=> (1 2 3 DOG CAT GOLDFISH 9)

SYNOPSIS:

(defun replace-elements (list start end new)

14.57 utilities/round-if-close

[utilities | [Functions |
DESCRIPTION:

14 SC/UTILITIES

Round a decimal number if it is within a given tolerance to the next whole
number.

ARGUMENTS:
- A decimal number.

OPTIONAL ARGUMENTS:

- If the given number is this amount or less than the nearest whole number,
round the given number to the nearest whole number.

RETURN VALUE:

If the given number is within the tolerance, return the number, otherwise
return the nearest whole number.

EXAMPLE:
(round-if-close 1.999998)
=> 1.999998

(round-if-close 1.999999)

SYNOPSIS:

(defun round-if-close (num &optional (tolerance 0.000001))

14.58 utilities/scale-env

[utilities | [Functions |
DESCRIPTION:

Scale either the x-axis values, the data values, or both of a list of
break-point pairs by specified factors.

ARGUMENTS:

- An envelope in the form of a list of break-point pairs.
- A number that is the factor by which the y values (data segment of the
break-point pairs) are to be scaled.

195

14 SC/UTILITIES 196

OPTIONAL ARGUMENTS:

keyword arguments:

- :y-min. A number that is the minimum value for all y values after
scaling. NB The -min/-max arguments are hard-limits only; they do not
factor into the arithmetic.

- :y-max. A number that is the maximum value for all y values after
scaling.

- :x-scaler. A number that is the factor by which to scale the x-axis
values of the break-point pairs.

- :x-min. A number that is the minimum value for all x values after
scaling. NB: This optional argument can only be used if a value has been
specified for the :x-scaler.

- :x-max. A number that is the maximum value for all x values after
scaling. NB: This optional argument can only be used if a value has been
specified for the :x-scaler.

RETURN VALUE:
An envelope in the form of a list of break-point pairs.
EXAMPLE:

;33 Scaling only the y values.
(scale-env ’(0 53 25 189 50 7 75 200 100 3) 0.5)

=> (0 26.5 25 94.5 50 3.5 75 100.0 100 1.5)

;55 Scaling the y values and setting a min and max for those values
(scale-env ’(0 53 25 189 50 7 75 200 100 3) 0.5 :y-min 20 :y-max 100)

=> (0 26.5 25 94.5 50 20 75 100 100 20)

;55 Scaling only the x-axis values
(scale-env ’(0 53 25 189 50 7 75 200 100 3) 1.0 :x-scaler 2)

=> (0 53.0 50 189.0 100 7.0 150 200.0 200 3.0)

;55 Scaling the x values and setting a min and max for those values
(scale-env ’(0 53 25 189 50 7 75 200 100 3) 1.0 :x-scaler 2 :x-min 9 :x-max 90)

=> (9 53.0 50 189.0 90 7.0 90 200.0 90 3.0)
SYNOPSIS:

(defun scale-env (env y-scaler &key x-scaler

14 SC/UTILITIES 197

(x-min most-negative-double-float)
(y-min most-negative-double-float)
(x-max most-positive-double-float)
(y-max most-positive-double-float))

14.59 utilities/secs-to-mins-secs

[utilities | [Functions |
DESCRIPTION:

Convert a number of seconds into a string of the form "24:41.723" where
seconds are always rounded to three decimal places (i.e. milliseconds).

ARGUMENTS:
- the number of seconds

OPTIONAL ARGUMENTS:

keyword arguments:

- :post-mins. The string used to separate minutes and seconds. Default ":"

- :post-secs. The string used to separate seconds and milliseconds.
Default "."

- :post-msecs. The string used to follow milliseconds. Default ""

- :same-width. Ensure minutes values are always two characters wide, like
seconds, i.e with a leading O.

- :round. Round to the nearest second and don’t print milliseconds. Default
NIL.

RETURN VALUE:
A string
EXAMPLE:

(secs-to-mins-secs 77.1232145)

"1:17.123"

(secs-to-mins-secs 67.1)

"1:07.100"

(secs-to-mins-secs 67.1 :same-width t)

"01:07.100"

(secs-to-mins-secs 67.1 :same-width t :post-secs "s")

"01:07s100"

(secs-to-mins-secs 67.1 :post-secs "secs" :post-mins "min" :post-msecs "msecs"

14 SC/UTILITIES 198

"1minO7secs100msecs"
(secs-to-mins-secs 67.7 :same-width t :round t)
"01:08"

SYNOPSIS:

(defun secs-to-mins-secs (seconds &key

round
(post-mins ":")
(post-secs ".")

(post-msecs "")
(same-width nil))

14.60 utilities/semitones

[utilities | [Functions |
DESCRIPTION:

Return the sample-rate conversion factor required for transposing an audio
file by a specific number of semitones. The number of semitones can be
given as a decimal number, and may be positive or negative.

ARGUMENTS:
- A number of semitones.
OPTIONAL ARGUMENTS:

- A number that is the factor required to transpose by an octave.
Default = 2.0.
- A number that is the number of semitones per octave. Default = 12.

RETURN VALUE:
A number.
EXAMPLE:

;55 Usage with default values
(semitones 3)

=> 1.1892071

14 SC/UTILITIES 199
;55 Specifying a different number of semitones per octave

(semitones 3 2.0 13)

=> 1.1734605

;55 Specifying a different factor for transposing by an octave
(semitones 3 4.0)

=> 1.4142135

;33 Fractional semitones are allowed
(semitones 3.72)

=> 1.2397077

;55 Negative semitones are also allowed
(semitones -3.72)

=> 0.80664176
SYNOPSIS:

(defun semitones (st &optional (octave-size 2.0) (divisions-per-octave 12))

14.61 utilities/setf-last

[utilities | [Functions |
DESCRIPTION:

Change the last element in a given list to a specified new element.
ARGUMENTS:

- A list.
- The new last element of that list.

RETURN VALUE:
Returns the new last element.
EXAMPLE:

(let ((1 °(1 2 3 4 5)))
(setf-last 1 ’dog)

14 SC/UTILITIES 200

1
=> (1 2 3 4 DOG)

SYNOPSIS:

(defmacro setf-last (list new-last)

14.62 utilities/sort-symbol-list

[utilities | [Functions |
DESCRIPTION:

Sort a list of symbols alphabetically ascending, case-insensitive.
ARGUMENTS:

A list of symbols.

RETURN VALUE:

The same list of symbols sorted alphabetically ascending, case-insensitive.
EXAMPLE:

(sort-symbol-list ’(Lorem ipsum dolor sit amet consectetur adipiscing))

=> (ADIPISCING AMET CONSECTETUR DOLOR IPSUM LOREM SIT)

SYNOPSIS:

(defun sort-symbol-list (list)

14.63 utilities/splice

[utilities | [Functions |
DESCRIPTION:

Insert the elements of a first list into a second list beginning at a
specified index (O-based).

ARGUMENTS:

14 SC/UTILITIES

- A list that contains the elements to be inserted into the second list.

- A list into which the elements of the first argument are to be inserted.

- An integer that is the index within the second list where the elements
are to be inserted.

RETURN VALUE:

- A list.

EXAMPLE:

(splice ’(dog cat goldfish) (1 234567 89) 3)

=> (1 2 3 DOG CAT GOLDFISH 4 5 6 7 8 9)

SYNOPSIS:

(defun splice (elements into-list where)

14.64 utilities/split-groups

[utilities | [Functions |
DESCRIPTION:

Create a list consisting of as many repetitions of a specified number as
will fit into a given greater number, with the last item in the new list
being the value of any remainder.

ARGUMENTS:

- A number that is to be split into repetitions of a specified smaller
number (the second argument) .

- The number that is to be the repeating item in the new list. This number
must be smaller than the first number.

RETURN VALUE:

A list consisting of repetitions of the specified number, with the last
element being any possible remainder.

EXAMPLE:
(split-groups 101 17)

=> (17 17 17 17 17 16)

201

14 SC/UTILITIES 202

SYNOPSIS:

(defun split-groups (num divider)

14.65 utilities/split-into-sub-groups

[utilities | [Functions |
DESCRIPTION:

Create a new list consisting of sublists made from the elements of the
original flat list, whose lengths are determined by the second argument to
the function.

NB: The lengths given in the second argument are not required to add up to
the length of the original list. If their sum is less than the original
list, the resulting list of sublists will only contain a segment of the
original elements. If their sum is greater than the length of the
original list, the last sublist in the new list will be shorter than
the corresponding group value.

ARGUMENTS:
- A flat list.
- A list of integers that are the lengths of the consecutive subgroups
into which the original list is to be divided.
RETURN VALUE:

A list of lists.

EXAMPLE:

;; Used with a list of subgroup lengths whose sum is equal to the length of the
;5 original list
(split-into-sub-groups (1 23456 7 8 9 10) (2 2 3 2 1))

=> ((12) (34) (5667) (89) (10))
;; Used with a list of subgroup lengths whose sum is less than the length of the
;5 original list

(split-into-sub-groups (1 2 3456 7 8 9 10) ’(2 1))

=> ((1 2) (3))

14 SC/UTILITIES

203

;; Used with a list of subgroup lengths whose sum is greater than the length of

;; the original list
(split-into-sub-groups (1 2 3456 7 8 9 10) ’(2 3 17))

=> ((12) (345) (6789 10))
SYNOPSIS:

(defun split-into-sub-groups (list groups)

14.66 utilities/split-into-sub-groups2

[utilities | [Functions |
DESCRIPTION:

Create a new list of lists by splitting the original flat list into
sublists of the specified length.

NB: The length given as the second argument is not required to be fit
evenly into the length of the original flat list. If the original list
is not evenly divisible by the specified length, the resulting list of
sublists will contain a final sublist of a different length.

ARGUMENTS:

- A flat list.
- An integer that is the length of each of the sublists to be created.

RETURN VALUE:
A list of lists.
EXAMPLE:

;; The second argument fits evenly into the length of the original list.
(split-into-sub-groups2 ’(1 2 3456 7 8 9 10 11 12) 3)

=> ((123) (456) (7 89) (10 11 12))

;; The second argument does not fit evenly into the length of the original
;3 list.

(split-into-sub-groups2 ’(1 2 3456 7 8 9 10 11 12) 5)

=> ((12345) (6789 10) (11 12))

14 SC/UTILITIES 204

SYNOPSIS:

(defun split-into-sub-groups2 (list length)

14.67 utilities/split-into-sub-groups3

[utilities | [Functions |
DESCRIPTION:

Split a given flat list into sublists of the specified length, putting any
remaining elements, if there are any, into the last sublist.

ARGUMENTS:

- A flat list.
- An integer that is the length of the new sublists.

RETURN VALUE:

A list of lists.

EXAMPLE:

(split-into-sub-groups3 ’(1 23456 7 8 9 10 11 12) 3)
=> ((123) (456) (789 (10 11 12))
(split-into-sub-groups3 (1 2 34 56 7 8 9 10 11 12) 5)
=> ((12345) (6789 10 11 12))

SYNOPSIS:

(defun split-into-sub-groups3 (list length)

14.68 utilities/srt

[utilities | [Functions |
DESCRIPTION:

Return the semitone transposition for a given sampling rate conversion
factor.

14 SC/UTILITIES 205

ARGUMENTS:
- A number that is a sample-rate conversion factor.
OPTIONAL ARGUMENTS:

- A number that is the factor required for transposing one octave.
- A number that is the number of scale degrees in an octave.

RETURN VALUE:
A number.
EXAMPLE:

;55 Using the defaults
(srt 1.73)

=> 9.4893
;55 Using a sample-rate conversion factor of 4.0 for the octave and specifying
;33 13 divisions of the octave

(srt 1.73 4.0 13)

=> 5.14
SYNOPSIS:

(let ((last8vesize 0)
(log8ve 0.0)) ;; so we don’t have to recalculate each time
(defun srt (srt &optional (octave-size 2.0) (divisions-per-octave 12)
;; MDE Tue Feb 7 16:59:45 2012 -- round so we don’t get tiny
;3 fractions of semitones due to float inaccuracies?
(round-to 0.0001))

14.69 utilities/string-replace

[utilities | [Functions |
DESCRIPTION:

Replace specified segments of a string with a new specified string.

ARGUMENTS:

14 SC/UTILITIES 206

- A string that is the string segment to be replaced.

- A string that is the string with which the specified string segment is to
be replaced.

- The string in which the specified segment is to be sought and replaced.

RETURN VALUE:

A string.

EXAMPLE:

(string-replace "flat" "\\flat" "bflat clarinet")
=> "b\\flat clarinet"

SYNOPSIS:

(defun string-replace (what with string)

14.70 utilities/swap-elements

[utilities | [Functions |
DESCRIPTION:

Swap the order of each consecutive pair of elements in a list.
ARGUMENTS:

- A list.

RETURN VALUE:

A list.

EXAMPLE:

(swap-elements (1 23 4567 89 10))
=> (2143658710 9)
(swap-elements (1 234567 8 9))

=> (214365879

SYNOPSIS:

(defun swap-elements (list)

14 SC/UTILITIES

14.71 utilities/update-app-src

[utilities | [Functions |
DATE:

June 1st 2013
DESCRIPTION:

NB This function currently works in SBCL and CCL on UNIX systems only.

For users of the slippery chicken app, this function will update the source
code of the app to the latest in the online subversion (svn) repository.
An internet connection is therefore necessary.

The first time it is run it will delete the current source code and
download all the new source code, so make sure to back up if you’ve
modified the source code yourself (not recommended). When it is run from
then on, it will only update the source code that is out of date.

Once the source code is updated, you’ll need to restart the app or just
Lisp for the changes to be recompiled.

%NB The first time you call this function, you might get a "certificate
error". In order to accept the certificate, start the terminal application
and type the following:

cd /tmp/
svn co https://svn.ecdf.ed.ac.uk/repo/user/medward2/sc-tags/sc-latest/src

That should give you a prompt in the terminal from which you can accept the
certificate. Then the next time you try it from Lisp the certificate
should not cause a problem.

Users without the app can always download the latest source code in a

terminal by issuing the following command.
svn co https://svn.ecdf.ed.ac.uk/repo/user/medward2/sc-tags/sc-latest/src

ARGUMENTS:

The full path to the slippery-chicken application, minus the last slash.
Remember that this can’t include any spaces in file/folder names

OPTIONAL ARGUMENTS:

207

14 SC/UTILITIES 208

keyword arguments:
- :rm. The path to the shell ’rm’ command. Default = "/bin/rm"
- :svn. The path to the shell ’svn’ command. Default = "/usr/bin/svn"

RETURN VALUE:
The shell return value of the call to SVN, usually O on success.

EXAMPLE:

Running for the first time:

(update-app-src "/tmp/sc-app/slippery-chicken.app")

A /tmp/sc-app/slippery-chicken.app/Contents/Resources/sc/src/sndfile.lsp
A /tmp/sc-app/slippery-chicken.app/Contents/Resources/sc/src/osc.lsp

A /tmp/sc-app/slippery-chicken.app/Contents/Resources/sc/src/osc-sc.lsp
[...]

Checked out revision 3608.
0

or after successfully updating a previously updated version:

At revision 3608.
0

SYNOPSIS:

(defun update-app-src (path-to-app &key (rm "/bin/rm") (svn "/usr/bin/svn"))

14.72 utilities/wavelab-to-audacity-marker-file

[utilities | [Functions |
DESCRIPTION:

Write a .txt file suitable for import to audacity with the same name and in
the same directory as the file argument.

ARGUMENTS:

- A string that is the name of a wavelab marker file, including directory
path and extension.

OPTIONAL ARGUMENTS:

14 SC/UTILITIES 209

- An integer that is the sampling rate of the sound file to which the
wavelab marker file refers. This value will affect the times of the
output.

RETURN VALUE:

Returns T and prints the number of markers read to the listener.
EXAMPLE:

(wavelab-to-audacity-marker-file "/path/to/24-7.mrk" 44100)

=> b1 markers read

SYNOPSIS:

(defun wavelab-to-audacity-marker-file (file &optional (sampling-rate 44100))

14.73 utilities/wrap-list

[utilities | [Functions |
DESCRIPTION:

Shift the elements of a list to start at a specified position and wrap to
the beginning of the list to the list’s tail.

ARGUMENTS:

- A list.

- An integer which is the O-based position in the original list where the
new list is to begin.

RETURN VALUE:

A list.

EXAMPLE:

(wrap-list (1 234567 89) 4)

=> (667891234

SYNOPSIS:

(defun wrap-list (list start)

15 CLM/CLM-LOOPS

15 clm/clm-loops

[Functions |

DESCRIPTION:

Generate a sound file from an existing specified sound file by shuffling
and repeating specified segments within the source sound file.

This function was first introduced in the composition "breathing Charlie"

(under the name loops): see charlie-loops.lsp in that project for examples.

The first required argument to the function is the name of the sound file,
including path and extension, looped. This must be a mono file.

The second required argument (entry-points) is a list of times, in seconds,
where attacks (or something significant) happen in the file. These are used
to create loop start/end points.

Be careful when doing shuffles as if, e.g., the transpositions list is more
than 6 elements, shuffling will take a very long time.

The entry-points are used randomly so that any segment may start at any
point and transition to any other segment (i.e. skipping intervening
segments, always forwards however). There are always two segments in use at
any time. The function randomly selects which segments are used, then a
transition (see fibonacci-transitions) from repeated segment 1 to repeated
segment 2 is made. Then the next segment is chosen and the process is
repeated (i.e. from previous segment 2 to new segment) until the
max-start-time (in seconds) is achieved.

fibonacci-transitions are first shuffled and then made into a circular
list. Then they are expanded to create the transpositions (each number
becomes a series of 1s and Os--length is the number itself--with a
transition from all Os to all 1s: e.g. (fibonacci-transition 20) -> (0 0 O
01001010101010111) This is then used to select one or the
other of the current two segments.

The sample-rate transpositions are simply randomly permutated and selected.
ARGUMENTS:

- The name of a sound file, including path and extension.

- A list of numbers that are time in seconds. These serve as the
"entry-points", i.e. loop markers within the file, and delineate the
beginning and end of s