
slippery chicken

Generated with ROBODoc Version 4.99.41 (Jan 14 2012)

October 20, 2014

Contents

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28971247?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 SC/ALL.LSP 2

1 sc/all.lsp

[Modules]

NAME:

all

File: all.lsp

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Load all the lisp files associated with slippery-chicken

export of its symbols.

No public interface envisaged (so no robodoc entries).

Author: Michael Edwards: m@michael-edwards.org

Creation date: 5th December 2000

$$ Last modified: 14:57:04 Thu May 8 2014 BST

SVN ID: $Id: all.lsp 5048 2014-10-20 17:10:38Z medward2 $

2 sc/cm

[Modules]

NAME:

cm

File: cm.lsp

Class Hierarchy: none (no classes defined)

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Definition of common-music related and other functions

like transposition of notes/chords, enharmonic

equivalents etc.

2 SC/CM 3

Author: Michael Edwards: m@michael-edwards.org

Creation date: 1st March 2001

$$ Last modified: 16:47:22 Thu May 1 2014 BST

SVN ID: $Id: cm.lsp 5048 2014-10-20 17:10:38Z medward2 $

2.1 cm/degree-to-note

[cm] [Functions]

DESCRIPTION:

Get the specified scale degree number as a note-name pitch symbol within

the current scale. An optional argument allows the user to specify that the

scale degree number should be used to get the note-name pitch from a

different scale.

ARGUMENTS:

An integer that is a scale degree number.

OPTIONAL ARGUMENTS:

- The scale from which the note-name pitch symbol associated with the

specified scale degree is to be drawn.

RETURN VALUE:

A note-name pitch symbol.

EXAMPLE:

(degree-to-note 127 ’chromatic-scale)

=> G9

(degree-to-note 127 ’twelfth-tone)

=> ATS0

(degree-to-note 127 ’quarter-tone)

=> EQF4

2 SC/CM 4

SYNOPSIS:

(defun degree-to-note (degree &optional (scale cm::*scale*))

2.2 cm/degrees-per-octave

[cm] [Functions]

DESCRIPTION:

Return the number of scale degrees in the span of one octave within the

current tuning system.

ARGUMENTS:

- No arguments.

RETURN VALUE:

- An integer that is the number of scale degrees in each octave.

EXAMPLE:

(in-scale :chromatic)

(degrees-per-octave)

=> 12

(in-scale :quarter-tone)

(degrees-per-octave)

=> 24

SYNOPSIS:

(defun degrees-per-octave ()

2.3 cm/degrees-per-semitone

[cm] [Functions]

DESCRIPTION:

Get the number of scale degrees per equal-tempered semitone in the current

tuning scale.

2 SC/CM 5

ARGUMENTS:

- No arguments

OPTIONAL ARGUMENTS:

- The scale for which the number of degrees per semitone is to be

retrieved.

RETURN VALUE:

An integer.

EXAMPLE:

(degrees-per-semitone ’chromatic-scale)

=> 1

(degrees-per-semitone ’twelfth-tone)

=> 6

(degrees-per-semitone ’quarter-tone)

=> 2

SYNOPSIS:

(defun degrees-per-semitone (&optional (scale cm::*scale*))

2.4 cm/degrees-to-notes

[cm] [Functions]

DESCRIPTION:

NB: If the specified scale-degree number within the current scale would

result in pitch outside of the maximum MIDI pitch range for that tuning

(chromatic: C-1 to B10; quarter-tone: C-1 to BQS10; twelfth-tone: C-1

to CTF11), the function will return an error.

ARGUMENTS:

An integer that is a scale degree number in the current tuning.

2 SC/CM 6

RETURN VALUE:

A list of note-name pitch symbols.

EXAMPLE:

(in-scale :chromatic)

(degrees-to-notes ’(0 143 116 127 38))

=> (C-1 B10 AF8 G9 D2)

(in-scale :twelfth-tone)

(degrees-to-notes ’(0 144 116 127 38 287 863))

=> (C-1 C1 GSS0 ATS0 FSSS-1 CTF3 CTF11)

(in-scale :quarter-tone)

(degrees-to-notes ’(0 144 116 127 38 287))

=> (C-1 C5 BF3 EQF4 G0 BQS10)

SYNOPSIS:

(defun degrees-to-notes (degrees)

2.5 cm/event-list-to-midi-file

[cm] [Functions]

DESCRIPTION:

Write the events in a list to a mid-file.

ARGUMENTS:

- A list of events objects

- the path to the midi-file

- the starting tempo (integer: BPM)

- a time-offset for the events (seconds)

OPTIONAL ARGUMENTS:

- whether to overwrite events’ amplitude slots and use a single

velocity/amplitude value given here (0-1.0 (float) or 0-127 (integer)

2 SC/CM 7

RETURN VALUE: EXAMPLE: SYNOPSIS:

(defun event-list-to-midi-file (event-list midi-file start-tempo time-offset

&optional force-velocity)

2.6 cm/freq-to-degree

[cm] [Functions]

DESCRIPTION:

Get the scale degree of the specified frequency in Hertz within the current

scale.

NB: This method will return fractional scale degrees.

ARGUMENTS:

A frequency in Hertz.

OPTIONAL ARGUMENTS:

- The scale in which to find the corresponding scale degree.

RETURN VALUE:

A scale degree number. This may be a decimal number.

EXAMPLE:

(freq-to-degree 423 ’chromatic-scale)

=> 68.317856

(freq-to-degree 423 ’twelfth-tone)

=> 409.9071

(freq-to-degree 423 ’quarter-tone)

=> 136.63571

SYNOPSIS:

(defun freq-to-degree (degree &optional (scale cm::*scale*))

2 SC/CM 8

2.7 cm/freq-to-note

[cm] [Functions]

DESCRIPTION:

Get the note-name pitch equivalent of the specified frequency, rounded to

the nearest scale degree of the current scale.

ARGUMENTS:

A number that is a frequency in Hertz.

OPTIONAL ARGUMENTS:

- The scale in which the note-name pitch equivalent is to be sought.

RETURN VALUE:

A note-name pitch symbol.

EXAMPLE:

(freq-to-note 423 ’chromatic-scale)

=> AF4

(freq-to-note 423 ’twelfth-tone)

=> GSSS4

(freq-to-note 423 ’quarter-tone)

=> AQF4

SYNOPSIS:

(defun freq-to-note (freq &optional (scale cm::*scale*))

2.8 cm/get-pitch-bend

[cm] [Functions]

DESCRIPTION:

2 SC/CM 9

Get the MIDI pitch-bend value necessary for application to a MIDI pitch in

order to achieve the specified frequency.

NB: This will always return a positive value between 0.0 and 1.0, as

slippery-chicken always applies pitch-bends upwards from the nearest

chromatic note below the specified frequency.

NB: This value will be the same in all tuning scales.

ARGUMENTS:

A frequency in Hertz.

RETURN VALUE:

A two-digit decimal number that is the pitch-bend value required to achieve

the specified frequency in MIDI.

EXAMPLE:

(get-pitch-bend 423)

=> 0.32

SYNOPSIS:

(defun get-pitch-bend (freq)

2.9 cm/in-scale

[cm] [Functions]

DESCRIPTION:

Set the global scale (tuning) for the current slippery-chicken

environment. Current options are :chromatic, :quarter-tone or

:twelfth-tone. See the file cm-load.lsp for specifications and the html

manual page "More about note-names and scales" for more details on use.

ARGUMENTS:

- A scale (tuning) designation.

RETURN VALUE:

2 SC/CM 10

Lisp REPL feedback on the tuning now set.

EXAMPLE:

(in-scale :chromatic)

=> #<tuning "chromatic-scale">

(in-scale :quarter-tone)

=> #<tuning "quarter-tone">

(in-scale :twelfth-tone)

=> #<tuning "twelfth-tone">

SYNOPSIS:

(defun in-scale (scale)

2.10 cm/midi-file-high-low

[cm] [Functions]

DATE:

30-Dec-2010

DESCRIPTION:

Print the highest and lowest pitch in a specified MIDI file as a MIDI note

number.

NB: This is a Common Music function and as such must be called with the

package qualifier cm:: if used within slippery chicken.

ARGUMENTS:

- The path (including the name) to the MIDI file.

OPTIONAL ARGUMENTS:

- An integer or NIL to indicate which track in the specified MIDI file is

to be accessed. If NIL, all tracks will be accessed. NB: CM (and

therefore slippery-chicken too) generates some MIDI files by writing each

channel to a different track, so the "track" would seem synonymous with

"channel" here.

2 SC/CM 11

RETURN VALUE:

Two integer values (using the values function) that are the highest and

lowest pitches in the specified MIDI file.

EXAMPLE:

(cm::midi-file-high-low "/tmp/multi-ps.mid")

=> 72, 60

SYNOPSIS:

(defun midi-file-high-low (file &optional track)

2.11 cm/midi-file-one-note

[cm] [Functions]

DESCRIPTION:

Write all midi notes in the file out to a new one-channel file using the

single pitch <note> and channel number <channel>.

ARGUMENTS:

- A string that is the file path, including file-name and extension.

- A note-name symbol or MIDI-note integer that is the pitch to write.

- An integer that is the channel to which the output should be written

(1-based)

OPTIONAL ARGUMENTS:

- An integer that is the an existing MIDI channel in the original file. If

this argument is given, only notes on this channel of the original file

will be written (1-based).

RETURN VALUE:

The path to the new file.

EXAMPLE:

(cm::midi-file-one-note "/tmp/multi-ps.mid" ’c4 1)

SYNOPSIS:

(defun midi-file-one-note (file note channel &optional old-channel)

2 SC/CM 12

2.12 cm/midi-to-degree

[cm] [Functions]

DESCRIPTION:

Convert the specified MIDI note number to the degree number of the current

scale.

ARGUMENTS:

- A MIDI note number.

RETURN VALUE:

- An integer that is the scale-degree equivalent of the specified MIDI note

number in the current scale.

EXAMPLE:

(in-scale :chromatic)

(midi-to-degree 64)

=> 64

(in-scale :twelfth-tone)

(midi-to-degree 64)

=> 384

(in-scale :quarter-tone)

(midi-to-degree 64)

=> 128

SYNOPSIS:

(defun midi-to-degree (midi-note)

2.13 cm/midi-to-freq

[cm] [Functions]

DESCRIPTION:

Get the frequency equivalent in Hertz to the specified MIDI note number.

2 SC/CM 13

ARGUMENTS:

- A number (can be a decimal) that is a MIDI note number.

RETURN VALUE:

A decimal number that is a frequency in Hertz.

EXAMPLE:

(midi-to-freq 67)

=> 391.99542

(midi-to-freq 67.9)

=> 412.91272

SYNOPSIS:

(defun midi-to-freq (midi-note)

2.14 cm/midi-to-note

[cm] [Functions]

DESCRIPTION:

Get the note-name pitch symbol equivalent of the specified MIDI note

number.

ARGUMENTS:

- An integer that is a MIDI note number.

RETURN VALUE:

A note-name pitch symbol.

EXAMPLE:

(midi-to-note 67)

=> G4

SYNOPSIS:

(defun midi-to-note (midi-note)

2 SC/CM 14

2.15 cm/note-to-degree

[cm] [Functions]

DESCRIPTION:

Get the scale degree number of the specified note-name pitch symbol within

the current scale.

ARGUMENTS:

- A note-name pitch symbol.

OPTIONAL ARGUMENTS:

- The scale in which to find the scale-degree of the specified pitch.

RETURN VALUE:

An integer that is a scale degree in the current scale.

EXAMPLE:

(note-to-degree ’AF4 ’chromatic-scale)

=> 68

(note-to-degree ’AF4 ’twelfth-tone)

=> 408

(note-to-degree ’AF4 ’quarter-tone)

=> 136

SYNOPSIS:

(defun note-to-degree (note &optional (scale cm::*scale*))

2.16 cm/note-to-freq

[cm] [Functions]

DESCRIPTION:

2 SC/CM 15

Get the frequency in Hertz of the specified note-name pitch symbol.

ARGUMENTS:

- A note-name pitch symbol.

RETURN VALUE:

A frequency in Hertz.

EXAMPLE:

(in-scale :chromatic)

(note-to-freq ’AF4)

=> 415.3047

(in-scale :twelfth-tone)

(note-to-freq ’GSSS4)

=> 423.37845

(in-scale :quarter-tone)

(note-to-freq ’AQF4)

=> 427.47403

SYNOPSIS:

(defun note-to-freq (note)

2.17 cm/note-to-midi

[cm] [Functions]

DESCRIPTION:

Get the MIDI note number equivalent for a chromatic note-name pitch

symbol.

ARGUMENTS:

- A chromatic note-name pitch symbol.

RETURN VALUE:

2 SC/CM 16

An integer.

EXAMPLE:

(note-to-midi ’g4)

=> 67

SYNOPSIS:

(defun note-to-midi (midi-note)

2.18 cm/parse-midi-file

[cm] [Functions]

DESCRIPTION:

Print the MIDI event slots in the specified file to the Lisp listener.

NB: This is a Common Music function and as such must be called with the

package qualifier cm:: if used within slippery chicken.

ARGUMENTS:

- The path (including the file name) to the MIDI file.

OPTIONAL ARGUMENTS:

- An integer or NIL to indicate which track in the specified MIDI file is

to be accessed. If NIL, all tracks will be accessed. NB: CM (and

therefore slippery-chicken too) generates some MIDI files by writing each

channel to a different track, so the "track" would seem synonymous with

"channel" here.

RETURN VALUE:

The CM data for the MIDI events in the specified file, and the number of events.

EXAMPLE:

(cm::parse-midi-file "/tmp/multi-ps.mid")

=>

3 SC/CM-LOAD 17

(#i(midi-tempo-change time 0.0 usecs 357142)

#i(midi-time-signature time 0.0 numerator 2 denominator 4 clocks 24 32nds 8)

#i(midi time 0.0 keynum 36 duration 0.357142 amplitude 0.09448819 channel 15)

#i(midi-tempo-change time 0.0 usecs 357142)

#i(midi-time-signature time 0.0 numerator 2 denominator 4 clocks 24 32nds 8)

#i(midi-tempo-change time 0.0 usecs 357142)

#i(midi time 0.178571 keynum 66 duration 0.178571 amplitude 0.09448819 channel 15)

#i(midi time 0.357142 keynum 68 duration 0.0892855 amplitude 0.09448819 channel 15)

#i(midi time 0.357142 keynum 40 duration 0.357142 amplitude 0.09448819 channel 15)

#i(midi time 0.6249985 keynum 66 duration 0.0892855 amplitude 0.09448819 channel 15)

#i(midi-time-signature time 0.714284 numerator 3 denominator 4 clocks 24 32nds 8)

SYNOPSIS:

(defun parse-midi-file (file &optional track)

3 sc/cm-load

[Modules]

NAME:

cm-load

File: cm-load.lsp

Class Hierarchy: none (no classes defined)

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Definition of the common-music quarter-tone scale and

twelfth-tone scale which should be loaded and not

compiled. The quarter tone scale is our default

No public interface envisaged (so no robodoc entries).

Author: Michael Edwards: m@michael-edwards.org

Creation date: 7th February 2003

$$ Last modified: 21:11:47 Thu Aug 22 2013 BST

SVN ID: $Id: cm-load.lsp 5048 2014-10-20 17:10:38Z medward2 $

4 SC/CMN 18

4 sc/cmn

[Modules]

NAME:

cmn

File: cmn.lsp

Class Hierarchy: None: no classes defined.

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Interface from complete-set to Bill’s CMN package for

displaying of sets in musical notation.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 11th February 2002

$$ Last modified: 11:39:48 Sat Dec 28 2013 WIT

SVN ID: $Id: cmn.lsp 5048 2014-10-20 17:10:38Z medward2 $

5 sc/cmn-glyphs

[Modules]

NAME:

cmn-glyphs

File: cmn-glyphs.lsp

Class Hierarchy: none, no classes defined

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Definition of various postscript glyphs (accidentals

etc.) for cmn.

6 SC/GLOBALS.LSP 19

Author: Michael Edwards: m@michael-edwards.org

Creation date: 10th November 2002

$$ Last modified: 09:01:19 Mon Dec 12 2011 ICT

SVN ID: $Id: cmn-glyphs.lsp 5048 2014-10-20 17:10:38Z medward2 $

6 sc/globals.lsp

[Modules]

NAME:

globals

File: globals.lsp

Class Hierarchy: None: no classes defined.

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Definition of the user-changeable configuration data and

globals for internal programme use.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 30th May 2013

$$ Last modified: 10:08:03 Tue May 13 2014 BST

SVN ID: $Id: sclist.lsp 963 2010-04-08 20:58:32Z medward2 $

7 sc/instruments

[Modules]

NAME:

instrument

7 SC/INSTRUMENTS 20

File: instruments.lsp

Class Hierarchy: none (no classes defined)

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Definition of various standard instruments and other

data/functions useful to slippery-chicken users.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 30th December 2010

$$ Last modified: 20:21:50 Mon Mar 24 2014 GMT

SVN ID: $Id: instruments.lsp 5048 2014-10-20 17:10:38Z medward2 $

7.1 instruments/+slippery-chicken-standard-instrument-palette+

[instruments] [Global Parameters]

DESCRIPTION:

A palette of standard instruments (by no means exhaustive...) for use

directly in projects or for combining with user palettes e.g.

(combine

+slippery-chicken-standard-instrument-palette+

(make-instrument-palette

’esoteric-stuff

’((toy-piano

(:staff-name "toy piano"

SYNOPSIS:

(defparameter +slippery-chicken-standard-instrument-palette+

(make-instrument-palette

’slippery-chicken-standard-instrument-palette

;; SAR Fri Jan 20 11:43:32 GMT 2012: Re-ordering these to Adler’s "standard"

;; score order for easier look-up

’((piccolo

(:staff-name "piccolo" :staff-short-name "picc"

:lowest-written d4 :highest-written c7 :transposition-semitones 12

7 SC/INSTRUMENTS 21

:missing-notes nil

:largest-fast-leap 19

:starting-clef treble

:chords nil

:microtones t

:midi-program 73))

(flute

(:staff-name "flute" :staff-short-name "fl"

:lowest-written c4 :highest-written d7

:missing-notes (cqs4 dqf4)

:largest-fast-leap 19

:starting-clef treble

:chords nil

:microtones t

:midi-program 74))

(alto-flute

(:staff-name "alto flute" :staff-short-name "alt fl"

:lowest-written c4 :highest-written c7 :transposition-semitones -5

:missing-notes (cqs4 dqf4)

:largest-fast-leap 17

:starting-clef treble

:chords nil

:microtones t

:midi-program 74))

;; SAR Fri Jan 20 11:46:45 GMT 2012: Modified bass flute range to that

;; stated by Adler.

(bass-flute

(:staff-name "bass flute" :staff-short-name "bass fl"

:lowest-written c4 :highest-written c7 :transposition-semitones -12

:missing-notes (cqs4 dqf4)

:largest-fast-leap 15

:clefs-in-c (treble bass) :starting-clef treble

:chords nil

:microtones t

:midi-program 74))

;; SAR Fri Jan 20 12:01:37 GMT 2012: Added oboe. Conservative range taken

;; from the Adler

(oboe

(:staff-name "oboe" :staff-short-name "ob"

:lowest-written bf3 :highest-written a6

:largest-fast-leap 19

:starting-clef treble

:chords nil

:midi-program 69))

(e-flat-clarinet

(:staff-name "E-flat clarinet" :staff-short-name "E-flat cl"

7 SC/INSTRUMENTS 22

:lowest-written e3 :highest-written a6 :transposition-semitones 3

:missing-notes (aqs4 bqf4 bqs4 cqs5 dqf5 gqf3 fqs3 fqf3)

:largest-fast-leap 15

:starting-clef treble

:chords nil

:microtones t

:midi-program 72))

(b-flat-clarinet

(:staff-name "B-flat clarinet" :staff-short-name "B-flat cl"

:lowest-written e3 :highest-written a6 :transposition-semitones -2

:missing-notes (aqs4 bqf4 bqs4 cqs5 dqf5 gqf3 fqs3 fqf3)

:largest-fast-leap 15

:starting-clef treble

:chords nil

:microtones t

:midi-program 72))

(a-clarinet

(:staff-name "A clarinet" :staff-short-name "A cl"

:lowest-written e3 :highest-written a6 :transposition-semitones -3

:missing-notes (aqs4 bqf4 bqs4 cqs5 dqf5 gqf3 fqs3 fqf3)

:largest-fast-leap 15

:starting-clef treble

:chords nil

:microtones t

:midi-program 72))

(bass-clarinet

(:staff-name "bass clarinet" :staff-short-name "bass cl"

:lowest-written c3 :highest-written g6 :transposition-semitones -14

:missing-notes (aqs4 bqf4 bqs4 cqs5 dqf5 gqf3 fqs3 fqf3 eqf3 dqs3 dqf3

cqs3)

:largest-fast-leap 13

:prefers-notes low

:clefs (treble) :clefs-in-c (treble bass) :starting-clef treble

:chords nil

:microtones t

:midi-program 72))

(soprano-sax

(:staff-name "soprano saxophone" :staff-short-name "sop sax"

:lowest-written bf3 :highest-written fs6 :transposition-semitones -2

:missing-notes (gqs4 gqs5)

:largest-fast-leap 15

:starting-clef treble

:chords nil

:microtones t

:midi-program 65))

(alto-sax

7 SC/INSTRUMENTS 23

(:staff-name "alto saxophone" :staff-short-name "alt sax"

;; altissimo extra....by hand...

:lowest-written bf3 :highest-written fs6 :transposition-semitones -9

:missing-notes (gqs4 gqs5)

:largest-fast-leap 15

:starting-clef treble

:chords nil

:microtones t

:midi-program 66))

(tenor-sax

(:staff-name "tenor sax" :staff-short-name "ten sax"

:lowest-written bf3 :highest-written fs6 :transposition-semitones -14

:missing-notes (gqs4 gqs5)

:largest-fast-leap 13

:starting-clef treble :clefs-in-c (treble bass)

:chords nil

:microtones t

:midi-program 67))

(baritone-sax

(:staff-name "baritone sax" :staff-short-name "bar sax"

:lowest-written bf3 :highest-written fs6 :transposition-semitones -21

:missing-notes (gqs4 gqs5)

:largest-fast-leap 11

:clefs-in-c (treble bass) :starting-clef treble

:chords nil

:microtones t

:midi-program 68))

(bassoon

(:staff-name "bassoon" :staff-short-name "bsn"

;; of course it can go higher but best not to algorithmically select

;; these

:lowest-written bf1 :highest-written c5

;; Wolfgang Ruediger says all 1/4 tones are OK above low E

:missing-notes (bqf1 bqs1 cqs2 dqf2 dqs2 eqf2)

:largest-fast-leap 13

:clefs (bass tenor) :starting-clef bass

:chords nil

:microtones t

:midi-program 71))

(french-horn

(:staff-name "french horn" :staff-short-name "hn"

:lowest-written c3 :highest-written c6 :transposition-semitones -7

:largest-fast-leap 9

:clefs (treble bass) :starting-clef treble

:chords nil

:microtones t

7 SC/INSTRUMENTS 24

:midi-program 61))

(c-trumpet

(:staff-name "trumpet in c" :staff-short-name "c tpt"

:lowest-written fs3 :highest-written c6

:largest-fast-leap 9

:clefs (treble) :starting-clef treble

:chords nil

:microtones t

:midi-program 57))

;; SAR Fri Jan 20 12:09:41 GMT 2012: Added b-flat-trumpet from Adler

;; MDE Mon Feb 20 20:02:55 2012 -- modified to keep in line with clarinet

(b-flat-trumpet

(:staff-name "B-flat trumpet" :staff-short-name "b-flat tpt"

;; the -flat should be converted in CMN and LilyPond to the flat sign

:lowest-written fs3 :highest-written d6 :transposition-semitones -2

:largest-fast-leap 9

:starting-clef treble

:chords nil

:midi-program 57))

;; SAR Fri Jan 20 12:17:24 GMT 2012: Added tenor trombone from Adler

(tenor-trombone

(:staff-name "trombone" :staff-short-name "tbn"

:lowest-written e2 :highest-written bf4

:largest-fast-leap 7

:clefs (bass tenor) :starting-clef bass

:chords nil

:midi-program 58))

;;; SAR Fri Jul 13 12:35:35 BST 2012

(tuba

(:staff-name "tuba" :staff-short-name "tba"

:lowest-written d1 :highest-written g4

:largest-fast-leap 5

:clefs (bass) :starting-clef bass

:chords nil

:midi-program 59))

(marimba

(:staff-name "marimba" :staff-short-name "mba"

:lowest-written c3 :highest-written c7

:starting-clef treble :clefs (treble) ; (treble bass)

:chords t

:microtones nil

:midi-program 13))

(vibraphone

(:staff-name "vibraphone" :staff-short-name "vib"

:lowest-written f3 :highest-written f6

:starting-clef treble

7 SC/INSTRUMENTS 25

:chords t

:microtones nil

:midi-program 12))

;; MDE Mon Mar 24 20:21:08 2014 -- following three added from data given

;; by Zach Howell (thanks).

(glockenspiel

(:staff-name "glockenspiel" :staff-short-name "glk"

:lowest-written f3 :highest-written c6

:transposition-semitones +24

:starting-clef treble

:chords nil :microtones nil :missing-notes nil

:midi-program 10))

(xylophone

(:staff-name "xylophone" :staff-short-name "xyl"

:lowest-written f3 :highest-written c7

:transposition-semitones +12

:starting-clef treble

:chords nil :microtones nil :missing-notes nil

:midi-program 14))

(celesta

(:staff-name "celesta" :staff-short-name "cel"

:lowest-written c3 :highest-written c7

:transposition-semitones +12

:starting-clef treble

:chords t :microtones nil :missing-notes nil

:midi-program 9))

(piano

(:staff-name "piano" :staff-short-name "pno"

:lowest-written a0 :highest-written c8

:largest-fast-leap 9

:clefs (treble bass double-treble double-bass) :starting-clef treble

:chords t :chord-function piano-chord-fun

:microtones nil

:midi-program 1))

;; We generally treat the piano as two instruments (LH, RH), generating

;; lines separately. So this is the same as the piano instrument but has

;; no staff-name and starts with bass clef. Use set-limits to change the

;; range of the two hands, as they’re both set to be full piano range

;; here.

(piano-lh

(:lowest-written a0 :highest-written c8

;; MDE Tue Aug 21 17:47:07 2012 -- to avoid the NIL ins name in CMN

:staff-name "" :staff-short-name ""

:largest-fast-leap 9

:chords t :chord-function piano-chord-fun

:clefs (treble bass double-treble double-bass) :starting-clef bass

7 SC/INSTRUMENTS 26

:microtones nil

:midi-program 1))

(tambourine

(:staff-name "tambourine" :staff-short-name "tmb"

:lowest-written c4 :highest-written c4

:starting-clef percussion

:midi-program 1))

(guitar

(:staff-name "guitar" :staff-short-name "gtr"

:lowest-written e3 :highest-written b6 :transposition-semitones -12

:largest-fast-leap 31

:starting-clef treble

:chords t :chord-function guitar-chord-selection-fun

:microtones nil

:midi-program 25))

;; MDE Wed Oct 9 12:21:22 2013

(mandolin

(:staff-name "mandolin" :staff-short-name "mln"

:lowest-written g3 :highest-written c7

:largest-fast-leap 25

:starting-clef treble

;; mandolin has same tuning as the violin

:chords t :chord-function violin-chord-selection-fun

;; there is no GM programme for mandolin so use either steel string

;; guitar (26) or banjo 106 perhaps

:microtones nil :midi-program 26))

(soprano

(:staff-name "soprano" :staff-short-name "s"

:lowest-written c4 :highest-written c6

:starting-clef treble

:midi-program 54))

(violin

(:staff-name "violin" :staff-short-name "vln"

:lowest-written g3 :highest-written c7

:largest-fast-leap 13

:starting-clef treble

:chords t :chord-function violin-chord-selection-fun

:microtones t

:midi-program 41))

(viola

(:staff-name "viola" :staff-short-name "vla"

:lowest-written c3 :highest-written f6

:largest-fast-leap 13

:clefs (alto treble) :starting-clef alto

:chords t :chord-function viola-chord-selection-fun

:microtones t

7 SC/INSTRUMENTS 27

:midi-program 42))

(viola-d-amore

(:staff-name "viola d’amore" :staff-short-name "vla d’am"

:lowest-written a2 :highest-written f7

:largest-fast-leap 13

:clefs (alto treble) :starting-clef alto

:chords t :chord-function nil

:microtones t

:midi-program 41))

(cello

(:staff-name "cello" :staff-short-name "vc"

;; of course it can go higher but best not to algorithmically select

;; these

:lowest-written c2 :highest-written a5

:largest-fast-leap 12

:clefs (bass tenor treble) :starting-clef bass

:chords t :chord-function cello-chord-selection-fun

:microtones t

:midi-program 43))

(double-bass

(:staff-name "double bass" :staff-short-name "db"

:lowest-written e2 :highest-written g5 :transposition-semitones -12

:prefers-notes low

:largest-fast-leap 10

:clefs (bass tenor treble) :starting-clef bass

:chords nil

:microtones t

:midi-program 44))

(bass-guitar

(:staff-name "bass guitar" :staff-short-name "b. gtr"

:lowest-written e2 :highest-written g4 :transposition-semitones -12

:prefers-notes low

:largest-fast-leap 10

:clefs (bass treble) :starting-clef bass

:chords t

:microtones nil

:midi-program 33))

;; SAR Thu Apr 12 18:19:21 BST 2012: Added "computer" part for "silent"

;; parts in case the user would like to create rhythmically independent

;; computer parts.

;; MDE Jul 2012 -- changed to reflect more clefs (and removed percussion)

(computer

(:staff-name "computer" :staff-short-name "comp"

:lowest-sounding C-1 :highest-sounding bf8

:clefs (treble bass double-treble double-bass)

:starting-clef treble)))))

7 SC/INSTRUMENTS 28

7.2 instruments/cello-chord-selection-fun

[instruments] [Functions]

DESCRIPTION:

Create a double-stop chord object using the core string-chord-selection-fun

and a value of ’G2 for the open III string.

SYNOPSIS:

(let ((vc-III (make-pitch ’g2)))

(defun cello-chord-selection-fun (curve-num index pitch-list pitch-seq

instrument set)

7.3 instruments/chord-fun-aux

[instruments] [Functions]

DESCRIPTION:

An auxiliary function that allows users to create moderately tailored chord

functions by setting values for the number of notes in the current set to

skip, the number of desired notes in the resulting chord, and the maximum

span of the resulting chord in semitones.

This function must be called within a call to the defun macro to create a

new chord function, as demonstrated below.

ARGUMENTS:

The first six arguments -- curve-num, index, pitch-list, pitch-seq,

instrument, and set -- are inherited and not required to be directly

accessed by the user.

- An integer that is the step by which the function skips through the

subset of currently available pitches. A value of 2, for example, will

instruct the method to build chords from every second pitch in that

subset.

- An integer that is the number of pitches that should be in each resulting

chord. If the list of pitches available to an instrument is too short to

make a chord with x notes, a chord with fewer pitches may be made

instead.

- An integer that is the largest interval in semitones allowed between the

bottom and top notes of the chord. If a chord made with the specified

7 SC/INSTRUMENTS 29

number of notes surpasses this span, a chord with fewer pitches may be

made instead.

EXAMPLE:

(defun new-chord-function (curve-num index pitch-list pitch-seq instrument set)

(chord-fun-aux curve-num index pitch-list pitch-seq instrument set 4 3 14))

=> NEW-CHORD-FUNCTION

SYNOPSIS:

(defun chord-fun-aux (curve-num index pitch-list pitch-seq instrument set

skip num-notes max-span)

7.4 instruments/chord-fun1

[instruments] [Functions]

DESCRIPTION:

Generate three-note chords where possible, using every second pitch from

the list of pitches currently available to the given instrument from the

current set, and ensuring that none of the chords it makes span more than

an octave.

SYNOPSIS:

(defun chord-fun1 (curve-num index pitch-list pitch-seq instrument set)

7.5 instruments/chord-fun2

[instruments] [Functions]

DESCRIPTION:

Generates 4-note chords where possible, using every third pitch from the

list of pitches currently available to the given instrument from the

current set, with (almost) no limit on the total span of the chord.

SYNOPSIS:

(defun chord-fun2 (curve-num index pitch-list pitch-seq instrument set)

7 SC/INSTRUMENTS 30

7.6 instruments/guitar-chord-selection-fun

[instruments] [Functions]

DESCRIPTION:

Create chord objects with differing numbers of pitches, drawing the pitches

from set-palette object subsets with the ID ’guitar.

This function was written for the composition "Cheat Sheet", in which the

pitch sets were defined explicitly such that all of the pitches available

to the guitar at any moment were playable as a guitar chord. As such, this

function always assumes that the pitch-list it is drawing from contains

pitches that are already playable as a guitar chord. It also adds the

fingering as mark above each chord when outputting to CMN, which may or may

not be desirable.

SYNOPSIS:

(let ((last-chord ’()))

(defun guitar-chord-selection-fun (curve-num index pitch-list pitch-seq

instrument set)

7.7 instruments/natural-harmonic

[instruments] [Functions]

DATE:

December 24th 2013

DESCRIPTION:

Determine whether a pitch can be played as a natural harmonic on a string

instrument (with the guitar as default).

ARGUMENTS:

- the pitch (symbol or pitch object)

OPTIONAL ARGUMENTS:

keyword arguments:

- :tuning. a list of the fundamentals of the open strings, as pitch objects

or symbols. These should descend from the highest string. Default:

7 SC/INSTRUMENTS 31

guitar tuning.

- :highest-partial. Integer. What we consider the highest harmonic possible

(counting the fundamental as 1).

- :tolerance. The deviation in cents that we can accept for the frequency

comparison. Default = 10.

- :debug. Print data for debugging/testing purposes. Default = NIL.

RETURN VALUE:

The string number and partial number as a list if possible as a harmonic,

or NIL if not.

EXAMPLE:

(NATURAL-HARMONIC ’b5) ; octave harmonic of B string

=> (2 2)

SC> (NATURAL-HARMONIC ’b6) ; octave + 5th of high E string

=> (1 3)

SYNOPSIS:

(defun natural-harmonic (pitch &key (tuning ’(e5 b4 g4 d4 a3 e3))

(highest-partial 6) (tolerance 15) debug)

7.8 instruments/piano-chord-fun

[instruments] [Functions]

DESCRIPTION:

Generate four-note chords, where possible, from consecutive notes in the

current set, with the number enclosed in parentheses in the pitch-seq being

the top note of that chord, where possible.

SYNOPSIS:

(defun piano-chord-fun (curve-num index pitch-list pitch-seq instrument set)

7.9 instruments/string-chord-selection-fun

[instruments] [Functions]

DESCRIPTION:

7 SC/INSTRUMENTS 32

This is the core function for creating instances of double-stop chords for

strings, ensuring that the highest note of the double-stop is not lower

than the open III string. The pitch of the open III string is passed as an

argument in the chord-selection functions for the individual stringed

instruments.

This function uses the best-string-diad function. If no double-stops

instances can be created using best-string-diad, two-note chords will be

created using the default-chord-function. If neither of these are possible,

a chord of a single pitch will be returned instead.

SYNOPSIS:

(defun string-chord-selection-fun (curve-num index pitch-list pitch-seq

instrument set string-III)

7.10 instruments/viola-chord-selection-fun

[instruments] [Functions]

DESCRIPTION:

Create a double-stop chord object using the core string-chord-selection-fun

and a value of ’G3 for the open III string.

SYNOPSIS:

(let ((vla-III (make-pitch ’g3)))

(defun viola-chord-selection-fun (curve-num index pitch-list pitch-seq

instrument set)

7.11 instruments/violin-chord-selection-fun

[instruments] [Functions]

DESCRIPTION:

Create a double-stop chord object using the core string-chord-selection-fun

and a value of ’D4 for the open III string.

SYNOPSIS:

(let ((vln-III (make-pitch ’d4)))

(defun violin-chord-selection-fun (curve-num index pitch-list pitch-seq

instrument set)

8 SC/LILYPOND 33

8 sc/lilypond

[Modules]

8.1 lilypond/lp-get-mark

[lilypond] [Functions]

DESCRIPTION:

lp-get-mark:

Translation function for LilyPond marks (dynamics, accents, etc.). Not

generally called by the user but the list of symbols that can be used will

be useful. If <silent> then non-existing marks will not produce

warnings/errors (but we’ll return nil).

SYNOPSIS:

(a "-> ") ; accent

(lhp "-+ ")

;; see p229 of lilypond.pdf: need to define this command in file

;; this is done for us in lilypond.ly, which will be included if we

;; call write-lp-data-for-all with :use-custom-markup T

(bartok "^\\snapPizzicato ")

(pizz "^\"pizz.\" ")

(ord "^\"ord.\" ")

(pizzp "^\"(pizz.)\" ")

(clb "^\"clb\"")

(cl "^\"cl\" ")

(col-legno "^\"col legno\" ")

(clt "^\"clt\" ")

(arco "^\"arco\" ")

(batt "^\"batt.\" ")

(spe "^\"spe\" ")

(sp "^\"sul pont.\" ")

(mv "^\"molto vib.\" ")

(sv "^\"senza vib.\" ")

(poco-crini "^\"poco crini\" ")

(s "-. ")

(nail (no-lp-mark ’nail))

(stopped (no-lp-mark ’stopped))

(as "->-. ")

(at "->-- ")

(ts "-_ ")

(te "-- ")

8 SC/LILYPOND 34

;; so unmeasured is implicit

(t3 (format nil ":~a " (* 32 (expt 2 num-flags))))

(flag "\\flageolet ")

(niente "^\markup { niente } ")

(pppp "\\pppp ")

(ppp "\\ppp ")

(pp "\\pp ")

(p "\\p ")

(mp "\\mp ")

(mf "\\mf ")

(f "\\f ")

(ff "\\ff ")

(fff "\\fff ")

(ffff "\\ffff ")

;; MDE Sat Aug 11 15:51:16 2012 -- dynamics in parentheses

(ffff-p "\\parenFFFF ")

(fff-p "\\parenFFF ")

(ff-p "\\parenFF ")

(f-p "\\parenF ")

(mf-p "\\parenMF ")

(mp-p "\\parenMP ")

(p-p "\\parenP ")

(pp-p "\\parenPP ")

(ppp-p "\\parenPPP ")

(pppp-p "\\parenPPPP ")

(sfz "\\sfz ")

(downbow "\\downbow ")

(upbow "\\upbow ")

(open "\\open ")

(I "^\\markup { \\teeny \"I\" } ")

(II "^\\markup { \\teeny \"II\" } ")

(III "^\\markup { \\teeny \"III\" } ")

(IV "^\\markup { \\teeny \"IV\" } ")

;; MDE Thu Dec 26 14:14:34 2013 -- guitar string numbers

(c1 "\\1 ")

(c2 "\\2 ")

(c3 "\\3 ")

(c4 "\\4 ")

(c5 "\\5 ")

(c6 "\\6 ")

(beg-sl "(")

(end-sl ") ")

;; MDE Fri Apr 6 21:57:59 2012 -- apparently LP can’t have nested

;; slurs but it does have phrase marks:

(beg-phrase "\\(")

(end-phrase "\\) ")

8 SC/LILYPOND 35

;; there’s no start gliss / end gliss in lilypond

(beg-gliss "\\glissando ")

(end-gliss "")

;; 13.4.11

(beg-8va "\\ottava #1 ")

(end-8va "\\ottava #0 ")

(beg-8vb "\\ottava #-1 ")

(end-8vb "\\ottava #0 ")

;; NB note heads should be added via (add-mark-before ... so if

;; adding new, add the mark symbol to the move-elements call in

;; event::get-lp-data

(circled-x "\\once \\override NoteHead #’style = #’xcircle ")

;; (x-head "\\once \\override NoteHead #’style = #’cross ")

(x-head " \\xNote ")

(triangle "\\once \\override NoteHead #’style = #’triangle ")

(triangle-up "\\once \\override NoteHead #’style = #’do ")

(airy-head (no-lp-mark ’airy-head))

;; this has to be added to the event _before_ the one which needs to

;; start with these noteheads.

(improvOn "\\improvisationOn ")

(improvOff "\\improvisationOff ")

;; MDE Sat Nov 9 20:21:19 2013 -- in CMN it’s :breath-in: a

;; triangle on its side (pointing left)

(wedge "\\once \\override NoteHead #’style = #’fa ")

(square "\\once \\override NoteHead #’style = #’la ")

;; (mensural "\\once \\override NoteHead #’style = #’slash ")

;;(flag-head "\\once \\override NoteHead #’style = #’harmonic-mixed

;;")

;; MDE Mon Apr 30 20:46:06 2012 -- see event::get-lp-data for how

;; this is handled

(flag-head "\\harmonic ")

;; MDE Mon Apr 30 20:46:31 2012 -- flag-heads by default don’t

;; display dots so we need to add-mark-before to get these to

;; display or turn them off again

(flag-dots-on "\\set harmonicDots = ##t ")

(flag-dots-off "\\set harmonicDots = ##f ")

;; circle head but stem extends through it like a vertical slash

(none (no-lp-mark ’none))

(trill-f (no-lp-mark ’trill-f))

(trill-n (no-lp-mark ’trill-n))

(trill-s (no-lp-mark ’trill-s))

(beg-trill-a "\\pitchedTrill ") ; must be before note

;; we’ll also need e.g. (trill-note g5) to give the note in ()

(end-trill-a "\\stopTrillSpan ") ; after note

;; (no-lp-mark ’square))

(slash (no-lp-mark ’slash))

8 SC/LILYPOND 36

;; MDE Sat Dec 28 11:37:22 2013 -- up and down arrows on arpeggio

;; lines will need more complex treatment (need a note-before mark

;; :/)

(arp "\\arpeggio ")

(arrow-up (no-lp-mark ’arrow-up))

(arrow-down (no-lp-mark ’arrow-down))

(cresc-beg "\\< ")

(cresc-end "\\! ")

(dim-beg "\\> ")

(dim-end "\\! ")

(<< "<< ")

(>> ">> ")

;; NB this override has to come exactly before the note/dynamic it

;; applies to

(hairpin0 "\\once \\override Hairpin #’circled-tip = ##t ")

;; (dim0-beg "\\once \\override Hairpin #’circled-tip = ##t \\> ")

(pause "\\fermata ")

(short-pause

"^\\markup { \\musicglyph #\"scripts.ushortfermata\" } ")

;; MDE Thu Apr 5 16:17:11 2012 -- these need the graphics files in

;; lilypond-graphics.zip to be in the same directory as the

;; generated lilypond files

(aeolian-light "^\\aeolianLight ")

(aeolian-dark "^\\aeolianDark ")

;; this one uses the graphic for close bracket

(bracket-end "^\\bracketEnd ")

(mphonic "^\\mphonic ")

(mphonic-arr "^\\mphonicArr ")

(mphonic-cons "^\\mphonicCons ")

(mphonic-diss "^\\mphonicDiss ")

(mphonic-cluster "^\\mphonicCluster ")

(sing "^\\sing ")

(high-sine "^\\high-sine ")

(noise "^\\noise ")

(focus "^\\focus ")

(alternate "^\\alternate ")

(sing-arr "^\\singArr ")

(arrow-up-down "^\\arrowUpDown ")

;; end lilypond-graphics.zip files

;; these must have been set up with the event::add-arrow method

(start-arrow "\\startTextSpan ")

(end-arrow "\\stopTextSpan ")

(harm "^\\flageolet ")

;; 2.3.11

;; write sost. pedal as text (usually held for long time so brackets

;; not a good idea)

9 SC/PACKAGE 37

(ped "\\sustainOn ")

(ped^ "\\sustainOff\\sustainOn ")

(ped-up "\\sustainOff ")

(uc "\\unaCorda ")

(tc "\\treCorde ")

9 sc/package

[Modules]

10 sc/permutations

[Modules]

NAME:

permutations

File: permutations.lsp

Class Hierarchy: none, no classes defined.

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Various permutation functions.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 10th November 2002

$$ Last modified: 14:56:58 Tue Mar 25 2014 GMT

SVN ID: $Id: permutations.lsp 5048 2014-10-20 17:10:38Z medward2 $

10.1 permutations/permutations

[permutations] [Functions]

DESCRIPTION:

Systematically produce a list of all possible permutations of a set of

10 SC/PERMUTATIONS 38

consecutive integers beginning with zero. The function’s only argument,

<level>, is an integer that determines how many consecutive integers from 0

are to be used for the process.

This is a more efficient permutation algorithm, but the results will always

be in a certain order, with the same number at the end until that

permutation is exhausted, then the number below that etc.

ARGUMENTS:

An integer that indicates how many consecutive integers from 0 are to be

used for the process.

RETURN VALUE:

A list of sequences (lists), each of which is a permutation of the

original.

EXAMPLE:

;; Produce a list consisting of all permutations that can be made of 4

;; consecutive integers starting with 0 (i.e., (0 1 2 3))

(permutations 4)

=>

((0 1 2 3) (1 0 2 3) (0 2 1 3) (2 0 1 3) (1 2 0 3) (2 1 0 3) (0 1 3 2)

(1 0 3 2) (0 3 1 2) (3 0 1 2) (1 3 0 2) (3 1 0 2) (0 2 3 1) (2 0 3 1)

(0 3 2 1) (3 0 2 1) (2 3 0 1) (3 2 0 1) (1 2 3 0) (2 1 3 0) (1 3 2 0)

(3 1 2 0) (2 3 1 0) (3 2 1 0))

SYNOPSIS:

(defun permutations (level)

10.1.1 permutations/inefficient-permutations

[permutations] [Functions]

DESCRIPTION:

Return a shuffled, non-systematic list of all possible permutations of a

set of consecutive integers beginning with zero.

The function’s first argument, <level>, is an integer that determines how

many consecutive integers from 0 are to be used for the process. An

10 SC/PERMUTATIONS 39

optional keyword argument <max> allows the user to specify the maximum

number of permutations to return.

This function differs from the "permutations" function in that it’s result

is not ordered systematically.

The function simply returns a list of <max> permutations of the numbers

less than <level>; it does not permutate a given list.

The function is inefficient in so far as it simply shuffles the numbers and

so always has to check whether the new list already contains the shuffled

before storing it.

The order of the permutations returned will always be the same unless <fix>

is set to NIL.

Keyword argument <skip> allows the user to skip a number of permutations,

which is only sensible if :fix is set to T.

ARGUMENTS:

An integer that indicates how many consecutive integers from 0 are to be

used for the process.

OPTIONAL ARGUMENTS:

keyword arguments:

- :max. An integer that indicates the maximum number of permutations to be

returned.

- :skip. An integer that indicates a number of permutations to skip.

- :fix. T or NIL to indicate whether the given sequence should always be

shuffled with the same (fixed) random seed (thus always producing the

same result). T = fixed seed. Default = T.

- :if-not-enough. A function object (or NIL) to call when :max was

requested but we can’t return that many results. Default = #’error.

RETURN VALUE:

A list.

EXAMPLE:

;; Creating a shuffled, non-systematic list of all permutations of consecutive

;; integers 0 to 4

(inefficient-permutations 4)

10 SC/PERMUTATIONS 40

=> ((2 3 0 1) (3 1 2 0) (2 0 3 1) (1 0 2 3) (1 2 3 0) (0 2 3 1) (2 1 0 3)

(0 1 2 3) (2 3 1 0) (1 2 0 3) (3 0 1 2) (3 1 0 2) (1 3 2 0) (1 0 3 2)

(2 0 1 3) (3 2 1 0) (2 1 3 0) (3 2 0 1) (1 3 0 2) (0 2 1 3) (3 0 2 1)

(0 1 3 2) (0 3 2 1) (0 3 1 2))

;; Using 0 to 4 again, but limiting the number of results returned to a maximum

;; of 7

(inefficient-permutations 4 :max 7)

=> ((2 3 0 1) (3 1 2 0) (2 0 3 1) (1 0 2 3) (1 2 3 0) (0 2 3 1) (2 1 0 3))

;; The same call will return the same "random" results each time by default

(loop repeat 4 do (print (inefficient-permutations 3 :max 5)))

=>

((2 0 1) (2 1 0) (0 2 1) (1 0 2) (1 2 0))

((2 0 1) (2 1 0) (0 2 1) (1 0 2) (1 2 0))

((2 0 1) (2 1 0) (0 2 1) (1 0 2) (1 2 0))

((2 0 1) (2 1 0) (0 2 1) (1 0 2) (1 2 0))

;; Setting the :fix argument to NIL will result in different returns

(loop repeat 4 do (print (inefficient-permutations 3 :max 5 :fix nil)))

=>

((1 0 2) (0 1 2) (1 2 0) (2 1 0) (0 2 1))

((1 2 0) (2 0 1) (2 1 0) (1 0 2) (0 1 2))

((0 1 2) (1 0 2) (2 0 1) (1 2 0) (2 1 0))

((0 2 1) (1 2 0) (0 1 2) (2 0 1) (1 0 2))

SYNOPSIS:

(defun inefficient-permutations (level &key (max nil) (skip 0) (fix t)

(if-not-enough #’error))

10.1.2 permutations/inefficiently-permutate

[permutations] [Functions]

DESCRIPTION:

Return a shuffled, non-systematically ordered list of all possible

permutations of an original list of elements of any type. An optional

keyword argument <max> allows the user to specify the maximum number of

permutations to return.

10 SC/PERMUTATIONS 41

As opposed to the function "permutate", inefficiently-permutate returns the

elements of the specified <list> as a flat list, unless the keyword

argument <sublists> is set to T, whereupon the function returns the result

as a list of lists, each one being a permutation of <list>.

The function is inefficient in so far as it simply shuffles the numbers and

so always has to check whether the new list already contains the shuffled

sublist before storing it.

The order of the permutations returned will always be the same unless <fix>

is set to NIL.

ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

keyword arguments:

- :max. An integer that indicates the maximum number of permutations to be

returned.

- :skip. An integer that indicates a number of permutations to skip.

- :fix. T or NIL to indicate whether the given sequence should always be

shuffled with the same (fixed) random seed (thus always producing the

same result). T = fixed seed. Default = T.

- :sublists. T or NIL to indicate whether the returned result should be

flattened into a one-dimensional list or should be left as a list of

lists. T = leave as list of lists. Default = NIL.

- :clone. T or NIL to indicate whether objects in the list should be cloned

as they are permutated (so that they are unique objects rather than

shared data space). Useful perhaps if e.g. you’re cloning chords which

will then have their own marks. etc. If T then the list must contain

slippery-chicken named-objects or types subclassed from them (as is every

slippery-chicken class).

- :if-not-enough. A function object (or NIL) to call when :max was

requested but we can’t return that many results. Default = #’error.

RETURN VALUE:

A list.

EXAMPLE:

;; By default the function returns a flattened list of all possible

10 SC/PERMUTATIONS 42

;; permutations in a shuffled (random) order

(inefficiently-permutate ’(a b c))

=> (C A B C B A A C B B A C B C A A B C)

;; The length of the list returned can be potentially shortened using the :max

;; keyword argument. Note here that the value given here refers to the number

;; of permutations before the list is flattened, not to the number of

;; individual items in the flattened list.

(inefficiently-permutate ’(a b c) :max 3)

=> (C A B C B A A C B)

;; By default the function is set to using a fixed random seed, causing it to

;; return the same result each time

(loop repeat 4 do (print (inefficiently-permutate ’(a b c))))

=>

(C A B C B A A C B B A C B C A A B C)

(C A B C B A A C B B A C B C A A B C)

(C A B C B A A C B B A C B C A A B C)

(C A B C B A A C B B A C B C A A B C)

;; Setting the :fix keyword argument to NIL allows the function to produce

;; different output each time

(loop repeat 4 do (print (inefficiently-permutate ’(a b c) :fix nil)))

=>

(B A C A C B B C A A B C C B A C A B)

(A C B B A C C B A C A B B C A A B C)

(A C B B A C B C A A B C C A B C B A)

(B A C A B C C A B C B A B C A A C B)

;; Setting the :sublists keyword argument to T causes the function to return a

;; list of lists instead

(inefficiently-permutate ’(a b c) :sublists t)

=> ((C A B) (C B A) (A C B) (B A C) (B C A) (A B C))

SYNOPSIS:

(defun inefficiently-permutate (list &key (max nil) (skip 0) (fix t)

clone (sublists nil) (if-not-enough #’error))

10 SC/PERMUTATIONS 43

10.1.3 permutations/move-repeats

[permutations] [Functions]

DESCRIPTION:

Move, when possible, any elements within a given list that are repeated

consecutively.

When two consecutive elements repeat, such as the c in ’(a b c c b a),

the function moves the repeated element to the next place in the given

list that won’t produce a repetition. When no such place can be found in

the remainder of the list, the offending element is moved to the end of the

given list and a warning is printed.

This function can be applied to simple lists and lists with sublists.

However, due to this function being designed for--but not limited to--use

with the results of permutations, if the list has sublists, then instead of

repeating sublists being moved, the last element of a sublist is checked

for repetition with the first element of the next sublist. See the first

example below.

NB: This function only move elements further along the list; it won’t place

them earlier than their original position. Thus:

(move-repeats ’(3 3 1))

will return (3 1 3), while

(move-repeats ’(1 3 3))

will leave the list untouched and print a warning.

ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

- A function that serves as the comparison test. Default = #’eq.

RETURN VALUE:

A list.

EXAMPLE:

10 SC/PERMUTATIONS 44

;;; Used with a list of lists. Note that the repeating C, end of sublist 1,

;;; beginning of sublist 2, is moved, not the whole repeating sublist (c a b).

(move-repeats ’((a b c) (c a b) (c a b) (d e f) (a b c) (g h i)))

=> ((A B C) (D E F) (C A B) (C A B) (A B C) (G H I))

;;; Works with simple lists too:

(move-repeats ’(1 2 3 3 4 5 6 7 8 8 9 10))

=> (1 2 3 4 3 5 6 7 8 9 8 10)

;; Moves the offending element to the end of the list and prints a warning when

;; no solution can be found

(move-repeats ’((a b c d) (d c b a) (b c a d) (c a b d)))

=> ((A B C D) (B C A D) (C A B D) (D C B A))

WARNING:

move-repeats: can’t find non-repeating place!

present element: (D C B A), elements left: 1

SYNOPSIS:

(defun move-repeats (list &optional (test #’eq))

10.1.4 permutations/multi-shuffle

[permutations] [Functions]

DESCRIPTION:

Applies the shuffle function a specified number of times to a specified

list.

NB: As with the plain shuffle function, the order of the permutations

returned will always be the same unless the keyword argument

:fix is set to NIL.

ARGUMENTS:

- A sequence.

OPTIONAL ARGUMENTS:

keyword arguments:

- :start. A zero-based index integer indicating the first element of a

10 SC/PERMUTATIONS 45

subsequence to be shuffled. Default = 0.

- :end. A zero-based index integer indicating the last element of a

subsequence to be shuffled. Default = the length of the given sequence.

- :copy. T or NIL to indicate whether the given sequence should be copied

before it is modified or should be destructively shuffled.

T = copy. Default = T.

- :fix. T or NIL to indicate whether the given sequence should always be

shuffled with the same (fixed) random seed (thus always producing the

same result). T = fixed seed. Default = T.

- :reset. T or NIL to indicate whether the random state should be reset

before the function is performed. T = reset. Default = T.

RETURN VALUE:

- A sequence.

EXAMPLE:

;; Simple multi-shuffle with default keywords.

(multi-shuffle ’(a b c d e f g) 3)

=> (B A C E D G F)

;; Always returns the same result by default.

(loop repeat 4 do (print (multi-shuffle ’(a b c d e f g) 3)))

=>

(B A C E D G F)

(B A C E D G F)

(B A C E D G F)

(B A C E D G F)

;; Set keyword argument :fix to NIL to return different results each time

(loop repeat 4 do (print (multi-shuffle ’(a b c d e f g) 3 :fix nil)))

=>

(G C F B D E A)

(A G F B D C E)

(A B D G C F E)

(G C A D E F B)

;; Set keyword arguments :start and :end to shuffle just a subsequence of the

;; given sequence

(loop repeat 4

do (print (multi-shuffle ’(a b c d e f g) 3

:fix nil

10 SC/PERMUTATIONS 46

:start 2

:end 5)))

=>

(A B D E C F G)

(A B E C D F G)

(A B E D C F G)

(A B D C E F G)

SYNOPSIS:

(defun multi-shuffle (seq num-shuffles &key

(start 0)

(end (length seq))

(copy t)

(fix t)

(reset t))

10.1.5 permutations/multi-shuffle-with-perms

[permutations] [Functions]

DESCRIPTION:

Return one permutation from a shuffled list of permutations of the

specified list. The second argument determines how many shuffled

permutations will be in the list from which the resulting permutation is

selected. Similar to the "multi-shuffle" function, but uses the function

"inefficient-permutations" as part of the process.

The <num-shuffles> argument allows the user to always return the same

specific permutation.

NB: This function always uses a fixed random seed and has no optional

arguments to allow the user to alter that setting.

ARGUMENTS:

- A list.

- An integer that is the number of consecutive shuffles to be collected in

the list from which the resulting permutation is selected.

RETURN VALUE:

- A list that is a single permutation of the specified list.

10 SC/PERMUTATIONS 47

EXAMPLE:

;; Returns a permutation of a shuffled version of the specified list

(let ((l ’(0 1 2 3 4)))

(multi-shuffle-with-perms l 7))

=> (3 1 4 2 0)

;; Always returns the same result

(loop repeat 4 do (print (multi-shuffle-with-perms ’(0 1 2 3 4) 7)))

=>

(3 1 4 2 0)

(3 1 4 2 0)

(3 1 4 2 0)

(3 1 4 2 0)

;; Different <num-shuffles> values return different permutations

(loop for i from 0 to 5

do (print (multi-shuffle-with-perms ’(0 1 2 3 4) i)))

=>

(0 1 2 3 4)

(1 4 2 0 3)

(0 3 1 4 2)

(4 0 2 1 3)

(1 2 3 4 0)

(2 1 3 0 4)

SYNOPSIS:

(defun multi-shuffle-with-perms (seq num-shuffles)

10.1.6 permutations/permutate

[permutations] [Functions]

DESCRIPTION:

Systematically produce a list of all possible permutations of an original

list of elements of any type.

NB: Such lists can quickly become very long, so slippery-chicken

automatically defaults to outputting the resulting list to a file and

printing a warning when the results exceed a certain length.

10 SC/PERMUTATIONS 48

ARGUMENTS:

- A list with elements of any type.

RETURN VALUE:

A list of lists that are all possible permutations of the original,

specified list.

Interrupts with an error if the method is passed anything but a list.

EXAMPLE:

;; Simple usage

(permutate ’(a b c))

=> ((A B C) (B A C) (A C B) (C A B) (B C A) (C B A))

;; When the list is more than 8 elements long, the resulting permutations are

;; written to a file due to the very high number of results

(permutate ’(1 2 3 4 5 6 7 8 9))

=>

WARNING: permutations::permutations: This call will return 362880

results so they are being written to the file

’/tmp/permutations.txt’.

SYNOPSIS:

(defun permutate (list)

10.1.7 permutations/random-rep

[permutations] [Functions]

DESCRIPTION:

Return a random non-negative number that is less than the specified

value. An optional argument allows for the random state to be reset.

ARGUMENTS:

- A number.

OPTIONAL ARGUMENTS:

10 SC/PERMUTATIONS 49

- T or NIL to indicate whether the random state should be reset before the

function is performed. T = reset. Default = NIL.

RETURN VALUE:

A number.

EXAMPLE:

;; By default returns a different value each time

(loop repeat 10 do (print (random-rep 5)))

=>

1

3

4

4

3

4

2

0

2

0

;; Setting the optional argument to T resets the random state before

;; performing the function

(loop repeat 10 do (print (random-rep 5 t)))

=>

3

3

3

3

3

3

3

3

3

3

SYNOPSIS:

(defun random-rep (below &optional (reset nil))

10 SC/PERMUTATIONS 50

10.1.8 permutations/shuffle

[permutations] [Functions]

DESCRIPTION:

Create a random ordering of a given sequence or a subsequence of a given

sequence. By default we used fixed-seed randomness so we can guarantee the

same results each time (perhaps counter-intuitively). So the order of the

permutations returned will always be the same unless keyword argument :fix

is set to NIL.

NB: This function is a modified form of Common Music’s shuffle function.

ARGUMENTS:

- A sequence (list, vector (string)).

OPTIONAL ARGUMENTS:

keyword arguments:

- :start. A zero-based index integer indicating the first element of a

subsequence to be shuffled. Default = 0.

- :end. A zero-based index integer indicating the last element of a

subsequence to be shuffled. Default = the length of the given sequence.

- :copy. T or NIL to indicate whether the given sequence should be copied

before it is modified or should be destructively shuffled.

T = copy. Default = T.

- :fix. T or NIL to indicate whether the given sequence should always be

shuffled with the same (fixed) random seed (thus always producing the

same result). T = fixed seed. Default = T.

- :reset. T or NIL to indicate whether the random state should be reset

before the function is performed. T = reset. Default = T.

RETURN VALUE:

A list.

EXAMPLE:

;; Simple shuffle with default keywords.

(shuffle ’(1 2 3 4 5 6 7))

=> (5 4 3 6 7 1 2)

10 SC/PERMUTATIONS 51

;; Always returns the same result by default.

(loop repeat 4 do (print (shuffle ’(1 2 3 4 5 6 7))))

=>

(5 4 3 6 7 1 2)

(5 4 3 6 7 1 2)

(5 4 3 6 7 1 2)

(5 4 3 6 7 1 2)

;; Set keyword argument :fix to NIL to return different results each time

(loop repeat 4 do (print (shuffle ’(1 2 3 4 5 6 7) :fix nil)))

=>

(1 2 6 3 5 4 7)

(1 3 5 2 7 4 6)

(4 7 2 5 1 6 3)

(1 5 3 7 4 2 6)

;; Set the keyword argument :reset to t only at the beginning so we get the

;; same result that time but different (but repeatable) results thereafter.

(loop repeat 3 do

(print ’start)

(loop for i below 4

do (print (shuffle ’(1 2 3 4 5 6 7) :reset (zerop i)))))

=>

START

(5 4 3 6 7 1 2)

(4 6 5 2 3 1 7)

(3 4 1 6 5 7 2)

(3 2 7 4 1 6 5)

START

(5 4 3 6 7 1 2)

(4 6 5 2 3 1 7)

(3 4 1 6 5 7 2)

(3 2 7 4 1 6 5)

START

(5 4 3 6 7 1 2)

(4 6 5 2 3 1 7)

(3 4 1 6 5 7 2)

(3 2 7 4 1 6 5)

;; Set keyword arguments :start and :end to shuffle just a subsequence of the

;; given sequence

(loop repeat 4

11 SC/SAMP5 52

do (print (shuffle ’(1 2 3 4 5 6 7)

:fix nil

:start 2

:end 5)))

=>

(1 2 5 4 3 6 7)

(1 2 3 5 4 6 7)

(1 2 4 5 3 6 7)

(1 2 3 4 5 6 7)

SYNOPSIS:

(defun shuffle (seq &key

(start 0)

(end (length seq))

(copy t)

(fix t)

(reset t)

&aux (width (- end start)))

11 sc/samp5

[Modules]

NAME:

samp5

File: samp5.lsp

Class Hierarchy: none, no classes defined

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: clm instrument for sample processing; called by

slippery-chicken::clm-play

Author: Michael Edwards: m@michael-edwards.org

Creation date: 12th June 2004

$$ Last modified: 11:32:09 Mon Nov 4 2013 GMT

12 SC/SINE 53

SVN ID: $Id: samp5.lsp 5048 2014-10-20 17:10:38Z medward2 $

12 sc/sine

[Modules]

NAME:

samp5

File: sine.lsp

Class Hierarchy: none, no classes defined

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: clm instrument for simple sine wave generation. This is

used mainly as an example to show how user instruments

can be used in clm-play but it may also be useful for a

quick sinewave rendition of a piece.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 12th June 2004

$$ Last modified: 11:23:12 Tue Dec 3 2013 GMT

SVN ID: $Id: samp5.lsp 4223 2013-10-29 10:57:09Z medward2 $

13 sc/slippery-chicken-edit

[Modules]

NAME:

slippery-chicken-edit

File: slippery-chicken-edit.lsp

Class Hierarchy: named-object -> slippery-chicken

13 SC/SLIPPERY-CHICKEN-EDIT 54

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Post-generation editing methods for the slippery-chicken

class.

Author: Michael Edwards: m@michael-edwards.org

Creation date: April 7th 2012

$$ Last modified: 16:41:40 Mon Sep 1 2014 BST

SVN ID: $Id: slippery-chicken-edit.lsp 5048 2014-10-20 17:10:38Z medward2 $

13.1 slippery-chicken-edit/add-arrow-to-events

[slippery-chicken-edit] [Methods]

DATE:

April 9th 2012

DESCRIPTION:

Adds an arrow above the specified notes of a slippery-chicken object,

coupled with text to be printed in the score at the start and end of the

arrow. Can be used, for example, for transitions from one playing state to

another.

If no text is desired, this must be indicated by a space in quotes (" ")

rather than empty quotes ("").

See also the add-arrow method in the event class.

ARGUMENTS:

- A slippery-chicken object.

- A text string for the beginning of the arrow.

- A text string for the end of the arrow.

- A list that is the starting event reference, in the form (bar-number

event-number). Event numbers count from 1 and include rests and tied

notes.

- A list that is the end event reference, in the form (bar-number

event-number).

- The ID of the player to whose part the arrow should be attached.

13 SC/SLIPPERY-CHICKEN-EDIT 55

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not to print a warning when trying to

attach an arrow and accompanying marks to a rest.

T = print warning. Default = NIL.

RETURN VALUE:

T

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:title "mini"

:ensemble ’(((pno (piano :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 g5 a5 c6)))

(2 ((cs4 ds4 fs4 gs4 as4 cs5 ds5 fs5 gs5 as5))))

:set-map ’((1 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q q))

:pitch-seq-palette ((1 (2))))))

:rthm-seq-map ’((1 ((pno (1 1 1 1 1 1))))))))

(add-arrow-to-events mini "here" "there" ’(1 1) ’(5 1) ’pno)

(write-lp-data-for-all mini))

SYNOPSIS:

(defmethod add-arrow-to-events ((sc slippery-chicken) start-text end-text

event1-ref event2-ref player

&optional warn-rest)

13.2 slippery-chicken-edit/add-clef

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Attach a specified clef symbol to a specified clef object within a given

slippery-chicken object.

ARGUMENTS:

13 SC/SLIPPERY-CHICKEN-EDIT 56

- A slippery-chicken object.

- The ID of the player to whose part the clef symbol is to be added.

NB: The optional arguments are actually required.

OPTIONAL ARGUMENTS:

- An integer that is the bar number in which the clef symbol is to be

placed.

- An integer that is the event number within the given bar to which the

clef symbol is to be attached.

- A symbol that is the clef type to be attached. See the documentation for

the make-instrument function of the instrument class for a list of

possible clef types.

RETURN VALUE:

Returns the new value of the MARKS-BEFORE slot of the given event object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:title "mini"

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 g5 a5 c6)))

(2 ((cs4 ds4 fs4 gs4 as4 cs5 ds5 fs5 gs5 as5))))

:set-map ’((1 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1))))))))

(add-clef mini ’vn 3 2 ’alto))

=> ((CLEF ALTO))

SYNOPSIS:

(defmethod add-clef ((sc slippery-chicken) player &optional

bar-num event-num clef)

13.3 slippery-chicken-edit/add-event-to-bar

[slippery-chicken-edit] [Methods]

13 SC/SLIPPERY-CHICKEN-EDIT 57

DESCRIPTION:

Add an event object to a specified bar either at the end of that bar or at

a specified position within that bar.

ARGUMENTS:

- A slippery-chicken object.

- An event object.

- An integer that is the bar number or a list that is the reference to the

bar in the form ’(section sequence bar), where sequence and bar are

numbers counting from 1)

- The ID of the player to whose part the event should be added.

OPTIONAL ARGUMENTS:

keyword argument:

- :position. NIL or an integer indicating the position in the bar (0-based)

where the event should be added. If NIL, the new event is placed at the

end of the bar. Default = NIL.

RETURN VALUE:

T

EXAMPLE:

;;; Adding two events to separate bars, once using a bar number with

;;; :position’s default to NIL, and once using a bar number reference list with

;;; :position specified as 2. Print the bars after adding to see the changes.

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 g5 a5 c6)))

(2 ((cs4 ds4 fs4 gs4 as4 cs5 ds5 fs5 gs5 as5 cs6))))

:set-map ’((1 (1 1 1 1 1 1))

(2 (2 2 2 2 2 2)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4))))

(2 ((((2 4) e s s q))

:pitch-seq-palette ((1 2 3 4)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1))))

13 SC/SLIPPERY-CHICKEN-EDIT 58

(2 ((vn (2 2 2 2 2 2))))))))

(add-event-to-bar mini (make-event ’cs4 ’e) 2 ’vn)

(print-simple (first (get-bar mini 2)))

(add-event-to-bar mini (make-event ’c4 ’q) ’(2 2 1) ’vn :position 2)

(print-simple (first (get-bar mini ’(2 2 1)))))

=>

(2 4): C4 Q, D4 E, F4 S, G4 S, CS4 E

(2 4): CS4 E, DS4 S, C4 Q, FS4 S, GS4 Q

SYNOPSIS:

(defmethod add-event-to-bar ((sc slippery-chicken) event bar-num-or-ref player

&key (position nil))

13.4 slippery-chicken-edit/add-mark-all-players

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Add a specified mark to a specified event in the parts of all players. The

event can either be specified as a 1-based integer, in which case the mark

will be attached to the same event in all parts, or as a list of integers,

in which the mark is attached to different events in the same bar for each

player, passing from the top of the ensemble downwards.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the bar number or a list of integers that is a

reference to the bar number in the form (section sequence bar).

- An integer that is the event to which to attach the specified mark in all

parts, or a list of integers that are the individual events to which to

attach the mark in the consecutive players.

- The mark to be added.

RETURN VALUE:

Always returns T.

EXAMPLE:

;;; Apply the method twice: Once using an integer to attach the mark to the

;;; same event in all players, and once using a list to attach the mark to

13 SC/SLIPPERY-CHICKEN-EDIT 59

;;; different events in the consecutive players. Print the corresponding marks

;;; slots to see the results.

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(hn (french-horn :midi-channel 2))

(vc (cello :midi-channel 3))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(hn (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((cl (1 1 1 1 1))

(hn (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(add-mark-all-players mini 3 1 ’ppp)

(add-mark-all-players mini ’(2 2 1) ’(1 2 3) ’fff)

(loop for i in ’(cl hn vc)

do (print (marks (get-event mini 3 1 i))))

(loop for i in ’(cl hn vc)

for e in ’(1 2 3)

do (print (marks (get-event mini ’(2 2 1) e i)))))

=>

(PPP)

(PPP)

(PPP)

(FFF)

(FFF)

(FFF)

SYNOPSIS:

(defmethod add-mark-all-players ((sc slippery-chicken)

bar-num event-num mark)

13.5 slippery-chicken-edit/add-mark-before-note

[slippery-chicken-edit] [Methods]

DESCRIPTION:

13 SC/SLIPPERY-CHICKEN-EDIT 60

Add the specified mark to the MARKS-BEFORE slot of the specified note

object within the given slippery-chicken object.

NB: This method counts notes, not events; i.e., rests are not counted.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the bar number in which the mark is to be added.

- An integer that is the NOTE number to which the mark is to be added (not

the event number; i.e., rests are not counted).

- The ID of the player to which the mark is to be added.

- The mark to be added.

RETURN VALUE:

Returns the new value of the MARKS-BEFORE slot of the given event object.

EXAMPLE:

;;; The method adds the mark to the specified note, not event. Add the mark to

;;; note 2, print the MARKS-BEFORE slots of events 2 (which is a rest) and 3.

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 g5 a5 c6))))

:set-map ’((1 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q (e) s s))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1))))))))

(add-mark-before-note mini 3 2 ’vn ’ppp)

(print (marks-before (get-event mini 3 2 ’vn)))

(print (marks-before (get-event mini 3 3 ’vn))))

=>

NIL

(PPP)

SYNOPSIS:

(defmethod add-mark-before-note ((sc slippery-chicken)

bar-num note-num player mark)

13 SC/SLIPPERY-CHICKEN-EDIT 61

13.6 slippery-chicken-edit/add-mark-to-event

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Add the specified mark to the MARKS slot of the specified event within the

given slippery-chicken object.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the bar number to which the mark is to be added.

- An integer that is the event number in the specified bar to which the

mark is to be added.

- The ID of the player to which to add the mark.

- The mark to add.

RETURN VALUE:

Returns T.

EXAMPLE:

;;; Add a mark to an event object then read the value of the MARKS slot of that

;;; event to see the result

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 g5 a5 c6))))

:set-map ’((1 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q (e) s s))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1))))))))

(add-mark-to-event mini 3 2 ’vn ’ppp)

(marks (get-event mini 3 2 ’vn)))

=> (PPP)

SYNOPSIS:

(defmethod add-mark-to-event ((sc slippery-chicken) bar-num event-num player

mark)

13 SC/SLIPPERY-CHICKEN-EDIT 62

13.7 slippery-chicken-edit/add-mark-to-note

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Add the specified mark to the specified note of a given slippery-chicken

object.

NB: This method counts notes, not events; i.e., not rests.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the bar number to which to add the mark

- An integer that is the note number two which to add the mark. This is

1-based, and counts notes not events; i.e., not rests.

- The ID of the player to whose part the mark is to be added.

- The mark to add.

RETURN VALUE:

Returns T.

EXAMPLE:

;;; Add a mark to a note in a bar with a rest. Print the corresponding event

;;; object to see the result.

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 g5 a5 c6))))

:set-map ’((1 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q (e) s s))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1))))))))

(add-mark-to-note mini 3 2 ’vn ’ppp)

(print (marks (get-event mini 3 2 ’vn)))

(print (marks (get-event mini 3 3 ’vn))))

=>

NIL

(PPP)

13 SC/SLIPPERY-CHICKEN-EDIT 63

SYNOPSIS:

(defmethod add-mark-to-note ((sc slippery-chicken)

bar-num note-num player mark)

13.8 slippery-chicken-edit/add-marks-sh

[slippery-chicken-edit] [Methods]

DATE:

27-Jun-2011

DESCRIPTION:

Add marks in a somewhat more free list form, with the option of

implementing a user-defined shorthand.

ARGUMENTS:

- A slippery-chicken object.

- A list of lists containing the players, bar and note refs, and marks to

be added. The first element of each contained list will be the ID of the

player to whose part the marks are to be added followed by a pattern of

<mark bar-number note-number> triplets, or if a mark is to be added

repeatedly then <mark bar note bar note... >. A mark can be a string or a

symbol.

OPTIONAL ARGUMENTS:

keyword arguments:

- For marks given as symbols, the user can supply a shorthand table that

will expand an abbreviation, such as sp, to the full mark name, such as

short-pause. This table takes the form of a simple Lisp association list,

e.g.: ’((al aeolian-light)

(ad aeolian-dark)

(wt "WT")

(h harm))

- :warn. T or NIL to indicate whether to print a warning for unrecognized

marks. T = print warning. Default = T.

- :verbose. T or NIL to indicate whether the method is to print verbose

feedback about each mark added to the Listener. T = print feedback.

Default = NIL.

RETURN VALUE:

13 SC/SLIPPERY-CHICKEN-EDIT 64

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (viola :midi-channel 2))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5))))

:set-map ’((1 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1))

(va (1 1 1 1 1 1))))))))

(add-marks-sh mini

’((vn a 1 1 1 2 3 1 s 2 1 2 2 2 5)

(va pizz 1 3 2 3 sp 3 1))

:shorthand ’((sp short-pause))

:verbose t))

=> NIL

SYNOPSIS:

(defmethod add-marks-sh ((sc slippery-chicken) player-data

&key shorthand (warn t) verbose)

13.9 slippery-chicken-edit/add-marks-to-note

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Add one or more specified marks to a specified note within a given

slippery-chicken object.

NB: This method counts notes, not events; i.e., rests are not counted.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the bar number to which the mark or marks should to be

added.

13 SC/SLIPPERY-CHICKEN-EDIT 65

- An integer that is the note within the specified bar to which the mark or

marks should be added.

- The ID of the player to whose part the mark or marks should be added.

- The mark or marks to add.

RETURN VALUE:

Returns T.

EXAMPLE:

;;; Add several marks to one note, then print the corresponding MARKS slot to

;;; see the difference.

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (viola :midi-channel 2))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5))))

:set-map ’((1 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e (e) e e (e) e e e))

:pitch-seq-palette ((1 2 3 4 5 6)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1))

(va (1 1 1 1 1 1))))))))

(add-marks-to-note mini 2 3 ’va ’a ’s ’lhp ’pizz)

(print (marks (get-note mini 2 3 ’va))))

=> (PIZZ LHP S A)

SYNOPSIS:

(defmethod add-marks-to-note ((sc slippery-chicken) bar-num note-num

player &rest marks)

13.10 slippery-chicken-edit/add-marks-to-notes

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Add the specified mark or marks to a consecutive sequence of multiple notes

within the given slippery-chicken object.

ARGUMENTS:

13 SC/SLIPPERY-CHICKEN-EDIT 66

- A slippery-chicken object.

- An integer or a list consisting of two numbers to indicate the start

bar/note. If this is an integer, all notes in this bar will receive the

specified mark or marks. If this is a two-number list, the first number

determines the bar, the second the note within that bar.

- An integer or a list consisting of two numbers to indicate the end

bar/note. If this is an integer, all notes in this bar will receive the

specified mark or marks. If this is a two-number list, the first number

determines the bar, the second the note within that bar.

- The ID of the player or players to whose parts the mark or marks should

be attached. This can be a single symbol or a list.

- T or NIL to indicate whether the mark should be added to the MARKS slot

or the MARKS-BEFORE slot of the given events objects.

- The mark or marks to be added.

RETURN VALUE:

Returns T.

EXAMPLE:

;;; This example calls the method twice: Once using the single-integer

;;; indication for full bars, with one instrument and one mark; and once using

;;; the bar/note reference lists for more specific placement, a list of several

;;; players that should all receive the marks, and multiple marks to add.

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (viola :midi-channel 2))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5))))

:set-map ’((1 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1))

(va (1 1 1 1 1 1))))))))

(add-marks-to-notes mini 2 3 ’vn nil ’lhp)

(add-marks-to-notes mini ’(1 3) ’(2 2) ’(vn va) nil ’s ’a))

=> T

SYNOPSIS:

(defmethod add-marks-to-notes ((sc slippery-chicken) start end players before

&rest marks)

13 SC/SLIPPERY-CHICKEN-EDIT 67

13.11 slippery-chicken-edit/add-pitches-to-chord

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Add specified pitches to an existing chord object.

ARGUMENTS:

- The slippery-chicken object which contains the given chord object.

- The ID of the player whose part is to be affected.

- An integer that is the number of the bar that contains the chord object

that is to be modified.

- An integer that is the number of the note that is the chord object to be

modified.

- The pitches to be added. These can be pitch objects or any data that can

be passed to make-pitch, or indeed lists of these, as they will be

flattened.

RETURN VALUE:

The chord object that has been changed.

EXAMPLE:

(let* ((ip-clone (clone +slippery-chicken-standard-instrument-palette+)))

(set-slot ’chord-function ’chord-fun1 ’guitar ip-clone)

(let* ((mini

(make-slippery-chicken

’+mini+

:instrument-palette ip-clone

:ensemble ’(((gtr (guitar :midi-channel 1))))

:set-palette ’((1 ((e3 f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5 d5 e5 f5

g5 a5 b5 c6 d6 e6))))

:set-map ’((1 (1)))

:rthm-seq-palette

’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 (2) 3 (4) 5 (6) 7 (8))))))

:rthm-seq-map ’((1 ((gtr (1))))))))

(print (get-pitch-symbols

(pitch-or-chord (get-event mini 1 2 ’gtr))))

(add-pitches-to-chord mini ’gtr 1 2 ’cs4 ’ds4)

(print (get-pitch-symbols

(pitch-or-chord (get-event mini 1 2 ’gtr))))))

13 SC/SLIPPERY-CHICKEN-EDIT 68

=>

(E3 G3 B3)

(E3 G3 B3 CS4 DS4)

SYNOPSIS:

(defmethod add-pitches-to-chord ((sc slippery-chicken) player bar-num note-num

&rest pitches)

13.12 slippery-chicken-edit/add-tuplet-bracket-to-bar

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Add a tuplet bracket (with number) to a specified bar in a slippery-chicken

object. This method adds only one tuplet bracket of one tuplet type

(triplet, quintuplet etc.) at a time.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar to which the tuplet bracket is

to be added.

- The ID of the player to whose part the tuplet bracket is to be added.

- The bracket info defining the tuplet bracket to be added. This takes the

form of a three-element list specifying tuplet value, number of the event

(zero-based) on which the bracket is to begin, and number of the event on

which the bracket is to end, e.g. ’(3 0 2).

OPTIONAL ARGUMENTS:

T or NIL to indicate whether all existing tuplet brackets in the given bar

are to be deleted first. T = delete. Default = NIL>

RETURN VALUE:

T

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+sc-object+

13 SC/SLIPPERY-CHICKEN-EDIT 69

:ensemble ’(((va (viola :midi-channel 2))))

:set-palette ’((1 ((c3 d3 e3 f3 g3 a3 b3 c4 d4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((3 4) (te) - te te - { 3 te ts+ts te }

- fs fs fs fs fs -))

:pitch-seq-palette ((1 2 3 4 5 6 7 8 9 8)))))

:rthm-seq-map ’((1 ((va (1 1 1))))))))

(add-tuplet-bracket-to-bar mini 1 ’va ’(3 0 2))

(add-tuplet-bracket-to-bar mini 2 ’va ’(5 7 11))

(add-tuplet-bracket-to-bar mini 3 ’va ’(3 3 4) t)

(add-tuplet-bracket-to-bar mini 3 ’va ’(3 5 6)))

=> T

SYNOPSIS:

(defmethod add-tuplet-bracket-to-bar ((sc slippery-chicken) bar-num player

bracket-info

&optional (delete-all-tuplets-first nil))

13.13 slippery-chicken-edit/add-tuplet-brackets-to-beats

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Add the specified tuplet brackets (and numbers) to the specified event

objects in the specified bars within the given slippery-chicken object.

ARGUMENTS:

- A slippery-chicken object.

- The ID of the player to whose part the tuplet brackets are to be added.

- A list of 4-element sublists that is the bracket info. Each sublist must

consist of: the number of the bar to which the bracket is to be added;

the number that is the tuplet type (3 = triplet, 5 = quintuplet etc.);

the zero-based number of the event where the bracket is to begin; the

zero-based number that is the number of the event where the bracket is to

end; e.g. ’((2 3 0 5) (3 3 0 3) (5 5 0 4))

OPTIONAL ARGUMENTS:

T or NIL to indicate whether all existing tuplet bracket info in the given

bars is to first be deleted. T = delete. Default = NIL.

13 SC/SLIPPERY-CHICKEN-EDIT 70

RETURN VALUE:

NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+sc-object+

:ensemble ’(((va (viola :midi-channel 2))))

:set-palette ’((1 ((c3 e3 g3 c4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((3 4) - te te te - - fs fs fs fs fs -

- 28 28 28 28 28 28 28 -))

:pitch-seq-palette ((1 2 3 4 1 2 3 4 1 2 3 4 1

2 3)))))

:rthm-seq-map ’((1 ((va (1 1 1))))))))

(add-tuplet-brackets-to-beats mini ’va ’((1 3 0 2) (2 5 3 7) (3 7 8 14))))

=> NIL

SYNOPSIS:

(defmethod add-tuplet-brackets-to-beats

((sc slippery-chicken) player bracket-info

&optional (delete-all-tuplets-first nil))

13.14 slippery-chicken-edit/auto-accidentals

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Automatically determine which notes in each bar need accidentals and which

don’t.

This method also places cautionary accidentals (in parentheses) based on

how many notes back the last occurrence of that note/accidental combination

appeared in the bar. The first optional argument to the method allows the

user to specify how many notes back to look.

NB: As both cmn-display and write-lp-data-for-all call respell-notes by

default, that option must be set to NIL for this method to be

effective (see below).

13 SC/SLIPPERY-CHICKEN-EDIT 71

ARGUMENTS:

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

- An integer that is the number of notes back to look when placing

cautionary accidentals in parentheses. If the last occurrence of a given

repeated note/accidental combination was farther back than this number,

the accidental will be placed in the score in parentheses.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((fs4 gs4 as4))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 2 1 2 3 2)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1))))))))

(auto-accidentals mini 4)

(cmn-display mini :respell-notes nil))

=> NIL

SYNOPSIS:

(defmethod auto-accidentals ((sc slippery-chicken) &optional

(cautionary-distance 3)

ignore1 ignore2)

13.15 slippery-chicken-edit/auto-beam

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Automatically places indications for beam start- and end-points (1 and 0)

13 SC/SLIPPERY-CHICKEN-EDIT 72

in the BEAMS slot of the corresponding event objects.

By default, this method determines the start and end indications for beams

on the basis of the beat found in the time signature, but the user can

specify a different beat basis using the first optional argument.

ARGUMENTS:

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

- NIL, an integer that is a power-of-two rhythmic duration, or the

alphabetic representation of such a rhythm to specify the beat basis for

setting beams (e.g. 4 or ’h).

- T or NIL to indicate whether the method is to check whether an exact beat

of rhythms can be found for each beat of the bar. If T, a warning will be

printed when an exact beat cannot be found for each beat of the bar.

Default = T.

RETURN VALUE:

Returns NIL.

EXAMPLE:

;; Auto-beam the events of the given slippery-chicken object on the basis of a ;

;; half note: ;

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((fs4 gs4 as4))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 2 1 2 3 2)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1))))))))

(auto-beam mini ’h))

=> NIL

SYNOPSIS:

(defmethod auto-beam ((sc slippery-chicken) &optional (beat nil) (check-dur t))

13 SC/SLIPPERY-CHICKEN-EDIT 73

13.16 slippery-chicken-edit/auto-clefs

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Automatically create clef changes in the specified player’s or players’

part or parts by adding the appropriate clef symbol to the MARKS-BEFORE

slot of the corresponding event object.

This routine will only place clef symbols that are present in the given

instrument object’s CLEFS slot.

This method is called automatically by cmn-display and

write-lp-data-for-all, with the delete-clefs option set to T.

NB: While this routine generally does a good job of putting the proper

clefs in place, it will get confused if the pitches in a given player’s

part jump from very high to very low (e.g. over the complete range of

the piano).

ARGUMENTS:

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :verbose. T or NIL to indicate whether the method is to print feedback

about its operations to the Listener. T = print feedback. Default = NIL.

- :in-c. T or NIL to indicate whether the pitches processed are to be

handled as sounding or written pitches. T = sounding. Default = T.

- :players. A list containing the IDs of the players whose parts are to be

to have clefs automatically added.

- :delete-clefs. T or NIL to indicate whether the method should first

delete all clef symbols from the MARKS-BEFORE slots of all event objects

it is processing before setting the automatic clef changes.

- :delete-marks-before. T or NIL to indicate whether the MARKS-BEFORE slot

of all event objects processed should first be set to NIL.

T = set to NIL. Default = NIL.

RETURN VALUE:

Returns T

EXAMPLE:

13 SC/SLIPPERY-CHICKEN-EDIT 74

;;; Straightforward usage applied to just the VC player ;

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(vc (cello :midi-channel 2))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 f5))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1))

(vc (1 1 1 1))))))))

(auto-clefs mini :players ’(vc)))

=> T

SYNOPSIS:

(defmethod auto-clefs ((sc slippery-chicken)

&key verbose in-c players

(delete-clefs t)

(delete-marks-before nil))

13.17 slippery-chicken-edit/auto-slur

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Automatically add slurs to note groups in the specified measure range of a

given player’s part.

This method places slurs above all consecutive notes between rests. If a

value is specified for :end-bar and the last event in the end bar is not a

rest, the final sequence of attacked notes in that bar will not be

slurred.

NB: Slurs will automatically stop at repeated pitches. Staccato marks will

not stop the auto-slurring process but staccatos can be removed (see

below).

ARGUMENTS:

- A slippery-chicken object.

13 SC/SLIPPERY-CHICKEN-EDIT 75

- A player ID or list of player IDs for the parts in which the slurs are to

be placed.

OPTIONAL ARGUMENTS:

keyword arguments:

- :start-bar. An integer that is the first bar in which to automatically

place slurs.

- :end-bar. An integer that is the last bar in which to automatically place

slurs.

- :rm-slurs-first. T or NIL to indicate whether to first remove existing

slurs from the specified region. NB: If you already have slur marks

attached to events, setting this to NIL can produce unwanted results

caused by orphaned beg-slur or end-slur marks. T = remove existing slurs

first. Default = T.

- :rm-staccatos. T or NIL to indicate whether to first remove existing

staccato, tenuto, and accented staccato marks from the specified

region. T = remove staccatos. Default = NIL.

- :over-accents. T or NIL. Default = T.

- :verbose. T or NIL to indicate whether to print feedback from the process

to the Lisp listener. T = print. Default = NIL.

RETURN VALUE:

A list of sublists, each of which contains the start and end event, plus

the number of notes under the slur, for each slur added.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c3 d3 e3 f3 g4 a3 b3

c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) - e e - (s) e.

- s s e - - s (s) s s -))

:pitch-seq-palette ((1 2 3 4 5 6 7 8 9))

:marks (a 4))))

:rthm-seq-map ’((1 ((vn (1 1 1))))))))

(auto-slur mini ’vn

:start-bar 1

:end-bar 2))

13 SC/SLIPPERY-CHICKEN-EDIT 76

SYNOPSIS:

(defmethod auto-slur ((sc slippery-chicken) players

&key start-bar end-bar

(rm-slurs-first t)

(rm-staccatos t)

;; 5.4.11

(over-accents t)

verbose)

13.18 slippery-chicken-edit/bars-to-sc

[slippery-chicken-edit] [Functions]

DESCRIPTION:

Take a list of rthm-seq-bars and add them to a new or existing

slippery-chicken object. If already existing, we assume it’s one you’re

creating part by part with this function, as it’s not currently possible to

add a part like this in the middle of the score--the new part will be added

to the end of the last group of the ensemble (bottom of score) so make sure

to add parts in the order you want them.

NB Bear in mind that if you want to use midi-play, then the events in the

bars will need to have their midi-channel set (e.g. via make-event).

It’s the caller’s responsibility that any parts added have the same

time-signature structure as any existing part.

ARGUMENTS:

- A list of rthm-seq-bars

OPTIONAL ARGUMENTS:

keyword arguments:

- :sc. Either an existing slippery-chicken object or nil if one should be

created automatically. If nil, the following three arguments must be

specified, otherwise they will be ignored. Default = NIL.

- :sc-name. The name (symbol) for the slippery-chicken object to be

created. This will become a global variable. Default = ’*auto*.

- :player. The name (symbol) of the player to create. Default =

’player-one. (Remember that Lilypond has problems with player names

with numbers in them :/)

- :instrument. The id (symbol) of an already existing instrument in the

instrument-palette. Default = ’flute.

13 SC/SLIPPERY-CHICKEN-EDIT 77

- :update. Whether to call update-slots on the new slippery-chicken

object. Default = t.

- :section-id. The section id. Default = 1.

RETURN VALUE:

A slippery-chicken object.

EXAMPLE: SYNOPSIS:

(defun bars-to-sc (bars &key sc (sc-name ’*auto*) (player ’player-one)

(instrument-palette

+slippery-chicken-standard-instrument-palette+)

(instrument ’flute) (section-id 1) (update t))

13.19 slippery-chicken-edit/change-pitch

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Change the pitch of a specified event to a new specified pitch. The new

pitch is not required to be a member of the current set.

NB The new pitch is the sounding pitch if a transposing instrument.

NB This doesn’t update following tied-to notes.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the bar number in which the pitch is to be changed.

- An integer that is the number of the note in the specified bar whose

pitch is to be changed.

- The ID of the player for whom the pitch is to be changed.

- A note-name symbol that is the new pitch.

OPTIONAL ARGUMENTS:

T or NIL to indicate whether the written or sounding pitch should be

changed. Default = NIL (sounding).

RETURN VALUE:

Returns T.

13 SC/SLIPPERY-CHICKEN-EDIT 78

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((d3 e3 f3 g3 a3 b3 c4 e4))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vc (1 1 1 1))))))))

(change-pitch mini 1 3 ’vc ’fs3))

=> T

SYNOPSIS:

(defmethod change-pitch ((sc slippery-chicken) bar-num note-num player

new-pitch &optional written)

13.20 slippery-chicken-edit/change-pitches

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Change the pitches of the specified event objects for a given player to the

specified new pitches.

If the new pitches are passed as a simple flat list, the method will just

change the pitch of each consecutive attacked event object (with NIL

indicating no change), moving from bar to bar as necessary, until all of

the specified new pitches are used up. Also, if a flat list is passed, each

new pitch specified will be applied to each consecutive attacked note;

i.e., ties don’t count as new pitches.

Tied-to events are left with the old pitch information, which is of course

a potential problem. When generating scores though, we usually call

respell-notes, which calls check-ties, which corrects spellings of tied-to

notes and therefore in effect changes those notes too. So generally, we

don’t have to worry about this, but if you explicitly tell slippery chicken

not to respell notes, you’ll need to call check-ties with the first

optional argument as T.

13 SC/SLIPPERY-CHICKEN-EDIT 79

Also see the documentation in the bar-holder class for the method of the

same name.

ARGUMENTS:

- A slippery-chicken object.

- The ID of the player whose part is to be modified.

- An integer that is the number of the first bar whose pitches are to be

modified.

- A list note-name symbols and NILs, or a list of lists of note-name

symbols and NILs, which are the new pitches. If a simple flat list, see

the comment in the description above. If a list of lists, each sub-list

will represent a full bar; e.g., (change-pitches bh ’vla 5 ’((g3 gs4) nil

(nil nil aqf5))) will change the pitches in bars 5 and 7 (for the player

’vla), whereas bar six, indicated by nil, wouldn’t be changed; similarly

the first two notes of bar 7, being nil, will also not be changed, but

note 3 will.

OPTIONAL ARGUMENTS:

keyword arguments:

- :use-last-octave. T or NIL to indicate whether or not each consecutive

new pitch listed will automatically take the most recent octave number

specified; e.g. ’((a3 b g cs4)). T = use last octave number. Default = T.

- :marks. A list of marks to be added to the events objects. This option

can only be used in conjunction with the simple flat list of pitches. In

this case the list of pitches and list of marks must be the same length

and correspond to each other item by item. Sub-lists can be used to add

several marks to a single event. NB: See cmn.lsp::get-cmn-marks for the

list of recognised marks. If NIL, no marks will be added. Default = NIL.

- :written. T or NIL to indicate whether these are the written or sounding

notes for a transposing instrument. Default = NIL.

- :warn. If there are more pitches in the given list than there are events

in the slippery-chicken structure, issue a warning, unless NIL.

Default = T.

RETURN VALUE:

If a the new pitches are passed as a simple flat list, the method returns

the number of the bar in which the pitches were changed;

otherwise returns T.

EXAMPLE:

(let ((mini

13 SC/SLIPPERY-CHICKEN-EDIT 80

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((d3 e3 f3 g3 a3 b3 c4 e4))))

:set-map ’((1 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vc (1 1 1 1 1 1))))))))

(change-pitches mini ’vc 2 ’((fs3 gs3 as3)))

(change-pitches mini ’vc 3 ’((nil nil fs3 gs as ds fs gs)

nil

(cs4 ds fs))))

=> T

SYNOPSIS:

(defmethod change-pitches ((sc slippery-chicken) player start-bar new-pitches

&key (use-last-octave t) marks written

(warn t))

13.21 slippery-chicken-edit/change-time-sig

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Force a change of the time-sig associated with a specified bar.

NB: This method does not check to see if the rhythms in the bar add up to a

complete bar in the new time-sig.

Also see rthm-seq-bar (setf time-sig).

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar whose time signature should be

changed or a list that is a reference to the bar whose time signature is

to be changed in the format (section sequence bar).

- The new signature in the format (number-of-beats beat-unit).

RETURN VALUE:

13 SC/SLIPPERY-CHICKEN-EDIT 81

Returns T.

EXAMPLE:

;;; Changing two time signatures; once using the integer bar reference, the

;;; second time using the list reference to the bar number.

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((d3 e3 f3 g3 a3 b3 c4 e4))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vc (1 1 1 1))))))))

(change-time-sig mini 2 ’(3 8))

(change-time-sig mini ’(1 1 1) ’(5 8)))

=> T

SYNOPSIS:

(defmethod change-time-sig ((sc slippery-chicken) bar-num-or-ref new-time-sig)

13.22 slippery-chicken-edit/consolidate-all-notes

[slippery-chicken-edit] [Methods]

DESCRIPTION:

A convenience method which just calls the consolidate-notes method from the

rthm-seq-bar class for all the bars specified in the arguments.

ARGUMENTS:

- the slippery-chicken object

- the first bar number in which consolidation should take place

- the last bar number in which consolidation should take place (inclusive)

- A list of the IDs of the players to whose parts the consolidation should

be applied. Can also be a single symbol.

RETURN VALUE:

- A list of the rthm-seq-bar objects that were modified. See map-over-bars

for more details.

13 SC/SLIPPERY-CHICKEN-EDIT 82

SYNOPSIS:

(defmethod consolidate-all-notes ((sc slippery-chicken) start-bar end-bar

players)

13.23 slippery-chicken-edit/consolidate-all-rests

[slippery-chicken-edit] [Methods]

DESCRIPTION:

A convenience method which just calls the consolidate-rests method from the

rthm-seq-bar class for all the bars specified in the arguments.

ARGUMENTS:

- the slippery-chicken object

- the first bar number in which consolidation should take place

- the last bar number in which consolidation should take place (inclusive)

- A list of the IDs of the players to whose parts the consolidation should

be applied. Can also be a single symbol.

OPTIONAL ARGUMENTS:

T or NIL to indicate whether the method should print a warning to the Lisp

listener if it is mathematically unable to consolidate the rests. T = print

warning. Default = NIL.

RETURN VALUE:

- A list of the rthm-seq-bar objects that were modified. See map-over-bars

for more details.

SYNOPSIS:

(defmethod consolidate-all-rests ((sc slippery-chicken) start-bar end-bar

players &optional warn)

13.24 slippery-chicken-edit/delete-bars

[slippery-chicken-edit] [Methods]

DESCRIPTION:

13 SC/SLIPPERY-CHICKEN-EDIT 83

Delete a sequence of consecutive bars from the given slippery-chicken

object.

NB This might delete rehearsal letters, instrument changes (and maybe other

things) attached to a bar/event.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the first bar to delete.

OPTIONAL ARGUMENTS:

keyword arguments:

- :num-bars. An integer that is the number of consecutive bars, including

the start-bar, to delete. This argument cannot be used simultaneously

with :end-bar

- :end-bar. An integer that is the number of the last of the consecutive

bars to delete. This argument cannot be used simultaneously with

:num-bars.

- :print. Print feedback of the process to the Listener, including a

print-simple of the bars deleted.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((d3 e3 f3 g3 a3 b3 c4 e4))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vc (1 1 1 1))))))))

(delete-bars mini 2 :end-bar 3)

(delete-bars mini 2 :num-bars 1))

=> T

SYNOPSIS:

13 SC/SLIPPERY-CHICKEN-EDIT 84

(defmethod delete-bars ((sc slippery-chicken) start-bar

&key num-bars end-bar print)

13.25 slippery-chicken-edit/delete-clefs

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Delete the clef symbol held in the MARKS-BEFORE slot of the specified event

object within the given slippery-chicken object.

ARGUMENTS:

NB: The optional arguments are actually required.

- A slippery-chicken object.

- The ID of the player from whose part the clef symbol is to be deleted.

- An integer that is the number of the bar from which the clef symbol is to

be deleted.

- An integer that is the number of the event object within the specified

from whose MARKS-BEFORE slot the clef symbol is to be deleted. This is a

1-based index but counts rests and ties.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 f5))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vc (1 1 1 1))))))))

(auto-clefs mini)

(delete-clefs mini ’vc 1 3))

=> NIL

SYNOPSIS:

13 SC/SLIPPERY-CHICKEN-EDIT 85

(defmethod delete-clefs ((sc slippery-chicken) &optional

player bar-num event-num)

13.26 slippery-chicken-edit/delete-events

[slippery-chicken-edit] [Methods]

DATE:

21-Jul-2011 (Pula)

DESCRIPTION:

Turn notes into rests by setting the IS-REST slots of the specified

consecutive event objects within the given slippery-chicken object to T.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the first bar for which the notes are to

be changed to rests.

- An integer that is the index of the first event object within the

specified start bar for which the IS-REST slot is to be changed to

T. This number is 1-based and counts rests and ties.

- An integer that is the number of the last bar for which the notes are to

be changed to rests.

- An integer that is the index of the last event object within the

specified end bar for which the IS-REST slot is to be changed to T. This

number is 1-based and counts rests and ties. If NIL, apply the change to

all events in the given bar.

OPTIONAL ARGUMENTS:

- A list of the IDs of the players whose parts are to be modified. If NIL,

apply the method to the parts of all players.

- T or NIL to indicate whether to consolidate resulting consecutive rests

into one longer rest each. T = consolidate. Default = T.

RETURN VALUE:

Returns T.

EXAMPLE:

13 SC/SLIPPERY-CHICKEN-EDIT 86

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 f5))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vc (1 1 1 1))))))))

(delete-events mini 2 2 3 nil ’vc))

=> T

SYNOPSIS:

(defmethod delete-events ((sc slippery-chicken) start-bar start-event end-bar

end-event &optional players (consolidate-rests t))

13.27 slippery-chicken-edit/delete-rehearsal-letter

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Delete the rehearsal letter from a specified bar of on or more specified

players’ parts by setting the REHEARSAL-LETTER slot of the corresponding

rthm-seq-bar object to NIL.

NB: This deletes the given rehearsal letter without resetting and

re-ordering the remaining rehearsal letters.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which the rehearsal letter

is to be deleted. NB: The rehearsal letter for a given bar is internally

actually attached to the previous bar. The number given here is the

number from the user’s perspective, but the change will be reflected in

the bar with the number specified -1.

OPTIONAL ARGUMENTS:

- A list consisting of the IDs of the players from whose parts the

rehearsal letter is to be deleted.

13 SC/SLIPPERY-CHICKEN-EDIT 87

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 f5))))

:set-map ’((1 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vc (1 1 1 1 1 1)))))

:rehearsal-letters ’(2 4 6))))

(delete-rehearsal-letter mini 2 ’(vc)))

=> NIL

SYNOPSIS:

(defmethod delete-rehearsal-letter ((sc slippery-chicken) bar-num

&optional players)

13.28 slippery-chicken-edit/delete-slur

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Delete a slur mark that starts on a specified note within a specified bar

of a specified player’s part by deleting the BEG-SL and END-SL marks from

the corresponding event objects.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which the slur is to be

deleted.

- An integer that is the number of the note on which the slur to be deleted

starts within the given bar. This number counts tied-notes but not

rests.

- The ID of the player from whose part the slur is to be deleted.

13 SC/SLIPPERY-CHICKEN-EDIT 88

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 f5))))

:set-map ’((1 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8))

:marks (slur 1 8))))

:rthm-seq-map ’((1 ((vc (1 1 1 1 1 1))))))))

(delete-slur mini 1 1 ’vc)

(delete-slur mini 3 1 ’vc))

=> NIL

SYNOPSIS:

(defmethod delete-slur ((sc slippery-chicken) bar-num note-num player)

13.29 slippery-chicken-edit/double-events

[slippery-chicken-edit] [Methods]

DATE:

20-Jul-2011 (Pula)

DESCRIPTION:

Copy the specified events from one player to the corresponding bars of one

or more other players.

NB: Although partial bars can be copied from the source player, the entire

bars of the target players are always overwritten, resulting in rests

in those segments of the target players’ bars that do not contain the

copied material. This method thus best lends itself to copying into

target players parts that have rests in the corresponding bars.

13 SC/SLIPPERY-CHICKEN-EDIT 89

ARGUMENTS:

- A slippery-chicken object.

- The ID of the player from whose part the events are to be copied.

- The ID or a list of IDs of the player or players into whose parts the

copied events are to be placed.

- An integer that is the number of the first bar from which the events are

to be copied.

- An integer that is the number of the first event to be copied from the

specified start bar. This number is 1-based and counts rests and ties.

- An integer that is the number of the last bar from which the events are

to be copied.

- NIL or an integer that is the number of the last event to be copied from

the specified end bar. This number is 1-based and counts rests and

ties. If NIL, all event from the given bar will be copied.

OPTIONAL ARGUMENTS:

keyword arguments:

- :transposition. A positive or negative number that is the number of

semitones by which the copied material is to be first transposed. This

number can be a decimal number, in which case the resulting pitches will

be rounded to the nearest microtone (if the current tuning environment is

capable of microtones).

- :consolidate-rests. T or NIL to indicate whether resulting consecutive

rests should be consolidated each into one longer rest.

T = consolidate. Default = T.

- :update. T or NIL to indicate whether to update the slots of the given

slippery-chicken object after copying. T = update. Default = T.

RETURN VALUE:

Returns T

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((bsn (bassoon :midi-channel 1))

(tbn (tenor-trombone :midi-channel 2))

(vlc (cello :midi-channel 3))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 f5))))

:set-map ’((1 (1 1 1 1 1 1)))

13 SC/SLIPPERY-CHICKEN-EDIT 90

:rthm-seq-palette ’((1 ((((4 4) (w)))))

(2 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((bsn (1 1 1 1 1 1))

(tbn (1 1 1 1 1 1))

(vlc (2 2 2 2 2 2))))))))

(double-events mini ’vlc ’(bsn tbn) 2 3 4 2)

(double-events mini ’vlc ’bsn 5 1 5 nil :transposition 3.5))

=> T

SYNOPSIS:

(defmethod double-events ((sc slippery-chicken) master-player doubling-players

start-bar start-event end-bar end-event

&key transposition (consolidate-rests t) (update t))

13.30 slippery-chicken-edit/enharmonic-spellings

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Change the pitch of specified event objects to their enharmonic

equivalents.

This takes as its second argument a list of lists, each of which consists

of the ID of the player whose part is to be altered and a series of

bar-number/event-number pairs, where (2 3) indicates that the pitch of the

third event of the second bar is to be changed to its enharmonic

equivalent.

Pitches within chords are specified by following the bar number with a

2-item list consisting of the event number and the number of the pitch

within the chord, counting from low to high, where (2 (2 4)) indicates that

the fourth pitch from the bottom of the chord located in the second event

object of bar 2 should be changed to its enharmonic equivalent.

An optional T can be included to indicate that the written pitch is to be

changed, but not the sounding pitch, as in (cl (3 4 t)).

NB: In order for this method to work, the :respell-notes option of

cmn-display and write-lp-data-for-all must be set to NIL.

ARGUMENTS:

13 SC/SLIPPERY-CHICKEN-EDIT 91

- A slippery-chicken object.

- The list of changes to be made, in the format ’((player changes...)),

e.g.:

’((cl (3 3 t) (3 4 t))

(pn (2 (2 4)))

(vc (1 1) (1 3) (1 4) (1 6)))

RETURN VALUE:

Returns T.

EXAMPLE: SYNOPSIS:

(defmethod enharmonic-spellings ((sc slippery-chicken) corrections)

13.31 slippery-chicken-edit/enharmonics

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Change the sharp/flat pitches of a specified region of a specified player’s

part to their enharmonic equivalent.

NB: This method only affects pitches that already have sharp/flat

accidentals. It does not affect "white-key" notes (e.g. C-natural =

B-sharp etc.)

NB: As the cmn-display and write-lp-data-for-all methods call

:respell-notes by default, this option must be explicitly set to NIL for

this method to be effective.

ARGUMENTS:

- A slippery-chicken object.

- An integer or a 2-item list of integers that indicates the first bar in

which the enharmonics are to be changed. If an integer, the method will

be applied to all sharp/flat pitches in the bar of that number. If a

2-item list of integers, these represent ’(bar-number note-number). The

note number is 1-based and counts ties.

- An integer or a 2-item list of integers that indicates the last bar in

which the enharmonics are to be changed. If an integer, the method will

be applied to all sharp/flat pitches in the bar of that number. If a

2-item list of integers, these represent ’(bar-number note-number). The

13 SC/SLIPPERY-CHICKEN-EDIT 92

note number is 1-based and counts ties.

- The ID of the player whose part is to be changed.

OPTIONAL ARGUMENTS:

keyword arguments

- :written. T or NIL to indicate whether to change written-only pitches or

sounding-only pitches. T = written-only. Default = T.

- :pitches. NIL or a list of note-name symbols. If NIL, all sharp/flat

pitches in the specified region will be changed to their enharmonic

equivalents. If a list of one or more note-name symbols, only those

pitches will be affected.

- :force-naturals. T or NIL to indicate whether to force "natural" note

names that contain no F or S in their name to convert to their enharmonic

equivalent (ie, B3 = CF4). NB double-flats/sharps are not implemented so

this will only work on F/E B/C.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(pn (piano :midi-channel 2))

(vn (violin :midi-channel 3))))

:set-palette ’((1 ((cs4 ds4 e4 fs4 gs4 as4 b4 cs5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) - e e e e - - e e e e -))

:pitch-seq-palette ((1 (2) 3 4 (5) 6 (7) 8)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(pn (1 1 1 1 1))

(vn (1 1 1 1 1))))))))

(enharmonics mini 1 2 ’vn)

(enharmonics mini 2 3 ’pn :pitches ’(cs4 ds4))

(enharmonics mini 3 4 ’cl :written nil))

=> T

SYNOPSIS:

(defmethod enharmonics ((sc slippery-chicken) start end player

&key (written t) pitches force-naturals)

13 SC/SLIPPERY-CHICKEN-EDIT 93

13.32 slippery-chicken-edit/force-artificial-harmonics

[slippery-chicken-edit] [Methods]

DESCRIPTION:

For string scoring purposes only: Transpose the pitch of the given event

object down two octaves and add the harmonic symbol at the perfect fourth.

If this results in a fingered pitch (or even a touched perfect fourth) that

is out of the range of the instrument, a warning will be printed to the

Listener, the pitch will not be transposed, and the harmonic diamond will

not be added.

ARGUMENTS:

- A slippery-chicken object.

- The ID of the player whose part is to be changed.

- An integer that is the number of the first bar in which artificial

harmonics are to be created.

- An integer that is the number of the first event in that bar that is to

be changed into an artificial harmonic.

- An integer that is the number of the last bar in which artificial

harmonics are to be created.

OPTIONAL ARGUMENTS:

- An integer that is the number of the first event in that bar that is to

be changed into an artificial harmonic. If no end-event is specified, all

event objects in the last bar will be changed to artificial harmonics.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 f4 b4 e5 a5 d6 g7 c8))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

13 SC/SLIPPERY-CHICKEN-EDIT 94

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vn (1 1 1))))))))

(force-artificial-harmonics mini ’vn 2 3 3 2))

=> T

SYNOPSIS:

(defmethod force-artificial-harmonics ((sc slippery-chicken) player start-bar

start-event end-bar &optional end-event)

13.33 slippery-chicken-edit/force-rest-bars

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Delete all notes from the specified bars and replace them with full-bar

rests.

NB: The start-bar and end-bar index numbers are inclusive

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the first bar to change to a full bar of

rest.

- An integer that is the number of the last bar to change to a full bar of

rest.

- A list containing the IDs of the players in whose parts the full-bar

rests are to be forced.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (viola :midi-channel 2))

(vc (cello :midi-channel 3))))

:tempo-map ’((1 (q 60)))

13 SC/SLIPPERY-CHICKEN-EDIT 95

:set-palette ’((1 ((c4 e4 g4 b4 d5 f5 a5 c6))))

:set-map ’((1 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1))

(va (1 1 1 1 1 1))

(vc (1 1 1 1 1 1))))))))

(force-rest-bars mini 3 5 ’(vn vc)))

=> NIL

SYNOPSIS:

(defmethod force-rest-bars ((sc slippery-chicken) start-bar end-bar players)

13.34 slippery-chicken-edit/map-over-bars

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Apply the specified method/function to the bars (all rthm-seq-bar objects)

of one or more players’ parts in the given slippery-chicken object.

ARGUMENTS:

- A slippery-chicken object.

- A number that is the first bar to which the function should be applied.

- A number that is the last bar to which the function should be applied.

- A list of the IDs of the players to whose parts the function should be

applied. Can also be a single symbol.

- The method or function itself. This can be a user-defined function or the

name of an existing method or function. It should take at least one

argument, a rthm-seq-bar, and any other arguments as supplied.

OPTIONAL ARGUMENTS:

- Any additional argument values the specified method/function may

take or require.

RETURN VALUE:

- A list of the rthm-seq-bar objects that were modified. NB This might be

a long list, and, depending on your Lisp implementation, formatting of the

bars might cause Lisp to appear to ’hang’.

13 SC/SLIPPERY-CHICKEN-EDIT 96

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax ((alto-sax tenor-sax) :midi-channel 1))))

:instrument-change-map ’((1 ((sax ((1 alto-sax) (3 tenor-sax)))))

(2 ((sax ((2 alto-sax) (5 tenor-sax)))))

(3 ((sax ((3 alto-sax) (4 tenor-sax))))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h e (s) (s) e+s+s))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))))

(2 ((sax (1 1 1 1 1))))

(3 ((sax (1 1 1 1 1))))))))

(print (map-over-bars mini 1 nil nil #’consolidate-notes nil ’q)))

=>

(

RTHM-SEQ-BAR: time-sig: 2 (4 4), time-sig-given: T, bar-num: 1,

[...]

RTHM-SEQ-BAR: time-sig: 2 (4 4), time-sig-given: T, bar-num: 2,

[...]

RTHM-SEQ-BAR: time-sig: 2 (4 4), time-sig-given: T, bar-num: 3,

[...]

RTHM-SEQ-BAR: time-sig: 2 (4 4), time-sig-given: T, bar-num: 4,

[...]

)

SYNOPSIS:

(defmethod map-over-bars ((sc slippery-chicken) start-bar end-bar players

function &rest further-args)

13.35 slippery-chicken-edit/move-clef

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Move a specified clef from a specified event object to another.

13 SC/SLIPPERY-CHICKEN-EDIT 97

NB: As the :auto-clefs option of cmn-display and write-lp-data-for all

first deletes all clefs before automatically placing them, this

argument must be set to NIL. The auto-clefs method can be called

outside of the cmn-display or write-lp-data-for-all methods instead.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the given clef is

located.

- An integer that is the number of the event object in the given bar to

which the given clef is attached.

- An integer that is the number of the bar to which the given clef is

to be moved (this can be the same bar).

- An integer that is the number of the event object in the new bar to

which the given clef is to attached.

- The ID of the player in whose part the clef is to be moved.

RETURN VALUE:

Returns the value of the MARKS-BEFORE slot of the event object to which the

clef is moved.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 f5))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vc (1 1 1 1))))))))

(auto-clefs mini)

(move-clef mini 1 6 1 8 ’vc)

(cmn-display mini :auto-clefs nil))

SYNOPSIS:

(defmethod move-clef ((sc slippery-chicken) from-bar from-event

to-bar to-event player)

13 SC/SLIPPERY-CHICKEN-EDIT 98

13.36 slippery-chicken-edit/move-events

[slippery-chicken-edit] [Methods]

DATE:

20-Jul-2011 (Pula)

DESCRIPTION:

Move a specified sequence of consecutive event objects from one player to

another, deleting the events from the source player.

NB: Although partial bars can be moved from the source player, the entire

bars of the target players are always overwritten, resulting in rests

in those segments of the target players’ bars that do not contain the

moved material. This method thus best lends itself to moving into

target players parts that have rests in the corresponding bars.

ARGUMENTS:

- A slippery-chicken object.

- The ID of the source player.

- The ID of the target player.

- A number that is the first bar from which events are to be moved.

- A number that is the first event within the start-bar that is to be

moved.

- A number that is the last bar from which events are to be moved.

- A number that is the last event within the end-bar that is to be

moved.

OPTIONAL ARGUMENTS:

keyword arguments:

- :transposition. A positive or negative number that is the number of

semitones by which the copied material is to be first transposed. This

number can be a decimal number, in which case the resulting pitches will

be rounded to the nearest microtone (if the current tuning environment is

capable of microtones).

- :consolidate-rests. T or NIL to indicate whether resulting consecutive

rests should be consolidated each into one longer rest.

T = consolidate. Default = T.

RETURN VALUE:

Returns T.

13 SC/SLIPPERY-CHICKEN-EDIT 99

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((bn (bassoon :midi-channel 1))

(vc (cello :midi-channel 2))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 f5))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8))))

(2 ((((4 4) (w))))))

:rthm-seq-map ’((1 ((bn (1 1 1 1))

(vc (2 2 2 2))))))))

(move-events mini ’bn ’vc 2 3 3 2)

(move-events mini ’bn ’vc 4 1 4 2 :transposition 4.5))

=> T

SYNOPSIS:

(defmethod move-events ((sc slippery-chicken) from-player to-player

start-bar start-event end-bar end-event

&key transposition (consolidate-rests t))

13.37 slippery-chicken-edit/note-add-bracket-offset

[slippery-chicken-edit] [Methods]

DESCRIPTION:

For CMN only: Adjust the position, lengths, and angles of the tuplet

bracket attached to a specified event object.

NB: The bracket data is stored in the BRACKET slot of the first event

object of a given tuplet figure.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the tuplet bracket is

located.

- An integer that is the event to which the tuplet bracket is

attached. Tuplet brackets are attached to the first event object of a

13 SC/SLIPPERY-CHICKEN-EDIT 100

given tuplet figure.

- The ID of the player in whose part the tuplet bracket is located.

OPTIONAL ARGUMENTS:

keyword arguments:

NB: At least one of these arguments must be set in order to create a

change.

- :dx. A positive or negative decimal number to indicate the horizontal

offset of the entire bracket.

- :dy. A positive or negative decimal number to indicate the vertical

offset of the entire bracket.

- :dx0. A positive or negative decimal number to indicate the horizontal

offset of the left corner of the bracket.

- :dy0.A positive or negative decimal number to indicate the vertical

offset of the left corner of the bracket.

- :dx1. A positive or negative decimal number to indicate the horizontal

offset of the right corner of the bracket.

- :dy1. A positive or negative decimal number to indicate the vertical

offset of the right corner of the bracket.

- :index. An integer that indicates which bracket of a nested bracket on

the same event is to be affected. 0 = outermost bracket, 1 = first nested

bracket, etc. Default = 0.

RETURN VALUE:

Returns a list of the bracket start/end indicator and the tuplet value

followed by the offset values passed to the keyword arguments.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((f3 g3 a3 b3))))

:set-map ’((1 (1)))

:rthm-seq-palette ’((1 ((((2 4) { 3 te te te } q))

:pitch-seq-palette ((1 2 3 4)))))

:rthm-seq-map ’((1 ((vc (1))))))))

(note-add-bracket-offset mini 1 1 ’vc

:dx -.1 :dy -.3

:dx0 -.1 :dy0 -.4

:dx1 .3 :dy1 -.1))

13 SC/SLIPPERY-CHICKEN-EDIT 101

=> (1 3 -0.1 -0.3 -0.1 -0.4 0.3 -0.1)

SYNOPSIS:

(defmethod note-add-bracket-offset ((sc slippery-chicken)

bar-num note-num player

&key (dx nil) (dy nil)

(dx0 nil) (dy0 nil)

(dx1 nil) (dy1 nil)

(index 0))

13.38 slippery-chicken-edit/process-events-by-time

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Apply the given function to all event objects within the given measure

range in order of their chronological occurrence. The function can take

one argument only: the current event object. NB If the time of the event

is needed it can be accessed in the given function via the event’s

start-time slot.

ARGUMENTS:

- A slippery-chicken object.

- A function (or variable to which a function has been assigned).

OPTIONAL ARGUMENTS:

keyword arguments:

- :start-bar. An integer that is the first bar in which the function is to

be applied to event objects. Default = 1.

- :end-bar. NIL or an integer that is the last bar in which the function is

to be applied to event objects. If NIL, the last bar of the

slippery-chicken object is used. Default = NIL.

RETURN VALUE:

T

EXAMPLE:

13 SC/SLIPPERY-CHICKEN-EDIT 102

(let ((marks (make-cscl ’(a s as te ts at))))

(defun add-random-marks (event)

(unless (is-rest event)

(setf (marks event) (list (get-next marks))))))

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (viola :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((3 4) s (e.) (s) s (e) (e) s (s)))

:pitch-seq-palette ((1 2 3))))

(2 ((((3 4) (s) s (e) (e) s (s) s (e.)))

:pitch-seq-palette ((1 2 3))))

(3 ((((3 4) (e) s (s) s (e.) (s) s (e)))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 2 3))

(va (2 3 1))

(vc (3 1 2))))))))

(process-events-by-time mini #’add-random-marks))

SYNOPSIS:

(defmethod process-events-by-time ((sc slippery-chicken) function

&key (start-bar 1) end-bar)

13.39 slippery-chicken-edit/re-bar

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Arrange the events of specified consecutive bars in a given

slippery-chicken object into new bars of a different time signature. If the

number of beats in the specified series of events does not fit evenly into

full measures of the the specified time signature, the method will do its

best to create occasional bars of a different time-signature that are as

close as possible to the desired length.

This method will only combine existing short bars into longer ones; it

won’t split up longer bars and recombine them.

NB: This method should not be confused with the rebar method.

13 SC/SLIPPERY-CHICKEN-EDIT 103

ARGUMENTS:

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

keyword arguments

- :start-bar. An integer that is the number of the first bar whose events

are to be re-barred.

- :end-bar. An integer that is the number of the last bar whose events are

to be re-barred.

- :min-time-sig. A time signature in the form of a 2-item list containing

the number of beats and the beat unit; e.g. ’(3 4). This is a target time

signature from which the method may occasionally deviate if the number of

events does not fit evenly into full bars of the specified time

signature.

- :verbose. T or NIL to indicate whether to print feedback on the

re-barring process to the Listener. T = print feedback. Default = NIL.

- :check-ties. T or NIL to indicate whether to force the method to ensure

that all ties have a beginning and ending. T = check.

Default = T.

- :auto-beam. T, NIL, or an integer. If T, the method will automatically

attach beam indications to the corresponding events according to the beat

unit of the time signature. If an integer, the method will beam in

accordance with a beat unit that is equal to that integer. If NIL, the

method will not automatically place beams. Default = T.

- :update-slots. T or NIL to indicate whether to update all slots of the

given slippery-chicken object after applying the method. This is an

internal argument and will generally not be needed by the user.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 f5))))

:set-map ’((1 (1 1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4)))))

13 SC/SLIPPERY-CHICKEN-EDIT 104

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1 1))))))))

(re-bar mini :start-bar 2 :end-bar 5 :min-time-sig ’(4 4) :auto-beam 4))

=> T

SYNOPSIS:

(defmethod re-bar ((sc slippery-chicken)

&key start-bar

end-bar

;; the following is just a list like ’(3 8) ’(5 8)

min-time-sig

verbose

;; MDE Thu Feb 9 10:36:02 2012 -- seems if we don’t

;; update-slots then the new bar structure isn’t displayed

(update-slots t)

(check-ties t)

;; could also be a beat rhythmic unit

(auto-beam t))

13.40 slippery-chicken-edit/remove-extraneous-dynamics

[slippery-chicken-edit] [Methods]

DESCRIPTION:

A post-generation editing method: If two or more consecutive event objects

have the same dynamic, remove that dynamic marking from all but the first

of these.

ARGUMENTS:

- A slippery-chicken object.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

13 SC/SLIPPERY-CHICKEN-EDIT 105

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 f5))))

:set-map ’((1 (1 1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4))

:marks (f 1 f 2 f 3 f 4))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1 1))))))))

(remove-extraneous-dynamics mini))

=> T

SYNOPSIS:

(defmethod remove-extraneous-dynamics ((sc slippery-chicken))

13.41 slippery-chicken-edit/replace-events

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Replace one or more consecutive existing event objects with new event

objects. All references are 1-based. This method can be applied to only one

bar at a time.

One or more new event objects can be specified as a replacement for one

single original event object.

ARGUMENTS:

- A slippery-chicken object.

- The ID of the player whose part is to be modified.

- An integer that is the number of the bar in which the change is to be

made; or a reference to the bar in the format ’(section sequence bar).

- An integer that is the number of the first event object in the given bar

to replace.

- An integer that is the total number of consecutive original event objects

to replace.

- A list of the new event objects, each in turn specified as a 2-item list

in the format (pitch rhythm), e.g. ’((c4 e)). Rests are indicated with

NIL or ’r, e.g. (nil s) (r h). Chords are indicated by enclosing the

pitches of the chord in a list, e.g. ((c4 e4) e).

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to automatically re-beam the given bar after

13 SC/SLIPPERY-CHICKEN-EDIT 106

replacing the events. T = beam. Default = NIL.

- A list of integers to indicate tuplet bracket placement, in the format

’(tuplet-value start-event end-event). These numbers are 0-based and

inclusive and count rests.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 f5))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q (e) s s))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1))))))))

(replace-events mini ’vn 1 2 1 ’((nil s) ((ds5 fs5) s)) t)

(replace-events mini ’vn 2 2 1 ’((cs5 e)))

(replace-events mini ’vn ’(1 3 1) 3 1 ’((df4 s)))

(replace-events mini ’vn 4 1 1 ’((ds4 te) (r te) (b3 te)) t ’(3 0 2)))

=> T

SYNOPSIS:

(defmethod replace-events ((sc slippery-chicken) player bar-num start-event

replace-num-events new-events

&optional (auto-beam nil) tuplet-brackets)

13.42 slippery-chicken-edit/replace-multi-bar-events

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Replace specified consecutive event objects across several bars.

The new rhythms provided must produce full bars for all bars specified;

i.e., if only a quarter note is provided as the new event for a 2/4 bar,

the method will not automatically fill up the remainder of the bar.

13 SC/SLIPPERY-CHICKEN-EDIT 107

ARGUMENTS:

- A slippery-chicken object.

- The ID of the player whose part is to be modified.

- An integer that is the number of the first bar in which event objects are

to be replaced. This can be an absolute bar number or a list in the form

’(section sequence bar); or with subsections then e.g. ’((3 1) 4 2)).

- An integer that is the number of bars in which event objects will be

replaced.

- The list of new event objects. The new event objects can be passed as

complete event objects; as a list of 2-item lists that are

note-name/rhythm pairs, e.g: ’((c4 q) (d4 e)); or as a list with two

sub-lists, the first being just the sequence of rhythms and the second

being just the sequence of pitches, e.g: ’((q e) (c4 d4)). For the

latter, :interleaved must be set to NIL. (see :interleaved below). Pitch

data is the usual cs4 or (cs4 cd3) for chords, and NIL or ’r indicate a

rest. NB: All pitches are sounding pitches; written pitches will be

created for transposing instruments where necessary.

OPTIONAL ARGUMENTS:

keyword arguments:

- :interleaved. T or NIL to indicate whether the new event data is to be

processed as a list of note-name/rhythm pairs (or existing event

objects), or if it is to be processed as a list with two sub-lists, the

first containing the sequence of rhythms and the second containing the

sequence of pitches (see above). T = interleaved, i.e. already existing

event objects or a list of note-name/rhythm pairs. NIL = separate lists

for rhythms and pitches. Default = T.

If this argument is T, the list of 2-element lists (note-name/rhythm

pairs) is passed to make-events, but such a list can contain no ties. If

the argument is set to NIL, the rhythm and pitch data is passed as two

separate lists to make-events2 where + can be used to indicate ties.

- :consolidate-rests. T or NIL to indicate whether shorter rests should

automatically be consolidated into a single longer rest.

T = consolidate. Default = T.

NB: slippery chicken will always consolidate full bars of rest into

measure-rests, regardless of the value of this argument.

- :beat. NIL or an integer (rhythm symbol) that indicates which beat basis

will be used when consolidating rests. If NIL, the beat of the time

signature will be used (e.g. quarter in 4/4). Default = NIL.

- :auto-beam. T or NIL to indicate whether to automatically beam the new

events. T = automatically beam. Default = T.

- :tuplet-bracket. NIL or an integer to indicate whether to automatically

add tuplet (e.g. triplet/quintuplet) brackets to the new events where

applicable. If this is an integer, all tuplets in the given bar will be

13 SC/SLIPPERY-CHICKEN-EDIT 108

given a tuplet bracket with that integer as the tuplet number. NB: This

option does not allow for setting tuplets of different numbers for the

same bar. To do that, set :tuplet-bracket to NIL and add the

tuplet-brackets manually. NIL = place no brackets. Default = NIL.

RETURN VALUE:

The number of new events used to replace the old ones.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((d4 e4 f4 g4))))

:set-map ’((1 (1 1 1 1 1 1))

(2 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4))))

(2 ((((2 4) e s s q)

(s s e +e e))

:pitch-seq-palette ((1 2 3 4 3 2 4 1)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1))))

(2 ((vn (2 2 2 2 2 2))))))))

(replace-multi-bar-events mini ’vn 2 3

’((cs5 h) ((ds5 fs5) h) (nil h)))

(replace-multi-bar-events mini ’vn ’(2 2 2) ’3

’((h h h) (cs5 (ds5 fs5) nil))

:interleaved nil)

(replace-multi-bar-events mini ’vn 1 1

’((nil e) (nil e) (nil e) (cs4 e))

:consolidate-rests t)

(replace-multi-bar-events mini ’vn 8 1

’((nil q) (b3 e) (cs4 s) (ds4 s))

:auto-beam t))

=> 4

SYNOPSIS:

(defmethod replace-multi-bar-events ((sc slippery-chicken)

player start-bar num-bars new-events

&key

;; 24.3.11: see above.

13 SC/SLIPPERY-CHICKEN-EDIT 109

(interleaved t)

;; MDE Mon Apr 23 12:36:08 2012 -- changed

;; default to nil

(consolidate-rests nil)

;; for consolidate rests

(beat nil)

;; MDE Mon Apr 23 12:36:08 2012 -- changed

;; default to nil

(auto-beam nil)

;; MDE Fri Aug 29 10:18:29 2014

(warn t)

;; MDE Mon Sep 1 16:41:02 2014

(delete-beams t)

(delete-tuplets t)

;; 31.3.11: if this is t, then rthms > a

;; beat will case an error

(auto-beam-check-dur t)

(tuplet-bracket nil))

13.43 slippery-chicken-edit/replace-tempo-map

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Replace the tempo data for a given slippery-chicken object with new

specified tempo indications.

Calls not only the setf method - which converts bar references like

(section-num sequence-num bar-num) to numbers and makes a tempo-map object,

but also updates all event objects to reflect new start times etc.

ARGUMENTS:

- A slippery-chicken object

- A list that is the new tempo-map.

RETURN VALUE:

T

EXAMPLE:

(let ((mini

(make-slippery-chicken

13 SC/SLIPPERY-CHICKEN-EDIT 110

’+mini+

:ensemble ’(((pno (piano :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 g5 a5 c6))))

:set-map ’((1 (1 1 1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q q))

:pitch-seq-palette ((1 (2))))))

:rthm-seq-map ’((1 ((pno (1 1 1 1 1 1 1 1))))))))

(replace-tempo-map mini ’((1 (q 60 "Andante")) ((1 3 1) (e 80)))))

=> T

SYNOPSIS:

(defmethod replace-tempo-map ((sc slippery-chicken) tm)

13.44 slippery-chicken-edit/respell-bars

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Look for enharmonically equivalent pitches in the same bar and try to unify

their spelling. The method applies this process to every bar in the given

slippery-chicken object.

Also see rthm-seq-bar/respell-bar and slippery-chicken/respell-notes.

ARGUMENTS:

- A slippery-chicken object.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((cs4 ds4 df5 ef5))))

:set-map ’((1 (1 1 1 1 1)))

13 SC/SLIPPERY-CHICKEN-EDIT 111

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))))))))

(respell-bars mini))

=> T

SYNOPSIS:

(defmethod respell-bars ((sc slippery-chicken))

13.45 slippery-chicken-edit/respell-notes

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Pass through the entire given slippery-chicken object and change some of

the pitch objects to their enharmonic equivalents to produce more sensible

spellings of consecutive pitches in the score.

An optional argument takes a list specifying which pitches to change in the

same format found in the method enharmonic-spellings; i.e.

’((player (bar note-num))). These notes are changed after the respelling

routine has run.

NB: If a list of corrections is specified, the :respell-notes argument of

any subsequent call to cmn-display or write-lp-data-for-all must be set

NIL, otherwise the modified pitches may be overwritten. Also, although

this algorithm corrects tied notes when respelling, notes referenced in

the corrections list will not be followed through to any subsequent

ties.

ARGUMENTS:

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

- A list of specific notes whose pitches are to be enharmonically flipped,

in the format, e.g. ’((vn (1 1) (1 4)) (vc (2 3) (3 3)))

RETURN VALUE:

Returns T.

13 SC/SLIPPERY-CHICKEN-EDIT 112

EXAMPLE:

;; An example using respell-notes for the whole slippery-chicken object.

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((cs4 ds4 df5 ef5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))))))))

(respell-notes mini))

;; An example specifying which pitches are to be enharmonically changed.

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((cs4 ds4 df5 ef5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))))))))

(respell-notes mini ’((vn (1 1) (1 4))))

(cmn-display mini :respell-notes nil))

=> T

SYNOPSIS:

(defmethod respell-notes ((sc slippery-chicken) &optional corrections)

13.46 slippery-chicken-edit/respell-notes-for-player

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Pass through the pitches of a specified player’s part and change some of

the pitches to their enharmonic equivalents in order to produce more

sensible spellings of consecutive notes.

13 SC/SLIPPERY-CHICKEN-EDIT 113

This is just a very simple attempt to better spell notes by comparing each

note to the previous two and making it the same accidental type. It

doesn’t look further back or ahead as of yet.

If the optional argument is set to T, then look at the written notes

instead of the sounding notes.

NB: Since both the cmn-display and write-lp-data-for-all methods

automatically call respell-notes for all players of an entire

sc-object, their :respell-notes argument may need to be set to NIL for

this method to produce the desired results.

ARGUMENTS:

- A slippery-chicken object.

- The ID of the player whose pitches are to be modified.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to change written pitches only or sounding

pitches only. T = change written pitches only. Default = NIL.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(vn (violin :midi-channel 2))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((b3 cs4 b4 cs5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vn (1 1 1 1 1))))))))

(respell-notes-for-player mini ’cl t)

(cmn-display mini :respell-notes nil :in-c nil))

=> T

SYNOPSIS:

13 SC/SLIPPERY-CHICKEN-EDIT 114

(defmethod respell-notes-for-player ((sc slippery-chicken) player

&optional written)

13.47 slippery-chicken-edit/rest-to-note

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Change a specified event object from a rest into a note by supplying a

pitch or chord (as objects or symbols).

Marks to be attached to the new note can be supplied as a symbol or a list

as an optional argument.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the rest is to be

changed to a note.

- An integer that is the number of the rest in the given bar that is to be

changed. This number counts rests only, not sounding notes or events.

- The ID of the player whose part is to be changed.

- A note-name symbol that is to be the pitch of the new note, or a list of

note-name symbols that will make up a chord.

OPTIONAL ARGUMENTS:

- A mark or list of marks to be attached to the new note.

RETURN VALUE:

Returns the new event object created.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((cs4 ds4 fs4))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q (e) s s))

:pitch-seq-palette ((1 2 3)))))

13 SC/SLIPPERY-CHICKEN-EDIT 115

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))))))))

(rest-to-note mini 2 1 ’vn ’gs5)

(rest-to-note mini 3 1 ’vn ’(gs5 b5))

(rest-to-note mini 4 1 ’vn ’(gs4 b4) ’ppp)

(rest-to-note mini 5 1 ’vn ’(gs4 b4) ’(fff pizz)))

=>

EVENT: start-time: 9.000, end-time: 9.500,

duration-in-tempo: 0.500,

compound-duration-in-tempo: 0.500,

amplitude: 0.900

bar-num: 5, marks-before: NIL,

tempo-change: NIL

instrument-change: NIL

display-tempo: NIL, start-time-qtrs: 9.000,

midi-time-sig: NIL, midi-program-changes: NIL,

8va: 0

pitch-or-chord:

CHORD: auto-sort: T, marks: NIL, micro-tone: NIL

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (

[...]

SYNOPSIS:

(defmethod rest-to-note ((sc slippery-chicken) bar-num rest-num player new-note

&rest marks)

13.48 slippery-chicken-edit/rm-marks-from-note

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Remove one or more specific marks from the MARKS slot of a specified event

object.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which the marks are to be

removed.

- An integer that is the number of the note in that bar from which the

13 SC/SLIPPERY-CHICKEN-EDIT 116

marks are to be removed.

- The ID of the player from whose part the marks are to be removed.

OPTIONAL ARGUMENTS:

- A specific mark or list of specific marks that are to be removed. If this

argument is not specified, no marks will be removed.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((cs4 ds4 fs4))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4))

:marks (a 2 s 2 fff 2 pizz 2))))

:rthm-seq-map ’((1 ((vn (1 1 1 1))))))))

(rm-marks-from-note mini 2 2 ’vn ’pizz)

(rm-marks-from-note mini 3 2 ’vn ’(pizz fff))

(rm-marks-from-note mini 3 2 ’vn))

=> T

SYNOPSIS:

(defmethod rm-marks-from-note ((sc slippery-chicken) bar-num note-num

player &rest marks)

13.49 slippery-chicken-edit/rm-marks-from-notes

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Remove only the specified marks from the MARKS slots of specified events in

the parts of specified players. If the <players> argument is set to NIL,

remove the mark or marks from all players.

13 SC/SLIPPERY-CHICKEN-EDIT 117

ARGUMENTS:

- A slippery-chicken object.

- An integer or a 2-item list of integers indicating the first bar and note

from which to remove marks. If an integer, this is the bar number and the

mark will be removed from all notes in the bar. If a 2-item list, this is

a reference to the bar number and number of the first note in the bar

from which to start removing marks, in the form e.g. ’(3 1).

- An integer or a 2-item list of integers indicating the last bar and note

from which to remove marks. If an integer, this is the bar number and the

mark will be removed from all notes in the bar. If this is a 2-item list,

this is a reference to the bar number and number of the first note in the

bar from which to start removing marks, in the form e.g. ’(3 1).

- The ID or a list of IDs of the players from whose parts the marks are to

be removed.

OPTIONAL ARGUMENTS:

NB: The <marks> argument is a required argument for this method.

- The mark or a list of the marks to remove. This method will only remove

specified marks.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((fl (flute :midi-channel 1))

(hn (french-horn :midi-channel 2))

(vn (violin :midi-channel 3))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((cs4 ds4 fs4))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4))

:marks (a 2 s 2 fff 2))))

:rthm-seq-map ’((1 ((fl (1 1 1 1 1))

(hn (1 1 1 1 1))

(vn (1 1 1 1 1))))))))

(rm-marks-from-notes mini 1 2 ’fl ’fff)

(rm-marks-from-notes mini ’(1 2) ’(2 1) ’hn ’(fff a))

13 SC/SLIPPERY-CHICKEN-EDIT 118

(rm-marks-from-notes mini 3 ’(4 3) ’(hn vn) ’(fff s a))

(rm-marks-from-notes mini 5 5 nil ’fff))

=> T

SYNOPSIS:

(defmethod rm-marks-from-notes ((sc slippery-chicken) start end

players &rest marks)

13.50 slippery-chicken-edit/rm-pitches-from-chord

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Remove the specified pitches from an existing chord object.

ARGUMENTS:

- The slippery-chicken object which contains the given chord object.

- The ID of the player whose part is to be affected.

- An integer that is the number of the bar that contains the chord object

that is to be modified.

- An integer that is the number of the note that is the chord object to be

modified.

- The pitches to be removed. These can be pitch objects or any data that

can be passed to make-pitch, or indeed lists of these, as they will be

flattened.

RETURN VALUE:

The chord object that has been changed.

EXAMPLE:

(let* ((ip-clone (clone +slippery-chicken-standard-instrument-palette+)))

(set-slot ’chord-function ’chord-fun2 ’guitar ip-clone)

(let* ((mini

(make-slippery-chicken

’+mini+

:instrument-palette ip-clone

:ensemble ’(((gtr (guitar :midi-channel 1))))

:set-palette ’((1 ((e3 f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5 d5 e5 f5

g5 a5 b5 c6 d6 e6))))

13 SC/SLIPPERY-CHICKEN-EDIT 119

:set-map ’((1 (1)))

:rthm-seq-palette

’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 (2) 3 (4) 5 (6) 7 (8))))))

:rthm-seq-map ’((1 ((gtr (1))))))))

(print (get-pitch-symbols

(pitch-or-chord (get-event mini 1 2 ’gtr))))

(rm-pitches-from-chord mini ’gtr 1 2 ’a3 ’d4)

(print (get-pitch-symbols

(pitch-or-chord (get-event mini 1 2 ’gtr))))))

=>

(E3 A3 D4 G4)

(E3 G4)

SYNOPSIS:

(defmethod rm-pitches-from-chord ((sc slippery-chicken) player bar-num note-num

&rest pitches)

13.51 slippery-chicken-edit/rm-slurs

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Remove the specified slurs from the MARKS slots of specified events in

the parts of specified players. If the <players> argument is set to NIL,

remove the specified slurs from all players.

ARGUMENTS:

- A slippery-chicken object.

- An integer or a 2-item list of integers indicating the first bar and note

from which to remove slurs. If an integer, this is the bar number and the

slurs will be removed from all notes in the bar. If a 2-item list, this is

a reference to the bar number and number of the first note in the bar

from which to start removing slurs, in the form e.g. ’(3 1).

- An integer or a 2-item list of integers indicating the last bar and note

from which to remove slurs. If an integer, this is the bar number and the

slurs will be removed from all notes in the bar. If this is a 2-item list,

this is a reference to the bar number and number of the first note in the

bar from which to start removing slurs, in the form e.g. ’(3 1).

- The ID or a list of IDs of the players from whose parts the marks are to

be removed.

13 SC/SLIPPERY-CHICKEN-EDIT 120

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((fl (flute :midi-channel 1))

(hn (french-horn :midi-channel 2))

(vn (violin :midi-channel 3))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 e4 fs4 gs4 as4 c5 d5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 4 5 6 7 8))

:marks (slur 1 2 slur 3 4 slur 5 6 slur 7 8))))

:rthm-seq-map ’((1 ((fl (1 1 1 1 1))

(hn (1 1 1 1 1))

(vn (1 1 1 1 1))))))))

(rm-slurs mini 1 2 ’fl)

(rm-slurs mini ’(1 3) ’(2 1) ’hn)

(rm-slurs mini 3 ’(4 3) ’(hn vn))

(rm-slurs mini 5 5 nil))

=> T

SYNOPSIS:

(defmethod rm-slurs ((sc slippery-chicken) start end players)

13.52 slippery-chicken-edit/sc-delete-beams

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Delete beam indications from specified notes. If only a bar number is

specified, this method deletes all beams in the bar.

NB: If specifying start and end notes, the start notes specified must be

the first note of a beamed group of notes (i.e. the BEAMS slot of the

corresponding event object must be 1), and the end note must be the

last note of a beamed group of notes (i.e., the BEAMS slot of the

13 SC/SLIPPERY-CHICKEN-EDIT 121

corresponding event object must be 0), otherwise errors may

occur. Also, if specifying one of these arguments, both must be

specified.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the beams are to be

deleted.

- The ID of the player from whose part the beams are to be deleted.

OPTIONAL ARGUMENTS:

- An integer that is the number of the note that currently holds the

start-beam information (i.e., the BEAMS slot is 1). This number is

1-based and counts ties.

- An integer that is the number of the note that currently holds the

end-beam information (i.e., the BEAMS slot is 0). This number is 1-based

and counts ties.

RETURN VALUE:

If deleting all beams in a bar, returns T, otherwise returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:set-palette ’((1 ((d3 e3 f3 g3 a3 b3 c4 e4))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) - e e - - e e - - e e - - e e -))

:pitch-seq-palette ((1 2 3 4 5 6 7 8)))))

:rthm-seq-map ’((1 ((vc (1 1 1 1))))))))

(sc-delete-beams mini 2 ’vc)

(sc-delete-beams mini 3 ’vc 3 4))

=> NIL

SYNOPSIS:

(defmethod sc-delete-beams ((sc slippery-chicken) bar-num player

&optional start-note end-note)

13 SC/SLIPPERY-CHICKEN-EDIT 122

13.53 slippery-chicken-edit/sc-delete-marks

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Delete all marks from the MARKS slot of a given note event object and

set the slot to NIL.

NB: This method counts notes, not rests, and is 1-based.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the marks are to be

deleted.

- An integer that is the number of the note from which the marks are to be

deleted.

- The ID of the player from whose part the marks are to be deleted.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((cs4 ds4 fs4))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q (e) s s))

:pitch-seq-palette ((1 2 3))

:marks (a 2 s 2 fff 2 pizz 2))))

:rthm-seq-map ’((1 ((vn (1 1 1 1))))))))

(sc-delete-marks mini 2 2 ’vn))

=> T

SYNOPSIS:

(defmethod sc-delete-marks ((sc slippery-chicken) bar-num note-num player)

13 SC/SLIPPERY-CHICKEN-EDIT 123

13.54 slippery-chicken-edit/sc-delete-marks-before

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Deletes all data from the MARKS-BEFORE slot of a specified event object and

replaces it with NIL.

NB: In addition to clef symbol data, the MARKS-BEFORE slot also stores part

of the required data for trills and arrows. Deleting just the

MARKS-BEFORE components of those markings may result in unwanted

results.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the event object is to

be modified.

- An integer that is the number of the note within the given bar for which

the MARKS-BEFORE slot is to be set to NIL.

- The ID of the player whose part is to be affected.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((d3 e3 f3 g3 a3 b3 c4 e4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4)))))

:rthm-seq-map ’((1 ((vc (1 1 1))))))))

(add-mark-before-note mini 2 3 ’vc ’fff)

(add-mark-before-note mini 2 3 ’vc ’s)

(add-mark-before-note mini 2 3 ’vc ’lhp)

(sc-delete-marks-before mini 2 3 ’vc))

=> NIL

13 SC/SLIPPERY-CHICKEN-EDIT 124

SYNOPSIS:

(defmethod sc-delete-marks-before ((sc slippery-chicken)

bar-num note-num player)

13.55 slippery-chicken-edit/sc-delete-marks-from-event

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Delete all data from the MARKS slot of the specified event object and

replace it with NIL.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which the marks are to be

deleted.

- An integer that is the number of the event within the given bar from

which the marks are to be deleted.

- The ID of the player from whose part the marks are to be deleted.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((d3 e3 f3 g3 a3 b3 c4 e4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4))

:marks (a 1 4 lhp 4 s 3 4 slur 1 2))))

:rthm-seq-map ’((1 ((vc (1 1 1))))))))

(sc-delete-marks-from-event mini 2 4 ’vc))

=> NIL

SYNOPSIS:

13 SC/SLIPPERY-CHICKEN-EDIT 125

(defmethod sc-delete-marks-from-event ((sc slippery-chicken)

bar-num event-num player)

13.56 slippery-chicken-edit/sc-force-rest

[slippery-chicken-edit] [Methods]

DATE:

23-Jul-2011 (Pula)

DESCRIPTION:

Change the specified event object to a rest. If events tied from this

event should automatically be forced to rests also, use the sc-force-rest2

method instead.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the rest is to be

forced.

- An integer that is the number of the event within that bar which is to be

changed into a rest. This number is 1-based and counts tied notes but not

rests.

- The ID of the player whose part is to be modified.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the specified bar should be automatically

beamed after the change has been made. NB: In general, calling auto-beam

is a good idea (esp. when deleting notes under an existing beam);

however, auto-beam may fail when addressing bars that contain notes

longer than one beat. T = automatically beam. Default = NIL.

RETURN VALUE:

The new rthm-seq-bar object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

13 SC/SLIPPERY-CHICKEN-EDIT 126

:ensemble ’(((vc (cello :midi-channel 1))))

:set-palette ’((1 ((a3 b3 c4 e4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4)))))

:rthm-seq-map ’((1 ((vc (1 1 1))))))))

(sc-force-rest mini 2 3 ’vc)

(sc-force-rest mini 3 3 ’vc t))

=>

RTHM-SEQ-BAR: time-sig: 3 (2 4), time-sig-given: T, bar-num: 3,

old-bar-nums: NIL, write-bar-num: NIL, start-time: 4.000,

start-time-qtrs: 4.0, is-rest-bar: NIL, multi-bar-rest: NIL,

show-rest: T, notes-needed: 3,

tuplets: NIL, nudge-factor: 0.35, beams: ((1 2)),

current-time-sig: 3, write-time-sig: NIL, num-rests: 1,

num-rhythms: 4, num-score-notes: 3, parent-start-end: NIL,

missing-duration: NIL, bar-line-type: 2,

player-section-ref: (1 VC), nth-seq: 2, nth-bar: 0,

rehearsal-letter: NIL, all-time-sigs: (too long to print)

sounding-duration: 1.750,

rhythms: (

[...]

SYNOPSIS:

(defmethod sc-force-rest ((sc slippery-chicken) bar-num note-num player

&optional (auto-beam nil))

13.57 slippery-chicken-edit/sc-force-rest2

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Turn events into rests, doing the same with any following tied events.

NB As it is foreseen that this method may be called many times iteratively,

there is no call to check-ties, auto-beam, consolidate-rests, or

update-instrument-slots (for statistics)--it is advised that these methods

are called once the last call to this method has been made. gen-stats is

however called for each affected bar, so the number of rests vs. notes

should be consistent with the new data.

ARGUMENTS:

13 SC/SLIPPERY-CHICKEN-EDIT 127

- A slippery-chicken object

- The bar number (integer)

- The event number in the bar (integer, counting from 1)

- The player name (symbol)

OPTIONAL ARGUMENTS:

- A function object to be called on error (could be #’error (default),

#’warn, #’print or simply NIL for no error)

RETURN VALUE:

The number of events turned into rests.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:set-palette ’((1 ((a3 b3 c4 e4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette

’((1 ((((4 4) - e.. 32 - h.) (+w) (+w) ((w)) ((h) (e) q e)

(+q - +s e. - +h) (+w) (+w) ((w))))))

:rthm-seq-map ’((1 ((vc (1 1 1))))))))

(sc-force-rest2 mini 1 3 ’vc))

=> 3

SYNOPSIS:

(defmethod sc-force-rest2 ((sc slippery-chicken) bar-num event-num player

&optional (on-error #’error))

13.58 slippery-chicken-edit/sc-move-dynamic

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Move the dynamic attached to a specified event object to another specified

event object.

By default the dynamics are moved between events within the same bar. An

optional argument allows for dynamics to be moved to events in a different

bar.

13 SC/SLIPPERY-CHICKEN-EDIT 128

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which to move the dynamic.

- The ID of the player in whose part the dynamic is located.

- An integer that is the number of the event object from which the dynamic

is to be moved. This number is 1-based and counts both rests and ties.

- An integer that is the number of the event object to which the dynamic

is to be moved. This number is 1-based and counts both rests and ties.

OPTIONAL ARGUMENTS:

- An integer that is the number of the bar to which the dynamic should be

moved. If this is not specified, the dynamic will be moved to the

specified event within the same bar.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:set-palette ’((1 ((a3 b3 c4 e4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4))

:marks (fff 1))))

:rthm-seq-map ’((1 ((vc (1 1 1))))))))

(sc-move-dynamic mini 1 ’vc 1 3)

(sc-move-dynamic mini 2 ’vc 1 4 3))

=> T

SYNOPSIS:

(defmethod sc-move-dynamic ((sc slippery-chicken) bar-num player

;; event numbers 1-based but counting rests and ties

from to &optional to-bar)

13.59 slippery-chicken-edit/sc-remove-dynamic

[slippery-chicken-edit] [Methods]

13 SC/SLIPPERY-CHICKEN-EDIT 129

DESCRIPTION:

Remove all dynamics from the MARKS slot of one or more specified event

objects.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which the dynamics are to

be removed.

- The ID of the player from whose part the dynamics are to be removed.

- An integer or a list of integers that are the numbers of the events from

which the dynamics are to be removed. Event numbers include ties and

rests.

RETURN VALUE:

Returns the last dynamic removed.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:set-palette ’((1 ((a3 b3 c4 e4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4))

:marks (fff 1 ppp 3))))

:rthm-seq-map ’((1 ((vc (1 1 1))))))))

(sc-remove-dynamic mini 2 ’vc 1)

(sc-remove-dynamic mini 3 ’vc ’(1 3)))

=> PPP

SYNOPSIS:

(defmethod sc-remove-dynamic ((sc slippery-chicken) bar-num player

&rest event-nums)

13.60 slippery-chicken-edit/sc-remove-dynamics

[slippery-chicken-edit] [Methods]

DATE:

13 SC/SLIPPERY-CHICKEN-EDIT 130

16-Mar-2011

DESCRIPTION:

Remove all dynamic marks from the MARKS slots of all consecutive event

objects within a specified region of bars.

ARGUMENTS:

- A slippery-chicken object.

- An integer or a list of two integers. If a single integer, this is the

number of the first bar from which the dynamics will be removed, and all

dynamics will be removed from the full bar. If this is a list of two

integers, they are the numbers of the first bar and first note within

that bar from which the dynamics will be removed, in the form ’(bar-num

note-num). Note numbers are 1-based and count ties but not rests.

- An integer or a list of two integers. If a single integer, this is the

number of the last bar from which the dynamics will be removed, and all

dynamics will be removed from the full bar. If this is a list of two

integers, they are the numbers of the last bar and last note within that

bar from which the dynamics will be removed, in the form ’(bar-num

note-num). Note numbers are 1-based and count ties but not rests.

- A single ID or a list of IDs of the players from whose parts the dynamics

are to be removed.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (viola :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((d3 e3 f3 g3 a3 b3 c4 e4 f4 g4 a4 b4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4))

:marks (fff 1 ppp 3))))

:rthm-seq-map ’((1 ((vn (1 1 1))

(va (1 1 1))

(vc (1 1 1))))))))

13 SC/SLIPPERY-CHICKEN-EDIT 131

(sc-remove-dynamics mini ’(1 2) ’(2 2) ’vn)

(sc-remove-dynamics mini 2 3 ’(va vc)))

=> T

SYNOPSIS:

(defmethod sc-remove-dynamics ((sc slippery-chicken) start end players)

13.61 slippery-chicken-edit/set-cautionary-accidental

[slippery-chicken-edit] [Methods]

DATE:

28-Sep-2011

DESCRIPTION:

Place a cautionary accidental (sharp/flat/natural sign in parentheses)

before a specified note.

NB: Adding cautionary accidentals to pitches within chords is currently

only possible in LilyPond output. Adding cautionary accidentals to

single pitches is possible in both CMN and LilyPond.

NB: Since the cmn-display and write-lp-data-for-all methods call

respell-notes by default, that option must be explicitly set to NIL

within the calls to those methods in order for this method to be

effective.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which to add the cautionary

accidental.

- An integer or a 2-item list of integers that is the number of the note

within that bar to which to add the cautionary accidental. This number is

1-based and counts ties. If a 2-item list such, this indicates that the

pitch is within a chord; e.g., ’(1 2) indicates that a cautionary

accidental should be added to the 2nd pitch up from the bottom of the

chord located at the 1st note position in the bar.

- The ID of the player to whose part the cautionary accidental is to be

added.

13 SC/SLIPPERY-CHICKEN-EDIT 132

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to add the cautionary accidental to only the

written pitch or only the sounding pitch. T = written only.

Default = NIL.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(pn (piano :midi-channel 2))))

:set-palette ’((1 ((ds3 e3 fs3 af3 bf3 c4 ef4 fs4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 (3) 4))

:marks (fff 1 ppp 3))))

:rthm-seq-map ’((1 ((cl (1 1 1))

(pn (1 1 1))))))))

(respell-notes mini)

(set-cautionary-accidental mini 3 2 ’cl t)

(set-cautionary-accidental mini 2 1 ’pn)

(set-cautionary-accidental mini 2 2 ’pn)

(set-cautionary-accidental mini 3 ’(3 3) ’pn)

(write-lp-data-for-all mini :respell-notes nil))

=> T

SYNOPSIS:

(defmethod set-cautionary-accidental ((sc slippery-chicken) bar-num note-num

player &optional written)

13.62 slippery-chicken-edit/set-rehearsal-letter

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Add the specified rehearsal letter/number to the specified bar in one or

13 SC/SLIPPERY-CHICKEN-EDIT 133

more specified players.

NB: Since internally this method actually attaches the rehearsal

letter/number to the REHEARSAL-LETTER slot of the preceding bar

(bar-num - 1), no rehearsal letter/number can be attached to the first

bar.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar to which the rehearsal

letter/number is to be added.

- A symbol that is the rehearsal letter/number to be added (e.g. ’A or ’1)

OPTIONAL ARGUMENTS:

- The player ID or a list of player IDs to whose parts the rehearsal

letter/number is to be added. If no value is given here, the rehearsal

letter/number will be added to the first (top) instrument in each group

of the ensemble, as specified in staff-groupings.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (viola :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((ds3 e3 fs3 af3 bf3 c4 ef4 fs4))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1))

(va (1 1 1 1))

(vc (1 1 1 1))))))))

(set-rehearsal-letter mini 2 ’A)

(set-rehearsal-letter mini 3 ’2 ’(va vc))

(set-rehearsal-letter mini 4 ’Z3))

=> T

13 SC/SLIPPERY-CHICKEN-EDIT 134

SYNOPSIS:

(defmethod set-rehearsal-letter ((sc slippery-chicken) bar-num letter

&optional players)

13.63 slippery-chicken-edit/tie

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Add a tie to a specified event object. The new tie will be placed starting

from the specified event object and spanning to the next event object. If

the next event object does not have the same pitch, its pitch will be

changed to that of the first event object.

An optional argument allows the user to adjust the steepness of the tie’s

curvature.

NB: This method will not automatically update ties in MIDI output. To make

sure that MIDI ties are also updated, use the handle-ties method.

NB: If the next event object is a rest and not a note, an error will be

produced.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the tie is to be

placed.

- An integer that is the number of the note to which the tie is to be

attached.

- The ID of the player whose part is to be changed.

OPTIONAL ARGUMENTS:

- A positive or negative decimal number to indicate the steepness of the

tie’s curvature.

RETURN VALUE:

Returns T.

EXAMPLE:

13 SC/SLIPPERY-CHICKEN-EDIT 135

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((c4 d4 e4))))

:set-map ’((1 (1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q s s (s) s))

:pitch-seq-palette ((1 1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1))))))))

(tie mini 2 1 ’vn)

(tie mini 3 2 ’vn)

(tie mini 4 2 ’vn -.5))

=> T

SYNOPSIS:

(defmethod tie ((sc slippery-chicken) bar-num note-num player

&optional curvature)

13.64 slippery-chicken-edit/tie-all-last-notes-over-rests

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Extend the duration of the last note of any bar that precedes a bar which

starts with a rest in the specified region, such that the rest that begins

the next measure is changed to a note and the last note of the first

measure is tied to it.

NB: This method will not automatically update ties in MIDI output. To make

sure that MIDI ties are also updated, use the handle-ties method.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the first bar in which changes are to be made.

- An integer that is the last bar in which changes are to be made.

- A player ID or list of player IDs.

OPTIONAL ARGUMENTS:

keyword arguments:

- :to-next-attack. T or NIL to indicate whether ties are to extend over

13 SC/SLIPPERY-CHICKEN-EDIT 136

only full bars of rest or also over partial bars (until the next attacked

note). T = until the next attacked note. Default = T.

- :tie-next-attack. T or NIL to indicate whether the new tied notes created

should also be further extended over the next attacked note if that note

has the same pitch as the starting note of the tie. T = also tie next

attacked note if same pitch. Default = NIL.

- :auto-beam. T or NIL to indicate whether the new events should be

automatically beamed after placement. T = automatically beam.

Default = NIL.

- :last-rhythm. NIL or a rhythmic duration. If a rhythmic duration, the

last duration of the tie will be forced to this length. Useful, for

example, when tying into a rest bar without filling that whole

bar. NIL = fill the bar with a tied note. Default = NIL.

- :update. T or NIL to indicate whether all slots for all events in the

piece should be updated. This is an expensive operation so set to NIL if

you plan on calling other similar methds, and call (update-slots sc)

explicitly at the end. Default = T.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (viola :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 f4 g4 a4 c5 d5 f5))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e (e) e e (e) (e) e e)

((w))

((h.) q)

((w))

((w))

((e) e h.))

:pitch-seq-palette ((1 2 3 4 5 6 7 7)))))

:rthm-seq-map ’((1 ((vn (1 1 1))

(va (1 1 1))

(vc (1 1 1))))))))

(tie-all-last-notes-over-rests mini 2 6 ’vn)

(tie-all-last-notes-over-rests mini 9 12 ’vn :auto-beam t)

(tie-all-last-notes-over-rests mini 3 5 ’(va vc) :to-next-attack nil)

(tie-all-last-notes-over-rests mini 9 12 ’vc :tie-next-attack t)

13 SC/SLIPPERY-CHICKEN-EDIT 137

(tie-all-last-notes-over-rests mini 13 15 ’vn :last-rhythm ’e))

=> NIL

SYNOPSIS:

(defmethod tie-all-last-notes-over-rests

((sc slippery-chicken)

start-bar end-bar players

&key

;; use up all rests until next attack or (if nil)

;; just the rest bars?

(to-next-attack t)

;; if the next attack is the same note/chord as

;; the previous, tie to it too?

(tie-next-attack nil)

(last-rhythm nil)

(update t)

(auto-beam nil))

13.65 slippery-chicken-edit/tie-over-all-rests

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Extend the durations of all notes that immediately precede rests in the

specified region by changing the rests to notes and tying the previous notes

to them.

NB: This method will not automatically update ties in MIDI output. To make

sure that MIDI ties are also updated, use the handle-ties method.

ARGUMENTS:

- A slippery-chicken object.

- The ID of the player whose part is to be changed.

- An integer that is the number of the first bar in which notes are to be

tied over rests.

- An integer that is the number of the last bar in which notes are to be

tied over rests. NB: This argument does not necessarily indicate the bar

in which the ties will stop, but rather the last bar in which a tie will

be begun; the ties created may extend into the next bar.

OPTIONAL ARGUMENTS:

13 SC/SLIPPERY-CHICKEN-EDIT 138

keyword arguments:

- :start-note. An integer that is the number of the first attacked note

(not counting rests) in the given start-bar for which ties can be placed.

- :end-note. An integer that is the number of the last attacked note (not

counting rests) in the given end-bar for which ties can be placed.

NB: This argument does not necessarily indicate the note on which the

ties will stop, but rather the last not on which a tie can begin; the

ties created may extend to the next note.

- :auto-beam. T or NIL to indicate whether the method should automatically

place beams for the notes of the affected measure after the ties over

rests have been created. T = automatically beam. Default = NIL.

- :consolidate-notes. T or NIL to indicate whether the tied note are to be

consolidated into single rhythmic units of longer durations after the

ties over rests have been created. T = consolidate notes. Default = NIL.

- :update. T or NIL to indicate whether all slots for all events in the

piece should be updated. This is an expensive operation so set to NIL if

you plan on calling other similar methds, and call (update-slots sc)

explicitly at the end. Default = T.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((c4 d4 e4))))

:set-map ’((1 (1 1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) (q) e (s) s))

:pitch-seq-palette ((1 2)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1 1))))))))

(tie-over-all-rests mini ’vn 2 3 :start-note 2 :auto-beam t)

(tie-over-all-rests mini ’vn 5 6 :end-note 1 :consolidate-notes t))

=> T

SYNOPSIS:

(defmethod tie-over-all-rests ((sc slippery-chicken) player

start-bar end-bar

&key

(start-note 1)

13 SC/SLIPPERY-CHICKEN-EDIT 139

(end-note 9999999)

(auto-beam nil)

(update t)

(consolidate-notes nil))

13.66 slippery-chicken-edit/tie-over-rest-bars

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Extend the duration of the last note in a specified bar by changing

immediately subsequent full-rest bars to notes of the same pitch and tying

them to that note.

NB: This method will not automatically update ties in MIDI output. To make

sure that MIDI ties are also updated, use the handle-ties method.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the last note is to be

tied.

- An ID or list of IDs of the players whose parts are to be modified.

OPTIONAL ARGUMENTS:

keyword arguments:

- :end-bar. An integer or NIL. If an integer, this is the number of the

last bar of full-rests that is to be changed to a note. This can be

helpful for tying into passages of multiple bars of full-rest.

- :tie-next-attack. T or NIL to indicate whether the new tied notes created

should also be further extended over the next attacked note if that note

has the same pitch as the starting note of the tie. T = also tie next

attacked note if same pitch. Default = NIL.

- :to-next-attack. T or NIL to indicate whether ties are to extend over

only full bars of rest or also over partial bars (until the next attacked

note). T = until the next attacked note. Default = T.

- :auto-beam. T or NIL to indicate whether the method should automatically

place beams for the notes of the affected measure after the ties over

rests have been created. T = automatically beam. Default = NIL.

- :last-rhythm. NIL or a rhythmic duration. If a rhythmic duration, the

last duration of the tie will be forced to this length. Useful, for

example, when tying into a rest bar without filling that whole

bar. NIL = fill the bar with a tied note. Default = NIL.

13 SC/SLIPPERY-CHICKEN-EDIT 140

- :update. T or NIL to indicate whether all slots for all events in the

piece should be updated. This is an expensive operation so set to NIL if

you plan on calling other similar methds, and call (update-slots sc)

explicitly at the end. Default = T.

RETURN VALUE:

Returns t.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (viola :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((c4 d4 e4))))

:set-map ’((1 (1 1)))

:rthm-seq-palette ’((1 ((((2 4) (q) e (s) s)

((h))

((s) e. e e)

((h))

((h))

((e) q s (s)))

:pitch-seq-palette ((1 2 2 1 3 3 1)))))

:rthm-seq-map ’((1 ((vn (1 1))

(va (1 1))

(vc (1 1))))))))

(tie-over-rest-bars mini 1 ’vn :end-bar 2)

(tie-over-rest-bars mini 3 ’va :end-bar 5)

(tie-over-rest-bars mini 3 ’(vn vc) :end-bar 6 :tie-next-attack t)

(tie-over-rest-bars mini 7 ’vc

:end-bar 9

:to-next-attack t

:auto-beam t)

(tie-over-rest-bars mini 9 ’vn :end-bar 11 :last-rhythm ’e))

=> t

SYNOPSIS:

(defmethod tie-over-rest-bars ((sc slippery-chicken) bar-num players

&key (end-bar nil) ;; num of empty bars

(tie-next-attack nil)

13 SC/SLIPPERY-CHICKEN-EDIT 141

(to-next-attack t)

(last-rhythm nil)

(update t)

(auto-beam nil))

13.67 slippery-chicken-edit/tie-over-rests

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Extend the duration of a specified note that precedes a rest by changing

the rest to a note with the same pitch and adding a tie between them.

NB: This method will not automatically update ties in MIDI output. To make

sure that MIDI ties are also updated, use the handle-ties method.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the note is located.

- An integer that is the number of the note within that bar which is to be

extended. This number is 1-based and also counts already tied notes. If

NIL, then the last note in the bar will be used.

- The ID of the player whose part is to be modified.

OPTIONAL ARGUMENTS:

keyword arguments

- :end-bar. An integer that is the number of the last bar into which the

tie is to extend. This can be helpful if the user wants to tie into only

the first of several consecutive full-rest bars.

- :auto-beam. T or NIL to indicate whether the method should automatically

beam the beats of the modified bars after the ties have been added.

T = automatically beam. Default = NIL.

- :consolidate-notes. T or NIL to indicate whether the method should

consolidate tied notes into single rhythm units of longer duration.

T = consolidate. Default = T.

- :update. T or NIL to indicate whether all slots for all events in the

piece should be updated. This is an expensive operation so set to NIL if

you plan on calling other similar methds, and call (update-slots sc)

explicitly at the end. Default = T.

RETURN VALUE:

13 SC/SLIPPERY-CHICKEN-EDIT 142

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((c4 d4 e4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) (q) e (s) s)

((h))

((s) e. (e) e)

((h))

((h))

((e) q s (s)))

:pitch-seq-palette ((1 2 2 3 3 1)))))

:rthm-seq-map ’((1 ((vn (1 1 1))))))))

(tie-over-rests mini 1 2 ’vn)

(tie-over-rests mini 7 1 ’vn)

(tie-over-rests mini 9 2 ’vn :end-bar 10)

(tie-over-rests mini 13 1 ’vn :auto-beam t :consolidate-notes nil))

=> T

SYNOPSIS:

(defmethod tie-over-rests ((sc slippery-chicken) bar-num note-num player

&key end-bar auto-beam (consolidate-notes t)

(update t))

13.68 slippery-chicken-edit/trill

[slippery-chicken-edit] [Methods]

DESCRIPTION:

Attach a trill mark to a specified event object by adding ’BEG-TRILL-A to

the MARKS-BEFORE slot and TRILL-NOTE with the pitch to the MARKS slot. This

method requires a specified trill pitch.

By default trills are set to span from the specified note to the next note,

though the length of the span can be specified using the optional

arguments.

NB: This is a LilyPond-only method and will not affect CMN output.

13 SC/SLIPPERY-CHICKEN-EDIT 143

ARGUMENTS:

- A slippery-chicken object.

- The player to whose part the trill is to be added.

- An integer that is the number of the bar in which the trill is to start.

- An integer that is the number of the event object in that bar on which

the trill is to be placed.

- A note-name symbol that is the pitch of the trill note.

OPTIONAL ARGUMENTS:

- An integer that is the number of the event object on which the trill span

is to stop.

- An integer that is the number of the bar in which the trill span is to

stop.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((c4 d4 e4))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q. s s))

:pitch-seq-palette ((1 3 2)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))))))))

(trill mini ’vn 2 1 ’e4)

(trill mini ’vn 3 1 ’e4 3)

(trill mini ’vn 4 1 ’e4 3 5))

=> T

SYNOPSIS:

(defmethod trill ((sc slippery-chicken) player start-bar start-event trill-note

&optional end-event end-bar)

13.69 slippery-chicken-edit/unset-cautionary-accidental

[slippery-chicken-edit] [Methods]

13 SC/SLIPPERY-CHICKEN-EDIT 144

DESCRIPTION:

Remove the parentheses from a cautionary accidental (leaving the accidental

itself) by setting the ACCIDENTAL-IN-PARENTHESES slot of the contained

pitch object to NIL.

NB: Since respell-notes is called by default within cmn-display and

write-lp-data-for-all, that option must be explicitly set to NIL for

this method to be effective.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the cautionary

accidental is to be unset.

- An integer that is the number of the note in that bar for which the

cautionary accidental is to be unset.

- The ID of the player whose part is to be changed.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to unset the cautionary accidental for the

written part only (for transposing instruments).

T = written only. Default = NIL.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(vn (violin :midi-channel 2))))

:set-palette ’((1 ((cs4 ds4 fs4))))

:set-map ’((1 (1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3 2 1 2 3 2)))))

:rthm-seq-map ’((1 ((cl (1 1))

(vn (1 1))))))))

(respell-notes mini)

(unset-cautionary-accidental mini 2 5 ’vn)

(unset-cautionary-accidental mini 2 7 ’cl t)

(cmn-display mini :respell-notes nil))

14 SC/UTILITIES 145

SYNOPSIS:

(defmethod unset-cautionary-accidental ((sc slippery-chicken) bar-num note-num

player &optional written)

14 sc/utilities

[Modules]

NAME:

utilities

File: utilities.lsp

Class Hierarchy: none: no classes defined

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Various helper functions of a general nature.

Author: Michael Edwards: m@michael-edwards.org

Creation date: June 24th 2002

$$ Last modified: 18:18:34 Tue Jul 1 2014 BST

SVN ID: $Id: utilities.lsp 5048 2014-10-20 17:10:38Z medward2 $

14.1 utilities/a-weighting

[utilities] [Functions]

DESCRIPTION:

Implementation of A-weighting loudness compensation. Formula taken from

http://en.wikipedia.org/wiki/A-weighting. This doesn’t take 1000Hz

loudness into account, rather it implements the 40-phon Fletcher-Munson

curve only.

ARGUMENTS:

The frequency in Hertz for which to find the loudness weighting.

14 SC/UTILITIES 146

OPTIONAL ARGUMENTS:

keyword aguments:

- :expt. A power (exponent) to raise the result to in order to

tame/exaggerate the curve (make the db weightings less/more

extreme). This only really makes sense if :linear t though will work

with db values also of course. Values < 1 result in linear values

closer to 1 (less extreme). Values > 1 are further from 1. Default = NIL

i.e. no exponential function.

- :linear. If T return amplitude values as linear scalers rather than

logarithmic decibel values. NB If this is NIL then returned values are

likely to be negative (db) values. Default = T.

- :invert. As the weighting routine tries to tell us what relative

loudness we’ll perceive given constant amplitudes, low and high

frequencies will return negative values as we perceive them Xdb less

than our most sensitive frequency area. If :invert t, just flip this

negatives to positives so that if :linear T you get a scaler to make

lower/higher frequences equally loud as the most sensitive frequencies.

RETURN VALUE:

The linear or db weighting value for the given frequency.

EXAMPLE:

;;; Decibels:

(a-weighting 50 :invert nil :linear nil) => -30.274979

(a-weighting 50 :invert t :linear nil) => 30.274979

;;; Linear amplitude scalers:

(a-weighting 50) => 32.639904

(a-weighting 50 :invert nil) => 0.030637344

;;; Exaggeration:

(a-weighting 50 :expt 1.1) => 46.251286

;;; Smoothing:

(a-weighting 50 :expt .5) => 5.7131343

;;; Looping through the MIDI note range by tritones returning decibel values:

(loop for midi from 0 to 127 by 6

for freq = (midi-to-freq midi)

collect (list (midi-to-note midi)

(a-weighting freq :linear nil :invert nil)))

=>

((C-1 -76.85258) (FS-1 -65.94491) (C0 -55.819363) (FS0 -46.71565)

(C1 -38.714867) (FS1 -31.724197) (C2 -25.598646) (FS2 -20.247103)

(C3 -15.622625) (FS3 -11.657975) (C4 -8.258142) (FS4 -5.358156)

14 SC/UTILITIES 147

(C5 -2.9644737) (FS5 -1.1277018) (C6 0.13445985) (FS6 0.8842882) (C7 1.226917)

(FS7 1.2351798) (C8 0.89729404) (FS8 0.09495151) (C9 -1.3861179)

(FS9 -3.7814288))

;;; Similar but returning linear amplitude scalers:

(loop for midi from 0 to 127 by 6

for freq = (midi-to-freq midi)

collect (list (midi-to-note midi) (a-weighting freq)))

=>

((C-1 6960.316) (FS-1 1982.6475) (C0 617.9711) (FS0 216.6619) (C1 86.246864)

(FS1 38.56647) (C2 19.051636) (FS2 10.288571) (C3 6.041312) (FS3 3.827355)

(C4 2.5876594) (FS4 1.8531382) (C5 1.4067719) (FS5 1.1386365) (C6 0.9846389)

(FS6 0.9032034) (C7 0.8682687) (FS7 0.86744314) (C8 0.9018521) (FS8 0.9891278)

(C9 1.1730213) (FS9 1.5455086))

SYNOPSIS:

(defun a-weighting (f &key expt (linear t) (invert t))

14.2 utilities/all-members

[utilities] [Functions]

DESCRIPTION:

Find out whether the members of the list given as the second argument are

all present in the list given as the first argument.

ARGUMENTS:

- A list in which the members of the second argument will be sought.

- A list whose members will be sought in the first argument.

OPTIONAL ARGUMENT

- A comparison function.

RETURN VALUE:

T or NIL.

EXAMPLE:

(all-members ’(1 2 3 4 5 6 7) ’(1 2 3 7))

=> T

14 SC/UTILITIES 148

SYNOPSIS:

(defun all-members (list test-list &optional (test #’equal))

14.3 utilities/almost-flatten

[utilities] [Functions]

DATE:

September 4th 2013

DESCRIPTION:

Similar to flatten but allows one level of nesting

ARGUMENTS:

A list with an arbitrary level of nesting.

RETURN VALUE:

A list with a maximum of one level of nesting

EXAMPLE:

(almost-flatten ’((1 (2 3 4) (5 (6 7) (8 9 10 (11) 12)) 13) 14 15 (16 17)))

SYNOPSIS:

(defun almost-flatten (nested-list)

14.4 utilities/almost-zero

[utilities] [Functions]

DESCRIPTION:

Return T if a given decimal is within 0.000001 of 0.0.

ARGUMENTS:

- A number.

14 SC/UTILITIES 149

OPTIONAL ARGUMENTS:

- A number that is a user-specified difference for the comparison test.

RETURN VALUE:

T if the number is within the tolerance difference to zero, otherwise NIL.

EXAMPLE:

(almost-zero 0.0000007)

=> T

SYNOPSIS:

(defun almost-zero (num &optional (tolerance 0.000001))

14.5 utilities/amp2db

[utilities] [Methods]

DESCRIPTION:

Convert a standard digital amplitude value (>0.0 to 1.0) to a corresponding

decibel value.

ARGUMENTS:

- A decimal number between >0.0 and 1.0.

RETURN VALUE:

A decimal number that is a value in decibel.

EXAMPLE:

(amp2db 0.3)

=> -10.457575

SYNOPSIS:

(defmacro amp2db (amp)

14 SC/UTILITIES 150

14.6 utilities/amplitude-to-dynamic

[utilities] [Functions]

DESCRIPTION:

Convert a specified digital amplitude between 0.0 and 1.0 to a

corresponding dynamic between niente and ffff.

ARGUMENTS:

- A decimal number between 0.0 and 1.0.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to print a warning if the specified

amplitude is <0.0 or >1.0. T = warn. Default = T.

RETURN VALUE:

A symbol that is a dynamic level.

EXAMPLE:

(amplitude-to-dynamic 0.3)

=> PP

SYNOPSIS:

(defun amplitude-to-dynamic (amp &optional (warn t))

14.7 utilities/auto-scale-env

[utilities] [Functions]

DATE:

August 29th 2013

DESCRIPTION:

Automatically scale both the x and y values of an envelope to fit within

the given ranges.

14 SC/UTILITIES 151

ARGUMENTS:

- The envelope: a list of x y pairs

OPTIONAL ARGUMENTS:

keyword arguments:

- :x-min: The new minimum (starting) x value

- :x-max: The new maximum (last) x value

- :y-min: The new minimum (not necessarily starting!) y value

- :y-max: The new maximum (not necessarily starting!) y value

RETURN VALUE:

The new envelope (list).

EXAMPLE:

(AUTO-SCALE-ENV ’(0 0 10 1))

=>

(0.0 0.0 100.0 10.0)

(AUTO-SCALE-ENV ’(-1 0 .3 -3 1 1) :y-min 5 :y-max 6 :x-min 2)

=>

(2.0 5.75 65.7 5.0 100.0 6.0))

(AUTO-SCALE-ENV ’(0 1 5 1.5 7 0 10 1) :y-min -15 :y-max -4)

=>

(0.0 -7.6666665 50.0 -4.0 70.0 -15.0 100.0 -7.6666665))

SYNOPSIS:

(defun auto-scale-env (env &key

(x-min 0.0) (x-max 100.0)

(y-min 0.0) (y-max 10.0))

14.8 utilities/between

[utilities] [Functions]

DESCRIPTION:

Return a random number between two specified numbers. If the two numbers

are integers, the random selection is inclusive. If either are floating-point

(decimal) numbers, the result will be a float between the first (inclusive)

and just less than the second (i.e. exclusive).

14 SC/UTILITIES 152

ARGUMENTS:

- A first, lower, number.

- A second, higher, number.

NB: The first number must always be lower than the second.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the random seed should be fixed.

- T or NIL to indicate whether, when fixed-random is set to T, we should

reset the random number generator (to guarantee the same random

sequences). This would generally only be called once, perhaps at the

start of a generation procedure.

RETURN VALUE:

An integer if both numbers are integers, or a float if one or both are

decimal numbers.

EXAMPLE:

;;; Using the defaults. This will produce a different result each time.

(loop repeat 10 collect (between 1 100))

=> (43 63 26 47 28 2 99 93 66 23)

;;; Setting fixed-random to T and using zerop to reset the random when i is 0

(loop repeat 5

collect (loop for i from 0 to 9 collect (between 1 100 t (zerop i))))

=> ((93 2 38 81 43 19 70 18 44 26) (93 2 38 81 43 19 70 18 44 26)

(93 2 38 81 43 19 70 18 44 26) (93 2 38 81 43 19 70 18 44 26)

(93 2 38 81 43 19 70 18 44 26))

SYNOPSIS:

(defun between (low high &optional fixed-random restart)

14.9 utilities/combine-into-symbol

[utilities] [Functions]

DESCRIPTION:

14 SC/UTILITIES 153

Combine a sequence of elements of any combination of type string, number,

or symbol into a symbol.

ARGUMENTS:

- A sequence of elements.

RETURN VALUE:

A symbol as the primary value, with the length of that symbol as a

secondary value.

EXAMPLE:

(combine-into-symbol "test" 1 ’a)

=> TEST1A, 6

SYNOPSIS:

(defun combine-into-symbol (&rest params)

14.10 utilities/db2amp

[utilities] [Functions]

DESCRIPTION:

Convert a decibel value to a standard digital amplitude value (>0.0 to 1.0),

whereby 0dB = 1.0.

ARGUMENTS:

- A number that is a value in decibel.

RETURN VALUE:

A decimal number between >0.0 and 1.0.

EXAMPLE:

(db2amp -3)

=> 0.70794576

SYNOPSIS:

(defmacro db2amp (db)

14 SC/UTILITIES 154

14.11 utilities/decimal-places

[utilities] [Functions]

DATE:

19-Mar-2012

DESCRIPTION:

Round the given number to the specified number of decimal places.

ARGUMENTS:

- A number.

- An integer that is the number of decimal places to which to round the

given number.

RETURN VALUE:

A decimal number.

EXAMPLE:

(decimal-places 1.1478349092347 2)

=> 1.15

SYNOPSIS:

(defun decimal-places (num places)

14.12 utilities/decimate-env

[utilities] [Functions]

DESCRIPTION:

Reduce the number of x,y pairs in an envelope. In

all three, the envelope is first stretched along the x-axis to fit the new

number of points required. Then we proceed by one of three methods:

1) average: for every new output x value, interpolate 100 times from -0.5

to +0.5 around the point, then average the y value. This will catch

clustering but round out spikes caused by them

2) points: also an averaging method but only using the existing points in

14 SC/UTILITIES 155

the original envelope (unless none is present for a new x value, whereupon

interpolation is used): Take an average of the (several) points nearest the

new output point. This might not recreate the extremes of the original

envelope but clustering is captured, albeit averaged.

3) interpolate: for each new output point, interpolate the new y value from

the original envelope. This will leave out details in the case of

clustering, but accurately catch peaks if there are enough output points.

In each case we create an even spread of x values, rather than clustering

where clusters exist in the original.

ARGUMENTS:

- the original envelope (list of x,y values on any scales).

- the number of points required in the output list.

OPTIONAL ARGUMENTS:

- the method to be applied (symbol): ’points, ’average, ’interpolate.

Default = ’points.

RETURN VALUE:

A list representing the x,y values of the new envelope

EXAMPLE:

(decimate-env ’(0 0 4 4 5 5 5.1 5.1 5.3 1 5.6 5.6 6 6 10 10) 6)

=>

(0.0 0.0 1 2.0 2 4.5 3 4.425 4 8.0 5.0 10.0)

SYNOPSIS:

(defun decimate-env (env num-points &optional (method ’points))

14.13 utilities/dynamic-to-amplitude

[utilities] [Functions]

DESCRIPTION:

Convert a symbol that is a dynamic level between niente and ffff to a

corresponding digital amplitude value between 0.0 and 1.0.

ARGUMENTS:

14 SC/UTILITIES 156

- A symbol that is a dynamic level between niente and fff.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to print a warning when the symbol specified

is not recognized as a dynamic. T = warn. Default = T.

RETURN VALUE:

A decimal number between 0.0 and 1.0.

EXAMPLE:

(dynamic-to-amplitude ’fff)

=> 0.9

SYNOPSIS:

(defun dynamic-to-amplitude (dynamic &optional (warn t))

14.14 utilities/econs

[utilities] [Functions]

DESCRIPTION:

Add a specified element to the end of an existing list.

ARGUMENTS:

- A list.

- An element to add to the end of the list.

RETURN VALUE:

A new list.

EXAMPLE:

(econs ’(1 2 3 4) 5)

=> ’(1 2 3 4 5)

SYNOPSIS:

(defun econs (list new-back)

14 SC/UTILITIES 157

14.15 utilities/env-plus

[utilities] [Functions]

DESCRIPTION:

Increase all y values of a given list of break-point pairs by a specified

amount.

ARGUMENTS:

- An envelope in the form of a list of break-point pairs.

- A number that is the amount by which all y values of the given envelope

are to be increased.

RETURN VALUE:

A list of break-point pairs.

EXAMPLE:

(env-plus ’(0 0 25 11 50 13 75 19 100 23) 7.1)

=> (0 7.1 25 18.1 50 20.1 75 26.1 100 30.1)

SYNOPSIS:

(defun env-plus (env add)

14.16 utilities/env-symmetrical

[utilities] [Functions]

DESCRIPTION:

Create a new list of break-point pairs that is symmetrical to the original

around a specified center. If no center is specified, the center value

defaults to 0.5

ARGUMENTS:

- An envelope in the form of a list of break-point pairs.

OPTIONAL ARGUMENTS:

14 SC/UTILITIES 158

- A number that is the center value around which the values of the

new list are to be symmetrical.

- A number that is to be the minimum value for the y values returned.

- A number that is to be the maximum value for the y values returned.

RETURN VALUE:

An envelope in the form of a list of break-point pairs.

EXAMPLE:

;;; Default center is 0.5

(env-symmetrical ’(0 0 25 11 50 13 75 19 100 23))

=> (0 1.0 25 -10.0 50 -12.0 75 -18.0 100 -22.0)

;; Specifying a center of 0

(env-symmetrical ’(0 0 25 11 50 13 75 19 100 23) 0)

=> (0 0.0 25 -11.0 50 -13.0 75 -19.0 100 -23.0)

;;; Specifying minimum and maximum y values for the envelope returned

(env-symmetrical ’(0 0 25 11 50 13 75 19 100 23) 0 -20 -7)

=> (0 -7 25 -11.0 50 -13.0 75 -19.0 100 -20)

SYNOPSIS:

(defun env-symmetrical (env &optional (centre .5)

(min most-negative-double-float)

(max most-positive-double-float))

14.17 utilities/env2gnuplot

[utilities] [Functions]

DATE:

24th December 2013

DESCRIPTION:

Write a data file of x,y envelope values for use with gnuplit. Once called

start gnuplot and issue a command such as gnuplot> plot ’/tmp/env.txt’ with

lines.

14 SC/UTILITIES 159

ARGUMENTS:

- The envelope as the usual list of x y pairs

OPTIONAL ARGUMENTS:

- The pathname of the data file to write. Default = "/tmp/env.txt".

RETURN VALUE:

Always T

SYNOPSIS:

(defun env2gnuplot (env &optional (file "/tmp/env.txt"))

14.18 utilities/envelope-boundaries

[utilities] [Functions]

DESCRIPTION:

Find sharp changes in envelope values. These are defined as when a y value

rises or falls over 30% (by default) of it’s overall range within 5%

(again, by default) of its overall x axis range.

ARGUMENTS:

The envelope (a list of x y pairs).

OPTIONAL ARGUMENTS:

- jump-threshold: the minimum percentage change in y value that is deemed a

sharp change.

- steepness-min: the maximum percentage of the overall x axis that

constitutes a ’quick’ change.

RETURN VALUE:

A list of x values at which boundaries are deemed to lie.

EXAMPLE:

(ENVELOPE-BOUNDARIES ’(0 10 20 10 21 3 25 4 26 9 50 7 51 1 55 2 56 7 70 10

100 10))

--> (21 26 51 56)

14 SC/UTILITIES 160

SYNOPSIS:

(defun envelope-boundaries (envelope &optional (jump-threshold 30)

(steepness-min 5))

14.19 utilities/equal-within-tolerance

[utilities] [Functions]

DESCRIPTION:

Test whether the difference between two decimal numbers falls within a

specified tolerance.

This test is designed to compensate for calculation discrepancies caused by

floating-point errors (such as 2.0 vs. 1.9999997), in which the equations

should yield equal numbers. It is intended to be used in place of = in such

circumstances.

ARGUMENTS:

- A first number.

- A second number.

OPTIONAL ARGUMENTS:

- A decimal value that is the maximum difference allowed between the two

numbers that will still return T. Default = 0.000001d0.

RETURN VALUE:

T if the two tested numbers are equal within the specified tolerance,

otherwise NIL.

EXAMPLE:

;; An example of floating-point error

(loop for i from 0.0 below 1.1 by 0.1 collect i)

=> (0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70000005 0.8000001 0.9000001 1.0000001)

;; Using =

(loop for i from 0.0 below 1.1 by 0.1

for j in ’(0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0)

14 SC/UTILITIES 161

collect (= i j))

=> (T T T T T T T NIL NIL NIL NIL)

;; Using equal-within-tolerance

(loop for i from 0.0 below 1.1 by 0.1

for j in ’(0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0)

collect (equal-within-tolerance i j))

=> (T T T T T T T T T T T)

SYNOPSIS:

(defun equal-within-tolerance (a b &optional (tolerance 0.000001d0))

14.20 utilities/factor

[utilities] [Functions]

DESCRIPTION:

Boolean test to check if a specified number is a multiple of a second

specified number.

ARGUMENTS:

- A number that will be tested to see if it is a multiple of the second

number.

- A second number that is the base number for the factor test.

RETURN VALUE:

T if the first number is a multiple of the second number, otherwise NIL.

EXAMPLE:

(factor 14 7)

=> T

SYNOPSIS:

(defun factor (num fac)

14 SC/UTILITIES 162

14.21 utilities/flatten

[utilities] [Functions]

DESCRIPTION:

Return a list of nested lists of any depth as a flat list.

ARGUMENTS:

- A list of nested lists.

RETURN VALUE:

A flat list.

EXAMPLE:

(flatten ’((1 (2 3 4) (5 (6 7) (8 9 10 (11) 12)) 13) 14 15 (16 17)))

=> (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)

SYNOPSIS:

(defun flatten (nested-list)

14.22 utilities/force-length

[utilities] [Functions]

DATE:

03-FEB-2011

DESCRIPTION:

Create a new a list of a specified new length by adding or removing items

at regular intervals from the original list. If adding items and the list

contains numbers, linear interpolation will be used, but only between two

adjacent items; i.e. not with a partial increment.

NB: The function can only create new lists that have a length between 1 and

1 less than double the length of the original list.

ARGUMENTS:

14 SC/UTILITIES 163

- A flat list.

- A number that is the new length of the new list to be derived from the

original list. This number must be a value between 1 and 1 less than

double the length of the original list.

RETURN VALUE: EXAMPLE:

;;; Shortening a list

(force-length (loop for i from 1 to 100 collect i) 17)

=> (1 7 13 20 26 32 39 45 51 57 63 70 76 82 89 95 100)

;;; Lengthening a list

(force-length (loop for i from 1 to 100 collect i) 199)

=> (1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12

12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21

21.5 22 22.5 23 23.5 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5 30

30.5 31 31.5 32 32.5 33 33.5 34 34.5 35 35.5 36 36.5 37 37.5 38 38.5 39

39.5 40 40.5 41 41.5 42 42.5 43 43.5 44 44.5 45 45.5 46 46.5 47 47.5 48

48.5 49 49.5 50 50.5 51 51.5 52 52.5 53 53.5 54 54.5 55 55.5 56 56.5 57

57.5 58 58.5 59 59.5 60 60.5 61 61.5 62 62.5 63 63.5 64 64.5 65 65.5 66

66.5 67 67.5 68 68.5 69 69.5 70 70.5 71 71.5 72 72.5 73 73.5 74 74.5 75

75.5 76 76.5 77 77.5 78 78.5 79 79.5 80 80.5 81 81.5 82 82.5 83 83.5 84

84.5 85 85.5 86 86.5 87 87.5 88 88.5 89 89.5 90 90.5 91 91.5 92 92.5 93

93.5 94 94.5 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100)

SYNOPSIS:

(defun force-length (list new-len)

14.23 utilities/get-clusters

[utilities] [Functions]

DESCRIPTION:

Takes a list with (ascending) numbers and creates sublists of those numbers

within <threshold> of each other.

ARGUMENTS:

A list of (ascending) numbers. NB Though the numbers don’t have to be in

ascending order, the design application of the function makes most sense if

they are.

14 SC/UTILITIES 164

OPTIONAL ARGUMENTS:

The maximum distance between two numbers in order for them to be considered

as part of the same cluster.

RETURN VALUE:

A list with clusters in sublists.

EXAMPLE:

(get-clusters ’(24 55 58 59 60 81 97 102 106 116 118 119 145 149 151 200 210

211 214 217 226 233 235 236 237 238 239 383 411 415 419))

--> (24 (55 58 59 60) 81 (97 102 106) (116 118 119) (145 149 151) 200

(210 211 214 217) 226 (233 235 236 237 238 239) 383 (411 415 419))

(get-clusters ’(0 .1 .3 .7 1.5 1.55 2 4.3 6.3 6.4) 1)

--> ((0 0.1 0.3 0.7 1.5 1.55 2) 4.3 (6.3 6.4))

(get-clusters ’(0 .1 .3 .7 1.5 1.55 2 4.3 6.3 6.4) 0.5)

--> ((0 0.1 0.3 0.7) (1.5 1.55 2) 4.3 (6.3 6.4))

SYNOPSIS:

(defun get-clusters (list &optional (threshold 5))

14.24 utilities/get-harmonics

[utilities] [Functions]

DESCRIPTION:

Return a list of the harmonic partial frequencies in Hertz from a

specified (usually fundamental) frequency.

ARGUMENTS:

- A number that is the fundamental or starting frequency in Hertz.

OPTIONAL ARGUMENTS:

keyword arguments

- :start-partial. An integer that is the number of the first harmonic

partial to return. Default = 1.

14 SC/UTILITIES 165

- :min-freq. A number that is the lowest frequency in Hertz to

return. Default = 20.

- :max-freq. A number that is the highest frequency in Hertz to

return. Default = 20000.

- :start-freq-is-partial. Rather than treating the first argument as the

fundamental, treat it as the partial number indicated by this argument.

Default = 1.

- :max-results. The maximum number of harmonics to return. Default =

most-positive-fixnum

- :skip. The increment for the harmonics. If 1, then we ascend the

harmonics series one partial at a time; 2 would mean skipping every other

Default = 1.

RETURN VALUE:

A list of numbers that are the frequencies in Hertz of harmonic partials

above the same fundamental frequency.

EXAMPLE:

;;; Get the first 15 harmonic partials above a fundamental pitch of 64 Hertz,

;;; starting with partial 2, and specifying an upper cut-off of 1010 Hz.

(get-harmonics 63 :start-partial 2 :max-freq 1010)

=> (126 189 252 315 378 441 504 567 630 693 756 819 882 945 1008)

SYNOPSIS:

(defun get-harmonics (start-freq &key (start-partial 1) (min-freq 20)

(start-freq-is-partial 1) (max-freq 20000) (skip 1)

(max-results most-positive-fixnum))

14.25 utilities/get-sublist-indices

[utilities] [Functions]

DESCRIPTION:

Get the starting position of sublists within a list as though the complete

set of items were a flat list.

ARGUMENTS:

- A list of lists.

14 SC/UTILITIES 166

RETURN VALUE:

A list of integers that are the indices of the sublists.

EXAMPLE:

(get-sublist-indices ’((1 2) (3 4 5 6) (7 8 9) (10 11 12 13 14) (15)))

=> (0 2 6 9 14)

SYNOPSIS:

(defun get-sublist-indices (list)

14.26 utilities/get-sublist-lengths

[utilities] [Functions]

DESCRIPTION:

Get the lengths of all sublists in a given list.

ARGUMENTS:

- A list of lists.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to first remove zeros caused by empty

sublists from the result.

RETURN VALUE:

A list of integers.

EXAMPLE:

;; Straightforward usage allows zeros in the result

(get-sublist-lengths ’((1 2) (3 4 5 6) (7 8 9) (10 11 12 13 14) ()))

=> (2 4 3 5 0)

;; Setting the optional argument to T removes zeros from the result

(get-sublist-lengths ’((1 2) (3 4 5 6) (7 8 9) (10 11 12 13 14) ()) t)

=> (2 4 3 5)

14 SC/UTILITIES 167

SYNOPSIS:

(defun get-sublist-lengths (list &optional (remove-zeros nil))

14.27 utilities/hailstone

[utilities] [Functions]

DESCRIPTION:

Implementation of the Collatz conjecture (see

http://en.wikipedia.org/wiki/Collatz_conjecture)

The Collatz conjecture suggests that by starting with a given number, and

if it is even dividing it by two or if it is odd multiplying it by three

and adding one, then repeating with the new result, the process will

eventually always result in one.

ARGUMENTS:

- A number to start with.

RETURN VALUE:

A list of the results collected from each iteration starting with the

specified number and ending with one.

EXAMPLE:

(hailstone 11)

=> (11 34 17 52 26 13 40 20 10 5 16 8 4 2 1)

SYNOPSIS:

(defun hailstone (n)

14.28 utilities/hz2ms

[utilities] [Functions]

DESCRIPTION:

Convert a frequency in Hertz to the equivalent number of milliseconds.

14 SC/UTILITIES 168

ARGUMENTS:

- A number that is a Hertz frequency.

RETURN VALUE:

A number that is the millisecond equivalent of the specified Hertz

frequency.

EXAMPLE:

(hz2ms 261.63)

=> 3.8221915

SYNOPSIS:

(defun hz2ms (hertz)

14.29 utilities/interleave

[utilities] [Functions]

DESCRIPTION:

Interleave the elements of an aribitrary number of lists. Should the lists

not be of the same length, this function will only use up as many elements

as in the shortest list.

ARGUMENTS:

As many lists as need to be interleaved.

RETURN VALUE:

A new list of interleaved elements.

EXAMPLE:

(INTERLEAVE ’(1 2 3 4 5) ’(a b c d) ’(x y z))

--> (1 A X 2 B Y 3 C Z)

(INTERLEAVE ’(1 2 3 4 5) ’(a b c d e) ’(v w x y z))

--> (1 A V 2 B W 3 C X 4 D Y 5 E Z)

SYNOPSIS:

(defun interleave (&rest lists)

14 SC/UTILITIES 169

14.30 utilities/interpolate

[utilities] [Functions]

DESCRIPTION:

Get the interpolated value at a specified point within an envelope. The

envelope must be specified in the form of a list of break-point pairs.

ARGUMENTS:

- A number that is the point within the specified envelope for which to

return the interpolated value.

- A list of break-point pairs.

OPTIONAL ARGUMENTS:

keyword arguments:

- :scaler. A number that is the factor by which to scale the values of

the break-point pairs in the given envelope before retrieving the

interpolated value. Default = 1.

- :exp. A number that is the exponent to which the result should be

raised. Default = 1.

- :warn. T or NIL to indicate whether the method should print a warning if

the specified point is outside of the bounds of the x-axis specified in

the list of break-point pairs. T = warn. Default = T.

RETURN VALUE: EXAMPLE:

;;; Using the defaults

(interpolate 50 ’(0 0 100 1))

=> 0.5

;;; Specifying a different scaler

(interpolate 50 ’(0 0 100 1) :scaler 2)

=> 1.0

;;; Specifying a different exponent by which the result is to be raised

(interpolate 50 ’(0 0 100 1) :exp 2)

=> 0.25

SYNOPSIS:

(defun interpolate (point env &key (scaler 1) (exp 1) (warn t))

14 SC/UTILITIES 170

14.31 utilities/list-to-string

[utilities] [Functions]

DESCRIPTION:

Convert a list to a string.

ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

- A string that will serve as a separator between the elements.

Default = " ".

- T or NIL to indicate whether a list value of NIL is to be returned as

"NIL" or NIL. T = "NIL" as a string. Default = T.

RETURN VALUE: EXAMPLE:

;;; Using defaults

(list-to-string ’(1 2 3 4 5))

=> "1 2 3 4 5"

;;; Specifying a different separator

(list-to-string ’(1 2 3 4 5) "-")

=> "1-2-3-4-5"

;;; A NIL list returns "NIL" as a string by default

(list-to-string NIL)

=> "nil"

;;; Setting the second optional argument to NIL returns a NIL list as NIL

;;; rather than as "NIL" as a string

(list-to-string NIL "" nil)

=> NIL

SYNOPSIS:

(defun list-to-string (list &optional (separator " ") (nil-as-string t))

14 SC/UTILITIES 171

14.32 utilities/logarithmic-steps

[utilities] [Functions]

DESCRIPTION:

Create a list of numbers progressing from the first specified argument to

the second specified argument over the specified number of steps using an

exponential curve rather than linear interpolation.

ARGUMENTS:

- A number that is the starting value in the resulting list.

- A number that is the ending value in the resulting list.

- An integer that will be the length of the resulting list - 1.

OPTIONAL ARGUMENTS:

- A number that will be used as the exponent when determining the

exponential interpolation between values. Default = 2.

RETURN VALUE:

A list of numbers.

EXAMPLE:

(logarithmic-steps 1 100 19)

=> (1.0 1.3055556 2.2222223 3.75 5.888889 8.638889 12.0 15.972222 20.555555

25.75 31.555555 37.97222 45.0 52.63889 60.88889 69.75 79.22222 89.30556

100.0)

SYNOPSIS:

(defun logarithmic-steps (low high num-steps &optional (exponent 2))

14.33 utilities/middle

[utilities] [Functions]

DESCRIPTION:

Get the number value that is middle of two number values.

14 SC/UTILITIES 172

ARGUMENTS:

- A first number.

- A second number.

RETURN VALUE:

A number.

EXAMPLE:

(middle 7 92)

=> 49.5

SYNOPSIS:

(defun middle (lower upper)

14.34 utilities/mins-secs-to-secs

[utilities] [Functions]

DESCRIPTION:

Derive the number of seconds from a minutes-seconds value that is indicated

as a two-item list in the form ’(minutes seconds).

ARGUMENTS:

- A two-item list of integers in the form ’(minutes seconds).

RETURN VALUE:

A decimal number that is a number in seconds.

EXAMPLE:

(mins-secs-to-secs ’(2 1))

=> 121.0

SYNOPSIS:

(defun mins-secs-to-secs (list)

14 SC/UTILITIES 173

14.35 utilities/move-elements

[utilities] [Functions]

DATE:

02-Mar-2011

DESCRIPTION:

Move the specified elements from one list (if they are present in that

list) to another, deleting them from the first.

ARGUMENTS:

- A list of elements that are the elements to be moved.

- A list from which the specified elements are to be moved and deleted.

- A list to which the specified elements are to be moved.

OPTIONAL ARGUMENTS:

- A predicate by which to test that the specified elements are equal to

elements of the source list. Default = #’eq.

RETURN VALUE:

Two values: A first list that is the source list after the items have been

moved; a second list that is the target list after the items have been

moved.

EXAMPLE:

(move-elements ’(3 5 8) ’(1 2 3 4 5 6 7 8 9) ’(a b c d e))

=> (1 2 4 6 7 9), (8 5 3 A B C D E)

SYNOPSIS:

(defun move-elements (what from to &optional (test #’eq))

14.36 utilities/move-to-end

[utilities] [Functions]

DATE:

14 SC/UTILITIES 174

22-May-2011

DESCRIPTION:

Move a specified element of a given list to the end of the list, returning

the new list.

NB: If the element exists more than once in the given list, all but on of

the occurrences will be removed and only one of them will be placed at

the end.

ARGUMENTS:

- An item that is an element of the list that is the second argument.

- A list.

RETURN VALUE:

A list.

EXAMPLE:

;;; All unique items

(move-to-end 2 ’(1 2 3 4 5))

=> (1 3 4 5 2)

;;; Duplicate items

(move-to-end 2 ’(1 2 3 2 4 2 5))

=> (1 3 4 5 2)

SYNOPSIS:

(defun move-to-end (what list &optional (test #’eql))

14.37 utilities/nconc-sublists

[utilities] [Functions]

DESCRIPTION:

Concatenate corresponding sublists of a given list. Each sublist in the

argument should have the same length and number of sublists etc.

14 SC/UTILITIES 175

ARGUMENTS:

A list of lists.

RETURN VALUE:

A list of lists.

EXAMPLE:

(nconc-sublists ’(((1 2) (a b) (cat dog))

((3 4) (c d) (bird fish))

((5 6) (e f) (pig cow))))

=> ((1 2 3 4 5 6) (A B C D E F) (CAT DOG BIRD FISH PIG COW))

SYNOPSIS:

(defun nconc-sublists (lists)

14.38 utilities/nearest-power-of-2

[utilities] [Functions]

DESCRIPTION:

Return the closest number to the specified value that is a power of two but

not greater than the specified value.

ARGUMENTS:

- A number.

RETURN VALUE:

An integer that is a power of two.

EXAMPLE:

(nearest-power-of-2 31)

=> 16

(nearest-power-of-2 32)

14 SC/UTILITIES 176

=> 32

(nearest-power-of-2 33)

=> 32

SYNOPSIS:

(defun nearest-power-of-2 (num)

14.39 utilities/octave-freqs

[utilities] [Functions]

DESCRIPTION:

A boolean test to determine whether two specified frequencies are octave

transpositions of the same pitch class.

ARGUMENTS:

- A first number that is a frequency in Hertz.

- A second number that is a frequency in Hertz.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether identical frequencies ("unison") are also

to be considered octave transpositions of the same pitch class.

T = unisons are also octaves. Default = T.

RETURN VALUE:

T or NIL.

EXAMPLE:

(octave-freqs 261.63 2093.04)

=> T

(octave-freqs 261.63 3000.00)

=> NIL

14 SC/UTILITIES 177

(octave-freqs 261.63 261.63)

=> T

(octave-freqs 261.63 261.63 nil)

=> NIL

SYNOPSIS:

(defun octave-freqs (freq1 freq2 &optional (unison-also t))

14.40 utilities/parse-audacity-label-file-for-loops

[utilities] [Functions]

DESCRIPTION:

Read an audacity label file and return its loop points as groups.

NB: If this fails it’s probably because there’s a tab between time and

label instead of spaces: save in emacs to detab.

NB: Beware that marker files created on different operating systems from

the one on which this function is called might trigger errors due to

newline character mismatches.

ARGUMENTS:

- A string that is the name of the label file to be parsed, including

directory path and extension.

RETURN VALUE:

Returns a list of lists which are the grouped time points.

Also prints separate feedback to the listener.

EXAMPLE:

(parse-audacity-label-file-for-loops "/path/to/24-7loops1.txt")

=>

313 markers, 50 loops read

14 SC/UTILITIES 178

((25.674559 25.829296 26.116327 26.649048 27.038843)

(32.211884 32.33669 32.481815 32.618233 32.716915 32.902676 33.227757

33.61959)

(36.893604 37.059048 37.160633 37.27383 37.439274 37.4683 37.627937)

(39.52907 39.81932 39.999275 40.2634 40.338867 40.605896)

(45.612698 45.818775 46.050976 46.145306 46.275192)

(46.4566 46.644535 46.76934 46.886894 46.971066 47.16553)

(84.15927 84.260864 84.292786 84.355194 84.47274 84.52789 84.556915

84.65415)

...

(676.1075 676.79114 677.1503 677.57904 678.12366)

(799.29205 799.8019 800.58984 800.96063 801.13446 801.45886)

(804.98145 805.2016 805.5724 805.83887 806.31396))

SYNOPSIS:

(defun parse-audacity-label-file-for-loops (label-file)

14.41 utilities/parse-wavelab-marker-file-for-loops

[utilities] [Functions]

DESCRIPTION:

Read a wavelab marker file and return its loop points as groups.

The marker file must contain markers with the word "loop". A marker with

that name will start a new set of loop points, and nameless markers will

belong to the group until the next "loop" marker.

ARGUMENTS:

- A string that is the name of the marker file to be parsed, including

directory path and extension.

OPTIONAL ARGUMENTS:

keyword arguments:

- :sampling-rate. An integer that is the sampling rate of the sound file to

which the marker file refers. This value will affect the resulting time

points. Default = 44100.

- :max-length. The maximum duration in seconds between two points: anything

greater than this will result in a warning being printed.

14 SC/UTILITIES 179

RETURN VALUE:

Returns a list of lists which are the grouped time points.

Also prints separate feedback to the listener.

EXAMPLE:

(parse-wavelab-marker-file-for-loops "/path/to/24-7loops1.mrk")

=>

WARNING:

utilities::parse-wavelab-marker-file-for-loops

loop points 10:13.213 to 10:14.475 are too long (1.2620239)

WARNING:

utilities::parse-wavelab-marker-file-for-loops

loop points 10:33.223 to 10:34.486 are too long (1.2630615)

WARNING:

utilities::parse-wavelab-marker-file-for-loops

loop points 10:36.456 to 10:37.522 are too long (1.06604)

312 markers, 50 loops read

((25.674559 25.829296 26.116327 26.649048 27.038843)

(32.211884 32.33669 32.481815 32.618233 32.716915 32.902676 33.227757

33.61959)

(36.893604 37.059048 37.160633 37.27383 37.439274 37.4683 37.627937)

(39.52907 39.81932 39.999275 40.2634 40.338867 40.605896)

(45.612698 45.818775 46.050976 46.145306 46.275192)

(46.4566 46.644535 46.76934 46.886894 46.971066 47.16553)

(84.15927 84.260864 84.292786 84.355194 84.47274 84.52789 84.556915

84.65415)

...

(655.91077 656.4554 656.80304 657.4519 658.04285 658.8192)

(676.1075 676.79114 677.1503 677.57904 678.12366)

(799.29205 799.8019 800.58984 800.96063 801.13446 801.45886)

(804.98145 805.2016 805.5724 805.83887 806.31396))

SYNOPSIS:

(defun parse-wavelab-marker-file-for-loops

(marker-file &key (sampling-rate 44100) (max-length 1.0))

14 SC/UTILITIES 180

14.42 utilities/partial-freqs

[utilities] [Functions]

DATE:

13-Dec-2011

DESCRIPTION:

A Boolean test to determine whether either of two specified frequencies

can be considered a harmonic partial of the other.

ARGUMENTS:

- A first frequency in Hertz.

- A second frequency in Hertz.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether identical frequencies ("unison") are also to

be considered partials of each other. T = unison are partials.

Default = T.

RETURN VALUE:

T if one of the frequencies has the ratio of a harmonic partial to the

other, otherwise NIL.

EXAMPLE:

(partial-freqs 300 900)

=> T

(partial-freqs 300 700)

=> NIL

(partial-freqs 300 300)

=> T

(partial-freqs 300 300 nil)

=> NIL

14 SC/UTILITIES 181

SYNOPSIS:

(defun partial-freqs (freq1 freq2 &optional (unison-also t))

14.43 utilities/pdivide

[utilities] [Functions]

DESCRIPTION:

Creates a list of proportional times, dividing a starting duration into a

number of smaller durations a specified number of times. We start with a

proportion as a ratio (e.g. 3/2) and divide the given duration into two

parts according to that ratio. Then those two parts will be divided into

the same ratios. This will iterate the number of times indicated by the

second argument.

The following are some classical proportions:

Latin (Greek)

(3 : 2) Sesquialtera (Diapente)

(4 : 3) Sesquitertia (Diatessaron)

(5 : 4) Sesquiquarta (Diatonus Semitonus)

(8 : 3) Duplasuperbipartiens (Diapson Diatesseron)

(9 : 8) Sesquioctava (Tonus)

ARGUMENTS:

- an integer or ratio (in Lisp terms, a rational) e.g. 3/2

- an integer >=1 specifying the number of times to iterate the process of

dividing the duration into proportions.

OPTIONAL ARGUMENTS:

keyword arguments:

- :duration. The overall duration to apply the proportional divisions to.

Units are arbitrary of course as this is just a number. Default 1.0.

- :print. If T, print each level of division as we proceed. Default NIL.

- :reverse. If T reverse the proportion (so 3/2 becomes 2/3). Default NIL.

- :alternate. If T, reverse the proportion every other division (not

iteration) so that if we have a proportion of 3/2 on the second iteration

we divide into 3/2 then 2/3. Default NIL.

- :increment. If T, then each time we divide we increment both sides of the

proportion, so 3:2 becomes 4:3 which becomes 5:4 etc. Default NIL.

- :halves. This will only make a difference if :increment is T: As results

tend overall towards increasing (when numerator < denominator e.g. 2/3) or

14 SC/UTILITIES 182

decreasing (numerator > denominator e.g. 3/2) numbers, we can mix things

up by dividing the resultant list into two halves and splicing their

elements one after the other. Default NIL.

- :shuffle. Mix things up by shuffling the resultant list. As this uses

the shuffle algorithm we have fixed-seed randomness so results will be

the same upon each call within the same Lisp implementation/version.

Default NIL.

RETURN VALUE:

Three values: the list of ascending timings from the last generation of the

calculated proportions; the durations of each part for the last generation;

the list of ascending timings for _each_ generation of the calculated

proportions (a list of lists).

EXAMPLE:

Notice here that each generation prints the proportions along with the

durations these correspond to and the start time of each (cumulative durations).

(pdivide 3/2 4 :duration 35 :print t)

PRINTS:

Generation 1: 3 (21.00=21.00), 2 (14.00=35.00),

Generation 2: 3 (12.60=12.60), 2 (8.40=21.00), 3 (8.40=29.40), 2 (5.60=35.00),

Generation 3: 3 (7.56=7.56), 2 (5.04=12.60), 3 (5.04=17.64), 2 (3.36=21.00),

3 (5.04=26.04), 2 (3.36=29.40), 3 (3.36=32.76), 2 (2.24=35.00),

Generation 4: 3 (4.54=4.54), 2 (3.02=7.56), 3 (3.02=10.58), 2 (2.02=12.60),

3 (3.02=15.62), 2 (2.02=17.64), 3 (2.02=19.66), 2 (1.34=21.00), 3 (3.02=24.02),

2 (2.02=26.04), 3 (2.02=28.06), 2 (1.34=29.40), 3 (2.02=31.42), 2 (1.34=32.76),

3 (1.34=34.10), 2 (0.90=35.00),

RETURNS:

(0.0 4.5360003 7.5600004 10.584001 12.6 15.624001 17.640001 19.656002 21.000002

24.024002 26.040003 28.056004 29.400003 31.416004 32.760006 34.104008

35.000008)

(4.5360003 3.0240002 3.0240004 2.0160003 3.0240004 2.0160003 2.0160003

1.3440002 3.0240004 2.0160003 2.0160003 1.3440002 2.0160003 1.3440001

1.3440001 0.896)

((0.0 4.5360003 7.5600004 10.584001 12.6 15.624001 17.640001 19.656002

21.000002 24.024002 26.040003 28.056004 29.400003 31.416004 32.760006

34.104008 35.000008)

(0.0 7.5600004 12.6 17.640001 21.000002 26.040003 29.400003 32.760002

14 SC/UTILITIES 183

35.000004)

(0.0 12.6 21.0 29.400002 35.0) (0.0 21.0 35.0))

(pdivide 3/2 4 :duration 35 :print t :increment t :halves t)

PRINTS:

Generation 1: 3 (21.00=21.00), 2 (14.00=35.00),

Generation 2: 4 (12.00=12.00), 3 (9.00=21.00), 5 (7.78=28.78), 4 (6.22=35.00),

Generation 3: 6 (6.55=6.55), 5 (5.45=12.00), 7 (4.85=16.85), 6 (4.15=21.00),

8 (4.15=25.15), 7 (3.63=28.78), 9 (3.29=32.07), 8 (2.93=35.00),

Generation 4: 10 (3.44=3.44), 9 (3.10=6.55), 11 (2.86=9.40), 10 (2.60=12.00),

12 (2.53=14.53), 11 (2.32=16.85), 13 (2.16=19.01), 12 (1.99=21.00),

14 (2.15=23.15), 13 (2.00=25.15), 15 (1.88=27.03), 14 (1.75=28.78),

16 (1.70=30.48), 15 (1.59=32.07), 17 (1.51=33.58), 16 (1.42=35.00),

RETURNS:

(0.0 3.4449766 5.595868 8.696347 10.6936035 13.550747 15.428142 18.025545

19.77778 22.30621 24.0064 26.324125 27.918053 30.078053 31.58647 33.580315

35.0)

(3.4449766 2.1508918 3.100479 1.9972568 2.8571434 1.8773947 2.5974028 1.752235

2.5284283 1.7001898 2.317726 1.593928 2.16 1.5084175 1.9938462 1.4196872)

((0.0 3.4449766 6.5454555 9.402599 12.000002 14.52843 16.846155 19.006155

21.000002 23.150894 25.148151 27.025547 28.777782 30.477972 32.0719 33.58032

35.000004)

(0.0 6.5454555 12.000002 16.846157 21.000004 25.148151 28.77778 32.0719

35.000004)

(0.0 12.000001 21.0 28.777779 35.0) (0.0 21.0 35.0))

SYNOPSIS:

(defun pdivide (start levels &key (duration 1.0) print reverse alternate

halves shuffle increment)

14.44 utilities/pexpand

[utilities] [Functions]

DESCRIPTION:

Instead of dividing an overall duration (pdivide) we start with a

proportion and expand outwards from there, keeping each newly created part

14 SC/UTILITIES 184

in the same proportion. This is repeated the number of times specified in

the first argument. Useful for generating maps (section structure).

ARGUMENTS:

The number of times to expand proportionally.

OPTIONAL ARGUMENTS:

As many integer proportions as required. If the last argument here is t,

then instead of using letters to denote sections we use numbers instead.

RETURN VALUE:

3 values:

1) a list showing the cumulative count (e.g. bar numbers) of where major

and minor sections occur. Topmost sections will have the labels A, B, C,

etc. with subsections such as A.A, A.B, ... C.C.C.C. Of course, wherever a

major section starts, an arbitrary number of subsections also begin, but

only the most major section is present in the list.

2) the structure of the sections and subsections in the form of a list of

sublists for each, and containing the section labels paired with their

length. The bottommost subsection will have a length of the sum of the

proportions, with higher subsection groupings showing multiples of this.

3) the overall length of the structure produced (also the first element of

the second returned value).

EXAMPLE:

;;; 2 generations:

(pexpand 2 3 2) =>

(1 (A) 6 (A A A B) 11 (A A A C) 16 (A A B) 21 (A A B B) 26 (A B) 31 (A B A B)

36 (A B A C) 41 (A B B) 46 (A B B B) 51 (A C) 56 (A C A B) 61 (A C A C) 66

(A C B) 71 (A C B B) 76 (B) 81 (B A A B) 86 (B A A C) 91 (B A B) 96 (B A B B)

101 (B B) 106 (B B A B) 111 (B B A C) 116 (B B B) 121 (B B B B))

(125

(((A) 75)

(((A A) 25) (((A A A) 15) ((A A A A) 5) ((A A A B) 5) ((A A A C) 5))

(((A A B) 10) ((A A B A) 5) ((A A B B) 5)))

(((A B) 25) (((A B A) 15) ((A B A A) 5) ((A B A B) 5) ((A B A C) 5))

(((A B B) 10) ((A B B A) 5) ((A B B B) 5)))

(((A C) 25) (((A C A) 15) ((A C A A) 5) ((A C A B) 5) ((A C A C) 5))

(((A C B) 10) ((A C B A) 5) ((A C B B) 5))))

(((B) 50)

(((B A) 25) (((B A A) 15) ((B A A A) 5) ((B A A B) 5) ((B A A C) 5))

14 SC/UTILITIES 185

(((B A B) 10) ((B A B A) 5) ((B A B B) 5)))

(((B B) 25) (((B B A) 15) ((B B A A) 5) ((B B A B) 5) ((B B A C) 5))

(((B B B) 10) ((B B B A) 5) ((B B B B) 5)))))

125

;;; 3 generations:

(pexpand 3 3 2) =>

(1 (A) 6 (A A A A A B) 11 (A A A A A C) 16 (A A A A B) 21 (A A A A B B) 26

(A A A B) 31 (A A A B A B) 36 (A A A B A C) 41 (A A A B B) 46 (A A A B B B) 51

(A A A C) 56 (A A A C A B) 61 (A A A C A C) 66 (A A A C B) 71 (A A A C B B) 76

...

581 (B B B A A B) 586 (B B B A A C) 591 (B B B A B) 596 (B B B A B B) 601

(B B B B) 606 (B B B B A B) 611 (B B B B A C) 616 (B B B B B) 621

(B B B B B B))

(625

(((A) 375)

(((A A) 125)

(((A A A) 75)

(((A A A A) 25)

(((A A A A A) 15) ((A A A A A A) 5) ((A A A A A B) 5) ((A A A A A C) 5))

(((A A A A B) 10) ((A A A A B A) 5) ((A A A A B B) 5)))

...

(((B B B) 50)

(((B B B A) 25)

(((B B B A A) 15) ((B B B A A A) 5) ((B B B A A B) 5) ((B B B A A C) 5))

(((B B B A B) 10) ((B B B A B A) 5) ((B B B A B B) 5)))

(((B B B B) 25)

(((B B B B A) 15) ((B B B B A A) 5) ((B B B B A B) 5) ((B B B B A C) 5))

(((B B B B B) 10) ((B B B B B A) 5) ((B B B B B B) 5)))))))

625

;;; 2 generations of 3 proportional values, returning numbers for labels

(pexpand 2 3 2 4 t) =>

(1 (1) 10 (1 1 1 2) 19 (1 1 1 3) 28 (1 1 2) 37 (1 1 2 2) 46 (1 1 3) 55

(1 1 3 2) 64 (1 1 3 3) 73 (1 1 3 4) 82 (1 2) 91 (1 2 1 2) 100 (1 2 1 3) 109

(1 2 2) 118 (1 2 2 2) 127 (1 2 3) 136 (1 2 3 2) 145 (1 2 3 3) 154 (1 2 3 4)

... (3 4 2 2) 694 (3 4 3) 703 (3 4 3 2) 712 (3 4 3 3) 721 (3 4 3 4))

(729

(((1) 243)

(((1 1) 81) (((1 1 1) 27) ((1 1 1 1) 9) ((1 1 1 2) 9) ((1 1 1 3) 9))

(((1 1 2) 18) ((1 1 2 1) 9) ((1 1 2 2) 9))

(((1 1 3) 36) ((1 1 3 1) 9) ((1 1 3 2) 9) ((1 1 3 3) 9) ((1 1 3 4) 9)))

...

(((3 2 2) 18) ((3 2 2 1) 9) ((3 2 2 2) 9))

(((3 2 3) 36) ((3 2 3 1) 9) ((3 2 3 2) 9) ((3 2 3 3) 9) ((3 2 3 4) 9)))

14 SC/UTILITIES 186

(((3 3) 81) (((3 3 1) 27) ((3 3 1 1) 9) ((3 3 1 2) 9) ((3 3 1 3) 9))

(((3 3 2) 18) ((3 3 2 1) 9) ((3 3 2 2) 9))

(((3 3 3) 36) ((3 3 3 1) 9) ((3 3 3 2) 9) ((3 3 3 3) 9) ((3 3 3 4) 9)))

(((3 4) 81) (((3 4 1) 27) ((3 4 1 1) 9) ((3 4 1 2) 9) ((3 4 1 3) 9))

(((3 4 2) 18) ((3 4 2 1) 9) ((3 4 2 2) 9))

(((3 4 3) 36) ((3 4 3 1) 9) ((3 4 3 2) 9) ((3 4 3 3) 9) ((3 4 3 4) 9)))))

729

SYNOPSIS:

(defun pexpand (generations &rest proportions)

14.45 utilities/pexpand-find

[utilities] [Functions]

DESCRIPTION:

Find the cumulative number of where a label occurs in a list returned by

pexpand.

ARGUMENTS:

- the label we’re looking for

- a list of the type returned by pexpand (first returned value).

OPTIONAL ARGUMENTS:

- a function to be called when the label cannot be found. Default =

#’error but could also be #’warn or NIL.

RETURN VALUE:

An integer.

SYNOPSIS:

(defun pexpand-find (label list &optional (on-error #’error))

14.46 utilities/power-of-2

[utilities] [Functions]

DESCRIPTION:

14 SC/UTILITIES 187

Test whether the specified number is a power of two and return the

logarithm of the specified number to base 2.

This method returns two values: T or NIL for the test and a decimal that is

the logarithm of the specified number to base 2.

ARGUMENTS:

- A number.

RETURN VALUE:

Two values: T or NIL for the test and a decimal number that is the

logarithm of the specified number to base 2.

EXAMPLE:

(power-of-2 16)

=> T, 4.0

(power-of-2 17.3)

=> NIL, 4.1127

SYNOPSIS:

(defun power-of-2 (float)

14.47 utilities/pts2cm

[utilities] [Functions]

DESCRIPTION:

Convert a specified number of points to a length in centimeters at a

resolution of 72ppi.

ARGUMENTS:

- A number.

RETURN VALUE:

A number.

14 SC/UTILITIES 188

EXAMPLE:

(pts2cm 150)

=> 5.2916665

SYNOPSIS:

(defun pts2cm (points)

14.48 utilities/random-amount

[utilities] [Functions]

DESCRIPTION:

Return a random number from within a total range of <percent> of the given

number, centering around zero. Thus, if the <number> is 100, and the

<percent> is 5, the results will be a random number between -2.5 and +2.5.

ARGUMENTS:

A number.

OPTIONAL ARGUMENTS:

A number that will be a percent of the given number.

RETURN VALUE:

A random positive or negative number.

EXAMPLE:

;;; Using the default will return numbers within a 5% span of the given number,

;;; centering around zero. With 100 that means between -2.5 and +2.5.

(loop repeat 10 collect (random-amount 100))

=> (0.7424975 -1.4954442 -1.7126495 1.5918689 -0.43478793 -1.7916341 -1.9115914

0.8541988 0.057197176 2.0713913)

;;; Specifying 10% of 80 will return random numbers between -4.0 and +4.0

(loop repeat 10 collect (random-amount 80 10))

=> (-0.66686153 3.0387697 3.4737322 -2.3753185 -0.8495751 -0.47580242

-0.25743783 -1.1395472 1.3560238 -0.5958566)

14 SC/UTILITIES 189

SYNOPSIS:

(defun random-amount (number &optional (percent 5))

14.49 utilities/random-from-list

[utilities] [Functions]

DESCRIPTION:

Return a random element from a specified list of elements.

ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

- An integer can be passed stating the length of the list, for more

efficient processing. NB: There is no check to ensure this number is

indeed the length of the list. If the number is less than the length of

the list, only elements from the first part of the list will be

returned. If it is greater than the length of the list, the method may

return NIL.

RETURN VALUE:

An element from the specified list.

EXAMPLE:

(random-from-list ’(3 5 7 11 13 17 19 23 29))

=> 13

SYNOPSIS:

(defun random-from-list (list &optional list-length) ; for efficiency

14.50 utilities/randomise

[utilities] [Functions]

DESCRIPTION:

14 SC/UTILITIES 190

Return a random decimal number close to the number specified (within a

certain percentage of that number’s value).

ARGUMENTS:

- A number.

OPTIONAL ARGUMENTS:

- A number that is a percentage value, such that any random number returned

will be within that percentage of the original number’s value.

Default = 5.

RETURN VALUE:

A decimal number.

EXAMPLE:

(loop repeat 10 collect (randomise 100))

=> (99.413795 99.15346 98.682014 100.76199 97.74929 99.05693 100.59494 97.96452

100.42091 100.01329)

SYNOPSIS:

(defun randomise (number &optional (percent 5))

14.51 utilities/read-from-file

[utilities] [Functions]

DESCRIPTION:

Read a Lisp expression from a file. This is determined by the Lisp

parenthetical syntax.

ARGUMENTS:

- A string that is a file name including directory path and extension.

RETURN VALUE:

The Lisp expression contained in the file.

14 SC/UTILITIES 191

EXAMPLE:

(read-from-file "/path/to/lisp-lorem-ipsum.txt")

=> (LOREM IPSUM DOLOR SIT AMET CONSECTETUR ADIPISCING ELIT CRAS CONSEQUAT

CONVALLIS JUSTO VITAE CONSECTETUR MAURIS IN NIBH VEL EST TEMPUS LOBORTIS

SUSPENDISSE POTENTI SED MAURIS MASSA ADIPISCING VITAE DIGNISSIM CONDIMENTUM

VOLUTPAT VEL FELIS FUSCE AUGUE DUI PULVINAR ULTRICIES IMPERDIET SED

PHARETRA EU QUAM INTEGER IN VULPUTATE VELIT ALIQUAM ERAT VOLUTPAT VIVAMUS

SIT AMET ORCI EGET EROS CONSEQUAT TINCIDUNT NUNC ELEMENTUM ADIPISCING

LOBORTIS MORBI AT LOREM EST EGET MATTIS ERAT DONEC AC RISUS A DUI MALESUADA

LOBORTIS AC AT EST INTEGER AT INTERDUM TORTOR VIVAMUS HENDRERIT CONSEQUAT

AUGUE QUISQUE ALIQUAM TELLUS NEC VESTIBULUM LOBORTIS RISUS TURPIS LUCTUS

LIGULA IN BIBENDUM FELIS SEM PULVINAR DOLOR VIVAMUS RHONCUS NISI GRAVIDA

PORTA VULPUTATE IPSUM LACUS PORTA RISUS A VULPUTATE MAGNA JUSTO A EST)

SYNOPSIS:

(defun read-from-file (file)

14.52 utilities/reflect-list

[utilities] [Functions]

DESCRIPTION:

Order a list of numbers from least to greatest, then transpose the list so

that if an element is the second lowest, it will be replaced by the second

highest etc.

ARGUMENTS:

- A list or numbers.

RETURN VALUE:

A list of numbers.

EXAMPLE:

(reflect-list ’(1 4 3 5 9 6 2 7 8 8 9))

=> (9 6 7 5 1 4 8 3 2 2 1)

SYNOPSIS:

(defun reflect-list (list)

14 SC/UTILITIES 192

14.53 utilities/remove-all

[utilities] [Functions]

DESCRIPTION:

Remove all of the specified elements from a list, returning a list

containing only those elements that are not in the first argument list.

ARGUMENTS:

- A first list that is the list of items to remove.

- A second list that is the original list.

OPTIONAL ARGUMENTS:

- A predicate for testing equality between the elements of the two lists.

Default = #’eq.

RETURN VALUE:

A list.

EXAMPLE:

(remove-all ’(3 5 8 13) ’(1 2 3 4 5 6 7 8 9 10 11 12 13))

=> (1 2 4 6 7 9 10 11 12)

SYNOPSIS:

(defun remove-all (rm-list list &optional (test #’ eq))

14.54 utilities/remove-elements

[utilities] [Functions]

DESCRIPTION:

Remove a specified number of elements from a given list starting at a

specified position (0-based) within the list.

ARGUMENTS:

14 SC/UTILITIES 193

- A list.

- An integer that is the 0-based position within that list that will be the

first element to be removed.

- An integer that is the number of elements to remove.

RETURN VALUE:

A list.

EXAMPLE:

(remove-elements ’(1 2 3 4 5 6 7) 2 4)

=> (1 2 7)

SYNOPSIS:

(defun remove-elements (list start how-many)

14.55 utilities/remove-more

[utilities] [Functions]

DESCRIPTION:

Remove all instances of a list of specified elements from an original

list. The predicate used to test the presence of the specified elements in

the original list must be specified by the user (such as #’eq, #’equalp,

#’= etc.)

ARGUMENTS:

- A list.

- A predicate with which to test the presence of the specified elements.

- A sequence of elements to be removed from the given list.

RETURN VALUE:

A list.

EXAMPLE:

(remove-more ’(1 2 3 4 5 5 5 6 7 7 8) #’= 5 7 2)

=> (1 3 4 6 8)

14 SC/UTILITIES 194

SYNOPSIS:

(defun remove-more (list test &rest remove)

14.56 utilities/replace-elements

[utilities] [Functions]

DESCRIPTION:

Replace the elements in list between start and end (inclusive) with the new

list.

ARGUMENTS:

- A list.

- An integer that is first position of the segment of the original list to

be replaced.

- An integer that is the last position of the segment of the original list

to be replaced.

- A list that is to replace the specified segment of the original

list. This list can be of a different length than that of the segment

of the original specified by the start and end positions.

RETURN VALUE:

A list.

EXAMPLE:

(replace-elements ’(1 2 3 4 5 6 7 8 9) 3 7 ’(dog cat goldfish))

=> (1 2 3 DOG CAT GOLDFISH 9)

SYNOPSIS:

(defun replace-elements (list start end new)

14.57 utilities/round-if-close

[utilities] [Functions]

DESCRIPTION:

14 SC/UTILITIES 195

Round a decimal number if it is within a given tolerance to the next whole

number.

ARGUMENTS:

- A decimal number.

OPTIONAL ARGUMENTS:

- If the given number is this amount or less than the nearest whole number,

round the given number to the nearest whole number.

RETURN VALUE:

If the given number is within the tolerance, return the number, otherwise

return the nearest whole number.

EXAMPLE:

(round-if-close 1.999998)

=> 1.999998

(round-if-close 1.999999)

=> 2

SYNOPSIS:

(defun round-if-close (num &optional (tolerance 0.000001))

14.58 utilities/scale-env

[utilities] [Functions]

DESCRIPTION:

Scale either the x-axis values, the data values, or both of a list of

break-point pairs by specified factors.

ARGUMENTS:

- An envelope in the form of a list of break-point pairs.

- A number that is the factor by which the y values (data segment of the

break-point pairs) are to be scaled.

14 SC/UTILITIES 196

OPTIONAL ARGUMENTS:

keyword arguments:

- :y-min. A number that is the minimum value for all y values after

scaling. NB The -min/-max arguments are hard-limits only; they do not

factor into the arithmetic.

- :y-max. A number that is the maximum value for all y values after

scaling.

- :x-scaler. A number that is the factor by which to scale the x-axis

values of the break-point pairs.

- :x-min. A number that is the minimum value for all x values after

scaling. NB: This optional argument can only be used if a value has been

specified for the :x-scaler.

- :x-max. A number that is the maximum value for all x values after

scaling. NB: This optional argument can only be used if a value has been

specified for the :x-scaler.

RETURN VALUE:

An envelope in the form of a list of break-point pairs.

EXAMPLE:

;;; Scaling only the y values.

(scale-env ’(0 53 25 189 50 7 75 200 100 3) 0.5)

=> (0 26.5 25 94.5 50 3.5 75 100.0 100 1.5)

;;; Scaling the y values and setting a min and max for those values

(scale-env ’(0 53 25 189 50 7 75 200 100 3) 0.5 :y-min 20 :y-max 100)

=> (0 26.5 25 94.5 50 20 75 100 100 20)

;;; Scaling only the x-axis values

(scale-env ’(0 53 25 189 50 7 75 200 100 3) 1.0 :x-scaler 2)

=> (0 53.0 50 189.0 100 7.0 150 200.0 200 3.0)

;;; Scaling the x values and setting a min and max for those values

(scale-env ’(0 53 25 189 50 7 75 200 100 3) 1.0 :x-scaler 2 :x-min 9 :x-max 90)

=> (9 53.0 50 189.0 90 7.0 90 200.0 90 3.0)

SYNOPSIS:

(defun scale-env (env y-scaler &key x-scaler

14 SC/UTILITIES 197

(x-min most-negative-double-float)

(y-min most-negative-double-float)

(x-max most-positive-double-float)

(y-max most-positive-double-float))

14.59 utilities/secs-to-mins-secs

[utilities] [Functions]

DESCRIPTION:

Convert a number of seconds into a string of the form "24:41.723" where

seconds are always rounded to three decimal places (i.e. milliseconds).

ARGUMENTS:

- the number of seconds

OPTIONAL ARGUMENTS:

keyword arguments:

- :post-mins. The string used to separate minutes and seconds. Default ":"

- :post-secs. The string used to separate seconds and milliseconds.

Default "."

- :post-msecs. The string used to follow milliseconds. Default ""

- :same-width. Ensure minutes values are always two characters wide, like

seconds, i.e with a leading 0.

- :round. Round to the nearest second and don’t print milliseconds. Default

NIL.

RETURN VALUE:

A string

EXAMPLE:

(secs-to-mins-secs 77.1232145)

"1:17.123"

(secs-to-mins-secs 67.1)

"1:07.100"

(secs-to-mins-secs 67.1 :same-width t)

"01:07.100"

(secs-to-mins-secs 67.1 :same-width t :post-secs "s")

"01:07s100"

(secs-to-mins-secs 67.1 :post-secs "secs" :post-mins "min" :post-msecs "msecs")

14 SC/UTILITIES 198

"1min07secs100msecs"

(secs-to-mins-secs 67.7 :same-width t :round t)

"01:08"

SYNOPSIS:

(defun secs-to-mins-secs (seconds &key

round

(post-mins ":")

(post-secs ".")

(post-msecs "")

(same-width nil))

14.60 utilities/semitones

[utilities] [Functions]

DESCRIPTION:

Return the sample-rate conversion factor required for transposing an audio

file by a specific number of semitones. The number of semitones can be

given as a decimal number, and may be positive or negative.

ARGUMENTS:

- A number of semitones.

OPTIONAL ARGUMENTS:

- A number that is the factor required to transpose by an octave.

Default = 2.0.

- A number that is the number of semitones per octave. Default = 12.

RETURN VALUE:

A number.

EXAMPLE:

;;; Usage with default values

(semitones 3)

=> 1.1892071

14 SC/UTILITIES 199

;;; Specifying a different number of semitones per octave

(semitones 3 2.0 13)

=> 1.1734605

;;; Specifying a different factor for transposing by an octave

(semitones 3 4.0)

=> 1.4142135

;;; Fractional semitones are allowed

(semitones 3.72)

=> 1.2397077

;;; Negative semitones are also allowed

(semitones -3.72)

=> 0.80664176

SYNOPSIS:

(defun semitones (st &optional (octave-size 2.0) (divisions-per-octave 12))

14.61 utilities/setf-last

[utilities] [Functions]

DESCRIPTION:

Change the last element in a given list to a specified new element.

ARGUMENTS:

- A list.

- The new last element of that list.

RETURN VALUE:

Returns the new last element.

EXAMPLE:

(let ((l ’(1 2 3 4 5)))

(setf-last l ’dog)

14 SC/UTILITIES 200

l)

=> (1 2 3 4 DOG)

SYNOPSIS:

(defmacro setf-last (list new-last)

14.62 utilities/sort-symbol-list

[utilities] [Functions]

DESCRIPTION:

Sort a list of symbols alphabetically ascending, case-insensitive.

ARGUMENTS:

A list of symbols.

RETURN VALUE:

The same list of symbols sorted alphabetically ascending, case-insensitive.

EXAMPLE:

(sort-symbol-list ’(Lorem ipsum dolor sit amet consectetur adipiscing))

=> (ADIPISCING AMET CONSECTETUR DOLOR IPSUM LOREM SIT)

SYNOPSIS:

(defun sort-symbol-list (list)

14.63 utilities/splice

[utilities] [Functions]

DESCRIPTION:

Insert the elements of a first list into a second list beginning at a

specified index (0-based).

ARGUMENTS:

14 SC/UTILITIES 201

- A list that contains the elements to be inserted into the second list.

- A list into which the elements of the first argument are to be inserted.

- An integer that is the index within the second list where the elements

are to be inserted.

RETURN VALUE:

- A list.

EXAMPLE:

(splice ’(dog cat goldfish) ’(1 2 3 4 5 6 7 8 9) 3)

=> (1 2 3 DOG CAT GOLDFISH 4 5 6 7 8 9)

SYNOPSIS:

(defun splice (elements into-list where)

14.64 utilities/split-groups

[utilities] [Functions]

DESCRIPTION:

Create a list consisting of as many repetitions of a specified number as

will fit into a given greater number, with the last item in the new list

being the value of any remainder.

ARGUMENTS:

- A number that is to be split into repetitions of a specified smaller

number (the second argument).

- The number that is to be the repeating item in the new list. This number

must be smaller than the first number.

RETURN VALUE:

A list consisting of repetitions of the specified number, with the last

element being any possible remainder.

EXAMPLE:

(split-groups 101 17)

=> (17 17 17 17 17 16)

14 SC/UTILITIES 202

SYNOPSIS:

(defun split-groups (num divider)

14.65 utilities/split-into-sub-groups

[utilities] [Functions]

DESCRIPTION:

Create a new list consisting of sublists made from the elements of the

original flat list, whose lengths are determined by the second argument to

the function.

NB: The lengths given in the second argument are not required to add up to

the length of the original list. If their sum is less than the original

list, the resulting list of sublists will only contain a segment of the

original elements. If their sum is greater than the length of the

original list, the last sublist in the new list will be shorter than

the corresponding group value.

ARGUMENTS:

- A flat list.

- A list of integers that are the lengths of the consecutive subgroups

into which the original list is to be divided.

RETURN VALUE:

A list of lists.

EXAMPLE:

;; Used with a list of subgroup lengths whose sum is equal to the length of the

;; original list

(split-into-sub-groups ’(1 2 3 4 5 6 7 8 9 10) ’(2 2 3 2 1))

=> ((1 2) (3 4) (5 6 7) (8 9) (10))

;; Used with a list of subgroup lengths whose sum is less than the length of the

;; original list

(split-into-sub-groups ’(1 2 3 4 5 6 7 8 9 10) ’(2 1))

=> ((1 2) (3))

14 SC/UTILITIES 203

;; Used with a list of subgroup lengths whose sum is greater than the length of

;; the original list

(split-into-sub-groups ’(1 2 3 4 5 6 7 8 9 10) ’(2 3 17))

=> ((1 2) (3 4 5) (6 7 8 9 10))

SYNOPSIS:

(defun split-into-sub-groups (list groups)

14.66 utilities/split-into-sub-groups2

[utilities] [Functions]

DESCRIPTION:

Create a new list of lists by splitting the original flat list into

sublists of the specified length.

NB: The length given as the second argument is not required to be fit

evenly into the length of the original flat list. If the original list

is not evenly divisible by the specified length, the resulting list of

sublists will contain a final sublist of a different length.

ARGUMENTS:

- A flat list.

- An integer that is the length of each of the sublists to be created.

RETURN VALUE:

A list of lists.

EXAMPLE:

;; The second argument fits evenly into the length of the original list.

(split-into-sub-groups2 ’(1 2 3 4 5 6 7 8 9 10 11 12) 3)

=> ((1 2 3) (4 5 6) (7 8 9) (10 11 12))

;; The second argument does not fit evenly into the length of the original

;; list.

(split-into-sub-groups2 ’(1 2 3 4 5 6 7 8 9 10 11 12) 5)

=> ((1 2 3 4 5) (6 7 8 9 10) (11 12))

14 SC/UTILITIES 204

SYNOPSIS:

(defun split-into-sub-groups2 (list length)

14.67 utilities/split-into-sub-groups3

[utilities] [Functions]

DESCRIPTION:

Split a given flat list into sublists of the specified length, putting any

remaining elements, if there are any, into the last sublist.

ARGUMENTS:

- A flat list.

- An integer that is the length of the new sublists.

RETURN VALUE:

A list of lists.

EXAMPLE:

(split-into-sub-groups3 ’(1 2 3 4 5 6 7 8 9 10 11 12) 3)

=> ((1 2 3) (4 5 6) (7 8 9) (10 11 12))

(split-into-sub-groups3 ’(1 2 3 4 5 6 7 8 9 10 11 12) 5)

=> ((1 2 3 4 5) (6 7 8 9 10 11 12))

SYNOPSIS:

(defun split-into-sub-groups3 (list length)

14.68 utilities/srt

[utilities] [Functions]

DESCRIPTION:

Return the semitone transposition for a given sampling rate conversion

factor.

14 SC/UTILITIES 205

ARGUMENTS:

- A number that is a sample-rate conversion factor.

OPTIONAL ARGUMENTS:

- A number that is the factor required for transposing one octave.

- A number that is the number of scale degrees in an octave.

RETURN VALUE:

A number.

EXAMPLE:

;;; Using the defaults

(srt 1.73)

=> 9.4893

;;; Using a sample-rate conversion factor of 4.0 for the octave and specifying

;;; 13 divisions of the octave

(srt 1.73 4.0 13)

=> 5.14

SYNOPSIS:

(let ((last8vesize 0)

(log8ve 0.0)) ;; so we don’t have to recalculate each time

(defun srt (srt &optional (octave-size 2.0) (divisions-per-octave 12)

;; MDE Tue Feb 7 16:59:45 2012 -- round so we don’t get tiny

;; fractions of semitones due to float inaccuracies?

(round-to 0.0001))

14.69 utilities/string-replace

[utilities] [Functions]

DESCRIPTION:

Replace specified segments of a string with a new specified string.

ARGUMENTS:

14 SC/UTILITIES 206

- A string that is the string segment to be replaced.

- A string that is the string with which the specified string segment is to

be replaced.

- The string in which the specified segment is to be sought and replaced.

RETURN VALUE:

A string.

EXAMPLE:

(string-replace "flat" "\\flat" "bflat clarinet")

=> "b\\flat clarinet"

SYNOPSIS:

(defun string-replace (what with string)

14.70 utilities/swap-elements

[utilities] [Functions]

DESCRIPTION:

Swap the order of each consecutive pair of elements in a list.

ARGUMENTS:

- A list.

RETURN VALUE:

A list.

EXAMPLE:

(swap-elements ’(1 2 3 4 5 6 7 8 9 10))

=> (2 1 4 3 6 5 8 7 10 9)

(swap-elements ’(1 2 3 4 5 6 7 8 9))

=> (2 1 4 3 6 5 8 7 9)

SYNOPSIS:

(defun swap-elements (list)

14 SC/UTILITIES 207

14.71 utilities/update-app-src

[utilities] [Functions]

DATE:

June 1st 2013

DESCRIPTION:

NB This function currently works in SBCL and CCL on UNIX systems only.

For users of the slippery chicken app, this function will update the source

code of the app to the latest in the online subversion (svn) repository.

An internet connection is therefore necessary.

The first time it is run it will delete the current source code and

download all the new source code, so make sure to back up if you’ve

modified the source code yourself (not recommended). When it is run from

then on, it will only update the source code that is out of date.

Once the source code is updated, you’ll need to restart the app or just

Lisp for the changes to be recompiled.

NB The first time you call this function, you might get a "certificate

error". In order to accept the certificate, start the terminal application

and type the following:

cd /tmp/

svn co https://svn.ecdf.ed.ac.uk/repo/user/medward2/sc-tags/sc-latest/src

That should give you a prompt in the terminal from which you can accept the

certificate. Then the next time you try it from Lisp the certificate

should not cause a problem.

Users without the app can always download the latest source code in a

terminal by issuing the following command.

svn co https://svn.ecdf.ed.ac.uk/repo/user/medward2/sc-tags/sc-latest/src

ARGUMENTS:

The full path to the slippery-chicken application, minus the last slash.

Remember that this can’t include any spaces in file/folder names

OPTIONAL ARGUMENTS:

14 SC/UTILITIES 208

keyword arguments:

- :rm. The path to the shell ’rm’ command. Default = "/bin/rm"

- :svn. The path to the shell ’svn’ command. Default = "/usr/bin/svn"

RETURN VALUE:

The shell return value of the call to SVN, usually 0 on success.

EXAMPLE:

Running for the first time:

(update-app-src "/tmp/sc-app/slippery-chicken.app")

A /tmp/sc-app/slippery-chicken.app/Contents/Resources/sc/src/sndfile.lsp

A /tmp/sc-app/slippery-chicken.app/Contents/Resources/sc/src/osc.lsp

A /tmp/sc-app/slippery-chicken.app/Contents/Resources/sc/src/osc-sc.lsp

[...]

Checked out revision 3608.

0

or after successfully updating a previously updated version:

...

At revision 3608.

0

SYNOPSIS:

(defun update-app-src (path-to-app &key (rm "/bin/rm") (svn "/usr/bin/svn"))

14.72 utilities/wavelab-to-audacity-marker-file

[utilities] [Functions]

DESCRIPTION:

Write a .txt file suitable for import to audacity with the same name and in

the same directory as the file argument.

ARGUMENTS:

- A string that is the name of a wavelab marker file, including directory

path and extension.

OPTIONAL ARGUMENTS:

14 SC/UTILITIES 209

- An integer that is the sampling rate of the sound file to which the

wavelab marker file refers. This value will affect the times of the

output.

RETURN VALUE:

Returns T and prints the number of markers read to the listener.

EXAMPLE:

(wavelab-to-audacity-marker-file "/path/to/24-7.mrk" 44100)

=> 51 markers read

SYNOPSIS:

(defun wavelab-to-audacity-marker-file (file &optional (sampling-rate 44100))

14.73 utilities/wrap-list

[utilities] [Functions]

DESCRIPTION:

Shift the elements of a list to start at a specified position and wrap to

the beginning of the list to the list’s tail.

ARGUMENTS:

- A list.

- An integer which is the 0-based position in the original list where the

new list is to begin.

RETURN VALUE:

A list.

EXAMPLE:

(wrap-list ’(1 2 3 4 5 6 7 8 9) 4)

=> (5 6 7 8 9 1 2 3 4)

SYNOPSIS:

(defun wrap-list (list start)

15 CLM/CLM-LOOPS 210

15 clm/clm-loops

[Functions]

DESCRIPTION:

Generate a sound file from an existing specified sound file by shuffling

and repeating specified segments within the source sound file.

This function was first introduced in the composition "breathing Charlie"

(under the name loops): see charlie-loops.lsp in that project for examples.

The first required argument to the function is the name of the sound file,

including path and extension, looped. This must be a mono file.

The second required argument (entry-points) is a list of times, in seconds,

where attacks (or something significant) happen in the file. These are used

to create loop start/end points.

Be careful when doing shuffles as if, e.g., the transpositions list is more

than 6 elements, shuffling will take a very long time.

The entry-points are used randomly so that any segment may start at any

point and transition to any other segment (i.e. skipping intervening

segments, always forwards however). There are always two segments in use at

any time. The function randomly selects which segments are used, then a

transition (see fibonacci-transitions) from repeated segment 1 to repeated

segment 2 is made. Then the next segment is chosen and the process is

repeated (i.e. from previous segment 2 to new segment) until the

max-start-time (in seconds) is achieved.

fibonacci-transitions are first shuffled and then made into a circular

list. Then they are expanded to create the transpositions (each number

becomes a series of 1s and 0s--length is the number itself--with a

transition from all 0s to all 1s: e.g. (fibonacci-transition 20) -> (0 0 0

0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1) This is then used to select one or the

other of the current two segments.

The sample-rate transpositions are simply randomly permutated and selected.

ARGUMENTS:

- The name of a sound file, including path and extension.

- A list of numbers that are time in seconds. These serve as the

"entry-points", i.e. loop markers within the file, and delineate the

beginning and end of segments that will be shuffled and played back at

15 CLM/CLM-LOOPS 211

random in the resulting file.

OPTIONAL ARGUMENTS:

keyword arguments.

- :max-perms. A number that is the maximum number of permutations generated

for the transitions. Default = 1000.

- :fibonacci-transitions. A list of numbers that serve as the number of

steps in each transition from one segment to the next. These numbers will

be used as the first argument to the call to fibonacci-transition.

Default = ’(34 21 13 8)

- :max-start-time. A number that is the maximum time in second at which a

segment can start in the resulting sound file. Default = 60.0.

- :output-dir. The directory path for the output file.

Default = (get-sc-config ’default-dir).

- :srate. The sampling rate. If specified by the user, this will generally

be a number. By default it takes the CLM global sample-rate, i.e.

clm::*clm-srate*

- :data-format. The data format of the resulting file. This must be

preceded by the clm package qualifier. See clm.html for types of data

formats, such as mus-bshort, mus-l24float etc.

Default is the whatever the CLM global clm::*clm-data-format* is set to.

- :header-type. The header type of the resulting file. This must be

preceded by the clm package qualifier. See clm.html for possible header

types, such as mus-riff, mus-aifc etc. By default it takes the CLM global

clm::*clm-header-type*.

- :sndfile-extension. A string or NIL. If a string, this will be appended

to the resulting sound file as a file extension. If NIL, the sound file

extension will automatically be selected based on the header type. NB:

This argument does not affect the header type! Default = NIL.

- :channels. An integer that is the number of channels in the resulting

output. If greater than one, the segments will be automatically panned

amongst the channels. Default = 1.

- :transpositions. A list of number that are transpositions in

semitones. These will be shuffled and applied randomly to each

consecutive segment in the output. Default = ’(0).

- :num-shuffles. An integer that will indicate how many times the lists

passed to fibonacci-transitions and entry-points will be shuffled before

generating output. Default = - 1.

- :suffix. A string that will be automatically appended to the end of the

file name. Default = "".

- :src-width. A number that represents the accuracy of the sample-rate

conversions undertaken for transposition. The higher this number is, the

more accurate the transposition will be, but the longer it will take to

process the file. Default = 5.

15 CLM/CLM-LOOPS 212

RETURN VALUE:

Returns the name of the file generated.

EXAMPLE:

;;; A straightforward example with a number of the variables.

(clm-loops "/path/to/sndfile-3.aiff"

’(0.180 2.164 4.371 7.575 9.4 10.864)

:fibonacci-transitions ’(1 2 3 4 5)

:max-perms 7

:output-dir "/tmp/"

:channels 1

:transpositions ’(1 12 -12)

:num-shuffles 3

:src-width 20)

=> "/tmp/sndfile-3-loops-from-00m00.180-.wav"

SYNOPSIS:

#+clm

(defun clm-loops (sndfile entry-points &key

(max-perms 1000)

(fibonacci-transitions ’(34 21 13 8))

(max-start-time 60.0)

(output-dir (get-sc-config ’default-dir))

(srate clm::*clm-srate*)

(data-format clm::*clm-data-format*)

;; MDE Fri May 11 15:33:45 2012

(header-type clm::*clm-header-type*)

;; MDE Fri May 11 15:34:17 2012 --

(sndfile-extension nil)

(channels 1)

;; semitones

(transpositions ’(0))

;; added 31/7/05 to vary the order of

;; entry points, transpositions and

;; fibonacci-transitions (could be 0!)

(num-shuffles 1)

(suffix "")

(src-width 5))

16 CLM/CLM-LOOPS-ALL 213

16 clm/clm-loops-all

[Functions]

DESCRIPTION:

Similar to clm-loops, but takes a list of lists of entry points (which can

also be generated using the random-loop-points function, for example) and

produces one output sound file for each list of entry points that list

contains.

ARGUMENTS:

- A string that is the name of the source sound file including directory

path and extension.

- A list of lists of numbers that are entry points (loop markers) in the

specified source sound file.

OPTIONAL ARGUMENTS:

keyword arguments:

- :max-perms. A number that is the maximum number of permutations generated

for the transitions. Default = 1000.

- :fibonacci-transitions. A list of numbers that serve as the number of

steps in each transition from one segment to the next. These numbers will

be used as the first argument to the call to fibonacci-transition.

Default = ’(34 21 13 8).

- :max-start-time. A number that is the maximum time in seconds at which a

segment can start in the resulting sound file. Default = 60.0.

- :output-dir. The directory path for the output file.

Default = (get-sc-config ’default-dir).

- :srate. The sampling rate. If specified by the user, this will generally

be a number. By default it takes the CLM global sample-rate, i.e.

clm::*clm-srate*

- :data-format. The data format of the resulting file. This must be

preceded by the clm package qualifier. See clm.html for types of data

formats, such as mus-bshort, mus-l24float etc.

Default is the whatever the CLM global clm::*clm-data-format* is set to.

- :header-type. The header type of the resulting file. This must be

preceded by the clm package qualifier. See clm.html for possible header

types, such as mus-riff, mus-aifc etc. By default it takes the CLM global

clm::*clm-header-type*.

- :sndfile-extension. A string or NIL. If a string, this will be appended

to the resulting sound file as a file extension. If NIL, the sound file

extension will automatically be selected based on the header type. NB:

This argument does not affect the header type! Default = NIL.

16 CLM/CLM-LOOPS-ALL 214

- :channels. An integer that is the number of channels in the resulting

output. If greater than one, the segments will be automatically panned

amongst the channels. Default = 1.

- :do-shuffles. T or NIL to indicate whether to shuffle the lists passed to

fibonacci-transitions and entry-points before generating output.

T = do shuffles. Default = T.

- :start-after. A number. All loops will be excluded that start before this

number of seconds. Default = -1.0.

- :stop-after. A number. All loops will be excluded that start after this

number of seconds. Default = 99999999.0.

- :suffix. A string that will be automatically appended to the end of the

file name. Default = "".

- :transpositions. A list of number that are transpositions in

semitones. These will be shuffled and applied randomly to each

consecutive segment in the output. Default = ’(0).

- :transposition-offset. A number that is an additional number of semitones

to be added to each transposition value before performing the

transposition. Default = 0.0.

- :src-width. A number that represents the accuracy of the sample-rate

conversions undertaken for transposition. The higher this number is, the

more accurate the transposition will be, but the longer it will take to

process the file. Default = 5.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(clm-loops-all

(concatenate ’string

cl-user::+slippery-chicken-home-dir+

"test-suite/test-sndfiles-dir-1/test-sndfile-3.aiff")

’((0.794 0.961 1.061 1.161 1.318 1.436 1.536)

(0.787 0.887 0.987 1.153 1.310 1.510)

(0.749 0.889 1.056 1.213 1.413)

(0.311 0.411 0.611 0.729)

(0.744 0.884 1.002))

:max-perms 6

:fibonacci-transitions ’(31 8 21 13)

:output-dir "/tmp/"

:channels 1

:transpositions ’(1 12 -12)

:src-width 20)

SYNOPSIS:

17 CLM/RANDOM-LOOP-POINTS 215

#+clm

(defun clm-loops-all (sndfile entry-points-list

&key

(max-perms 1000)

(fibonacci-transitions ’(34 21 13 8))

(max-start-time 60.0)

(output-dir (get-sc-config ’default-dir))

(srate clm::*clm-srate*)

(data-format clm::*clm-data-format*)

;; MDE Fri May 11 15:33:45 2012

(header-type clm::*clm-header-type*)

;; MDE Fri May 11 15:34:17 2012 --

(sndfile-extension nil)

(channels 1)

(do-shuffles t) ;; see clm-loops

;; exclude all those loops who start before this

;; number of seconds.

(start-after -1.0)

(stop-after 99999999.0)

(suffix "")

;; semitones

;; 6/10/06: using just one list of transpositions passed

;; onto clm-loops created the same tone structure for

;; every file generated (boring). This list will now be

;; shuffled and 10 versions collected which will then be

;; passed (circularly) one after the other to clm-loops.

(transpositions ’(0))

(transposition-offset 0.0)

(src-width 5))

17 clm/random-loop-points

[Functions]

DESCRIPTION:

Return a list of lists of randomly generated entry points (loop markers)

for use with clm-loops-all.

This function also produces an output text file containing the same list of

lists. This file is in Lisp syntax and can therefore be accessed using

read-from-file.

ARGUMENTS:

17 CLM/RANDOM-LOOP-POINTS 216

- A string that is the file name, including directory path and extension,

of the output file to produce.

- A string that is the sound file for which to generate random entry

points.

OPTIONAL ARGUMENTS:

keyword arguments:

- :min-points. An integer that is the least number of entry points to

generate for each list. Default = 5.

- :max-points. An integer that is the greatest number of entry points to

generate for each list. Default = 13.

- :min-dur. A number that is the shortest duration between two entry

points. Default = 0.05.

- :num-loop-sets. An integer that is the number of lists of entry points to

generate. Default = 20.

- :scalers. A list of fractions that are durations relative to the min-dur,

such that, for example, a min-dur of 0.05 with a scaler of 13/8 would

result in a scaled duration of 0.08125. The fractions in this list will

be chosen at random when calculating the duration of the next loop

segment. Default = ’(1/1 2/1 3/2 5/3 8/5 13/8).

RETURN VALUE: EXAMPLE:

(random-loop-points

"/tmp/outfile"

"/path/to/test-sndfile-3.aiff"

:min-points 3

:max-points 7

:min-dur 0.1

:num-loop-sets 5

:scalers ’(1/1 2/1 3/2 5/3 7/5 11/7 13/11))

=> ((0.789 0.929 1.079) (0.028 0.228 0.368 0.487 0.687) (0.014 0.164 0.321)

(0.256 0.406 0.524 0.681) (0.069 0.235 0.353 0.472 0.572 0.69))

SYNOPSIS:

#+clm

(defun random-loop-points (outfile sndfile

&key

;; MDE Thu May 17 17:02:15 2012 -- could also be

;; :error or anything else that with-open-file

;; accepts

(if-outfile-exists :overwrite)

18 GLOBALS/+SLIPPERY-CHICKEN-CONFIG-DATA+ 217

;; the minimum number of time points for an output

;; loop--number of looped sound segments is 1- this

(min-points 5)

;; max number of time points--the actual number of

;; points will be randomly chosen between these two

;; numbers.

(max-points 13)

;; minimum duration of a loop segment--this number

;; will actually be used and scaled by scalers

(min-dur 0.05)

;; how many sets of loops should be generated

(num-loop-sets 20)

;; scalers for the min-dur: these are all

;; proportions relative to min-dur so if we have

;; 13/8 in this list and min-dur of 0.05 then the

;; duration for such a segment would be 0.08125.

;; these will be chosen at random when calculating

;; the next loop segment duration

(scalers ’(1/1 2/1 3/2 5/3 8/5 13/8)))

18 globals/+slippery-chicken-config-data+

[Global Parameters]

DESCRIPTION:

A global to hold various user-settable configuration settings. Use e.g.

(set-sc-config ’default-dir "~/Desktop") or (get-sc-config ’default-dir) to

set or query the settings.

SYNOPSIS:

(defparameter +slippery-chicken-config-data+

(make-instance

’assoc-list

:id ’slippery-chicken-config-data

:data

;; MDE Sun Mar 25 10:39:07 2012 -- The following two are used in

;; pitch-seq::get-notes to indicate which lowest number in a pitch-seq would

;; indicate that we should select the highest or lowest notes possible for

;; the instrument/set.

;;

;; The first is used to indicate the lowest number in a pitch-seq that would

;; indicate that the get-notes algorithm should select the highest notes

;; possible for the instrument/set.

18 GLOBALS/+SLIPPERY-CHICKEN-CONFIG-DATA+ 218

’((pitch-seq-lowest-equals-prefers-high 5)

;; the lowest number in a pitch-seq that would indicate that the get-notes

;; algorithm should select the lowest notes possible for the

;; instrument/set.

(pitch-seq-lowest-equals-prefers-low 1)

;; Whether to automatically open EPS files generated with CMN via

;; cmn-display. Currently only works with SBCL and CCL on Mac OSX.

(cmn-display-auto-open #+sc-auto-open T #-sc-auto-open nil)

;; Whether to automatically open PDF files generated with via lp-display.

;; Currently only works with SBCL and CCL on Mac OSX.

(lp-display-auto-open #+sc-auto-open T #-sc-auto-open nil)

;; Whether to automatically open MIDI files generated with via midi-play.

;; Currently only works with SBCL and CCL on Mac OSX.

(midi-play-auto-open #+sc-auto-open T #-sc-auto-open nil)

;; The default directory for output of sound files, EPS files, and

;; Lilypond files. Don’t forget the trailing slash (i.e. "/tmp/" not

;; "/tmp"). Bear in mind that on OSX the /tmp directory is emptied upon

;; reboot so you shouldn’t store any files you’d like to keep in there.

(default-dir "/tmp/")

;; The full path to the lilypond command. We need to set this if we’ll

;; call lp-display, i.e. if we want to automatically call Lilypond and

;; open the resultant PDF directly from Lisp. The default should work if

;; you have the Lilypond app in your Applications folder on OSX.

(lilypond-command

"/Applications/LilyPond.app/Contents/Resources/bin/lilypond")

;; The default amplitude for all events that don’t have amplitude/dynamic

;; set via some means such as marks.

(default-amplitude 0.7)

;; whether to warn when there’s no CMN mark for a given Lilypond mark

(warn-no-cmn-mark t)

;; sim for Lilypond

(warn-no-lp-mark t)

;; Bar number offsets for CMN

(cmn-bar-num-dx-for-sc -0.2)

(cmn-bar-num-dy-for-sc 1.2)

;; MDE Sat May 10 12:47:25 2014 -- whether to issue warning when we set

;; the asco-msgs slot of a rest event (because they will only be written

;; to an antescofo~ file if this happens to be a rest in the part we’re

;; following and we can’t know this in advance).

(asco-msg-rest-warning t)

;; if we’ve added, say, an antescofo~ label to an event with a rehearal

;; letter, we’ll get a warning as we can only have one antescofo label per

;; NOTE (though it’s not an error to have two, the 2nd will be ignored).

(asco-two-labels-warning t)

;; font size for CMN bar numbers

(cmn-bar-num-size-for-sc 6))))

19 OSC-SC/OSC-CALL 219

19 osc-sc/osc-call

[Functions]

DESCRIPTION:

Allow OSC (over UDP) messages to be sent for processing. The function

waits for input and processes in an endless loop; send ’quit’ to stop the

function and return to the interpreter. Messages the function doesn’t

understand will be ignored after a warning being printed.

As this function only terminates when a ’quit’ message is sent via OSC, the

only way to quit from within Lisp is to send the Interrupt Command (usually

Control-C, twice). In that case, the open sockets will remain open, and

only closed before reopening the next time this function is called.

Lisp code can be sent, e.g. in MaxMSP via a message, including

opening/closing parentheses and nested calls; symbols should be quoted as

per usual.

The first two tokens in the list must be /osc-sc and a (usually unique)

identifer e.g. ((/osc-sc 1060-osc-sc-eval (print ’dog))) Both of these

tokens will be sent back over OSC in a list, along with the result of the

Lisp call. If you’re using MaxMSP I would recommend using

osc-sc-eval.maxpat (see below) to evaluate your Lisp code as this will

package it up with the right tokens and send the evaluated result out of

its outlet without causing conflicts with other instances of itself.

For an example MaxMSP patch, see osc-test.maxpat in the examples folder of

the documentation (http://michael-edwards.org/sc/examples/osc-test.maxpat).

You’ll also need http://michael-edwards.org/sc/examples/osc-sc-eval.maxpat

NB: Currently only works in SBCL.

Some lists (e.g. those including strings/symbols) might not be

recognised as lists by MaxMPS’s [route], so process them directly after

[fromsymbol].

OPTIONAL ARGUMENTS:

keyword arguments:

- :listen-port. The UDP port to listen to for messages. Default = 8000.

- :send-ip. The IP address to send UDP messages back out on.

Default = #(127 0 0 1))

- :send-port. The UDP port to send messages back out on. Default = 8001.

- :print. Print messages as they arrive. Default = NIL.

20 SC/NAMED-OBJECT 220

RETURN VALUE:

T

SYNOPSIS:

(defun osc-call (&key

(listen-port 8000)

(send-ip #(127 0 0 1))

(print nil)

(send-port 8001))

20 sc/named-object

[Classes]

NAME:

named-object

File: named-object.lsp

Class Hierarchy: None: base class of all slippery-chicken classes.

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the named-object class which is the

base class for all of the slippery-chicken classes.

The data slot of the named-object class and its

subclasses generally holds the original data passed when

creating the object. In anything but the simplest of

classes this may quickly become out-of-date as the object

is manipulated, but is nevertheless retained so that a)

the user can see what data was used to create an object,

and b) the user can derive new objects from an object’s

original data. Data relevant to a specific subclass is

often stored in slots other than :data, e.g. bars,

rhythms, etc. so the user should not be alarmed if the

data slot itself does not seem to reflect changes made to

an object.

20 SC/NAMED-OBJECT 221

Author: Michael Edwards: m@michael-edwards.org

Creation date: 4th December 2000

$$ Last modified: 17:47:23 Mon Aug 25 2014 BST

SVN ID: $Id: named-object.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.1 named-object/activity-levels

[named-object] [Classes]

NAME:

activity-levels

File: activity-levels.lsp

Class Hierarchy: named-object -> activity-levels

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Class used in rthm-chain. Used on a call-by-call basis

to determine (deterministically) whether a process is

active or not (boolean).

Author: Michael Edwards: m@michael-edwards.org

Creation date: 4th February 2010

$$ Last modified: 18:24:22 Fri Aug 29 2014 BST

SVN ID: $Id: activity-levels.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.1.1 activity-levels/active

[activity-levels] [Methods]

DESCRIPTION:

Returns t or nil depending on whether we’re active at this point. The

object remembers where we were last time; this means if we change level

before getting to the end of a ten-list, we’ll pick up where we left off

20 SC/NAMED-OBJECT 222

next time we return to that level. <level> can be a floating point number:

in this case it will be rounded. But <level> must be between 0 and 10,

where 0 is always inactive, 10 is always active, and anything inbetween

will use the data lists circularly.

ARGUMENTS:

- the activity-levels object

- the activity-level number we want to test

RETURN VALUE:

T or NIL

EXAMPLE:

(let ((al (make-al)))

(print (loop for i below 15 collect (active al 0)))

(print (loop for i below 15 collect (active al 5)))

(print (loop for i below 15 collect (active al 1)))

(print (loop for i below 15 collect (active al 9)))

(loop for i below 15 collect (active al 10)))

=>

(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL)

(T T NIL NIL T NIL T T NIL NIL NIL T NIL T NIL)

(T NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL T NIL)

(T T NIL T T T T T T T T T T T NIL)

(T T T T T T T T T T T T T T T)

SYNOPSIS:

(defmethod active ((al activity-levels) level)

20.1.2 activity-levels/make-al

[activity-levels] [Functions]

DESCRIPTION:

Make an activities-level object for determining (deterministically) on a

call-by-call basis whether a process is active or not (boolean). This is

determined by nine 10-element lists (actually three versions of each) of

hand-coded 1s and 0s, each list representing an ’activity-level’ (how

active the process should be). The first three 10-element lists have only

20 SC/NAMED-OBJECT 223

one 1 in them, the rest being zeros. The second three have two 1s,

etc. Activity-levels of 0 and 10 would return never active and always

active respectively.

ARGUMENTS:

None required.

OPTIONAL ARGUMENTS:

start-at (default NIL): which of the three 10-element lists to start with

(reset to). Should be 1, 2, or 3 though if NIL will default to 1.

RETURN VALUE:

The activities-level object.

SYNOPSIS:

(defun make-al (&optional start-at)

20.1.3 activity-levels/reset

[activity-levels] [Methods]

DESCRIPTION:

Reset the activity-levels object to restart at the first element of the 1st

(or user-specificed) 10-element list.

ARGUMENTS:

The activity-levels object.

OPTIONAL ARGUMENTS:

start-at: should be between 0 and 2; it indicates which of the 10-lists

we’re going to start with. Default = 1.

RETURN VALUE:

T

SYNOPSIS:

(defmethod reset ((al activity-levels) &optional (start-at 1) ignore)

20 SC/NAMED-OBJECT 224

20.2 named-object/linked-named-object

[named-object] [Classes]

NAME:

linked-named-object

File: linked-named-object.lsp

Class Hierarchy: named-object -> linked-named-object

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Extension of named-object class to provide slots for the

previous and next objects in a recursive-assoc-list.

Author: Michael Edwards: m@michael-edwards.org

Creation date: March 10th 2002

$$ Last modified: 09:18:07 Wed May 16 2012 BST

SVN ID: $Id: linked-named-object.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.1 linked-named-object/bar-holder

[linked-named-object] [Classes]

NAME:

bar-holder

File: bar-holder.lsp

Class Hierarchy: named-object -> linked-named-object -> bar-holder

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: This class is meant to be sub-classed by piece, section

and sequence, all of which hold each other or, ultimately

a list of bars with relevant rhythms, timings, pitches

20 SC/NAMED-OBJECT 225

etc.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 16th February 2002

$$ Last modified: 15:22:20 Sat Jun 28 2014 BST

SVN ID: $Id: bar-holder.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.2 bar-holder/change-pitches

[bar-holder] [Methods]

DESCRIPTION:

Change the pitches in the specified bars to the specified new pitches.

NB: This method requires that full bars be given, even if not all pitches

are being changed.

ARGUMENTS:

- A bar-holder object (such as the PIECE slot within a slippery-chicken

object).

- The ID of the player whose part is to be changed.

- An integer that is the number of the first bar in which pitches are to be

changed.

- A list of lists of note-name symbols, each sublist representing a

consecutive bar and containing the same number of note-name symbols as

there are rhythms in that bar. A NIL in these lists means no change is to

be made to the corresponding rhythm or bar (see example below). NB: This

method counts tied notes rather than just attacked notes.

OPTIONAL ARGUMENTS:

keyword arguments:

- :use-last-octave. T or NIL to indicate whether the method is to require

that each note-name symbols in the <new-pitches> list has an octave

indicator. If this argument is set to NIL, each note-name symbol must

have an octave indicator (e.g., the 4 in c4). If this argument is set to

T, only the first note-name symbol in the bar is required to have an

octave indicator, and all subsequent note-name symbols without octave

indicators will use the last octave indicated; e.g. ’((a3 b g cs4)). NB:

This feature does not work with chords. Default = T.

20 SC/NAMED-OBJECT 226

- :written. T or NIL to indicate whether these are the written or sounding

notes for a transposing instrument. Default = NIL.

RETURN VALUE:

Always returns T.

EXAMPLE:

;;; NIL indicates that no change is to be made; this applies to single rhythms

;;; as well as entire bars.

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((c2 d2 e2 f2 g2 a2 b2

c3 d3 e3 f3 g3 a3 b3

c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e (s) s))

:pitch-seq-palette ((1 (2) 3 4)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(change-pitches (piece mini) ’cl 2 ’((c4 d4 e4 f4)))

(change-pitches (piece mini) ’vc 3 ’((c3 d e f) nil (g3 nil b c4))))

=> T

SYNOPSIS:

(defmethod change-pitches ((bh bar-holder) player start-bar new-pitches

&key (use-last-octave t) written)

20.2.3 bar-holder/delete-all-marks

[bar-holder] [Methods]

DESCRIPTION:

Delete all marks from the MARKS slots of all events in the specified

measure range of a given bar-holder object and set the slot to NIL.

This method always applies to full bars.

ARGUMENTS:

20 SC/NAMED-OBJECT 227

- A bar-holder object.

- An integer that is the number of the first bar from which all marks are

to be deleted.

- An integer that is the number of consecutive bars including the first

bar from which all marks are to be deleted.

- The ID of the player from whose part the marks are to be deleted.

RETURN VALUE:

Always returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((c2 d2 e2 f2 g2 a2 b2

c3 d3 e3 f3 g3 a3 b3

c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e (s) s))

:pitch-seq-palette ((1 (2) 3 4))

:marks (a 1 s 2 te 3 as 4))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(delete-all-marks (piece mini) 2 2 ’vc))

=> T

SYNOPSIS:

(defmethod delete-all-marks ((bh bar-holder) start-bar num-bars player)

20.2.4 bar-holder/get-note

[bar-holder] [Methods]

DESCRIPTION:

Return the event object (or pitch object, if accessing a note within a

chord) from a specified bar and note within a given bar-holder object.

ARGUMENTS:

20 SC/NAMED-OBJECT 228

- A bar-holder object (e.g. PIECE slot of a slippery-chicken object).

- An integer that is the 1-based number of the bar from which the note is

to be retrieved.

- An integer or two-item list of integers that is the 1-based number of the

note to retrieve within the specified bar. If an integer, the entire

event object is retrieved. A two-item list of integers is used to

retrieve a specific note from within a chord, in the form ’(2 1), where 2

is the second note (or non-rhythm event) in the bar, and 1 is the first

note in the chord counting from the bottom. NB: This argument also counts

tied notes, not just attacked notes.

- The ID of the player from whose part the note is to be retrieved.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether, when accessing a pitch in a chord, to

return the written or sounding pitch. T = written. Default = NIL.

RETURN VALUE:

An event object, or single pitch object if accessing a note within a

chord.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((c2 d2 e2 f2 g2 a2 b2

c3 d3 e3 f3 g3 a3 b3

c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 (2) 3 4 5)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(print (get-note (piece mini) 3 ’(2 1) ’vc)) ; single pitch within a chord

(print (get-note (piece mini) 3 2 ’vc)) ; entire chord event

(print (get-note (piece mini) 5 3 ’cl)))

SYNOPSIS:

(defmethod get-note ((bh bar-holder) bar-num note-num player &optional written)

20 SC/NAMED-OBJECT 229

20.2.5 bar-holder/piece

[bar-holder] [Classes]

NAME:

piece

File: piece.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

piece

AND

named-object -> linked-named-object -> bar-holder ->

piece

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the piece class which holds all the

note information for a whole piece in the form of

sections (possibly subsections), which then contain

player-sections, sequenzes and rthm-seq-bars.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 16th February 2002

$$ Last modified: 16:42:25 Mon Sep 1 2014 BST

SVN ID: $Id: piece.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.6 piece/delete-sequenzes

[piece] [Methods]

DESCRIPTION:

Delete one or more consecutive sequenz objects from a given piece object by

specifying any bar number within the first sequenz object to be deleted.

This method deletes the whole sequenz object which contains the bar with a

given number.

20 SC/NAMED-OBJECT 230

NB: This method only deletes the sequenz object for the specified player,

so the remaining players will have a different structure, making MIDI

or printable output impossible. The user must be sure that each section

has the same number of sequenzes of identical time-signature structure

in each section.

NB: The user must call the update-slots method to ensure that changes to

the NUM-BARS slot etc. are reflected in the given slippery-chicken

object.

ARGUMENTS:

- A piece object.

- An integer that is the number of the bar for which the containing sequenz

is to be deleted.

- The ID of the player from whose part the sequenz is to be deleted.

OPTIONAL ARGUMENTS:

- An integer that is the number of consecutive sequenz objects to delete,

including the first sequenz indicated by the <bar-num> argument.

Default = 1.

RETURN VALUE:

Returns T.

EXAMPLE:

;;; Print the number of sequenz objects contained in section 2 of each player’s ; ; ;

;;; part, delete two sequenz objects from each part in that section, and print ; ; ;

;;; the number of sequenz objects again to see the difference. Update the slots ; ; ;

;;; and call cmn-display for printable output. ; ; ;

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((hn (french-horn :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5))))

20 SC/NAMED-OBJECT 231

(2 ((((4 4) h h))

:pitch-seq-palette ((1 2)))))

:rthm-seq-map ’((1 ((hn (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((hn (2 2 2 2 2))

(vc (2 2 2 2 2))))

(3 ((hn (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(print (length (get-data-data ’hn (get-section mini 2))))

(print (length (get-data-data ’vc (get-section mini 2))))

(delete-sequenzes (piece mini) 8 ’hn 2)

(delete-sequenzes (piece mini) 8 ’vc 2)

(print (length (get-data-data ’hn (get-section mini 2))))

(print (length (get-data-data ’vc (get-section mini 2))))

(update-slots mini)

(cmn-display mini))

SYNOPSIS:

(defmethod delete-sequenzes ((p piece) bar-num player &optional (how-many 1))

20.2.7 piece/get-nth-sequenz

[piece] [Methods]

DESCRIPTION:

Get the sequenz object from a specified section of a piece object by

specifying a position index and a player.

NB: This is the primary method for accessing player sequences, as it

handles cases in which a player doesn’t play in a sequence, and it is

called automatically by slippery-chicken.

When the specified player has no note events in the specified sequence

and the optional argument <create-rest-seq> is set to T, this method

creates a rest sequence (one that consists of the correct number of

bars with the right time signatures, but in which the bars are only

rest bars) based on a simultaneous sequence in one of the playing

instruments.

ARGUMENTS:

- A piece object.

- The ID of the section in from which the sequenz object is to be

20 SC/NAMED-OBJECT 232

returned.

- The ID of the player from whose part the sequenz object is to be

returned.

- An integer that is the index (position) of the desired sequenz object

within the given section. This number is 0-based.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to convert sequenz objects that are NIL

(i.e., the specified player has no events in the specified sequenz) to

sequenz objects consisting of full-bar rests. T = create rest sequences.

Default = T. NB: This argument is already called by slippery-chicken with

a value of T, so has no effect when used as a post-generation editing

method and can be thus considered for internal use only.

RETURN VALUE:

Returns a sequenz object.

EXAMPLE:

;;; Returns a sequenz object

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((hn (french-horn :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((hn (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((hn (nil nil nil nil nil))

(vc (1 1 1 1 1))))

(3 ((hn (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(get-nth-sequenz (piece mini) 3 ’hn 2))

=>

SEQUENZ: pitch-curve: (1 2 3 4 5)

RTHM-SEQ: num-bars: 1

20 SC/NAMED-OBJECT 233

num-rhythms: 5

num-notes: 5

num-score-notes: 5

num-rests: 0

duration: 4.0

psp-inversions: NIL

marks: NIL

time-sigs-tag: NIL

handled-first-note-tie: NIL

(for brevity’s sake, slots pitch-seq-palette and bars are not printed)

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: (1), next: NIL

BAR-HOLDER:

start-bar: 13

end-bar: 13

num-bars: 1

start-time: 48.0

end-time: 52.0

start-time-qtrs: 48.0

end-time-qtrs: 52.0

num-notes (attacked notes, not tied): 5

num-score-notes (tied notes counted separately): 5

num-rests: 0

duration-qtrs: 4.0

duration: 4.0 (4.000)

SYNOPSIS:

(defmethod get-nth-sequenz ((p piece) section player seq-num ; 0-based

&optional (create-rest-seq t))

20.2.8 piece/get-sequenz-from-bar-num

[piece] [Methods]

DESCRIPTION:

Get the specified sequenz object located at a specified bar-number location

of a specified player’s part in a given piece object.

ARGUMENTS:

- A piece object.

- An integer that is the number of the bar from which to return the sequenz

object.

20 SC/NAMED-OBJECT 234

- The ID of the player from whose part the sequenz object is to be

returned.

RETURN VALUE:

A sequenz object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((hn (french-horn :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((hn (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((hn (1 1 1 1 1))

(vc (1 1 1 1 1))))

(3 ((hn (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(get-sequenz-from-bar-num (piece mini) 7 ’vc))

=>

SEQUENZ: pitch-curve: (1 2 3 4 5)

RTHM-SEQ: num-bars: 1

num-rhythms: 5

num-notes: 5

num-score-notes: 5

num-rests: 0

duration: 4.0

psp-inversions: NIL

marks: NIL

time-sigs-tag: NIL

handled-first-note-tie: NIL

(for brevity’s sake, slots pitch-seq-palette and bars are not printed)

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: (1), next: NIL

BAR-HOLDER:

start-bar: 7

end-bar: 7

20 SC/NAMED-OBJECT 235

num-bars: 1

start-time: 24.0

end-time: 28.0

start-time-qtrs: 24.0

end-time-qtrs: 28.0

num-notes (attacked notes, not tied): 5

num-score-notes (tied notes counted separately): 5

num-rests: 0

duration-qtrs: 4.0

duration: 4.0 (4.000)

SYNOPSIS:

(defmethod get-sequenz-from-bar-num ((p piece) bar-num player)

20.2.9 piece/insert-bar

[piece] [Methods]

DESCRIPTION:

Insert a rthm-seq-bar object into an existing piece object.

NB: As this is a post-generation editing method when used with this class,

the rthm-seq-bar object must consist of event objects (with pitches),

not just rhythm objects. If used to insert a bar into an isolated

rthm-seq object (not a sequenz object), the inserted rthm-seq-bar could

then consist of rhythm objects rather than events.

NB: Slippery chicken does not check to ensure that a new bar is inserted

for each player at a given point; this is up to the user.

NB: The user must call the update-slots method to ensure that changes to

the num-bars slot etc. are reflected in the given slippery-chicken

object.

ARGUMENTS:

- A piece object.

- A rthm-seq-bar object.

- An integer that is the bar-number within the rthm-seq-bar object before

which the new bar is to be inserted.

- NB: The optional arguments are actually required for use with this class.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 236

NB: The optional arguments are actually required for use with this class.

- An integer that is the section of in which the bar is to be inserted.

- The ID of the player into whose part the new bar is to be added.

- An integer that is the number of the sequenz object into which the bar is

to be inserted. This is one-based.

- A list of integers that are the curve for a pitch-seq object to be

applied to the bar that is to be inserted.

RETURN VALUE:

T

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((hn (french-horn :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5))))

(2 ((((4 4) h h))

:pitch-seq-palette ((1 2)))))

:rthm-seq-map ’((1 ((hn (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((hn (1 1 1 1 1))

(vc (1 2 1 1 1))))

(3 ((hn (1 1 1 1 1))

(vc (1 1 1 1 1)))))))

(new-bar (make-rthm-seq-bar ’((4 4) (w)))))

(fill-with-rhythms new-bar (loop for r in ’(h q. e)

for p in ’(c4 e4 g4)

collect (make-event p r)))

;; slippery-chicken object has 15 bars

(print (num-bars mini))

;; print the number of bars in the sequenz in piece=mini, section=2,

;; seq=2 (0=based), player=’hn.

;; has 1 bar

(print (num-bars (get-nth-sequenz (piece mini) 2 ’hn 2)))

;; insert an rsb in piece=mini, section=2, seq=3 (1-based), player=’hn,

;; before rsb=1 of the existing seq

20 SC/NAMED-OBJECT 237

(insert-bar (piece mini) new-bar 1 2 ’hn 3 ’(1 2 3))

;; insert an rsb in piece=mini, section=2, seq=3 (1-based), player=’vc,

;; before rsb=1 of the existing seq

(insert-bar (piece mini) new-bar 1 2 ’vc 3 ’(1 2 3))

;; print the number of bars in the sequenz in piece=mini, section=2,

;; seq=2 (0=based), player=’hn.

;; now has 2 bars.

(print (num-bars (get-nth-sequenz (piece mini) 2 ’hn 2)))

;; update slots of the sc object.

(update-slots mini)

;; print the number of bars of the slippery-chicken object.

;; now 16.

(print (num-bars mini)))

=>

15

1

2

16

SYNOPSIS:

(defmethod insert-bar ((p piece) (rsb rthm-seq-bar) bar-num

;; these aren’t actually optional but we don’t

;; need them in the rthm-seq method

&optional section player seq-num ; seq-num is 1-based!

;; this really is optional

pitch-seq)

20.2.10 piece/rebar

[piece] [Methods]

DATE:

29-Jan-2010

DESCRIPTION:

Go through the sequences and rebar according to the first one that has the

least number of bars (but following the player hierarchy).

ARGUMENTS:

- A piece object (usually provided by calling from the slippery-chicken

class)

20 SC/NAMED-OBJECT 238

OPTIONAL ARGUMENTS:

- A list of player IDs from the given piece object, ordered in terms of

importance i.e. which instrument’s bar structure should take precedence.

NB: The optional arguments are actually required in this class (not in

slippery-chicken) but the rebar-fun is not yet used.

RETURN VALUE:

Always T.

SYNOPSIS:

(defmethod rebar ((p piece) &optional instruments-hierarchy rebar-fun)

20.2.11 bar-holder/player-section

[bar-holder] [Classes]

NAME:

player-section

File: player-section.lsp

Class Hierarchy: named-object -> linked-named-object -> bar-holder

-> player-section

AND

named-object -> linked-named-object -> sclist

-> player-section

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of player-section class which is simply a

bar holder that contains a list of sequenzes for a

particular player.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 18th March 2002

$$ Last modified: 15:18:15 Fri Apr 19 2013 BST

20 SC/NAMED-OBJECT 239

SVN ID: $Id: player-section.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.12 bar-holder/section

[bar-holder] [Classes]

NAME:

section

File: section.lsp

Class Hierarchy: named-object -> linked-named-object -> bar-holder

-> section

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of section class which is simply a bar

holder and recursive-assoc-list that contains (possibly

subsections which contain) player-sections.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 23rd March 2002

$$ Last modified: 19:08:02 Thu Oct 17 2013 BST

SVN ID: $Id: section.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.13 section/get-all-players

[section] [Methods]

DESCRIPTION:

Return a list of the IDs from all players in a section object. NB: When

retrieving from a section within a slippery-chicken object, all players in

the ensemble will be returned, as the slippery-chicken object will generate

rest bars for players even when they’re not active in a given section.

ARGUMENTS:

- A section object.

20 SC/NAMED-OBJECT 240

RETURN VALUE:

- A list of player IDs (symbols).

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(hn (french-horn :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(hn (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(3 ((hn (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(print (get-all-players (get-section mini 1)))

(print (get-all-players (get-section mini 2)))

(print (get-all-players (get-section mini 3))))

=>

(CL HN VC)

(CL HN VC)

(CL HN VC)

SYNOPSIS:

(defmethod get-all-players ((s section))

20.2.14 section/get-bar

[section] [Methods]

DESCRIPTION:

Return the rthm-seq-bar object at the specified bar number within the given

20 SC/NAMED-OBJECT 241

section.

NB: The bar number is counted from the beginning of the entire piece, not

the beginning of the section.

ARGUMENTS:

- A section object.

- An integer that is the bar number for which to return the rthm-seq-bar

object. This number is 1-based and counts from the beginning of the

piece, not the beginning of the section.

OPTIONAL ARGUMENTS:

NB: The <player> argument is actually required, but is listed as optional

for reasons of class inheritance.

- The ID of the player for whose part the rthm-seq-bar object is to be

returned.

RETURN VALUE:

A rthm-seq-bar object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(hn (french-horn :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5)))

(2 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5)))

(3 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (2 2 2 2 2))

(3 (3 3 3 3 3)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5))))

(2 ((((4 4) q e s s h))

:pitch-seq-palette ((1 2 3 4 5))))

(3 ((((4 4) e s s h q))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

20 SC/NAMED-OBJECT 242

(hn (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((cl (2 2 2 2 2))

(hn (2 2 2 2 2))

(vc (2 2 2 2 2))))

(3 ((cl (3 3 3 3 3))

(hn (3 3 3 3 3))

(vc (3 3 3 3 3))))))))

(get-bar (get-section mini 3) 11 ’hn))

=>

RTHM-SEQ-BAR: time-sig: 2 (4 4), time-sig-given: T, bar-num: 11,

old-bar-nums: NIL, write-bar-num: NIL, start-time: 40.000,

start-time-qtrs: 40.0, is-rest-bar: NIL, multi-bar-rest: NIL,

show-rest: T, notes-needed: 5,

tuplets: NIL, nudge-factor: 0.35, beams: NIL,

current-time-sig: 2, write-time-sig: NIL, num-rests: 0,

num-rhythms: 5, num-score-notes: 5, parent-start-end: NIL,

missing-duration: NIL, bar-line-type: 0,

player-section-ref: (3 HN), nth-seq: 0, nth-bar: 0,

rehearsal-letter: NIL, all-time-sigs: (too long to print)

sounding-duration: 4.000,

rhythms: (

[...]

)

SCLIST: sclist-length: 6, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "3-bar1", tag: NIL,

data: ((4 4) E S S H Q)

SYNOPSIS:

(defmethod get-bar ((s section) bar-num &optional player)

20.2.15 section/get-sequenz

[section] [Methods]

DESCRIPTION:

Get the specified sequenz object from a given section object.

ARGUMENTS:

- A section object.

20 SC/NAMED-OBJECT 243

- The ID of the player from whose part the sequenz object is to be

returned.

- An integer that is the number of the sequence object to be returned from

within the given section object. This number is 1-based.

RETURN VALUE:

A sequenz object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5))))

(2 ((((4 4) q e s s h))

:pitch-seq-palette ((1 2 3 4 5))))

(3 ((((4 4) e s s h q))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((cl (2 2 2 2 2))

(vc (2 2 2 2 2))))

(3 ((cl (3 3 3 3 3))

(vc (3 3 3 3 3))))))))

(get-sequenz (get-section mini 2) ’vc 2))

=>

SEQUENZ: pitch-curve: (1 2 3 4 5)

RTHM-SEQ: num-bars: 1

num-rhythms: 5

num-notes: 5

num-score-notes: 5

num-rests: 0

duration: 4.0

psp-inversions: NIL

marks: NIL

time-sigs-tag: NIL

handled-first-note-tie: NIL

20 SC/NAMED-OBJECT 244

(for brevity’s sake, slots pitch-seq-palette and bars are not printed)

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: (1), this: (2), next: (3)

BAR-HOLDER:

start-bar: 7

end-bar: 7

num-bars: 1

start-time: 24.0

end-time: 28.0

start-time-qtrs: 24.0

end-time-qtrs: 28.0

num-notes (attacked notes, not tied): 5

num-score-notes (tied notes counted separately): 5

num-rests: 0

duration-qtrs: 4.0

duration: 4.0 (4.000)

SYNOPSIS:

(defmethod get-sequenz ((s section) player seq-num) ; 1-based

20.2.16 section/has-subsections

[section] [Methods]

DESCRIPTION:

Boolean test to determine whether a specified section of a slippery-chicken

object has subsections.

ARGUMENTS:

- A section object.

RETURN VALUE:

T if the specified section has subsections, otherwise NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((c4 d4 e4 f4 g4 a4 b4 c5))))

20 SC/NAMED-OBJECT 245

:set-map ’((1

((a (1 1 1))

(b (1 1 1))))

(2 (1 1 1 1))

(3

((a (1 1 1))

(b

((x (1 1 1))

(y (1 1 1))))))

(4

((a (1 1 1))

(b (1 1 1))

(c (1 1 1 1)))))

:rthm-seq-palette ’((1 ((((2 4) (q) e (s) s))

:pitch-seq-palette ((1 2)))))

:rthm-seq-map ’((1

((a ((vn (1 1 1))))

(b ((vn (1 1 1))))))

(2 ((vn (1 1 1 1))))

(3

((a ((vn (1 1 1))))

(b

((x ((vn (1 1 1))))

(y ((vn (1 1 1))))))))

(4

((a ((vn (1 1 1))))

(b ((vn (1 1 1))))

(c ((vn (1 1 1 1))))))))))

(print (has-subsections (get-section mini 1)))

(print (has-subsections (get-section mini 2))))

=>

T

NIL

SYNOPSIS:

(defmethod has-subsections ((s section))

20.2.17 section/num-sequenzes

[section] [Methods]

DESCRIPTION:

Get the number of sequenz objects in a given section object.

20 SC/NAMED-OBJECT 246

ARGUMENTS:

- A section object.

RETURN VALUE:

An integer that is the number of sequenz objects in the specified section

object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:set-palette ’((1 ((f3 g3 a3 b3 c4))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((vc (1 1 1 1 1))))

(2 ((vc (1 1 1 1 1))))

(3 ((vc (1 1 1 1 1))))))))

(num-sequenzes (get-section mini 2)))

=> 5

SYNOPSIS:

(defmethod num-sequenzes ((s section))

20.2.18 section/re-bar

[section] [Methods]

DESCRIPTION:

Regroup the consecutive note and rest events of a given section object into

new bars of the specified time signature.

This method will only combine short bars into longer ones; it will not

split up longer bars and recombine them.

The method will also use the specified (or default) time signature as a

20 SC/NAMED-OBJECT 247

target, and may be forced to create a number of bars that are not of the

specified time signature if the number of beats in the given section object

do not correspond.

NB: The user must call the update-slots method after using this method as a

post-generation editing method.

ARGUMENTS:

- A section object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :start-bar. An integer that is the first bar within the specified section

that is to be re-barred. Default = First bar of the given section.

- :end-bar. An integer that is the last bar within the specified section

that is to be re-barred. Default = Last bar of the given section.

- :min-time-sig. The target time signature for all new bars. NB: Depending

on the number of beats in the given section, the method may have to

deviate from this target time signature. Default = ’(2 4).

- :verbose. T or NIL to indicate whether to print feedback on the

re-barring process to the Lisp listener. Default = NIL.

- :auto-beam. T, NIL, or an integer. If T, the method will automatically

attach beam indications to the corresponding events according to the beat

unit of the time signature. If an integer, the method will beam in

accordance with a beat unit that is equal to that integer. If NIL, the

method will not automatically place beams. Default = T.

RETURN VALUE:

T.

EXAMPLE: SYNOPSIS:

(defmethod re-bar ((s section)

&key start-bar

end-bar

(min-time-sig ’(2 4))

verbose

;; could also be a beat rhythmic unit

(auto-beam t))

20.2.19 bar-holder/sequenz

[bar-holder] [Classes]

20 SC/NAMED-OBJECT 248

NAME:

sequenz

File: sequenz.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist -> rthm-seq

-> sequenz

AND

named-object -> linked-named-object -> bar-holder

-> sequenz

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the sequenz class which holds the

necessary data (pitch, rhythms etc.) for one sequenz for

one instrument.

Author: Michael Edwards: m@michael-edwards.org

Creation date: March 15th 2002

$$ Last modified: 15:33:14 Sat Jun 28 2014 BST

SVN ID: $Id: sequenz.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.20 bar-holder/transpose-bars

[bar-holder] [Methods]

DESCRIPTION:

Transpose the pitches of the specified bars in a given player’s part by a

specified number of semitones.

ARGUMENTS:

- A bar-holder object (such as the PIECE slot of a slippery-chicken

object).

- A positive or negative integer that is the number of semitones by which

the pitches of the specified bars are to be transposed.

- An integer that is the number of the first bar in which the pitches are

to be transposed.

20 SC/NAMED-OBJECT 249

- An integer that is the number of consecutive bars, including the

start-bar, in which the pitches are to be transposed.

- The ID of the player whose part is to be changed.

OPTIONAL ARGUMENTS:

keyword arguments:

- :destructively. T or NIL to indicate whether the transposed pitches are

to replace the existing pitches of the given bar-holder object. This must

be set to T if the pitches of the original object are to be transposed

before, for example, generating output. If NIL, the original object will

first be cloned, the pitches of the original object will be left

untouched and the changes will be made to the copy. Default = NIL.

- :print-bar-nums. T or NIL to indicate whether the method should print

feedback about which bars have been transposed to the listener.

T = print feedback. Default = NIL.

- :chord-function. The function that is to be used for transposition of

chords objects. Default = #’transpose (of the chord class).

- :chord-function. The function that is to be used for transposition of

pitch objects. Default = #’transpose (of the pitch class).

RETURN VALUE:

Returns a list of the rthm-seq-bar objects that have been transposed.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((c2 d2 e2 f2 g2 a2 b2

c3 d3 e3 f3 g3 a3 b3

c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e (s) s))

:pitch-seq-palette ((1 (2) 3 4)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(transpose-bars (piece mini) 11 2 2 ’cl

:destructively t

:print-bar-nums t))

SYNOPSIS:

20 SC/NAMED-OBJECT 250

(defmethod transpose-bars ((bh bar-holder) semitones start-bar num-bars player

&key

(destructively nil)

(print-bar-nums nil)

;; the default functions are the class methods for

;; pitch or chord.

(chord-function #’transpose)

(pitch-function #’transpose))

20.2.21 linked-named-object/instrument

[linked-named-object] [Classes]

NAME:

instrument

File: instrument.lsp

Class Hierarchy: named-object -> linked-named-object -> instrument

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the instrument class which defines

musical instrument properties like range and

collects/stores information about what the instrument

plays: how many notes, in how many bars etc.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 4th September 2001

$$ Last modified: 16:02:22 Wed May 28 2014 BST

SVN ID: $Id: instrument.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.22 instrument/default-chord-function

[instrument] [Functions]

DESCRIPTION:

If an instrument is able to play chords, a function must be defined to

20 SC/NAMED-OBJECT 251

select pitches from a list that it can play as a chord. This function (as a

symbol) is passed as a slot to the instrument instance.

This is the default function. It returns a 2-note chord with the pitch at

index plus that below it, or that above it if there are no lower pitches

available. Or it just returns a single-pitch chord object if neither of

those cases are possible.

NB: The arguments are supplied by slippery chicken when it calls the

function.

ARGUMENTS:

- The current number from the pitch-seq. Currently ignored by default.

- The index that the first argument was translated into by the offset and

scaler (based on trying to get a best fit for the instrument and set).

This can be assumed to be a legal reference into pitch-list as it was

calculated as fitting in pitch-seq::get-notes. (zero-based.)

- The pitch-list created from the set, taking into account the instrument’s

range and other notes already played by other instruments.

- The current pitch-seq object. Currently ignored by default.

- The current instrument object. Currently ignored by default.

- The current set object. Currently ignored by default.

RETURN VALUE:

A chord object.

SYNOPSIS:

(defun default-chord-function (curve-num index pitch-list pitch-seq instrument

set)

20.2.23 instrument/force-in-range

[instrument] [Methods]

DATE:

October 9th 2013

DESCRIPTION:

Forces a pitch to be within an instrument’s range by transposing up or down

the required number of octaves.

20 SC/NAMED-OBJECT 252

ARGUMENTS:

- the instrument object

- the piece object

OPTIONAL ARGUMENTS:

- whether the pitch should be considered a sounding pitch. Default = NIL.

RETURN VALUE:

A pitch object within the instrument’s range.

EXAMPLE:

(let ((cl (get-data ’b-flat-clarinet

+slippery-chicken-standard-instrument-palette+)))

;; needs to go down 1 octave

(print (data (force-in-range cl (make-pitch ’e7))))

;; needs to go up 2 octaves

(print (data (force-in-range cl (make-pitch ’g1))))

;; the t indicates we’re dealing with sounding pitches so here there’s no

;; transposition...

(print (data (force-in-range cl (make-pitch ’d3) t)))

;; ... but here there is

(print (data (force-in-range cl (make-pitch ’d3)))))

=>

E6

G3

D3

D4

SYNOPSIS:

(defmethod force-in-range ((ins instrument) pitch &optional sounding)

20.2.24 instrument/in-range

[instrument] [Methods]

DESCRIPTION:

Checks whether a specified pitch falls within the defined range of a given

instrument object or not.

20 SC/NAMED-OBJECT 253

ARGUMENTS:

- An instrument object.

- A pitch item (pitch object or note-name symbol).

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the pitch specified is to be compared with

the given pitch object’s sounding or written range. T = Sounding.

Default = NIL. If T, a secondary NIL is also returned to indicate that

the specified pitch is neither too high nor too low.

RETURN VALUE:

Returns T if the specified pitch falls between the

lowest-sounding/lowest-written and the highest-sounding/highest-written

pitches of the given pitch object.

If the specified pitch is outside of the range, an additional value of 0 or

1 is also returned to indicate whether the specified pitch is too high (1)

or too low (0).

EXAMPLE:

;; Determine if a pitch provided as a note-name symbol falls within the written

;; range of a non-transposing instrument

(let ((i1 (make-instrument ’inst1 :lowest-written ’bf3 :highest-written ’a6)))

(in-range i1 ’c4))

=> T, NIL

;; Determine if a pitch provided as a note-name symbol falls within the

;; sounding range of a transposing instrument, using the optional argument T

(let ((i2 (make-instrument ’inst1 :lowest-written ’fs3 :highest-written ’c6

:transposition ’BF)))

(in-range i2 ’c6 T))

=> NIL, 1

;; A pitch object can be used as the specified pitch

(let ((i2 (make-instrument ’inst1 :lowest-written ’fs3 :highest-written ’c6

:transposition ’BF)))

(in-range i2 (make-pitch ’d6)))

=> NIL, 1

20 SC/NAMED-OBJECT 254

SYNOPSIS:

(defmethod in-range ((ins instrument) pitch &optional sounding)

20.2.25 instrument/make-instrument

[instrument] [Functions]

DESCRIPTION:

Create an instrument object, specifying the values for a number of

parameters for describing characteristics of a given instrument, such as

lowest and highest pitch, transposition, clefs used by the instrument etc.

NB: The user will generally define instruments will in the context of the

make-instrument-palette function and added directly to the

+slippery-chicken-standard-instrument-palette+ parameter of the file

instruments.lsp, using the keyword structure shown below in the OPTIONAL

ARGUMENTS.

ARGUMENTS:

- A symbol that is the instrument ID.

OPTIONAL ARGUMENTS:

keyword arguments:

- :staff-name. String. This is the unabbreviated instrument name that will

be used for the first page of printed scores.

- :staff-short-name. String. This is the abbreviated instrument name that

will be used for subsequent pages of printed scores.

- :lowest-written. Note-name symbol. This is the lowest written pitch

available on the given instrument. Defaults to NIL. A user may only

define either the lowest-written value or the lowest-sounding value. If a

lowest-written value is given, the method automatically determines the

lowest-sounding value based on the lowest-written value and the

transposition value.

- :highest-written. Note-name symbol. This is the highest written pitch

available on the given instrument. Defaults to NIL. A user may only

define either the highest-written value or the highest-sounding value. If

a highest-written value is given, the method automatically determines the

highest-sounding value based on the highest-written value and the

transposition value.

- :lowest-sounding. Note-name symbol. This is the lowest sounding pitch

available on the given instrument. Defaults to NIL. A user may only

20 SC/NAMED-OBJECT 255

define either the lowest-sounding value or the lowest-written value. If a

lowest-sounding value is given, the method automatically determines the

lowest-written value based on the lowest-sounding value and the

transposition value.

- :highest-sounding. Note-name symbol. This is the highest sounding pitch

available on the given instrument. Defaults to NIL. A user may only

define either the highest-sounding value or the highest-written value. If

a highest-sounding value is given, the method automatically determines

the highest-written value based on the highest-sounding value and the

transposition value.

- :transposition. Note-name symbol. This is the key of the given instrument

(such as the "B-flat" of the "B-flat clarinet"), given as a note-name

symbol (such as ’BF for B-flat). If a value is only given for the

:transposition argument but not for the :transposition-semitones

argument, and there are multiple semitone transposition options for the

key specified, the method will choose the most common semitone

transposition for that given key. NB: When using keyword argument

:transposition rather than :transposition-semitones, sc will have a

warning printed by cm with indications as to which direction the

transposition has been undertaken.

- :transposition-semitones. Integer (positive or negative). The number of

semitones lower that a given instrument sounds than written, e.g. -2 for

B-flat Clarinet. If a value is only given for the

:transposition-semitones argument but not for the :transposition

argument, the method will automatically determine the key for the

:transposition argument. The listener will drop into the debugger with an

error if a key is given for the :transposition argument and the number

specified for the :transposition-semitones does not correspond with that

key.

- :starting-clef. Symbol. This value determines the first clef that a given

instrument is to use if that instrument can use different clefs. For a

list of available clefs see the :clefs argument below.

Default = ’treble.

- :clefs. List of symbols. All clefs that a given instrument may use in the

course of a piece. Clefs available are treble, alto, tenor, bass,

percussion, double-treble, and double-bass. Clefs are to be given in

order of preference. Defaults automatically to the value given to

:starting-clef if no other clefs are specified. NB: If a separate list is

indeed given here, the method will automatically add the value for

:starting-clef as well, should it have been omitted. In this case, a

warning will also be printed.

- :clefs-in-c. List of symbols. Similar to :clefs, but designates which

clefs an instrument uses in a C-score; for example, bass clarinet may

notated in bass clef for sounding pitches though it is standardly

notated in treble clef for written pitches. For a list of clefs available

see the :clefs argument above.

20 SC/NAMED-OBJECT 256

- :largest-fast-leap. Number. This value indicates the largest interval, in

semitones, that a player can feasibly perform at a fast tempo on the

given instrument. Default = 999. "Fast" here is determined for the whole

piece by the slippery-chicken class’s fast-leap-threshold slot.

- :score-write-in-c. T or NIL. Determines whether the musical material for

the given instrument should be printed in C. T = print in C.

Default = NIL.

- :score-write-bar-line. Integer. This argument is used for indicating

system-grouping in the printed score. The given integer specifies how

many instruments above this one should be grouped together with an

unbroken bar-line. Default = 1.

- :midi-program. Integer. The number of the MIDI program to be used for

playing back this instrument. Default = 1.

- :chords. T or NIL. Indicates whether the given instrument is capable of

playing chords (starting with 2-note simultaneities, but not

multiphonics).

- :subset-id. Symbol, string, number, or NIL. Indicates the ID of a

specific subset of the current set to which the instrument’s pitch

selection is limited. No error will occur if no subset with this ID

exists in a given set, i.e. some may include this subset, some may not

and everything will function correctly--if the specified subset is not

present in the current set the pitch selection routine will select from

the whole set. In every case however, the usual set limiting according

to instrument range etc. will also apply. Default = NIL.

- :microtones. T or NIL. Indicates whether the instrument can play

microtones. T = can play microtones. Default = NIL. NB: If this value is

set to T, a separate :microtones-midi-channel must be specified; this can

be done for the given instrument object in the :ensemble block of the

make-slippery-chicken function.

- :missing-notes. A list of note-name symbols. This is a list of any notes

which the given instrument can’t play, for example certain

quarter-tones. These are to be given by the user as written-pitch

note-name symbols, but are always stored by the method as sounding

pitches.

- :prefers-notes. Symbol. ’high, ’low or NIL. This value indicates whether

to give preference, when choosing notes for the given instrument, to

pitches from the upper or lower end of the instrument’s range. When NIL,

preference is given to notes from its middle register. Default = NIL.

- :chord-function. If the given instrument can play chords then it will

need a reference to a function that can select chords for it. NB This

should be a symbol not a function object; thus, ’my-fun not

#’my-fun. Default = NIL.

RETURN VALUE:

Returns an instrument object.

20 SC/NAMED-OBJECT 257

EXAMPLE:

;; Make-instrument for the flute:

(make-instrument ’flute :staff-name "Flute" :staff-short-name "Fl."

:lowest-written ’c4 :highest-written ’d7

:starting-clef ’treble :midi-program 74 :chords nil

:microtones t :missing-notes ’(cqs4 dqf4))

=>

INSTRUMENT: lowest-written:

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 0

[...]

, highest-written:

PITCH: frequency: 2349.318, midi-note: 98, midi-channel: 0

[...]

lowest-sounding:

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 0

[...]

, highest-sounding:

PITCH: frequency: 2349.318, midi-note: 98, midi-channel: 0

starting-clef: TREBLE, clefs: (TREBLE), clefs-in-c: (TREBLE)

prefers-notes: NIL, midi-program: 74

transposition: C, transposition-semitones: 0

score-write-in-c: NIL, score-write-bar-line: 1

chords: NIL, chord-function: NIL,

total-bars: 0 total-notes: 0, total-duration: 0.0

total-degrees: 0, microtones: T

missing-notes: (CQS4 DQF4), subset-id: NIL

staff-name: Flute, staff-short-name : Fl.,

largest-fast-leap: 999

[...]

NAMED-OBJECT: id: FLUTE, tag: NIL,

data: NIL

;; A make-instrument for the b-flat bass clarinet

(make-instrument ’bass-clarinet :staff-name "Bass Clarinet" :lowest-written ’c3

:highest-written ’g6 :staff-short-name "Bass Cl."

:chords nil :midi-program 72 :starting-clef ’treble

:microtones t :prefers-notes ’low

:missing-notes ’(aqs4 bqf4 bqs4 cqs5 dqf5 gqf3 fqs3 fqf3 eqf3

dqs3 dqf3 cqs3)

:clefs ’(treble) :clefs-in-c ’(treble bass)

:transposition-semitones -14)

=>

INSTRUMENT: lowest-written:

20 SC/NAMED-OBJECT 258

PITCH: frequency: 130.813, midi-note: 48, midi-channel: 0

[...]

, highest-written:

PITCH: frequency: 1567.982, midi-note: 91, midi-channel: 0

[...]

lowest-sounding:

PITCH: frequency: 58.270, midi-note: 34, midi-channel: 0

[...]

, highest-sounding:

PITCH: frequency: 698.456, midi-note: 77, midi-channel: 0

[...]

NAMED-OBJECT: id: BASS-CLARINET, tag: NIL,

data: NIL

SYNOPSIS:

(defun make-instrument (id &key

staff-name

staff-short-name

lowest-written

highest-written

lowest-sounding

highest-sounding

transposition

transposition-semitones

(starting-clef ’treble)

clefs

(largest-fast-leap 999)

score-write-in-c

(score-write-bar-line 1)

(midi-program 1)

chords

clefs-in-c

subset-id

microtones

missing-notes

prefers-notes

chord-function)

20.2.26 instrument/prefers-high

[instrument] [Methods]

DESCRIPTION:

Determine whether the PREFERS-NOTES slot of a given instrument object is

20 SC/NAMED-OBJECT 259

set to ’HIGH.

ARGUMENTS:

- An instrument object.

RETURN VALUE:

Returns T if the PREFERS-NOTES slot of the given instrument object is set

to ’HIGH, otherwise NIL.

EXAMPLE:

;; Returns T if the PREFERS-NOTES slot of the given instrument object is set to

;; ’HIGH

(let ((i1 (make-instrument ’inst :prefers-notes ’high)))

(prefers-high i1))

=> T

;; Returns NIL if the PREFERS-NOTES slot of the given instrument object is not

;; set to ’HIGH

(let ((i1 (make-instrument ’inst1))

(i2 (make-instrument ’inst2 :prefers-notes ’low)))

(print (prefers-high i1))

(print (prefers-high i2)))

=>

NIL

NIL

SYNOPSIS:

(defmethod prefers-high ((ins instrument))

20.2.27 instrument/prefers-low

[instrument] [Methods]

DESCRIPTION:

Determine whether the PREFERS-NOTES slot of a given instrument object is

set to ’LOW.

ARGUMENTS:

20 SC/NAMED-OBJECT 260

- An instrument object.

RETURN VALUE:

Returns T if the PREFERS-NOTES slot of the given instrument object is set

to ’LOW, otherwise NIL.

EXAMPLE:

;; Returns T if the PREFERS-NOTES slot of the given instrument object is set to

;; ’LOW

(let ((i1 (make-instrument ’inst :prefers-notes ’low)))

(prefers-low i1))

=> T

;; Returns NIL if the PREFERS-NOTES slot of the given instrument object is not

;; set to ’LOW

(let ((i1 (make-instrument ’inst1))

(i2 (make-instrument ’inst2 :prefers-notes ’high)))

(print (prefers-low i1))

(print (prefers-low i2)))

=>

NIL

NIL

SYNOPSIS:

(defmethod prefers-low ((ins instrument))

20.2.28 instrument/set-prefers-high

[instrument] [Methods]

DATE:

05 Feb 2011

DESCRIPTION:

Sets the PREFERS-NOTES slot of the given instrument object to ’HIGH.

ARGUMENTS:

20 SC/NAMED-OBJECT 261

- An instrument object.

OPTIONAL ARGUMENTS:

(- optional ignore argument; for internal use only).

RETURN VALUE:

Returns symbol HIGH.

EXAMPLE:

;; Returns symbol HIGH by default

(let ((i1 (make-instrument ’inst)))

(set-prefers-high i1))

=> HIGH

;; Create an instrument object with only an ID, print the PREFERS-NOTES slot to

;; see that it is NIL by default, apply the set-prefers-high, and print the

;; slot again to see the changes

(let ((i1 (make-instrument ’inst)))

(print (prefers-notes i1))

(set-prefers-high i1)

(print (prefers-notes i1)))

=>

NIL

HIGH

;; Reset to HIGH from LOW

(let ((i1 (make-instrument ’inst :prefers-notes ’low)))

(print (prefers-notes i1))

(set-prefers-high i1)

(print (prefers-notes i1)))

=>

LOW

HIGH

SYNOPSIS:

(defmethod set-prefers-high ((ins instrument) &optional ignore)

20 SC/NAMED-OBJECT 262

20.2.29 instrument/set-prefers-low

[instrument] [Methods]

DATE:

05 Feb 2011

DESCRIPTION:

Sets the PREFERS-NOTES slot of the given instrument object to ’LOW.

ARGUMENTS:

- An instrument object.

OPTIONAL ARGUMENTS:

(- optional ignore argument; for internal use only).

RETURN VALUE:

Returns symbol LOW.

EXAMPLE:

;; Returns symbol LOW by default

(let ((i1 (make-instrument ’inst)))

(set-prefers-low i1))

=> LOW

;; Create an instrument object with only an ID, print the PREFERS-NOTES slot to

;; see that it is NIL by default, apply the set-prefers-low, and print the

;; slot again to see the changes

(let ((i1 (make-instrument ’inst)))

(print (prefers-notes i1))

(set-prefers-low i1)

(print (prefers-notes i1)))

=>

NIL

LOW

;; Reset to LOW from HIGH

20 SC/NAMED-OBJECT 263

(let ((i1 (make-instrument ’inst :prefers-notes ’high)))

(print (prefers-notes i1))

(set-prefers-low i1)

(print (prefers-notes i1)))

=>

HIGH

LOW

SYNOPSIS:

(defmethod set-prefers-low ((ins instrument) &optional ignore)

20.2.30 instrument/transposing-instrument-p

[instrument] [Methods]

DESCRIPTION:

Determine whether a given instrument object defines a transposing

instrument.

ARGUMENTS:

- An instrument object.

OPTIONAL ARGUMENTS:

- ignore-octaves. T or NIL to indicate whether instruments that transpose

at the octave are to be considered transposing instruments.

T = instruments that transpose at the octave are not considered

transposing instruments. Default = T.

RETURN VALUE:

Returns T if the given instrument object defines a transposing instrument,

otherwise NIL.

EXAMPLE:

;; Returns NIL if the instrument is not a transposing instrument

(let ((i1 (make-instrument ’instrument-one)))

(transposing-instrument-p i1))

20 SC/NAMED-OBJECT 264

=> NIL

;; Returns T if the instrument object has been defined using a non-NIL value

;; for :transposition

(let ((i2 (make-instrument ’instrument-two :transposition ’bf)))

(transposing-instrument-p i2))

=> T

;; Returns T if the instrument object has been defined using a non-0 value for

;; :transposition-semitones

(let ((i3 (make-instrument ’instrument-two :transposition-semitones -3)))

(transposing-instrument-p i3))

=> T

;; Setting the optional argument to NIL causes instruments that transpose at

;; the octave to return T.

(let ((i3 (make-instrument ’instrument-two :transposition-semitones -12)))

(transposing-instrument-p i3))

=> NIL

(let ((i3 (make-instrument ’instrument-two :transposition-semitones -12)))

(transposing-instrument-p i3 nil))

=> T

SYNOPSIS:

(defmethod transposing-instrument-p ((ins instrument)

&optional (ignore-octaves t))

20.2.31 linked-named-object/pitch

[linked-named-object] [Classes]

NAME:

pitch

File: pitch.lsp

Class Hierarchy: named-object -> linked-named-object -> pitch

20 SC/NAMED-OBJECT 265

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the pitch class for holding pitch

information: symbolic representation (eg c4), MIDI note

number, frequency, sampling-rate conversion etc.

Author: Michael Edwards: m@michael-edwards.org

Creation date: March 18th 2001

$$ Last modified: 20:41:34 Mon May 5 2014 BST

SVN ID: $Id: pitch.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.32 pitch/add-mark

[pitch] [Methods]

DESCRIPTION:

Add a specified mark to the MARKS slot of the given pitch object.

NB: The add-mark method does not check first to see whether the mark being

added is a legitimate mark. It does print a warning, however, when the

specified mark is already present in the MARKS slot, though it adds it

anyway.

ARGUMENTS:

- A pitch object.

- A symbol that is a mark.

RETURN VALUE:

A list. The method returns the entire contents of the given pitch object’s

MARKS slot as a list.

Prints a warning when the specified mark is already present in the given

pitch object’s MARKs slot.

EXAMPLE:

;; By default the MARKS slot of a newly created pitch object is set to NIL

20 SC/NAMED-OBJECT 266

(let ((p (make-pitch ’c4)))

(marks p))

=> NIL

;; Add two marks and print the contents of the given pitch object’s MARKS slot

;; to see the changes

(let ((p (make-pitch ’c4)))

(add-mark p ’pizz)

(add-mark p ’a)

(print (marks p)))

=>

(A PIZZ)

;; Prints a warning when the specified mark is already present in the MARKS

;; slot, though it adds it again anyway.

(let ((p (make-pitch ’c4)))

(add-mark p ’pizz)

(add-mark p ’pizz)

(marks p))

=> (PIZZ PIZZ)

WARNING:

pitch::add-mark: mark PIZZ already present but adding again!

SYNOPSIS:

(defmethod add-mark ((p pitch) mark &optional warn-rest)

20.2.33 pitch/cents-hertz

[pitch] [Methods]

DATE:

December 24th 2013

DESCRIPTION:

Convert an offset in cents into the frequency deviation of a pitch.

ARGUMENTS:

- a pitch object

20 SC/NAMED-OBJECT 267

- the number of cents to offset the pitch and return the frequency

deviation for

RETURN VALUE:

The frequency deviation in Hertz of the offset pitch.

EXAMPLE:

;;; taking as a given the usual floating point round errors:

(cents-hertz (make-pitch ’a4) 1200)

=> 439.9999694824219d0 ; i.e. going up an octave from a4 would be 440 Hz higher

(cents-hertz (make-pitch ’a4) -1200)

=> -219.99998474121094d0

(cents-hertz (make-pitch ’a4) 3)

=> 0.7631253666877456d0

(cents-hertz (make-pitch ’a4) 10)

=> 2.5489090105293144d0

(cents-hertz (make-pitch ’a3) 10)

=> 1.2744545052646572d0

SYNOPSIS:

(defmethod cents-hertz ((p pitch) cents)

20.2.34 pitch/cmn-display-pitch-list

[pitch] [Functions]

DESCRIPTION:

Use CMN to display a list of pitch objects.

ARGUMENTS:

The list of pitch objects

OPTIONAL ARGUMENTS:

keyword arguments:

- :staff. The CMN staff object to display with. Default = cmn::treble.

- :size. The CMN size for the staff. Default = 20.

- :file. The path of the file to (over)write.

Default = "pitches.eps" in the directory (get-sc-config ’default-dir)

20 SC/NAMED-OBJECT 268

(default /tmp)

- :auto-open. Whether to open the .EPS file once written. Currently only

available on OSX with SBCL and CCL. Uses the default app for .EPS

files, as if opened with ’open’ in the terminal. Default = Value of

(get-sc-config cmn-display-auto-open).

RETURN VALUE:

A CMN score object.

SYNOPSIS:

(defun cmn-display-pitch-list

(pitches &key (staff cmn::treble) (size 20)

(auto-open (get-sc-config ’cmn-display-auto-open))

(file (concatenate ’string (get-sc-config ’default-dir) "pitches.eps")))

20.2.35 pitch/degree-

[pitch] [Methods]

DESCRIPTION:

Determine the difference between the quarter-tone degree of one pitch

object and that of a second.

NB: This method does not return absolute difference; instead, it may return

positive or negative results depending on the order in which the pitch

objects are given. (This will aid in revealing directionality.)

NB: The DEGREE slot is measured in quarter-tones, not semitones. Thus,

middle-C is degree 120, not 60, and the difference between two

consecutive semitones is 2, not 1.

ARGUMENTS:

- A first pitch object.

- A second pitch object.

RETURN VALUE:

Returns a number. The number may be positive or negative.

EXAMPLE:

20 SC/NAMED-OBJECT 269

;; Subtracting the lower pitch object from the higher returns a positive number

(let ((p1 (make-pitch ’d4))

(p2 (make-pitch ’c4)))

(degree- p1 p2))

=> 4

;; Reversing the order in which the pitch objects are entered may return a

;; negative number

(let ((p1 (make-pitch ’d4))

(p2 (make-pitch ’c4)))

(degree- p2 p1))

=> -4

SYNOPSIS:

(defmethod degree- ((p1 pitch) (p2 pitch))

20.2.36 pitch/delete-marks

[pitch] [Methods]

DESCRIPTION:

Delete all marks stored in the MARKS slot of the given pitch object and

reset the slot to NIL.

ARGUMENTS:

- A pitch object.

RETURN VALUE:

Always returns NIL

EXAMPLE:

;; Add two marks, then delete them. The method returns NIL

(let ((p (make-pitch ’c4)))

(add-mark p ’pizz)

(add-mark p ’a)

(delete-marks p))

=> NIL

20 SC/NAMED-OBJECT 270

;; Add two marks and print the MARKS slot to see the changes. Then apply the

;; delete-marks method and print the MARKS slot to see the changes.

(let ((p (make-pitch ’c4)))

(add-mark p ’pizz)

(add-mark p ’a)

(print (marks p))

(delete-marks p)

(print (marks p)))

=>

(A PIZZ)

NIL

SYNOPSIS:

(defmethod delete-marks ((p pitch))

20.2.37 pitch/enharmonic

[pitch] [Methods]

DESCRIPTION:

Get the enharmonic equivalent of the given pitch object. Two chromatically

consecutive "white-note" pitches (e.g. B-sharp/C-natural) are considered

enharmonically equivalent. If there is no enharmonic equivalent, the

method just returns the same note.

ARGUMENTS:

- A pitch object.

OPTIONAL ARGUMENTS:

- T or NIL to print a warning when no enharmonic can be found. Default = T.

RETURN VALUE:

A pitch object.

EXAMPLE:

;; A "black-key" enharmonic equivalent

20 SC/NAMED-OBJECT 271

(let ((p (make-pitch ’cs4)))

(data (enharmonic p)))

=> DF4

;; Two chromatically consecutive "white-keys" are enharmonically equivalent

(let ((p (make-pitch ’f4)))

(data (enharmonic p)))

=> ES4

;; The method returns a pitch object with the same pitch value if there is no

;; enharmonic equivalent

(let ((p (make-pitch ’g4)))

(data (enharmonic p)))

=> G4

SYNOPSIS:

(defmethod enharmonic ((p pitch) &key (warn t))

20.2.38 pitch/enharmonic-equivalents

[pitch] [Methods]

DATE:

25th December 2013

DESCRIPTION:

Test whether two pitches are enharmonically equivalent.

ARGUMENTS:

- pitch object 1

- pitch object 2

RETURN VALUE:

T or NIL

EXAMPLE:

20 SC/NAMED-OBJECT 272

(enharmonic-equivalents (make-pitch ’gs4) (make-pitch ’af4))

=> T

(enharmonic-equivalents (make-pitch ’gs4) (make-pitch ’gs4))

=> NIL

SYNOPSIS:

(defmethod enharmonic-equivalents ((p1 pitch) (p2 pitch))

20.2.39 pitch/in-octave

[pitch] [Functions]

DESCRIPTION:

Test to see if a specified pitch item falls within a specified octave. The

pitch item can be a pitch object, a numerical frequency value, or a

note-name symbol.

ARGUMENTS:

- A pitch item. This can be a pitch object, a numerical frequency value, or

a note-name symbol.

- A number that is the specified octave designator (e.g. the "4" in "C4").

RETURN VALUE:

T if the specified pitch item falls within the specified octave, otherwise

NIL.

EXAMPLE:

;; The function returns NIL if the specified pitch item does not fall within

;; the specified octave.

(let ((p (make-pitch ’c4)))

(in-octave p 3))

=> NIL

;; The function will accept pitch objects

(let ((p (make-pitch ’c4)))

(in-octave p 4))

=> T

20 SC/NAMED-OBJECT 273

;; The function will accept numerical frequency values

(let ((p 261.63))

(in-octave p 4))

=> T

;; The function will accept note-name symbols

(let ((p ’c4))

(in-octave p 4))

=> T

SYNOPSIS:

(defun in-octave (pitch octave)

20.2.40 pitch/invert-pitch-list

[pitch] [Functions]

DESCRIPTION:

Using the lowest note in the list as the reference point, invert the rest

of a given list of pitch items according to their distance from it.

The list of pitch items may consist of either note-name symbols, pitch

objects or frequency numbers.

NB: This function adheres to a concept of inversion more related to

interval set theory than to the traditional inversion of a melodic

contour. The given list of pitch items is first sorted from low to high

before the internal semitone intervals are assessed. The resulting list

will therefore always be in chromatic order, rather than having the

inverted melodic contour of the original.

ARGUMENTS:

- A list of pitch items. This may consist of pitch objects, note-name

symbols, or frequency numbers.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the result should be a list of pitch objects

or a list of note-name symbols. T = note-name symbols. Default = NIL.

- The package in which the process is to be performed. Default = :sc.

20 SC/NAMED-OBJECT 274

RETURN VALUE:

Returns list of pitch objects by default. If the first optional argument is

set to T, the function will return a list of note-name symbols instead.

EXAMPLE:

;; The function returns a list of pitch objects by default

(let ((pl))

(setf pl (loop for m in ’(E4 G4 A4 C4) collect (make-pitch m)))

(invert-pitch-list pl))

=>

(

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 0

[...]

data: C4

[...]

PITCH: frequency: 207.652, midi-note: 56, midi-channel: 0

[...]

data: AF3

[...]

PITCH: frequency: 174.614, midi-note: 53, midi-channel: 0

[...]

data: F3

[...]

PITCH: frequency: 155.563, midi-note: 51, midi-channel: 0

[...]

data: EF3

)

;; Setting the first optional argument to T will cause the function to return a

;; list of note-name symbols instead

(let ((pl))

(setf pl ’(329.63 392.00 440.00 261.63))

(invert-pitch-list pl t))

=> (C4 AF3 F3 EF3)

SYNOPSIS:

(defun invert-pitch-list (pitch-list &optional

(return-symbols nil)

(package :sc))

20 SC/NAMED-OBJECT 275

20.2.41 pitch/make-pitch

[pitch] [Functions]

DESCRIPTION:

Create a pitch object, specifying a note as either a symbol or a

number. When the note is specified as a symbol, it is treated as a

note-name; when it is specified as a number, it is treated as a frequency

in hertz.

NB If a pitch object is created from a frequency (rather than note symbol)

then the given frequency is stored and the note/midi-note etc. nearest

to it will be stored also. So the frequency might not be the exact

frequency of the reflected note. This is by design, so that unusual

temperaments can retain exact frequencies and show nearest notes etc.

ARGUMENTS:

- A note, either as a alphanumeric note name or a numeric hertz frequency.

OPTIONAL ARGUMENTS:

keyword arguments:

- :src-ref-pitch. A note-name symbol indicating the perceived fundamental

pitch of a given digital audio file, to allow for later transposition of

that audio file using note-names.

- :midi-channel. An integer indicating which MIDI channel is to be used for

playback of this pitch.

RETURN VALUE:

- A pitch object.

EXAMPLE:

;; Make a pitch object using a note-name symbol

(make-pitch ’c4)

=>

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 0

pitch-bend: 0.0

degree: 120, data-consistent: T, white-note: C4

nearest-chromatic: C4

src: 1.0, src-ref-pitch: C4, score-note: C4

20 SC/NAMED-OBJECT 276

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 4, c5ths: 0, no-8ve: C, no-8ve-no-acc: C

show-accidental: T, white-degree: 28,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: C4, tag: NIL,

data: C4

;; Make a pitch object using a frequency in hertz and including a value for the

;; keyword argument :midi-channel, then print the DATA and MIDI-NOTE slots to

;; see the method’s automatic conversion for those values.

(let ((p (make-pitch 261.63 :midi-channel 1)))

(print (data p))

(print (midi-note p)))

=>

C4

60

;; Make a pitch object for use with a digital audio file that includes a

;; note-name symbol for the sample-rate-conversion reference pitch; then print

;; the SRC slot of the resulting pitch object

(let ((p (make-pitch ’c4 :src-ref-pitch ’a4)))

(src p))

=> 0.5946035487490308

SYNOPSIS:

(defun make-pitch (note &key (src-ref-pitch ’c4) (midi-channel 0))

20.2.42 pitch/midi-

[pitch] [Methods]

DESCRIPTION:

Determine the difference in number of semitones between the values of the

MIDI values of two given pitch objects.

NB: This method does not return absolute difference; instead, it may return

positive or negative results depending on the order in which the pitch

objects are given. (This will aid in revealing directionality.)

20 SC/NAMED-OBJECT 277

ARGUMENTS:

- A first pitch object.

- A second pitch object.

RETURN VALUE:

Returns a number. The number may be positive or negative.

EXAMPLE:

;; Subtracting the lower pitch object from the higher returns a positive number

(let ((p1 (make-pitch ’d4))

(p2 (make-pitch ’c4)))

(midi- p1 p2))

=> 2

;; Reversing the order in which the pitch objects are entered may return a

;; negative number

(let ((p1 (make-pitch ’d4))

(p2 (make-pitch ’c4)))

(midi- p2 p1))

=> -2

SYNOPSIS:

(defmethod midi- ((p1 pitch) (p2 pitch))

20.2.43 pitch/no-accidental

[pitch] [Metadata]

DESCRIPTION:

Set the SHOW-ACCIDENTAL and ACCIDENTAL-IN-PARENTHESES slots of a specified

pitch object to NIL, preventing any accidentals or accidentals in

parentheses from being shown for that event in the printed score.

NB: This will only be effective if the :respell-notes option for

cmn-display and write-lp-data-for-all is set to NIL.

ARGUMENTS:

20 SC/NAMED-OBJECT 278

- A pitch object.

RETURN VALUE:

Always NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((c4 cs4 fs4))))

:set-map ’((1 (1)))

:rthm-seq-palette ’((1 ((((2 4) - s s s s - - s s s s -))

:pitch-seq-palette ((1 2 3 2 1 2 3 2)))))

:rthm-seq-map ’((1 ((vn (1))))))))

(no-accidental (pitch-or-chord (get-note mini 1 7 ’vn)))

(cmn-display mini :respell-notes nil)

(write-lp-data-for-all mini :respell-notes nil))

SYNOPSIS:

(defmethod no-accidental ((p pitch))

20.2.44 pitch/note=

[pitch] [Methods]

DESCRIPTION:

Tests to see the note-name symbols (values in the DATA slots) of two given

pitch objects are equal.

NB: This method allows for the comparison of pitch objects created using

frequency numbers and those created using note-name symbols.

ARGUMENTS:

- A first pitch object.

- A second pitch object.

RETURN VALUE:

T if the note-name symbols of the given pitch objects are equal, otherwise

NIL.

20 SC/NAMED-OBJECT 279

EXAMPLE:

;; Two pitch objects with equal note-name symbols return T

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’c4)))

(note= p1 p2))

=> T

;; Two pitch objects with unequal note-name symbols return F

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’d4)))

(note= p1 p2))

=> NIL

;; Pitch objects created using frequency numbers and those created using

;; note-name symbols can be effectively compared using this method

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch 261.63)))

(note= p1 p2))

=> T

SYNOPSIS:

(defmethod note= ((p1 pitch) (p2 pitch) &optional ignore)

20.2.45 pitch/pitch-

[pitch] [Methods]

DESCRIPTION:

Get the distance in semitones between the values of two pitch objects. This

method also takes fractional values into consideration. The

ARGUMENTS:

- A first pitch object.

- A second pitch object.

RETURN VALUE: EXAMPLE:

;; Get the distance between two "white-keys"

(let ((p1 (make-pitch ’d4))

20 SC/NAMED-OBJECT 280

(p2 (make-pitch ’c4)))

(pitch- p1 p2))

=> 2.0

;; Get the distance in semitones between two frequencies (rounded to the

;; nearest degree, which by default is quarter-tones)

(let ((p1 (make-pitch 293.66))

(p2 (make-pitch 261.63)))

(pitch- p1 p2))

=> 2.0

;; Getting the distance in semitones between pitches with fractional values can

;; return fractional results

(let ((p1 (make-pitch ’dqs4))

(p2 (make-pitch ’c4)))

(pitch- p1 p2))

=> 2.5

SYNOPSIS:

(defmethod pitch- ((p1 pitch) (p2 pitch))

20.2.46 pitch/pitch-class-eq

[pitch] [Methods]

DATE:

14 Aug 2010

DESCRIPTION:

Test whether the values of two pitch objects are of the same pitch class,

i.e. both Cs, or F#s,irrespective of octave.

ARGUMENTS:

- A first pitch object.

- A second pitch object.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 281

- T or NIL to indicate whether or not enharmonic pitches are considered

equal. T = enharmonic pitches are considered equal. Default = NIL.

RETURN VALUE:

T if the values of the two pitch objects are of the same pitch class,

otherwise NIL.

EXAMPLE:

;; A comparison of two pitch objects with values of the same pitch class

;;; returns T

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’c5)))

(pitch-class-eq p1 p2))

=> T

;; A comparison of two pitch objects with values of differing pitch classes

;; returns NIL

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’cs5)))

(pitch-class-eq p1 p2))

=> NIL

;; A comparison of two pitch objects with enharmonically equivalent pitch

;; classes returns NIL by default

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’bs4)))

(pitch-class-eq p1 p2))

=> NIL

;; Setting the optional argument to T causes the method to consider

;; enharmonically equivalent pitch classes equal

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’bs4)))

(pitch-class-eq p1 p2 t))

=> T

SYNOPSIS:

(defmethod pitch-class-eq ((p1 pitch) (p2 pitch)

&optional enharmonics-are-equal)

20 SC/NAMED-OBJECT 282

20.2.47 pitch/pitch-in-range

[pitch] [Methods]

DESCRIPTION:

Determine whether the frequency of a given pitch object falls between the

frequencies of two other given pitch objects.

ARGUMENTS:

- A first pitch object.

- A second pitch object, which must be lower than the third.

- A third pitch object, which must be higher than the second.

RETURN VALUE:

T if the frequency value of the first specified pitch object falls between

the second and third specified pitch objects, otherwise NIL.

EXAMPLE:

;; The method returns T when the frequency value of the first pitch object

;; falls between that of the second and third pitch objects.

(let ((p (make-pitch ’c4))

(l (make-pitch ’g3))

(h (make-pitch ’a7)))

(pitch-in-range p l h))

=> T

;; The method returns NIL when the frequency value of the first pitch object is

;; below the range designated by the frequency values of the other two objects.

(let ((p (make-pitch ’g3))

(l (make-pitch ’c4))

(h (make-pitch ’a7)))

(pitch-in-range p l h))

=> NIL

;; The method returns NIL when the frequency value of the first pitch object is

;; above the range designated by the frequency values of the other two objects.

(let ((p (make-pitch ’a7))

(l (make-pitch ’g3))

(h (make-pitch ’c4)))

(pitch-in-range p l h))

20 SC/NAMED-OBJECT 283

=> NIL

;; The method will also return NIL if the frequency value of the second pitch

;; object is higher than that of the third

(let ((p (make-pitch ’c4))

(l (make-pitch ’a7))

(h (make-pitch ’g3)))

(pitch-in-range p l h))

=> NIL

SYNOPSIS:

(defmethod pitch-in-range ((p pitch) (lowest pitch) (highest pitch))

20.2.48 pitch/pitch-inc

[pitch] [Methods]

DESCRIPTION:

Increment the value of a given pitch object by one degree (default) or by a

specified number of degrees (optional argument).

NB: The slippery-chicken package uses a quarter-tone degree system by

default, so any function or method involving a degree argument will be

measured in quarter-tones, not semitones. Thus, while the MIDI note

value for ’C4 is 60 (chromatic semitones), (note-to-degree ’C4) will

return 120. Thus, this method will increment by one quarter-tone by

default, and any value the chooser uses for the optional argument is

also number of quarter-tones.

NB: This method returns a new pitch object rather than modifying the values

of the original.

ARGUMENTS:

- A pitch object.

OPTIONAL ARGUMENTS:

- A number indicating the step (in degrees) by which the pitch value is to

be incremented. Defaults = 1.

RETURN VALUE:

20 SC/NAMED-OBJECT 284

Returns a pitch object.

EXAMPLE:

;; The method by default returns a pitch object and increments by one

;; quarter-tone

(let ((p (make-pitch ’c4)))

(pitch-inc p))

=>

PITCH: frequency: 269.292, midi-note: 60, midi-channel: 0

pitch-bend: 0.5

degree: 121, data-consistent: T, white-note: C4

nearest-chromatic: C4

src: 1.0293022394180298, src-ref-pitch: C4, score-note: CS4

qtr-sharp: 1, qtr-flat: NIL, qtr-tone: 1,

micro-tone: T,

sharp: NIL, flat: NIL, natural: NIL,

octave: 4, c5ths: 0, no-8ve: CQS, no-8ve-no-acc: C

show-accidental: T, white-degree: 28,

accidental: QS,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: CQS4, tag: NIL,

data: CQS4

;; Using the optional argument, increment steps can be changed; for example,

;; here to one semitone (= 2 quarter-tones)

(let ((p (make-pitch ’c4)))

(data (pitch-inc p 2)))

=> CS4

;; Here the method increments by 4 quarter-tones = 1 whole-tone

(let ((p (make-pitch ’c4)))

(data (pitch-inc p 4)))

=> D4

;; Incrementing by an additional number of quarter-tones at each pass

(let ((p (make-pitch ’c4)))

(loop for i from 0 to 4 collect (data (pitch-inc p i))))

=> (C4 CQS4 CS4 DQF4 D4)

SYNOPSIS:

20 SC/NAMED-OBJECT 285

(defmethod pitch-inc ((p pitch) &optional (degrees 1))

20.2.49 pitch/pitch-intersection

[pitch] [Functions]

DESCRIPTION:

Return pitch objects whose values consist of pitches common to two given

lists of pitch items. The given lists of pitch items can consist of pitch

objects or note-name symbols, or one list of one type and the second of the

other.

ARGUMENTS:

- A first list of pitch objects.

- A second list of pitch objects.

RETURN VALUE:

Returns a list of pitch objects that are common to both original lists.

EXAMPLE:

;; Returns a list of pitch objects

(let ((p1 ’(c4 d4 e4 f4))

(p2 (loop for nn in ’(d4 e4 f4 g4) collect (make-pitch nn))))

(pitch-intersection p1 p2))

(

PITCH: frequency: 293.665, midi-note: 62, midi-channel: 0

[...]

data: D4

[...]

PITCH: frequency: 329.628, midi-note: 64, midi-channel: 0

[...]

data: E4

[...]

PITCH: frequency: 349.228, midi-note: 65, midi-channel: 0

[...]

data: F4

[...]

)

SYNOPSIS:

(defun pitch-intersection (pitch-list1 pitch-list2)

20 SC/NAMED-OBJECT 286

20.2.50 pitch/pitch-list-to-symbols

[pitch] [Functions]

DESCRIPTION:

Return as a list the note-name values from a given list of pitch objects.

ARGUMENTS:

- A list of pitch objects.

OPTIONAL ARGUMENTS:

- The package in which to process the list of pitches. Default = :sc.

RETURN VALUE:

A list of note-name symbols

EXAMPLE:

;; Create a list of pitch objects and apply the pitch-list-to-symbols method

(let ((pl))

(setf pl (loop for m from 0 to 127 by 13

collect (make-pitch (midi-to-note m))))

(pitch-list-to-symbols pl))

=> (C-1 CS0 D1 EF2 E3 F4 FS5 G6 AF7 A8)

SYNOPSIS:

(defun pitch-list-to-symbols (pitch-list &optional (package :sc))

20.2.51 pitch/pitch-max

[pitch] [Methods]

DESCRIPTION:

Determine which of two specified pitch objects has the greater frequency

value and return that pitch object.

NB: If the two frequency values are equal, the method returns a pitch

object equivalent to both.

20 SC/NAMED-OBJECT 287

ARGUMENTS:

- A first pitch object.

- A second ptich object.

RETURN VALUE:

A pitch object.

EXAMPLE:

;; Compare two pitch objects and return the one with the greater frequency

;; value

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’d4)))

(pitch-max p1 p2))

=>

PITCH: frequency: 293.665, midi-note: 62, midi-channel: 0

pitch-bend: 0.0

degree: 124, data-consistent: T, white-note: D4

nearest-chromatic: D4

src: 1.1224620342254639, src-ref-pitch: C4, score-note: D4

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 4, c5ths: 0, no-8ve: D, no-8ve-no-acc: D

show-accidental: T, white-degree: 29,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: D4, tag: NIL,

data: D4

;; Comparing two pitch objects with equal frequency values returns a pitch

;; object equal to both

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’c4)))

(data (pitch-max p1 p2)))

=> C4

SYNOPSIS:

(defmethod pitch-max ((p1 pitch) (p2 pitch))

20 SC/NAMED-OBJECT 288

20.2.52 pitch/pitch-member

[pitch] [Functions]

DESCRIPTION:

Test whether a specified pitch is a member of a given list of pitches.

This function can take pitch objects, note-name symbols or numerical

frequency values (or lists thereof) as its arguments.

ARGUMENTS:

- A pitch item. This may be a pitch object, a note-name symbol or a

numerical frequency value.

- A list of pitch items. These items may be pitch objects, note-name

symbols, or numerical frequency values.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not the function should consider

enharmonically equivalent pitches to be equal. T = enharmonics are

considered equal. Default = T.

- The second optional argument allows the user to specify the test for

comparison, such as note=, pitch-class-eq, or the default pitch=. If the

user wants to specify his or her own, the test must take three arguments:

p1, p2 and <enharmonics-are-equivalent> (which may of course be ignored).

RETURN VALUE:

Similar to Lisp’s "member" function, this method returns the tail of the

tested list starting with the specified pitch if the pitch is indeed a

member of that list, otherwise returns NIL. NB: The list returned is a list

of pitch objects.

EXAMPLE:

;; Returns NIL if the specified pitch item is not a member of the given list

(let ((pl ’(c4 d4 e4)))

(pitch-member ’f4 pl))

=> NIL

;; Returns the tail of the given list starting from the specified pitch if that

;; pitch is indeed a member of the tested list

20 SC/NAMED-OBJECT 289

(let ((pl ’(c4 d4 e4)))

(pitch-list-to-symbols (pitch-member ’d4 pl)))

=> (D4 E4)

;; Enharmonically equivalent pitches are considered equal by default

(let ((pl ’(c4 ds4 e4)))

(pitch-list-to-symbols (pitch-member ’ef4 pl)))

=> (DS4 E4)

;; Enharmonic equivalence can be turned off by setting the first optional

;; argument to NIL

(let ((pl ’(c4 ds4 e4)))

(pitch-list-to-symbols (pitch-member ’ef4 pl nil)))

=> NIL

SYNOPSIS:

(defun pitch-member (pitch pitch-list

&optional (enharmonics-are-equal t)

(test #’pitch=))

20.2.53 pitch/pitch-min

[pitch] [Methods]

DESCRIPTION:

Determine which of two specified pitch objects has the lower frequency

value and return that pitch object.

NB: If the two frequency values are equal, the method returns a pitch

object equivalent to both.

ARGUMENTS:

- A first pitch object.

- A second ptich object.

RETURN VALUE:

A pitch object.

EXAMPLE:

20 SC/NAMED-OBJECT 290

;; Compare two pitch objects and return the one with the lower frequency value

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’d4)))

(pitch-min p1 p2))

=>

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 0

pitch-bend: 0.0

degree: 120, data-consistent: T, white-note: C4

nearest-chromatic: C4

src: 1.0, src-ref-pitch: C4, score-note: C4

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 4, c5ths: 0, no-8ve: C, no-8ve-no-acc: C

show-accidental: T, white-degree: 28,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: C4, tag: NIL,

data: C4

;; Comparing two pitch objects with equal frequency values returns a pitch

;; object equal to both

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’c4)))

(data (pitch-min p1 p2)))

=> C4

SYNOPSIS:

(defmethod pitch-min ((p1 pitch) (p2 pitch))

20.2.54 pitch/pitch-round

[pitch] [Methods]

DESCRIPTION:

Rounds the value of a specified pitch object to the nearest chromatic

semitone (non-microtonal MIDI) pitch.

ARGUMENTS:

- A pitch object.

20 SC/NAMED-OBJECT 291

OPTIONAL ARGUMENTS:

keyword arguments:

- :as-symbol. T or NIL to indicate whether the method is to return an

entire pitch object or just a note-name symbol of the new pitch. NIL = a

new pitch object. Default = NIL.

- :package. Used to identify a separate Lisp package in which to process

result. This is really only applicable is combination with :as-symbol set

to T. Default = :sc.

RETURN VALUE:

A pitch object by default.

If the :as-symbol argument is set to T, then a note-name symbol is returned

instead.

EXAMPLE:

;; Returns a pitch object by default; here an example rounding a quarter-tone

;;; note-name symbol to the nearest chromatic pitch

(let ((p (make-pitch ’CQS4)))

(pitch-round p))

=>

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 0

[...]

NAMED-OBJECT: id: C4, tag: NIL,

data: C4

;; Also rounds frequencies to the nearest chromatic pitch. This example first

;; prints the original values automatically stored with frequency 269.0

;; (rounded by default to the nearest quarter-tone), then the new value rounded

;; to the nearest chromatic semitone

(let ((p (make-pitch 269.0)))

(print (data p))

(print (pitch-round p :as-symbol t)))

=>

CQS4

C4

SYNOPSIS:

(defmethod pitch-round ((p pitch)

20 SC/NAMED-OBJECT 292

&key

(as-symbol nil)

(package :sc))

20.2.55 pitch/pitch<

[pitch] [Methods]

DESCRIPTION:

Test to see if the frequency value of one specified pitch object is less

than that of a second.

NB: Due to the fact that a given note-name may encompass several

fractionally different frequencies (e.g. both 261.626 and 261.627 are

both considered to be C4), this method is not suitable for comparing

pitch objects of which one was created using a frequency and the other

was created using a note-name symbol.

ARGUMENTS:

- A pitch object.

- A second pitch object.

RETURN VALUE:

Returns T if the frequency value of the first pitch object is less than

that of the second, otherwise NIL.

EXAMPLE:

;; T is returned when the frequency of the first pitch is less than that of

;; the second

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’d4)))

(pitch< p1 p2))

=> T

;; NIL is returned when the frequency of the first pitch is not less than

;; that of the second

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’d4)))

(pitch< p2 p1))

20 SC/NAMED-OBJECT 293

=> NIL

;; Equivalent pitches return NIL

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’c4)))

(pitch< p2 p1))

=> NIL

;; This method can be effectively used to compare the frequency values of two

;; pitch objects that were both created using frequency numbers

(let ((p1 (make-pitch 261.63))

(p2 (make-pitch 293.66)))

(pitch< p1 p2))

=> T

;; Due to sc’s numerical accuracy, this method is not suitable for comparing

;; pitch objects of which one was created using a note-name symbol and the

;; other was created using a numerical frequency value. Such comparisons may

;; return misleading results.

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch 261.63)))

(pitch< p1 p2))

=> T

SYNOPSIS:

(defmethod pitch< ((p1 pitch) (p2 pitch))

20.2.56 pitch/pitch<=

[pitch] [Methods]

DESCRIPTION:

Test to see if the frequency value of one specified pitch object is less

than or equal to than that of a second.

NB: Due to the fact that a given note-name may encompass several

fractionally different frequencies (e.g. both 261.626 and 261.627 are

both considered to be C4), this method is not suitable for comparing

pitch objects of which one was created using a frequency and the other

was created using a note-name symbol.

20 SC/NAMED-OBJECT 294

ARGUMENTS:

- A pitch object.

- A second pitch object.

RETURN VALUE:

Returns T if the frequency value of the first pitch object is less than or

equal to that of the second, otherwise NIL.

EXAMPLE:

;; T is returned when the frequency of the first pitch is less than or equal to

;; that of the second

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’d4)))

(pitch<= p1 p2))

=> T

;; NIL is returned when the frequency of the first pitch is not less than or

;; equal to that of the second

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’d4)))

(pitch<= p2 p1))

=> NIL

;; Equivalent pitches return T

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’c4)))

(pitch<= p2 p1))

=> T

;; This method can be effectively used to compare the frequency values of two

;; pitch objects that were both created using frequency numbers

(let ((p1 (make-pitch 261.63))

(p2 (make-pitch 293.66)))

(pitch<= p1 p2))

=> T

;; Due to sc’s numerical accuracy, this method is not suitable for comparing

;; pitch objects of which one was created using a note-name symbol and the

20 SC/NAMED-OBJECT 295

;; other was created using a numerical frequency value. Such comparisons may

;; return misleading results.

(let ((p1 (make-pitch 261.63))

(p2 (make-pitch ’c4)))

(pitch<= p1 p2))

=> NIL

SYNOPSIS:

(defmethod pitch<= ((p1 pitch) (p2 pitch))

20.2.57 pitch/pitch=

[pitch] [Methods]

DESCRIPTION:

Determines if the note-name and chromatic semitone MIDI values of two

specified pitch objects are the same (or very close to each other in the

case of frequency and src slot comparison).

By default, this method returns NIL when comparing enharmonic pitches. This

can behavior can be changed by setting the optional argument to T, upon

which enharmonic pitches are considered equal.

NB: This method may return NIL when comparing pitch objects created using

frequencies with those created using note-names. The method

pitch::note= may be more useful in this case.

NB: Pitch objects created using frequencies are only considered equal if

their frequency values are within 0.01Hz of each other.

ARGUMENTS:

- A first pitch object.

- A second pitch object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not enharmonic pitches are considered

equal. T = enharmonic pitches are considered equal. Default = NIL.

- a number to indicate the frequency deviation allowed before returning NIL.

RETURN VALUE:

20 SC/NAMED-OBJECT 296

T if the values of the two specified pitch objects are equal, otherwise

NIL.

EXAMPLE:

;; Comparison of equal pitch objects created using note-name symbols returns T

(let ((p1 (make-pitch ’C4))

(p2 (make-pitch ’C4)))

(pitch= p1 p2))

=> T

;; Comparison of unequal pitch objects created using note-name symbols returns

NIL

(let ((p1 (make-pitch ’C4))

(p2 (make-pitch ’D4)))

(pitch= p1 p2))

=> NIL

;; Comparison of enharmonically equivalent pitch objects returns NIL by default

;; Comparison of equal pitch objects created using note-name symbols returns T

(let ((p1 (make-pitch ’CS4))

(p2 (make-pitch ’DF4)))

(pitch= p1 p2))

=> NIL

;; Comparison of enharmonically equivalent pitch objects return T when the

;; optional argument is set to T

;; Comparison of equal pitch objects created using note-name symbols returns T

(let ((p1 (make-pitch ’C4))

(p2 (make-pitch ’C4)))

(pitch= p1 p2 t))

=> T

;; Comparison of pitch objects created using frequencies with those created

;; using note-name symbols return NIL

(let ((p1 (make-pitch ’C4))

(p2 (make-pitch 261.63)))

(pitch= p1 p2))

=> NIL

SYNOPSIS:

20 SC/NAMED-OBJECT 297

(defmethod pitch= ((p1 pitch) (p2 pitch) &optional enharmonics-are-equal

(frequency-tolerance 0.01)) ; (src-tolerance 0.0001))

20.2.58 pitch/pitch>

[pitch] [Methods]

DESCRIPTION:

Test to see if the frequency value of one specified pitch object is greater

than that of a second.

NB: Due to the fact that a given note-name may encompass several

fractionally different frequencies (e.g. both 261.626 and 261.627 are both

considered to be C4), this method is not suitable for comparing pitch

objects of which one was created using a frequency and the other was

created using a note-name symbol.

ARGUMENTS:

- A pitch object.

- A second pitch object.

RETURN VALUE:

Returns T if the frequency value of the first pitch object is greater than

that of the second, otherwise NIL.

EXAMPLE:

;; T is returned when the frequency of the first pitch is greater than that of

;; the second

(let ((p1 (make-pitch ’d4))

(p2 (make-pitch ’c4)))

(pitch> p1 p2))

=> T

;; NIL is returned when the frequency of the first pitch is not greater than

;; that of the second

(let ((p1 (make-pitch ’d4))

(p2 (make-pitch ’c4)))

(pitch> p2 p1))

=> NIL

20 SC/NAMED-OBJECT 298

;; Equivalent pitches return NIL

(let ((p1 (make-pitch ’d4))

(p2 (make-pitch ’d4)))

(pitch> p2 p1))

=> NIL

;; This method can be effectively used to compare the frequency values of two

;; pitch objects that were both created using frequency numbers

(let ((p1 (make-pitch 293.66))

(p2 (make-pitch 261.63)))

(pitch> p1 p2))

=> T

;; Due to sc’s numerical accuracy, this method is not suitable for comparing

;; pitch objects of which one was created using a note-name symbol and the

;; other was created using a numerical frequency value. Such comparisons may

;; return misleading results.

(let ((p1 (make-pitch 261.63))

(p2 (make-pitch ’c4)))

(pitch> p1 p2))

=> T

SYNOPSIS:

(defmethod pitch> ((p1 pitch) (p2 pitch))

20.2.59 pitch/pitch>=

[pitch] [Methods]

DESCRIPTION:

Test to see if the frequency value of one specified pitch object is greater

than or equal to than that of a second.

NB: Due to the fact that a given note-name may encompass several

fractionally different frequencies (e.g. both 261.626 and 261.627 are

both considered to be C4), this method is not suitable for comparing

pitch objects of which one was created using a frequency and the other

was created using a note-name symbol.

ARGUMENTS:

20 SC/NAMED-OBJECT 299

- A pitch object.

- A second pitch object.

RETURN VALUE:

Returns T if the frequency value of the first pitch object is greater than

or equal to that of the second, otherwise NIL.

EXAMPLE:

;; T is returned when the frequency of the first pitch is greater than or equal

;;; to that of the second

(let ((p1 (make-pitch ’d4))

(p2 (make-pitch ’c4)))

(pitch>= p1 p2))

=> T

;; NIL is returned when the frequency of the first pitch is not greater than or

;; equal to that of the second

(let ((p1 (make-pitch ’d4))

(p2 (make-pitch ’c4)))

(pitch>= p2 p1))

=> NIL

;; Equivalent pitches return T

(let ((p1 (make-pitch ’c4))

(p2 (make-pitch ’c4)))

(pitch>= p2 p1))

=> T

;; This method can be effectively used to compare the frequency values of two

;; pitch objects that were both created using frequency numbers

(let ((p1 (make-pitch 293.66))

(p2 (make-pitch 261.63)))

(pitch>= p1 p2))

=> T

;; Due to sc’s numerical accuracy, this method is not suitable for comparing

;; pitch objects of which one was created using a note-name symbol and the

;; other was created using a numerical frequency value. Such comparisons may

;; return misleading results.

(let ((p1 (make-pitch ’c4))

20 SC/NAMED-OBJECT 300

(p2 (make-pitch 261.63)))

(pitch>= p1 p2))

=> NIL

SYNOPSIS:

(defmethod pitch>= ((p1 pitch) (p2 pitch))

20.2.60 pitch/print-simple-pitch-list

[pitch] [Functions]

DESCRIPTION:

Print the data symbols of a list of pitch objects.

DATE:

April 10th 2012

ARGUMENTS:

- A simple list of pitch objects.

OPTIONAL ARGUMENTS:

- The stream to print to (e.g. an open file). Default: the Lisp Terminal

(REPL).

RETURN VALUE:

The list of pitch data symbols.

EXAMPLE:

(print-simple-pitch-list (init-pitch-list ’(c4 d4 e4)))

=>

(C4 D4 E4)

(C4 D4 E4)

SYNOPSIS:

(defun print-simple-pitch-list (pitch-list &optional stream)

20 SC/NAMED-OBJECT 301

20.2.61 pitch/remove-octaves

[pitch] [Functions]

DESCRIPTION:

Removes all but one of any pitch items in a given list that have the same

pitch-class but different octaves, keeping the lowest instance only.

The list of pitch items may be a list of pitch objects or a list of

note-name symbols.

ARGUMENTS:

- A list of pitch items. These may be pitch objects or note-name symbols.

OPTIONAL ARGUMENTS:

keyword arguments

- :as-symbol. T or NIL indicating whether the object is to return a list of

pitch objects or a list of note-name symbols. T = return pitch

objects. Default = NIL.

- :package. Used to identify a separate Lisp package in which to itern

result. This is really only applicable is combination with :as-symbol set

to T. Default = :sc.

- :allow. T or NIL to indicate whether pitch objects of certain, specified

octave-doublings are to be kept even if they are not the lowest. This

argument takes the form of either a single number or a list of

numbers. NB: This number does not indicate the octave in which the pitch

object is found, but rather pitch objects that are the specified number

of octaves above the lowest instance of the pitch class. Thus, :allow 2

indicates keeping the lowest pitch plus any instances of the same pitch

class two octaves above that lowest pitch (i.e.,

double-octaves). However, it is important to note that the function first

removes any octave doublings that are not excepted by the :allow

argument, which may produce confusing results. Given a list of

consecutive octaves, such as ’(C1 C2 C3 C4) and an :allow value of 2, the

function will first remove any equal pitch classes that are are not 2

octaves apart, resulting in C2, C3, and C4 being removed as they are one

octave distant from C1, C2 and C3. The result of the function using these

values would therefore be ’(C1).

RETURN VALUE:

Returns a list of pitch objects by default. If the keyword argument

:as-symbol is set to T, the method returns a list of note-name symbols

20 SC/NAMED-OBJECT 302

instead.

If the first element of the pitch list is a number (i.e. a frequency), the

method returns a list of frequencies.

EXAMPLE:

;; The method returns a list of pitch objects by default

(remove-octaves ’(c1 c2 c3 g3))

=> (

PITCH: frequency: 32.703, midi-note: 24, midi-channel: 0

[...]

data: C1

[...]

PITCH: frequency: 195.998, midi-note: 55, midi-channel: 0

[...]

data: G3

[...]

)

;; If the first element of the pitch list is a frequency, the method returns a

;; list of frequencies

(remove-octaves ’(261.63 523.26 1046.52 196.00))

=> (261.63 196.0)

;; Setting keyword argument :as-symbol to T returns a list of note-name symbols

;; instead

(remove-octaves ’(261.63 523.26 1046.52 196.00) :as-symbol t)

=> (C4 G3)

SYNOPSIS:

(defun remove-octaves (pitch-list &key as-symbol allow (package :sc))

20.2.62 pitch/remove-pitches

[pitch] [Functions]

DESCRIPTION:

Remove a list of specified pitch items from a given list of pitch

items. Even if only one pitch item is to be removed it should be stated as

20 SC/NAMED-OBJECT 303

a list.

The pitch items can be in the form of pitch objects, note-name symbols or

numerical frequency values.

ARGUMENTS:

- A list of pitch items from which the specified list of pitches is to be

removed. These can take the form of pitch objects, note-name symbols or

numerical frequency values.

- A list of pitch items to remove from the given list. These can take the

form of pitch objects, note-name symbols or numerical frequency

values. Even if only one pitch is to be removed is must be stated as a

list.

OPTIONAL ARGUMENTS:

keyword arguments:

- :enharmonics-are-equal. Set to T or NIL to indicate whether or not

enharmonically equivalent pitches are to be considered the same pitch. T

= enharmonically equivalent pitches are equal. Default = T.

- :return-symbols. Set to T or NIL to indicate whether the function is to

return a list of pitch objects or note-name symbols. T = note-name

symbols. Default = NIL.

RETURN VALUE:

Returns a list of pitch objects by default. When the keyword argument

:return-symbols is set to T, the function will return a list of note-names

instead.

If the specified list of pitches to be removed are not found in the given

list, the entire list is returned.

EXAMPLE:

;; By default the function returns a list of pitch objects

(let ((pl ’(c4 d4 e4)))

(remove-pitches pl ’(d4 e4)))

=> (

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 0

[...]

data: C4

[...]

20 SC/NAMED-OBJECT 304

)

;; Setting the keyword argument :return-symbols to T causes the function to

;; return a list of note-name symbols instead. Note in this example too that

;; even when only one pitch item is being removed, it must be stated as a list.

(let ((pl ’(261.62 293.66 329.62)))

(remove-pitches pl ’(293.66) :return-symbols t))

=> (C4 E4)

;; The function will also accept pitch objects

(let ((pl (loop for n in ’(c4 d4 e4) collect (make-pitch n))))

(remove-pitches pl ‘(,(make-pitch ’e4)) :return-symbols t))

=> (C4 D4)

;; By default the function considers enharmonically equivalent pitches to be

;; equal

(let ((pl (loop for n in ’(c4 ds4 e4) collect (make-pitch n))))

(remove-pitches pl ’(ef4) :return-symbols t))

=> (C4 E4)

;; This feature can be turned off by setting the :enharmonics-are-equal keyword

;; argument to NIL. In this case here, the specified pitch is therefore not

;; found in the given list and the entire original list is returned.

(let ((pl (loop for n in ’(c4 ds4 e4) collect (make-pitch n))))

(remove-pitches pl ’(ef4)

:return-symbols t

:enharmonics-are-equal nil))

=> (C4 DS4 E4)

SYNOPSIS:

(defun remove-pitches (pitch-list remove

&key (enharmonics-are-equal t)

(return-symbols nil))

20.2.63 pitch/set-midi-channel

[pitch] [Methods]

DESCRIPTION:

Set the MIDI-CHANNEL slot of the given pitch object.

20 SC/NAMED-OBJECT 305

The method takes two mandatory arguments in addition to the given pitch

object, the first being the MIDI-channel used for non-microtonal pitch

objects, the second that used for microtonal pitch objects.

NB: The pitch object only has one MIDI-CHANNEL slot, and determines whether

that slot is set to the specified non-microtonal or microtonal

midi-channel argument based on whether or not the pitch of the given

pitch object is determined to be a microtone or not.

ARGUMENTS:

- A pitch object.

- A number indicating the MIDI channel which is to be used to play back

non-microtonal pitches.

- A number indicating the MIDI channel which is to be used to play back

microtonal pitches. NB: See player.lsp/make-player for details on

microtones in MIDI output.

RETURN VALUE:

A number indicating which value has been set to the given pitch object’s

MIDI-CHANEL slot.

EXAMPLE:

;; When the pitch of the given pitch object is non-microtonal, the method sets

;; that pitch object’s MIDI-CHANNEL slot to the first value specified.

(let ((p (make-pitch ’c4)))

(set-midi-channel p 11 12)

(midi-channel p))

=> 11

;; When the pitch of the given pitch object is microtonal, the method sets

;; that pitch object’s MIDI-CHANNEL slot to the second value specified.

(let ((p (make-pitch ’cqs4)))

(set-midi-channel p 11 12))

=> 12

SYNOPSIS:

(defmethod set-midi-channel ((p pitch) midi-channel microtones-midi-channel)

20 SC/NAMED-OBJECT 306

20.2.64 pitch/sort-pitch-list

[pitch] [Functions]

DESCRIPTION:

Sort a list of pitch objects from low to high based on their frequency

value.

ARGUMENTS:

- A list of pitch objects.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the method is to return a list of pitch

objects or a list of note-name symbols.

- The package in which the operation is to be performed. Default = :sc.

RETURN VALUE:

Returns a list of pitch objects by default. When the first optional

argument is set to T, the method returns a list of note-name symbols

instead.

EXAMPLE:

;; Create a list of pitch objects by passing downward through a series of MIDI

;; values and print the result. Then apply the sort-pitch-list method and print

;; the result of that to see the list now ordered from low to high.

(let ((pl))

(setf pl (loop for m from 64 downto 60

collect (make-pitch (midi-to-note m))))

(print (loop for p in pl collect (data p)))

(print (sort-pitch-list pl)))

=>

(E4 EF4 D4 CS4 C4)

(

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 0

[...]

data: C4

[...]

PITCH: frequency: 277.183, midi-note: 61, midi-channel: 0

[...]

20 SC/NAMED-OBJECT 307

data: CS4

[...]

PITCH: frequency: 293.665, midi-note: 62, midi-channel: 0

[...]

data: D4

[...]

PITCH: frequency: 311.127, midi-note: 63, midi-channel: 0

[...]

data: EF4

[...]

PITCH: frequency: 329.628, midi-note: 64, midi-channel: 0

[...]

data: E4

)

;; Setting the first optional argument to T causes the method to return a list

;; of note-name symbols instead

(let ((pl))

(setf pl (loop for m from 64 downto 60

collect (make-pitch (midi-to-note m))))

(sort-pitch-list pl t))

=> (C4 CS4 D4 EF4 E4)

SYNOPSIS:

(defun sort-pitch-list (pitch-list &optional

(return-symbols nil)

(package :sc))

20.2.65 pitch/transpose

[pitch] [Methods]

DESCRIPTION:

Transpose the pitch information (frequency, note-name, midi-note etc.) of a

given pitch object by a specified number of semitones. The number of

semitones specified can be fractional; however, all fractional values will

be rounded to the nearest quarter-tone frequency.

NB: This method returns a new pitch object rather than altering the values

of the current pitch object.

ARGUMENTS:

20 SC/NAMED-OBJECT 308

- A pitch object.

- A number representing the number of semitones to be transposed, and which

can be fractional.

OPTIONAL ARGUMENTS:

keyword arguments:

- :as-symbol. T or NIL to indicate whether the method is to return an

entire pitch object or just a note-name symbol of the new pitch. NIL = a

new pitch object. Default = NIL.

- :package. Used to identify a separate Lisp package in which to process

the result. This is really only applicable is combination with :as-symbol

set to T. Default = :sc.

RETURN VALUE:

A pitch object by default.

If the :as-symbol argument is set to T, then a note-name symbol is returned

instead.

EXAMPLE:

;; By default the method returns a pitch object

(let ((p (make-pitch ’c4)))

(transpose p 2))

=>

PITCH: frequency: 293.665, midi-note: 62, midi-channel: 0

pitch-bend: 0.0

degree: 124, data-consistent: T, white-note: D4

nearest-chromatic: D4

src: 1.1224620342254639, src-ref-pitch: C4, score-note: D4

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 4, c5ths: 0, no-8ve: D, no-8ve-no-acc: D

show-accidental: T, white-degree: 29,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: D4, tag: NIL,

data: D4

;; Setting the :as-symbol keyword argument to T returns just the note-name

20 SC/NAMED-OBJECT 309

;; symbol of the new pitch instead

(let ((p (make-pitch ’c4)))

(transpose p 2 :as-symbol t))

=> D4

;; The semitones argument can be set to a decimal-point fraction, which may

;; result in quarter-tone pitch values being returned

(let ((p (make-pitch ’c4)))

(transpose p 2.5))

=>

PITCH: frequency: 302.270, midi-note: 62, midi-channel: 0

pitch-bend: 0.5

degree: 125, data-consistent: T, white-note: D4

nearest-chromatic: D4

src: 1.1553527116775513, src-ref-pitch: C4, score-note: DS4

qtr-sharp: 1, qtr-flat: NIL, qtr-tone: 1,

micro-tone: T,

sharp: NIL, flat: NIL, natural: NIL,

octave: 4, c5ths: 0, no-8ve: DQS, no-8ve-no-acc: D

show-accidental: T, white-degree: 29,

accidental: QS,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: DQS4, tag: NIL,

data: DQS4

;; Fractional semitone arguments are automatically rounded to the nearest

;; quarter-tone, causing x.5 and x.7, for example, to return the same result,

;; while x.3 and x.1 will return the same value as the given integer

(let ((p (make-pitch ’c4)))

(print (transpose p 2 :as-symbol t))

(print (loop for s from 0 to 4

collect (transpose p (+ 2 (* s .1)) :as-symbol t)))

(print (loop for s from 5 to 9

collect (transpose p (+ 2 (* s .1)) :as-symbol t))))

=>

D4

(D4 D4 D4 D4 D4)

(DQS4 DQS4 DQS4 DQS4 DQS4)

SYNOPSIS:

(defmethod transpose ((p pitch) semitones &key (as-symbol nil) (package :sc)

20 SC/NAMED-OBJECT 310

ignore)

20.2.66 pitch/transpose-pitch-list

[pitch] [Functions]

DESCRIPTION:

Transpose the values of a list of pitch objects by a specified number of

semitones.

ARGUMENTS:

- A list of pitch objects.

- A number indicating the number of semitones by which the list is to be

transposed.

OPTIONAL ARGUMENTS:

- T or NIL indicating whether the method is to return a list of pitch

objects or a list of note-name symbols for those pitch objects. T =

note-name symbols. Default = NIL.

- The name of the package to perform the transpositions. Default = :sc.

RETURN VALUE:

By default, the method returns a list of pitch objects. When the first

optional argument is set to T, a list of note-name symbols is returned

instead.

EXAMPLE:

;; Create a list of pitch objects and apply the transpose-pitch-list method

;; with the semitones argument set to 2

(let ((pl))

(setf pl (loop for m from 60 to 71 collect (make-pitch (midi-to-note m))))

(transpose-pitch-list pl 2))

=>

(

PITCH: frequency: 293.665, midi-note: 62, midi-channel: 0

[...]

PITCH: frequency: 311.127, midi-note: 63, midi-channel: 0

[...]

PITCH: frequency: 329.628, midi-note: 64, midi-channel: 0

20 SC/NAMED-OBJECT 311

[...]

PITCH: frequency: 349.228, midi-note: 65, midi-channel: 0

[...]

PITCH: frequency: 369.994, midi-note: 66, midi-channel: 0

[...]

PITCH: frequency: 391.995, midi-note: 67, midi-channel: 0

[...]

PITCH: frequency: 415.305, midi-note: 68, midi-channel: 0

[...]

PITCH: frequency: 440.000, midi-note: 69, midi-channel: 0

[...]

PITCH: frequency: 466.164, midi-note: 70, midi-channel: 0

[...]

PITCH: frequency: 493.883, midi-note: 71, midi-channel: 0

[...]

PITCH: frequency: 523.251, midi-note: 72, midi-channel: 0

[...]

PITCH: frequency: 554.365, midi-note: 73, midi-channel: 0

[...]

)

;; Perform the same action with the return-symbols optional argument set to T

(let ((pl))

(setf pl (loop for m from 60 to 71 collect (make-pitch (midi-to-note m))))

(print (transpose-pitch-list pl 2 t)))

=> (D4 EF4 E4 F4 FS4 G4 AF4 A4 BF4 B4 C5 CS5)

SYNOPSIS:

(defun transpose-pitch-list (pitch-list semitones &optional

(return-symbols nil)

(package :sc))

20.2.67 pitch/transpose-pitch-list-to-octave

[pitch] [Functions]

DESCRIPTION:

Transpose the pitch values of a list of pitch objects into a specified

octave. The individual initial pitch objects can have initial pitch values

of different octaves.

ARGUMENTS:

20 SC/NAMED-OBJECT 312

- A list of pitch objects.

- A number indicating the octave in which the resulting list should be.

OPTIONAL ARGUMENTS:

keyword arguments:

- :as-symbols. Set to T or NIL to indicate whether the method is to return

a list of pitch objects or a list of the note-name symbols from those

pitch objects. T = return as symbols. Default = NIL.

- :package. Used to identify a separate Lisp package in which to itern

result. This is really only applicable is combination with :as-symbol set

to T. Default = :sc.

- :remove-duplicates. Set to T or NIL to indicate whether any duplicate

pitch objects are to be removed from the resulting list. T = remove

duplicates. Default = T.

RETURN VALUE:

Returns a list of pitch objects by default. When the keyword argument

:as-symbols is set to T, the method returns a list of note-name symbols

instead.

EXAMPLE:

;; Create a list of four pitch objects from random MIDI numbers and print it,

;; then apply transpose-pitch-list-to-octave, setting the octave argument to 4,

;; and print the result

(let ((pl))

(setf pl (loop repeat 4 collect (make-pitch (midi-to-note (random 128)))))

(print (loop for p in pl collect (data p)))

(print (transpose-pitch-list-to-octave pl 4)))

=>

(CS7 F7 B0 D4)

(

PITCH: frequency: 493.883, midi-note: 71, midi-channel: 0

[...]

data: B4

[...]

PITCH: frequency: 293.665, midi-note: 62, midi-channel: 0

[...]

data: D4

[...]

PITCH: frequency: 277.183, midi-note: 61, midi-channel: 0

[...]

20 SC/NAMED-OBJECT 313

data: CS4

[...]

PITCH: frequency: 349.228, midi-note: 65, midi-channel: 0

[...]

data: F4

)

;; Setting the keyword argument :as-symbols to T return a list of note-names

;; instead

(let ((pl))

(setf pl (loop repeat 4 collect (make-pitch (midi-to-note (random 128)))))

(print (loop for p in pl collect (data p)))

(print (transpose-pitch-list-to-octave pl 4 :as-symbols t)))

=>

(D5 E1 C7 AF1)

(E4 AF4 D4 C4)

;; The method removes duplicate pitch objects from the resulting list by

;; default

(let ((pl))

(setf pl (loop repeat 4 collect (make-pitch (midi-to-note (random 128)))))

(print (loop for p in pl collect (data p)))

(print (transpose-pitch-list-to-octave pl 4 :as-symbols t)))

=>

(B7 AF1 AF7 G1)

(G4 AF4 B4)

SYNOPSIS:

(defun transpose-pitch-list-to-octave (pitch-list octave

&key

as-symbols

(package :sc)

(remove-duplicates t))

20.2.68 pitch/transpose-to-octave

[pitch] [Methods]

DESCRIPTION:

Transpose the values of a given pitch object to a specified octave.

20 SC/NAMED-OBJECT 314

NB: This method creates a new pitch object rather than replacing the values

of the original.

ARGUMENTS:

- A pitch object.

- A number indicating the new octave.

OPTIONAL ARGUMENTS:

keyword arguments:

- :as-symbol. T or NIL to indicate whether the method is to return an

entire pitch object or just a note-name symbol of the new pitch. NIL = a

new pitch object. Default = NIL.

- :package. Used to identify a separate Lisp package in which to process

the result. This is really only applicable is combination with :as-symbol

set to T. Default = :sc.

RETURN VALUE:

A pitch object by default.

If the :as-symbol argument is set to T, then a note-name symbol is returned

instead.

EXAMPLE:

;; Transpose the values of a pitch object containing middle-C (octave 4) to the

;;; C of the treble clef (octave 5)

(let ((p (make-pitch ’c4)))

(transpose-to-octave p 5))

=>

PITCH: frequency: 523.251, midi-note: 72, midi-channel: 0

pitch-bend: 0.0

degree: 144, data-consistent: T, white-note: C5

nearest-chromatic: C5

src: 2.0, src-ref-pitch: C4, score-note: C5

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 5, c5ths: 0, no-8ve: C, no-8ve-no-acc: C

show-accidental: T, white-degree: 35,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

20 SC/NAMED-OBJECT 315

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: C5, tag: NIL,

data: C5

;; Setting the :as-symbol argument to T returns a note-name symbol instead of a

;; pitch object

(let ((p (make-pitch ’c4)))

(transpose-to-octave p 5 :as-symbol t))

=> C5

SYNOPSIS:

(defmethod transpose-to-octave ((p pitch) new-octave

&key

(as-symbol nil)

(package :sc))

20.2.69 linked-named-object/player

[linked-named-object] [Classes]

NAME:

player

File: player.lsp

Class Hierarchy: named-object -> linked-named-object -> player

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the player class which holds an

instrument or a assoc-list of instruments in it’s data

slot.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 7th September 2001

$$ Last modified: 12:45:19 Sat Aug 30 2014 BST

SVN ID: $Id: player.lsp 5048 2014-10-20 17:10:38Z medward2 $

20 SC/NAMED-OBJECT 316

20.2.70 player/make-player

[player] [Functions]

DESCRIPTION:

Create a player object from a specified instrument-palette object and a

specified instrument or list of instruments which that player plays.

The player object is separate from the instrument object as on player in an

ensemble may perform more than one instrument ("double"), such as flute and

piccolo, clarinet and bass clarinet, or sax, flute and clarinet.

ARGUMENTS:

- A symbol which will be the ID of the resulting player object.

- An instrument-palette object.

- A symbol or a list of symbols that are the instruments from the

specified instrument-palette object that the given player will play, as

spelled and defined within the instrument-palette object. NB: If only one

instrument is to be assigned to the given player, it should be stated as

symbol rather than a list, to avoid errors in the DOUBLES slot.

OPTIONAL ARGUMENTS:

keyword arguments:

- :midi-channel. An integer that indicates the MIDI channel on which any

non-microtonal pitch material for this player is to be played

back. Default = 1.

- :microtones-midi-channel. An integer that indicates the MIDI channel on

which any microtonal pitch material for this player is to be played

back. slippery chicken uses this channel to add MIDI pitch-bends via CM

so that microtonal chords are possible, but due to a current glitch these

tracks contain no pitch-bend data. A work-around for this is to simply

open the MIDI file in a sequencer and shift the entire channel by the

desired pitch-bend value. Default = -1.

- :cmn-staff-args. A list of pairs that indicate any additional arguments

to the call to cmn::staff for this player, such as staff size, number of

lines etc. Instead of being real cmn function calls, as they would be in

normal cmn, this is a simple list of pairs; e.g. ’(staff-size .8

staff-lines 3). Defaults = NIL.

- :staff-names. A symbol, string or list of staff names, generally strings,

for each instrument the player will play. E.g. ’("violin II"). If not

given, then the instrument’s name as defined in the instrument palette

will be used. Default = NIL.

- :staff-short-names. A symbol, string or list of short staff

names. E.g. ’("vln2"). Default = NIL

20 SC/NAMED-OBJECT 317

RETURN VALUE:

Returns a player object.

EXAMPLE:

;; Create a player object with just one instrument object

(let ((ip (make-instrument-palette

’inst-pal

’((picc (:transposition-semitones 12 :lowest-written d4

:highest-written c6))

(flute (:lowest-written c4 :highest-written d7))

(clar (:transposition-semitones -2 :lowest-written e3

:highest-written c6))

(horn (:transposition f :transposition-semitones -7

:lowest-written f2 :highest-written c5))

(vln (:lowest-written g3 :highest-written c7 :chords t))

(vla (:lowest-written c3 :highest-written f6 :chords t))))))

(make-player ’player-one ip ’flute))

=>

PLAYER: (id instrument-palette): INST-PAL

doubles: NIL, cmn-staff-args: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: PLAYER-ONE, tag: NIL,

data:

INSTRUMENT: lowest-written:

[...]

NAMED-OBJECT: id: FLUTE, tag: NIL,

data: NIL

;; Create a player object with two instruments, setting the midi channels using

;; the keyword arguments, then print the corresponding slots to see the changes

(let* ((ip (make-instrument-palette

’inst-pal

’((picc (:transposition-semitones 12 :lowest-written d4

:highest-written c6))

(flute (:lowest-written c4 :highest-written d7))

(clar (:transposition-semitones -2 :lowest-written e3

:highest-written c6))

(horn (:transposition f :transposition-semitones -7

:lowest-written f2 :highest-written c5))

(vln (:lowest-written g3 :highest-written c7 :chords t))

(vla (:lowest-written c3 :highest-written f6 :chords t)))))

(plr (make-player ’player-one ip ’(flute picc)

:midi-channel 1

20 SC/NAMED-OBJECT 318

:microtones-midi-channel 2)))

(print (loop for i in (data (data plr)) collect (id i)))

(print (midi-channel plr))

(print (microtones-midi-channel plr)))

=>

(FLUTE PICC)

1

2

;;; With specified cmn-staff-args

(let ((ip (make-instrument-palette

’inst-pal

’((picc (:transposition-semitones 12 :lowest-written d4

:highest-written c6))

(flute (:lowest-written c4 :highest-written d7))

(clar (:transposition-semitones -2 :lowest-written e3

:highest-written c6))

(horn (:transposition f :transposition-semitones -7

:lowest-written f2 :highest-written c5))

(vln (:lowest-written g3 :highest-written c7 :chords t))

(vla (:lowest-written c3 :highest-written f6 :chords t))))))

(make-player ’player-one ip ’(flute picc)

:midi-channel 1

:microtones-midi-channel 2

:cmn-staff-args ’(staff-size .8 staff-lines 3)))

=>

PLAYER: (id instrument-palette): INST-PAL

doubles: T, cmn-staff-args: (#<SELF-ACTING {10097B6E73}>

#<SELF-ACTING {10097B6EE3}>), total-notes: 0, total-degrees: 0,

total-duration: 0.000, total-bars: 0, tessitura: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: PLAYER-ONE, tag: NIL,

data:

[...]

SYNOPSIS:

(defun make-player (id instrument-palette instruments

&key (cmn-staff-args nil) staff-names staff-short-names

(microtones-midi-channel -1) (midi-channel 1))

20 SC/NAMED-OBJECT 319

20.2.71 player/microtonal-chords-p

[player] [Methods]

DESCRIPTION:

Determines whether the MICROTONES-MIDI-CHANNEL slot of the given player

object is set to a value greater than 0, indicating that the player and its

instrument are capable of performing microtonal chords.

ARGUMENTS:

- A player object.

RETURN VALUE:

Returns T if the value stored in the MICROTONES-MIDI-CHANNEL slot of the

given player object is greater than 0, otherwise returns NIL.

EXAMPLE:

;; Returns T

(let* ((ip +slippery-chicken-standard-instrument-palette+)

(plr (make-player ’vln ip ’violin :microtones-midi-channel 2)))

(microtonal-chords-p plr))

=> T

;; Returns NIL

(let* ((ip +slippery-chicken-standard-instrument-palette+)

(plr (make-player ’pno ip ’piano)))

(microtonal-chords-p plr))

=> NIL

SYNOPSIS:

(defmethod microtonal-chords-p ((p player))

(> (microtones-midi-channel p) 0))

;;;

(defmethod score-write-bar-line ((p player))

(let* ((data (data p))

(ins (if (typep data ’assoc-list)

(first (data data))

data)))

(score-write-bar-line ins)))

20 SC/NAMED-OBJECT 320

20.2.72 player/player-get-instrument

[player] [Methods]

DESCRIPTION:

Get the instrument object assigned to a single-instrument player object or

get the specified instrument object assigned to a multiple-instrument

player object.

NB: This method will drop into the debugger with an error if no optional

argument is supplied when applying the method to a multiple-instrument

player object. It will also print a warning when supplying an optional

argument to a player object that contains only one instrument object.

ARGUMENTS:

- A player object.

OPTIONAL ARGUMENTS:

- Actually a required object for multiple-instrument player objects: The

symbol that is the ID of the sought-after instrument object, as it

appears in the instrument-palette with which the player object which

made. If the given player object consists of only one instrument object,

this argument is disregarded and a warning is printed.

RETURN VALUE:

Returns an instrument object.

EXAMPLE:

;; Returns an instrument object. Needs no optional argument when applied to a

;; player object that contains only one instrument object

(let* ((ip +slippery-chicken-standard-instrument-palette+)

(plr (make-player ’pno ip ’piano)))

(player-get-instrument plr))

=>

INSTRUMENT:

[...]

NAMED-OBJECT: id: PIANO, tag: NIL,

data: NIL

20 SC/NAMED-OBJECT 321

;; Returns the only existing instrument object and prints a warning if using

;; the optional argument when applying to a single-instrument player object

(let* ((ip +slippery-chicken-standard-instrument-palette+)

(plr (make-player ’pno ip ’piano)))

(id (player-get-instrument plr ’piano)))

=> PIANO

WARNING:

player::player-get-instrument: player PNO has only 1 instrument so optional

argument PIANO is being ignored

;; Asking for a non-existent instrument obect from a single-instrument player

;; object returns the only existing instrument object instead

(let* ((ip +slippery-chicken-standard-instrument-palette+)

(plr (make-player ’pno ip ’piano)))

(id (player-get-instrument plr ’marimba)))

=> PIANO

WARNING:

player::player-get-instrument: player PNO has only 1 instrument so optional

argument PIANO is being ignored

;; The ID desired instrument object must be specified when applying the method

;; to a multiple-instrument player object

(let* ((ip +slippery-chicken-standard-instrument-palette+)

(plr (make-player ’percussion ip ’(marimba vibraphone))))

(id (player-get-instrument plr ’marimba)))

=> MARIMBA

;; Interrupts and drops into the debugger when the optional argument is omitted

;; in applying the method to a multiple-instrument player object

(let* ((ip +slippery-chicken-standard-instrument-palette+)

(plr (make-player ’percussion ip ’(marimba vibraphone))))

(player-get-instrument plr))

=>

player::player-get-instrument: PERCUSSION doubles so you need to pass the ID of

the instrument you want.

[Condition of type SIMPLE-ERROR]

SYNOPSIS:

(defmethod player-get-instrument ((p player) &optional ins (warn t))

20 SC/NAMED-OBJECT 322

20.2.73 player/plays-transposing-instrument

[player] [Methods]

DESCRIPTION:

Determine whether a given player object has one or more transposing

instrument objects assigned to it.

ARGUMENTS:

- A player object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether instruments that transpose at the octave are

to be considered transposing instruments. T = instruments that transpose

at the octave are not considered transposing instruments. Default = T.

RETURN VALUE:

Returns T if one or more of the instrument objects assigned to the given

player object has a transposition value other than C or a

transposition-semitones value other than 0.

EXAMPLE:

;; Create a player object using the ’b-flat-clarinet instrument object

;; definition from the default +slippery-chicken-standard-instrument-palette+,

;; then apply the method.

(let* ((ip +slippery-chicken-standard-instrument-palette+)

(plr (make-player ’cl ip ’b-flat-clarinet)))

(plays-transposing-instrument plr))

=> T

;; Create a player object using the ’flute instrument object definition from

;; the default +slippery-chicken-standard-instrument-palette+, then apply the

;; method.

(let* ((ip +slippery-chicken-standard-instrument-palette+)

(plr (make-player ’fl ip ’flute)))

(plays-transposing-instrument plr))

=> NIL

20 SC/NAMED-OBJECT 323

;; Although the intended procedure is to list single instruments as once-off

;; symbols (as in the previous example), single instruments can also be added

;; as a one-item list

(let* ((ip +slippery-chicken-standard-instrument-palette+)

(plr (make-player ’fl ip ’(flute))))

(doubles plr))

=> NIL

;; Create a player object using a list that consists of the ’flute and

;; ’alto-sax instrument object definitions from the default

;; +slippery-chicken-standard-instrument-palette+, then apply the method to see

;; that it returns T even when only one of the instruments is transposing.

(let* ((ip +slippery-chicken-standard-instrument-palette+)

(plr (make-player ’fl ip ’(flute alto-sax))))

(plays-transposing-instrument plr))

=> T

;; Setting the optional argument to NIL causes instruments that transpose at

;; the octave to return T.

(let* ((ip +slippery-chicken-standard-instrument-palette+)

(plr (make-player ’db ip ’double-bass)))

(plays-transposing-instrument plr))

=> NIL

(let* ((ip +slippery-chicken-standard-instrument-palette+)

(plr (make-player ’db ip ’double-bass)))

(plays-transposing-instrument plr nil))

=> T

SYNOPSIS:

(defmethod plays-transposing-instrument ((p player)

&optional (ignore-octaves t) ignore)

20.2.74 player/reset-instrument-stats

[player] [Methods]

DATE:

23rd August 2013

20 SC/NAMED-OBJECT 324

DESCRIPTION:

Reset the statistics slots for each instrument the player plays.

ARGUMENTS:

- The player object

OPTIONAL ARGUMENTS:

- just-total-duration. If NIL update all statistics slots, otherwise just

the total-duration slot of each instrument

RETURN VALUE:

T if the player has instruments, NIL if not.

SYNOPSIS:

(defmethod reset-instrument-stats ((p player) &optional just-total-duration)

20.2.75 player/tessitura-degree

[player] [Methods]

DESCRIPTION:

Return a number that represents the average pitch for a specified

instrument over the course of a piece. The number returned will be degrees

in the current scale.

ARGUMENTS:

- A player object.

RETURN VALUE:

A number that is the tessitura-degree; i.e., average pitch of the given

instrument for the entirety of the given musical data.

EXAMPLE:

(let ((mini

(make-slippery-chicken

20 SC/NAMED-OBJECT 325

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (violin :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((gs3 as3 b3 cs4 ds4 e4 fs4 gs4 as4 b4 cs5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q (e) s (32) 32))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))

(va (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(tessitura-degree (get-data ’vc (ensemble mini))))

=> 136

SYNOPSIS:

(defmethod tessitura-degree ((p player))

20.2.76 player/tessitura-note

[player] [Methods]

DESCRIPTION:

Return the value of the TESSITURA-DEGREE slot of a specified player object

as a note-name symbol.

ARGUMENTS:

- A player object.

RETURN VALUE:

- A note-name symbol.

EXAMPLE:

(in-scale :chromatic)

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (violin :midi-channel 2))

20 SC/NAMED-OBJECT 326

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((gs3 as3 b3 cs4 ds4 e4 fs4 gs4 as4 b4 cs5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q (e) s (32) 32))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))

(va (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(tessitura-note (first (data (ensemble mini)))))

=> BF3

SYNOPSIS:

(defmethod tessitura-note ((p player))

20.2.77 player/total-bars

[player] [Methods]

DESCRIPTION:

Return the number of bars in a specified player object.

ARGUMENTS:

- A player object.

RETURN VALUE:

- An integer.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (violin :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((gs3 as3 b3 cs4 ds4 e4 fs4 gs4 as4 b4 cs5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q (e) s (32) 32))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))

20 SC/NAMED-OBJECT 327

(va (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(total-bars (first (data (ensemble mini)))))

=> 5

SYNOPSIS:

(defmethod total-bars ((p player))

20.2.78 player/total-degrees

[player] [Methods]

DESCRIPTION:

Return a number that reflects the mean note (tessitura) of a player’s

part. This is calculated by incrementing the TOTAL-DEGREES slot of the

corresponding instrument object for each attacked note in the player’s part

by the degree of that note (in the scale of the piece), and then dividing

the sum by the total number of notes in the player’s part.

ARGUMENTS:

- A player object.

RETURN VALUE:

- An integer.

EXAMPLE:

(in-scale :chromatic)

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (violin :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((gs3 as3 b3 cs4 ds4 e4 fs4 gs4 as4 b4 cs5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q (e) s (32) 32))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))

20 SC/NAMED-OBJECT 328

(va (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(total-degrees (first (data (ensemble mini)))))

=> 865

SYNOPSIS:

(defmethod total-degrees ((p player))

20.2.79 player/total-duration

[player] [Methods]

DESCRIPTION:

Get the total duration of played notes for a given player over the span of

a piece.

ARGUMENTS:

- A player object.

RETURN VALUE:

A number that is the total duration in seconds of played notes.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (violin :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((gs3 as3 b3 cs4 ds4 e4 fs4 gs4 as4 b4 cs5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q (e) s (32) 32))

:pitch-seq-palette ((1 2 3))))

(2 ((((2 4) (q) e (s) 32 32))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))

(va (2 2 2 2 2))

(vc (1 2 1 2 1))))))))

(print (total-duration (get-data ’vn (ensemble mini))))

20 SC/NAMED-OBJECT 329

(print (total-duration (get-data ’va (ensemble mini))))

(print (total-duration (get-data ’vc (ensemble mini)))))

=>

6.875

3.75

5.625

SYNOPSIS:

(defmethod total-duration ((p player))

20.2.80 player/total-notes

[player] [Methods]

DESCRIPTION:

Get the total number of notes (actually events) played by a specified

player (not rests or tied notes, but midi-notes) in the piece which this

instrument plays. A chord counts as 1 note/event.

ARGUMENTS:

- A player object.

RETURN VALUE:

- An integer that is the number of notes for that player.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (violin :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((gs3 as3 b3 cs4 ds4 e4 fs4 gs4 as4 b4 cs5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q (e) s (32) 32))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))

(va (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

20 SC/NAMED-OBJECT 330

(print (total-notes (get-data ’vc (ensemble mini)))))

=> 15

SYNOPSIS:

(defmethod total-notes ((p player))

20.2.81 linked-named-object/rhythm

[linked-named-object] [Classes]

NAME:

rhythm

File: rhythm.lsp

Class Hierarchy: named-object -> linked-named-object -> rhythm

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the rhythm class for parsing and

storing the properties of rhythms.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 11th February 2001

$$ Last modified: 18:44:07 Tue Sep 2 2014 BST

SVN ID: $Id: rhythm.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.82 rhythm/accented-p

[rhythm] [Methods]

DATE:

05 Apr 2011

DESCRIPTION:

20 SC/NAMED-OBJECT 331

Check the MARKS slot of a given rhythm object to determine if it possesses

an accent mark. The rhythm object may also possess other marks as well.

ARGUMENTS:

- A rhythm object.

RETURN VALUE:

If the accent mark (’a) is indeed found in the MARKS slot of the given

rhythm object, the tail of the list of marks contained in that slot is

returned; otherwise NIL is returned.

EXAMPLE:

;; Make a rhythm object, add an accent, and test for the presence of the accent

(let ((r (make-rhythm ’q)))

(add-mark-once r ’a)

(accented-p r))

=> (A)

;; Check if an accent mark is among all marks in the MARKS slot

(let ((r (make-rhythm ’q)))

(add-mark-once r ’s)

(add-mark-once r ’a)

(accented-p r))

=> (A S)

;; Add an accent and staccato, then remove the accent and test for it

(let ((r (make-rhythm ’q)))

(add-mark-once r ’a)

(add-mark-once r ’s)

(rm-marks r ’a)

(accented-p r))

=> NIL

SYNOPSIS:

(defmethod accented-p ((r rhythm))

20.2.83 rhythm/add

[rhythm] [Methods]

20 SC/NAMED-OBJECT 332

DESCRIPTION:

Create a new rhythm object with a duration that is equal to the sum of the

duration of two other given rhythm objects.

NB: This method only returns a single rhythm rather than a list with

ties. Thus q+s, for example, returns TQ...

If the resulting duration cannot be presented as a single, notatable

rhythm, the DATA slot of the resulting rhythm object is set to NIL, though

the VALUE and DURATION slots are still set with the corresponding numeric

values.

ARGUMENTS:

- A first rhythm object.

- A second rhythm object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether a warning is printed when a rhythm cannot be

made because the resulting value is 0 or a negative duration. Default =

NIL (no warning issued).

RETURN VALUE:

A rhythm object. Returns NIL when the object cannot be made.

EXAMPLE:

;; A quarter plus an eighth makes a dotted quarter

(let ((r1 (make-rhythm ’q))

(r2 (make-rhythm ’e)))

(add r1 r2))

=>

RHYTHM: value: 2.6666666666666665, duration: 1.5, rq: 3/2, is-rest: NIL, score-rthm: 4.0f0.,

undotted-value: 4, num-flags: 0, num-dots: 1, is-tied-to: NIL,

is-tied-from: NIL, compound-duration: 1.5, is-grace-note: NIL,

needs-new-note: T, beam: NIL, bracket: NIL, rqq-note: NIL,

rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 4,

tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: Q., tag: NIL,

data: Q.

20 SC/NAMED-OBJECT 333

;; A quarter plus a triplet-eighth is presented as a triplet-half

(let ((r1 (make-rhythm ’q))

(r2 (make-rhythm ’te)))

(data (add r1 r2)))

=> TH

;; A quarter plus a septuplet-16th cannot be represented as a single, notatable

;; rhythm and therefore produces an object with a VALUE and DURATION but no

;; DATA

(let ((r1 (make-rhythm 4))

(r2 (make-rhythm 28)))

(print (value (add r1 r2)))

(print (duration (add r1 r2)))

(print (data (add r1 r2))))

=>

3.5

1.1428571428571428

NIL

SYNOPSIS:

(defmethod add ((r1 rhythm) (r2 rhythm) &optional warn)

20.2.84 rhythm/add-mark

[rhythm] [Methods]

DESCRIPTION:

Add an articulation, dynamic, slur or any other mark to a rhythm (also

useful in the event subclass for changing note heads etc.) Multiple marks

can be added separately and consecutively to the same rhythm object.

A warning is printed if the same mark is added to the same rhythm object

more than once.

NB: This method checks to see if the mark added is a valid mark and will

warn if it doesn’t exist (but it will still add it, in case you have

your own processing logic for it).

ARGUMENTS:

- A rhythm object.

20 SC/NAMED-OBJECT 334

- A mark.

OPTIONAL ARGUMENTS:

- T or NIL to indicated whether to issue a warning when trying to add marks

to a rest. Default = NIL.

RETURN VALUE:

Always T.

EXAMPLE:

(let ((r (make-rhythm ’q)))

(marks r))

=> NIL

(let ((r (make-rhythm ’q)))

(add-mark r ’a))

=> T

(let ((r (make-rhythm ’q)))

(add-mark r ’s)

(marks r))

=> (S)

(let ((r (make-rhythm ’q)))

(add-mark r ’col-legno)

(add-mark r ’as)

(add-mark r ’x-head)

(marks r))

=> (X-HEAD AS COL-LEGNO)

(let ((r (make-rhythm ’q)))

(add-mark r ’s)

(add-mark r ’s))

=> T

WARNING: rhythm::add-mark: S already present but adding again!:

(let ((r (make-rhythm ’e :is-rest t)))

20 SC/NAMED-OBJECT 335

(add-mark r ’at)

(print (is-rest r))

(print (marks r)))

=>

T

(AT)

(let ((r (make-rhythm ’e :is-rest t)))

(add-mark r ’at t))

=> T

WARNING:

[...]

rhythm::add-mark: add AT to rest?

SYNOPSIS:

(defmethod add-mark ((r rhythm) mark &optional warn-rest)

20.2.85 rhythm/add-mark-once

[rhythm] [Methods]

DATE:

26 Jul 2011 (Pula)

DESCRIPTION:

Apply the given mark to the given rhythm object, but do so only if the

given rhythm object does not yet have the mark.

ARGUMENTS:

- A rhythm object.

- A mark.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not to print a warning when attempting to

apply a mark to a rest.

RETURN VALUE:

20 SC/NAMED-OBJECT 336

Returns T if the mark is successfully applied (if the rhythm object did not

already possess the mark), otherwise NIL if the mark was not applied

because the rhythm object already had it.

EXAMPLE:

(let ((r (make-rhythm ’q)))

(add-mark-once r ’a))

=> T

(let ((r (make-rhythm ’q)))

(add-mark-once r ’a)

(marks r))

=> (A)

(let ((r (make-rhythm ’q)))

(add-mark-once r ’a)

(add-mark-once r ’a))

=> NIL

(let ((r (make-rhythm ’q)))

(add-mark-once r ’a)

(add-mark-once r ’a)

(marks r))

=> (A)

SYNOPSIS:

(defmethod add-mark-once ((r rhythm) mark &optional warn-rest)

20.2.86 rhythm/begin-slur-p

[rhythm] [Methods]

DESCRIPTION:

Check to see if the MARKS slot of a given rhythm object contains a mark for

the beginning of a slur (’beg-sl). The rhythm object may also possess other

marks as well.

ARGUMENTS:

20 SC/NAMED-OBJECT 337

- A rhythm object.

RETURN VALUE:

If the ’beg-sl mark is indeed found in the MARKS slot of the given rhythm

object, the tail of the list of marks contained in that slot is returned;

otherwise NIL is returned.

EXAMPLE:

;; Create a rhythm object, add a ’beg-sl mark and check for it

(let ((r (make-rhythm ’q)))

(add-mark-once r ’beg-sl)

(begin-slur-p r))

=> (BEG-SL)

;; Add several marks to a rhythm object and check for ’beg-sl

(let ((r (make-rhythm ’q)))

(loop for m in ’(a s beg-sl) do (add-mark-once r m))

(begin-slur-p r))

=> (BEG-SL S A)

;; Add a ’beg-sl mark to a rhythm object, then delete it and check for it

(let ((r (make-rhythm ’q)))

(add-mark-once r ’beg-sl)

(rm-marks r ’beg-sl)

(begin-slur-p r))

=> NIL

SYNOPSIS:

(defmethod begin-slur-p ((r rhythm))

20.2.87 rhythm/delete-beam

[rhythm] [Methods]

DESCRIPTION:

Removes indication for the start (1) or end (0) of a beam from the BEAM

slot of a given rhythm object, replacing them with NIL.

ARGUMENTS:

20 SC/NAMED-OBJECT 338

- A rhythm object.

RETURN VALUE:

Always returns NIL.

EXAMPLE:

;; Manually set the beam of a rhythm object and delete it to see result NIL

(let ((r (make-rhythm ’e)))

(setf (beam r) 1)

(delete-beam r))

=> NIL

;; Make a rthm-seq-bar object with beam indications, then check the BEAM slot

;; of each rhythm object in the rthm-seq-bar object.

(let ((rsb (make-rthm-seq-bar ’((2 4) - s s e - q))))

(loop for r in (rhythms rsb) collect (beam r)))

=> (1 NIL 0 NIL)

;; Make a rthm-seq-bar object with beam indications, delete them all, then

;; check the beam slot of each rhythm object in the rthm-seq-bar object.

(let ((rsb (make-rthm-seq-bar ’((2 4) - s s e - q))))

(loop for r in (rhythms rsb) do (delete-beam r))

(loop for r in (rhythms rsb) collect (beam r)))

=> (NIL NIL NIL NIL)

SYNOPSIS:

(defmethod delete-beam ((r rhythm))

20.2.88 rhythm/delete-marks

[rhythm] [Methods]

DESCRIPTION:

Delete any marks in the MARKS slot of an event object created within a

rhythm object, replacing the entire list of the MARKS slot with NIL.

ARGUMENTS:

20 SC/NAMED-OBJECT 339

- A rhythm object.

RETURN VALUE:

Always returns NIL.

EXAMPLE:

;; The method returns NIL

(let ((r (make-rhythm (make-event ’c4 ’q))))

(loop for m in ’(a s pizz) do (add-mark-once r m))

(delete-marks r))

=> NIL

;; Create a rhythm object consisting of an event object and print the default

;; contents of the MARKS slot. Set the MARKS slot to contain three marks and

;; print the result. Apply the delete-marks method and print the result.

(let ((r (make-rhythm (make-event ’c4 ’q))))

(print (marks r))

(loop for m in ’(a s pizz) do (add-mark-once r m))

(print (marks r))

(delete-marks r)

(print (marks r)))

=>

NIL

(PIZZ S A)

NI

SYNOPSIS:

(defmethod delete-marks ((r rhythm))

20.2.89 rhythm/duration-secs

[rhythm] [Methods]

DESCRIPTION:

Determine the absolute duration in seconds of a given rhythm object at a

given quarter-note tempo. If no tempo is specified, a tempo of 60 is

assumed.

ARGUMENTS:

20 SC/NAMED-OBJECT 340

- A rhythm object.

OPTIONAL ARGUMENTS:

- A numerical tempo value based on quarter-note beats per minute.

RETURN VALUE:

A real number (floating point) representing the absolute duration of the

given rhythm object in seconds.

EXAMPLE:

;; Determine the duration in seconds of a quarter note with a default tempo of

;;; quarter = 60

(let ((r (make-rhythm ’q)))

(duration-secs r))

=> 1.0

;; Specifying a different tempo results in a different duration in seconds

(let ((r (make-rhythm ’q)))

(duration-secs r 96))

=> 0.625

SYNOPSIS:

(defmethod duration-secs ((r rhythm) &optional (tempo 60))

20.2.90 rhythm/end-slur-p

[rhythm] [Methods]

DESCRIPTION:

Check to see if the MARKS slot of a given rhythm object contains a mark for

the ending of a slur (’end-sl). The rhythm object may also possess other

marks as well.

ARGUMENTS:

- A rhythm object.

RETURN VALUE:

20 SC/NAMED-OBJECT 341

If the ’end-sl mark is indeed found in the MARKS slot of the given rhythm

object, the tail of the list of marks contained in that slot is returned;

otherwise NIL is returned.

EXAMPLE:

;; Create a rhythm object, add a ’end-sl mark and check for it

(let ((r (make-rhythm ’q)))

(add-mark-once r ’end-sl)

(end-slur-p r))

=> (END-SL)

;; Add several marks to a rhythm object and check for ’end-sl

(let ((r (make-rhythm ’q)))

(loop for m in ’(a s end-sl) do (add-mark-once r m))

(end-slur-p r))

=> (END-SL S A)

;; Add an ’end-sl mark to a rhythm object, then delete it and check for it

(let ((r (make-rhythm ’q)))

(add-mark-once r ’end-sl)

(rm-marks r ’end-sl)

(end-slur-p r))

=> NIL

SYNOPSIS:

(defmethod end-slur-p ((r rhythm))

20.2.91 rhythm/event

[rhythm] [Classes]

NAME:

event

File: event.lsp

Class Hierarchy: named-object -> linked-named-object -> rhythm -> event

Version: 1.0.5

20 SC/NAMED-OBJECT 342

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the event class which holds data for

the construction of an audible event, be it a midi note,

a sample (with corresponding sampling-rate conversion

factor) or chord of these types.

It is generally assumed that event instances will be

created from (copies of) rhythm instances by promotion

through the sc-change-class function, hence this class is

derived from rhythm.

Author: Michael Edwards: m@michael-edwards.org

Creation date: March 19th 2001

$$ Last modified: 14:10:12 Sat Jun 28 2014 BST

SVN ID: $Id: event.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.92 event/add-arrow

[event] [Methods]

DATE:

25 Jun 2011

DESCRIPTION:

Adds a start-arrow mark to the given event object and stores text that is

to be attached to the start and end of the given arrow for LilyPond

output. This is a little more complex than the usual mark adding process,

hence this separate method and it not being possible to add arrows to

rthm-seq objects. Not available for CMN.

NB: A separate end-arrow mark should be attached to the note where the end

text is to appear. Use end-arrow for this or (add-mark e ’end-arrow).

ARGUMENTS:

- An event object.

- A start-text string.

- An end-text string.

20 SC/NAMED-OBJECT 343

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not to print a warning when trying to

attach an arrow and accompanying marks to a rest. Default = NIL.

RETURN VALUE:

Returns T.

EXAMPLE:

;; Create an event object and see that the MARKS-BEFORE and MARKS slots are set

;;; to NIL by default

(let ((e (make-event ’c4 ’q)))

(print (marks-before e))

(print (marks e)))

=>

NIL

NIL

;; Create an event object, apply the add-arrow method, and print the

;; corresponding slots to see the changes.

(let ((e (make-event ’c4 ’q)))

(add-arrow e "start here" "end here")

(print (marks-before e))

(print (marks e)))

=>

((ARROW "start here" "end here"))

(START-ARROW)

;; Create an event object that is a rest and apply the add-arrow method with

;; the optional argument set to T to see the warning printed.

(let ((e (make-event nil ’q)))

(add-arrow e "start here" "end here" t))

=> T

event::add-arrow: add arrow to rest?

SYNOPSIS:

(defmethod add-arrow ((e event) start-text end-text &optional warn-rest)

20 SC/NAMED-OBJECT 344

20.2.93 event/add-clef

[event] [Methods]

DESCRIPTION:

Add a clef indication to the MARKS-BEFORE slot of the given event object.

NB: This method does not check that the clef-name added is indeed a clef,

nor does it check to see if other clefs have already been attached to the

same event object.

ARGUMENTS:

- An event object.

- A clef name (symbol).

OPTIONAL ARGUMENTS:

- (Internal "ignore" arguments only; not needed by the user).

RETURN VALUE:

Returns the contents (list) of the MARKS-BEFORE slot if successful.

Returns NIL if the clef name is already present in the MARKS-BEFORE slot

and is therefore not added.

EXAMPLE:

;; Successfully adding a clef returns the contents of the MARKS-BEFORE slot

(let ((e (make-event ’c4 ’q)))

(add-clef e ’treble))

=> ((CLEF TREBLE))

;; Returns NIL if the clef name is already present

(let ((e (make-event ’c4 ’q)))

(add-clef e ’treble)

(add-clef e ’treble))

=> NIL

;; Add a clef name to the marks-before slot and check that it’s there

(let ((e (make-event ’c4 ’q)))

20 SC/NAMED-OBJECT 345

(add-clef e ’bass)

(marks-before e))

=> ((CLEF BASS))

SYNOPSIS:

(defmethod add-clef ((e event) clef &optional (delete-others t) ignore1 ignore2)

20.2.94 event/add-pitches

[event] [Methods]

DESCRIPTION:

Add pitches to a non-rest event. This works whether the event is a single

pitch or a chord. NB This adds to the sounding pitches, not written

pitches of transposing instruments. The midi-channel of the pitch is

presumed to be correct before this method is called.

ARGUMENTS:

- The event object

- &rest: an arbitrary number of pitches: either pitch objects or symbols.

RETURN VALUE:

The same event but with the new pitches added.

EXAMPLE:

(let ((e1 (make-event ’c4 ’q))

(e2 (make-event ’(c4 e4 g4) ’e)))

(add-pitches e1 ’cs3 ’d5)

(add-pitches e2 ’cs2)))

SYNOPSIS:

(defmethod add-pitches ((e event) &rest pitches)

20.2.95 event/add-trill

[event] [Methods]

DATE:

20 SC/NAMED-OBJECT 346

24 Sep 2011

DESCRIPTION:

Used for adding pitched trills to printed score output. Adds the necessary

values to the MARKS and MARKS-BEFORE slots of a given event object.

NB: The main interface for adding trills by hand is

slippery-chicken::trill, which is the class-method combination that

should be accessed for this purpose.

NB: This method will check to see if the specified trill marks are already

present in the MARKS and MARKS-BEFORE slots. If they are, the method

will print a warning but will add the specified trill marks anyway.

ARGUMENTS:

- An event object.

- A pitch-symbol for the trill note.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not to print a warning when attaching

trill information to a rest. Default = NIL.

RETURN VALUE:

Always returns T.

NB: At the moment the method will also print the reminder warning that this

is a LilyPond-only mark.

EXAMPLE:

;; Create an event object and print the contents of the MARKS-BEFORE and MARKS

;; slots to see that they’re empty by default.

(let ((e (make-event ’c4 ’q)))

(print (marks-before e))

(print (marks e)))

=>

NIL

NIL

;; Create an event object, add a trill to the note ’D4, and print the

20 SC/NAMED-OBJECT 347

;; corresponding slots to see the changes

(let ((e (make-event ’c4 ’q)))

(add-trill e ’d4)

(print (marks-before e))

(print (marks e)))

=>

WARNING:

rhythm::validate-mark: no CMN mark for BEG-TRILL-A (but adding anyway).

(BEG-TRILL-A)

((TRILL-NOTE D4))

;; By default the method adds prints no warning when adding a mark to a rest

;; (though it still prints the warning that there is no CMN mark)

(let ((e (make-event nil ’q)))

(add-trill e ’d4)

(print (marks-before e))

(print (marks e)))

=>

WARNING:

rhythm::validate-mark: no CMN mark for BEG-TRILL-A (but adding anyway).

(BEG-TRILL-A)

((TRILL-NOTE D4))

;; Set the optional argument to T to have the method print a warning when

;; attaching a mark to a rest

(let ((e (make-event nil ’q)))

(add-trill e ’d4 t)

(print (marks-before e))

(print (marks e)))

=>

event::add-trill: add trill to rest?

WARNING:

rhythm::validate-mark: no CMN mark for BEG-TRILL-A (but adding anyway).

(BEG-TRILL-A)

((TRILL-NOTE D4))

;; Adding a trill that is already there will result in a warning being printed

;; but will add the mark anyway

(let ((e (make-event ’c4 ’q)))

(loop repeat 4 do (add-trill e ’d4))

20 SC/NAMED-OBJECT 348

(print (marks-before e))

(print (marks e)))

=>

WARNING:

rhythm::add-mark: (TRILL-NOTE D4) already present but adding again!:

[...]

(BEG-TRILL-A BEG-TRILL-A BEG-TRILL-A BEG-TRILL-A)

((TRILL-NOTE D4) (TRILL-NOTE D4) (TRILL-NOTE D4) (TRILL-NOTE D4))

SYNOPSIS:

(defmethod add-trill ((e event) trill-note &optional warn-rest)

20.2.96 event/delete-clefs

[event] [Methods]

DESCRIPTION:

Delete any clef names found in the MARKS-BEFORE slot of a given event

object.

ARGUMENTS:

- An event object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not to print a warning when there are no

clef marks to delete.

- (Other internal "ignore" arguments only; not needed by the user).

RETURN VALUE:

Always NIL.

EXAMPLE:

;; Returns NIL when no clef marks are found to delete, and prints a warning by

;; default.

(let ((e (make-event ’c4 ’q)))

(delete-clefs e))

20 SC/NAMED-OBJECT 349

=> NIL

WARNING: event::delete-clefs: no clef to delete:

[...]

;; Setting the optional WARN argument to T suppresses the warning when no clefs

;; are found.

(let ((e (make-event ’c4 ’q)))

(delete-clefs e nil))

=> NIL

;; Also returns NIL when successful

(let ((e (make-event ’c4 ’q)))

(add-clef e ’treble)

(delete-clefs e))

=> NIL

;; Create an event, add a clef, print the MARKS-BEFORE slot, delete the event,

;; print MARKS-BEFORE again to make sure it’s gone

(let ((e (make-event ’c4 ’q)))

(add-clef e ’treble)

(print (marks-before e))

(delete-clefs e)

(print (marks-before e)))

=>

((CLEF TREBLE))

NIL

SYNOPSIS:

(defmethod delete-clefs ((e event) &optional (warn t) ignore1 ignore2)

20.2.97 event/delete-written

[event] [Methods]

DESCRIPTION:

Delete the contents of the WRITTEN-PITCH-OR-CHORD slot of a given event

object and reset to NIL.

ARGUMENTS:

- An event object.

20 SC/NAMED-OBJECT 350

RETURN VALUE:

Always returns NIL.

EXAMPLE:

;; Create an event object, print the contents of the written-pitch-or-chord ;

;; slot to see it’s set to NIL, set-written to -2, print the contents of the ;

;; corresponding slot to see the data of the newly created pitch object, ;

;; delete-written, print the contents of the written-pitch-or-chord slot to see ;

;; it’s empty. ;

(let ((e (make-event ’c4 ’q)))

(print (written-pitch-or-chord e))

(set-written e -2)

(print (data (written-pitch-or-chord e)))

(delete-written e)

(print (written-pitch-or-chord e)))

=>

NIL

BF3

NIL

SYNOPSIS:

(defmethod delete-written ((e event))

20.2.98 event/end-arrow

[event] [Methods]

DESCRIPTION:

Adds an end-arrow mark to the given event object.

NB: This method works for LilyPond only. When used with CMN, output will

still be generated, but no mark will be added. The method prints a

corresponding warning when applied.

ARGUMENTS:

- An event object.

RETURN VALUE:

20 SC/NAMED-OBJECT 351

Returns T.

EXAMPLE:

;; Returns T

(let ((e (make-event ’c4 ’q)))

(end-arrow e))

=> T

WARNING:

rhythm::validate-mark: no CMN mark for END-ARROW (but adding anyway).

;; Create an event object, add end-arrow, and print the MARKS and MARKS-SLOTS

;; to see the result

(let ((e (make-event ’c4 ’q)))

(end-arrow e)

(print (marks-before e))

(print (marks e)))

=>

NIL

(END-ARROW)

SYNOPSIS:

(defmethod end-arrow ((e event))

20.2.99 event/end-trill

[event] [Methods]

DATE:

24 Sep 2011

DESCRIPTION:

Adds an ’end-trill-a mark to the MARKS slot of the given event object.

ARGUMENTS:

- An event object.

RETURN VALUE:

20 SC/NAMED-OBJECT 352

T

EXAMPLE:

;; The end-trill method returns T

(let ((e (make-event ’c4 ’q)))

(end-trill e))

=> T

;; Add an ’end-trill-a and check the MARKS slot to see that it’s there

(let ((e (make-event ’c4 ’q)))

(end-trill e)

(marks e))

=> (END-TRILL-A)

SYNOPSIS:

(defmethod end-trill ((e event))

20.2.100 event/enharmonic

[event] [Methods]

DESCRIPTION:

Change the pitch of the pitch object within the given event object to its

enharmonic equivalent.

In its default form, this method only applies to note names that already

contain an indication for an accidental (such as DF4 or BS3), while

"white-key" note names (such as B3 or C4) will not produce an enharmonic

equivalent. In order to change white-key pitches to their enharmonic

equivalents, set the :force-naturals argument to T.

NB: Doesn’t work on chords.

ARGUMENTS:

- An event object.

OPTIONAL ARGUMENTS:

keyword arguments:

20 SC/NAMED-OBJECT 353

- :written. T or NIL to indicate whether the test is to handle the written

or sounding pitch in the event. T = written. Default = NIL.

- :force-naturals. T or NIL to indicate whether to force "natural" note

names that contain no F or S in their name to convert to their enharmonic

equivalent (ie, B3 = CF4). NB double-flats/sharps are not implemented so

this will only work on F/E B/C.

RETURN VALUE:

An event object.

EXAMPLE:

;; The method alone returns an event object

(let ((e (make-event ’cs4 ’q)))

(enharmonic e))

=>

EVENT: start-time: NIL, end-time: NIL,

[...]

;; Create an event, change it’s note to the enharmonic equivalent, and print

;; it.

(let ((e (make-event ’cs4 ’q)))

(enharmonic e)

(data (pitch-or-chord e)))

=> DF4

;; Without the :force-naturals keyword, no "white-key" note names convert to

;; enharmonic equivalents

(let ((e (make-event ’b3 ’q)))

(enharmonic e)

(data (pitch-or-chord e)))

=> B3

;; Set the :force-naturals keyword argument to T to enable switching white-key

;; note-names to enharmonic equivalents

(let ((e (make-event ’b3 ’q)))

(enharmonic e :force-naturals t)

(data (pitch-or-chord e)))

=> CF4

SYNOPSIS:

20 SC/NAMED-OBJECT 354

(defmethod enharmonic ((e event) &key written force-naturals

;; 1-based

chord-note-ref)

20.2.101 event/event-distance

[event] [Methods]

DESCRIPTION:

Get the distance (interval) in semitones between the pitch level of one

event object and a second. Negative numbers indicate direction interval

directionality. An optional argument allows distances to be always printed

as absolute values (positive).

Event-distance can also be determined between chords, in which case the

distance is measured between the highest pitch of one event object and the

lowest of the other.

ARGUMENTS:

- A first event object.

- A second event object.

OPTIONAL ARGUMENTS:

- T or NIL for whether the value should be returned as an absolute

value (i.e., always positive). Default = NIL.

RETURN VALUE:

A number.

EXAMPLE:

;; The semitone distance between two single pitches in ascending direction ;

(let ((e1 (make-event ’c4 ’q))

(e2 (make-event ’e4 ’q)))

(event-distance e1 e2))

=> 4.0

;; The semitone distance between two single pitches in descending direction ;

(let ((e1 (make-event ’c4 ’q))

(e2 (make-event ’e4 ’q)))

20 SC/NAMED-OBJECT 355

(event-distance e2 e1))

=> -4.0

;; Set the optional argument to T to get the absolute distance (positive ;

;; number) ;

(let ((e1 (make-event ’c4 ’q))

(e2 (make-event ’e4 ’q)))

(event-distance e2 e1 t))

=> 4.0

;; The semitone distance between two chords in ascending direction ;

(let ((e1 (make-event ’(c4 e4 g4) ’q))

(e2 (make-event ’(d4 f4 a4) ’q)))

(event-distance e1 e2))

=> 9.0

SYNOPSIS:

(defmethod event-distance ((e1 event) (e2 event) &optional absolute)

20.2.102 event/event-p

[event] [Functions]

DESCRIPTION:

Test to confirm that a given object is an event object.

ARGUMENTS:

- An object.

RETURN VALUE:

T if the tested object is indeed an event object, otherwise NIL.

EXAMPLE:

;; Create an event and then test whether it is an event object

(let ((e (make-event ’c4 ’q)))

(event-p e))

20 SC/NAMED-OBJECT 356

=> T

;; Create a non-event object and test whether it is an event object

(let ((e (make-rhythm 4)))

(event-p e))

=> NIL

;; The make-rest function also creates an event

(let ((e (make-rest 4)))

(event-p e))

=> T

;; The make-punctuation-events, make-events and make-events2 functions create

;; lists of events, not events themselves.

(let ((e (make-events ’((g4 q) e s))))

(event-p e))

=> NIL

SYNOPSIS:

(defun event-p (thing)

20.2.103 event/flat-p

[event] [Methods]

DESCRIPTION:

Determine whether the pitch of a given event object has a flat.

ARGUMENTS:

- An event object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the test is to handle the written or

sounding pitch in the event. T = written. Default = NIL.

RETURN VALUE:

Returns T if the note tested has a flat, otherwise NIL (ie, is natural or

has a sharp).

20 SC/NAMED-OBJECT 357

EXAMPLE:

;; Returns T when the note is flat

(let ((e (make-event ’df4 ’q)))

(flat-p e))

=> T

;; Returns NIL when the note is not flat (ie, is sharp or natural)

(let ((e (make-event ’c4 ’q)))

(flat-p e))

=> NIL

(let ((e (make-event ’cs4 ’q)))

(flat-p e))

=> NIL

SYNOPSIS:

(defmethod flat-p ((e event) &optional written)

20.2.104 event/force-artificial-harmonic

[event] [Methods]

DESCRIPTION:

Change the pitch-or-chord content of a given event object such that the

existing pitch will be notated as an artificial harmonic.

The method creates pitch data for an artificial harmonic that will result

in the specified pitch, rather than adding an artificial harmonic to the

specified pitch. Thus, the method changes the existing pitch content by

transposing the specified pitch down two octaves and adding a new pitch one

perfect fourth above it (changing the given pitch object to a chord

object). It then also adds the mark ’flag-head to the MARKS slot of the

upper pitch for printing layout so that the upper pitch is printed as a

diamond.

ARGUMENTS:

- An event object.

RETURN VALUE:

20 SC/NAMED-OBJECT 358

The chord object which creates the harmonic.

EXAMPLE:

;; The method returns NIL. ;

(let ((e (make-event ’c7 ’q)))

(force-artificial-harmonic e))

=> NIL

;; Create an event object, apply force-artificial-harmonic, then get the new ;

;; pitch material ;

(let ((e (make-event ’c7 ’q)))

(force-artificial-harmonic e)

(loop for p in (data (pitch-or-chord e)) collect (data p)))

=> (C5 F5)

;; Create an event object, apply force-artificial-harmonic, then get the marks ;

;; attached to each note in the object to see the ’flag-head ;

(let ((e (make-event ’c7 ’q)))

(force-artificial-harmonic e)

(loop for p in (data (pitch-or-chord e)) collect (marks p)))

=> (NIL (FLAG-HEAD))

SYNOPSIS:

(defmethod force-artificial-harmonic ((e event) &optional instrument)

20.2.105 event/force-rest

[event] [Methods]

DESCRIPTION:

Changes a given event object to a rest by setting both the PITCH-OR-CHORD

and WRITTEN-PITCH-OR-CHORD slots to NIL and the IS-REST slot to T.

ARGUMENTS:

- An event object.

RETURN VALUE:

20 SC/NAMED-OBJECT 359

- An event object

EXAMPLE:

;; The method returns an event object. ;

(let ((e (make-event ’c4 ’q)))

(force-rest e))

=>

EVENT: start-time: NIL, end-time: NIL,

[...]

;; Create an event object, apply force-rest, then print the corresponding slots ;

;; to see the effectiveness of the method ;

(let ((e (make-event ’c4 ’q)))

(force-rest e)

(print (pitch-or-chord e))

(print (written-pitch-or-chord e))

(print (is-rest e)))

=>

NIL

NIL

T

SYNOPSIS:

(defmethod force-rest :after ((e event))

20.2.106 event/get-amplitude

[event] [Methods]

DESCRIPTION:

Return the amplitude attached to a given event object.

An optional argument allows the amplitude to be converted to and returned

as a MIDI value.

ARGUMENTS:

- An event object.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 360

- T or NIL to indicate whether the amplitude value is to be returned as a

standard digital amplitude (a number between 0.0 and 1.0) or as a

standard MIDI velocity value (a whole number between 0 and 127). T = MIDI

value. Default = NIL.

RETURN VALUE:

If the optional argument is set to NIL, returns a real number.

If the optional argument is set to T, returns a whole number (and a

remainder).

EXAMPLE:

;; Get the amplitude as a decimal value. (Each new event object has a default

;; amplitude of 0.7).

(let ((e (make-event ’c4 ’q)))

(get-amplitude e))

=> 0.7

;; Get the amplitude as a rounded MIDI value.

(let ((e (make-event ’c4 ’q)))

(get-amplitude e t))

=> 89, -0.10000000000000853

SYNOPSIS:

(defmethod get-amplitude ((e event) &optional (midi nil))

20.2.107 event/get-clef

[event] [Methods]

DESCRIPTION:

Return the symbol associated with the key CLEF in the MARKS-BEFORE slot of

the given event object.

ARGUMENTS:

- An event object.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 361

- (Internal "ignore" arguments only; not needed by the user).

RETURN VALUE:

Returns the given clef name as a symbol if successful.

Returns NIL if there is no clef name found in the MARKS-BEFORE slot of the

given event object.

EXAMPLE:

;; Returns NIL when no clef is found

(let ((e (make-event ’c4 ’q)))

(get-clef e))

=> NIL

;; Returns the clef name as symbol when successful.

(let ((e (make-event ’c4 ’q)))

(add-clef e ’treble)

(get-clef e))

=> TREBLE

SYNOPSIS:

(defmethod get-clef ((e event) &optional ignore1 ignore2 ignore3)

20.2.108 event/get-degree

[event] [Methods]

DESCRIPTION:

Get the degree of the event, summing or averaging for chords.

ARGUMENTS:

- an event object

OPTIONAL ARGUMENTS:

keyword arguments:

- :written. T or NIL to indicate whether to use the written (in the case of

20 SC/NAMED-OBJECT 362

transposing instruments) or sounding pitches. T = written. Default = NIL.

- :sum. T or NIL to indicate whether to return the sum of the degrees

instead of a list (see below). T = degrees. Default = NIL.

- :average: sim. to sum but T or NIL to indicate whether to return the

average instead of sum.

RETURN VALUE:

By default this returns a list (even if it’s a single pitch), unless :sum T

whereupon it will return a single value: the sum of the degrees if a chord,

otherwise just the degree. :average T will return the average of the sum.

A rest would return ’(0) or 0.

EXAMPLE:

;;; NB This uses the quarter-tone scale so degrees are double what they would ;

;;; be in the chromatic-scale. ;

(let ((event (make-event ’(cs4 d4) ’e))

(rest (make-rest ’e)))

(print (get-degree event))

(print (get-degree rest))

(print (get-degree event :average t))

(get-degree event :sum t))

(122 124)

(0)

123.0

246

SYNOPSIS:

(defmethod get-degree ((e event) &key written sum average)

20.2.109 event/get-dynamic

[event] [Methods]

DESCRIPTION:

Gets the dynamic marking attached to a given event object.

NB: This method is similar to the event::get-dynamics method, but assumes

that there is only one dynamic and returns that dynamic as a single symbol

rather than a list. If the user suspects that multiple dynamics may have

somehow have been added to the MARKS slot of the event class, use

get-dynamics to obtain a list of all dynamics in that slot; otherwise, this

is the method that should be generally used.

20 SC/NAMED-OBJECT 363

ARGUMENTS:

- An event object.

RETURN VALUE:

The symbol representing the dynamic if there is one attached to that event,

otherwise NIL.

EXAMPLE:

;; The method returns just the dynamic marking from the MARKS list, as a symbol

(let ((e (make-event ’c4 ’q)))

(add-mark-once e ’ppp)

(add-mark-once e ’pizz)

(get-dynamic e))

=> PPP

;; The method returns NIL if there is no dynamic in the MARKS list

(let ((e (make-event ’c4 ’q)))

(add-mark-once e ’pizz)

(get-dynamic e))

=> NIL

SYNOPSIS:

(defmethod get-dynamic ((e event))

20.2.110 event/get-dynamics

[event] [Methods]

DESCRIPTION:

Get the list of dynamic marks from a given event object, assuming there are

multiple dynamics present. If other non-dynamic events are also contained

in the MARKS slot of the rhythm object within the given event object, these

are disregarded and only the dynamic marks are returned.

NB: This method is similar to the event::get-dynamic, but is intended for

use should multiple dynamics have somehow become attached to the same

event. The method event::get-dynamic is the method that should

generally be used.

20 SC/NAMED-OBJECT 364

ARGUMENTS:

- An event object.

RETURN VALUE:

A list containing the dynamics stored in the MARKS slot of the rhythm

object within the given event object. NIL is returned if no dynamic marks

are attached to the given event object.

EXAMPLE:

;; Create an event object and get the dynamics attached to that object. These

;; are NIL by default (unless otherwise specified).

(let ((e (make-event ’c4 ’q)))

(get-dynamics e))

=> NIL

;; Create an event object, add one dynamic and one non-dynamic mark, print all

;; marks, then retrieve only the dynamics.

(let ((e (make-event ’c4 ’q)))

(add-mark-once e ’ppp)

(add-mark-once e ’pizz)

(print (marks e))

(get-dynamics e))

=>

(PIZZ PPP)

(PPP)

;; Should multiple dynamics have become attached to the same event object,

;; get-dynamics will return all dynamics present in the MARKS slot

(let ((e (make-event ’c4 ’q)))

(add-mark-once e ’pizz)

(add-mark-once e ’ppp)

(push ’fff (marks e))

(print (marks e))

(get-dynamics e))

=> (FFF PPP)

SYNOPSIS:

(defmethod get-dynamics ((e event))

20 SC/NAMED-OBJECT 365

20.2.111 event/get-midi-channel

[event] [Methods]

DESCRIPTION:

Retrieve the value set for the midi-channel slot of the pitch object within

a given event object.

ARGUMENTS:

- An event object.

RETURN VALUE:

An integer representing the given midi-channel value.

EXAMPLE:

;; The default midi-channel value for a newly created event-object is NIL

;;; unless otherwise specified.

(let ((e (make-event ’c4 ’q)))

(get-midi-channel e))

=> NIL

;; Create an event object, set its MIDI-channel and retrieve it

(let ((e (make-event ’c4 ’q)))

(set-midi-channel e 11 12)

(get-midi-channel e))

=> 11

SYNOPSIS:

(defmethod get-midi-channel ((e event))

20.2.112 event/get-pitch-symbol

[event] [Methods]

DESCRIPTION:

Retrieve the pitch symbol (CM/CMN note-name notation) of a given event

object. Returns a single symbol if the given event object consists of a

single pitch; otherwise, returns a list of pitch symbols if the given event

object consists of a chord.

20 SC/NAMED-OBJECT 366

ARGUMENTS:

- An event object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the test is to handle the event’s

written or sounding pitch. T = written. Default = T.

RETURN VALUE:

A symbol, if the event object consists of only a single pitch, otherwise a

list of pitch symbols if the event object consists of a chord.

EXAMPLE:

;; Get the pitch symbol of an event object with a single pitch

(let ((e (make-event ’c4 ’q)))

(get-pitch-symbol e))

=> C4

;; Getting the pitch symbol of an event object that consists of a chord returns

;; a list of pitch symbols

(let ((e (make-event ’(c4 e4 g4) ’q)))

(get-pitch-symbol e))

=> (C4 E4 G4)

SYNOPSIS:

(defmethod get-pitch-symbol ((e event) &optional (written t))

20.2.113 event/has-hairpin

[event] [Methods]

DESCRIPTION:

Return T or NIL depending on whether the event has a beginning or ending

hairpin (cresc. or dim. line).

ARGUMENTS:

- an event object

20 SC/NAMED-OBJECT 367

RETURN VALUE:

The hairpin mark the event has, as a list, or NIL if it has none.

SYNOPSIS:

(defmethod has-hairpin ((e event))

20.2.114 event/has-mark-before

[event] [Methods]

DESCRIPTION:

Determine whether a specifed event object has a specified mark in its

MARKS-BEFORE slot.

ARGUMENTS:

- An event object.

- A mark.

RETURN VALUE:

Returns the specified mark if the mark exists in the MARKS-BEFORE slot,

otherwise returns NIL

EXAMPLE:

;;; Returns the specified mark if that mark is present

(let ((e (make-event ’c4 4)))

(add-mark-before e ’ppp)

(has-mark-before e ’ppp))

=> (PPP)

;;; Returns NIL if the specified mark is not present

(let ((e (make-event ’c4 4)))

(add-mark-before e ’ppp)

(has-mark-before e ’fff))

=> NIL

SYNOPSIS:

(defmethod has-mark-before ((e event) mark &optional (test #’equal))

20 SC/NAMED-OBJECT 368

20.2.115 event/highest

[event] [Methods]

DESCRIPTION:

Get the highest pitch (of a chord) in a given event object. If the given

event object contains a single pitch only, that pitch is returned.

ARGUMENTS:

- An event object.

RETURN VALUE:

A pitch object.

EXAMPLE:

;; Returns a pitch object ;

(let ((e (make-event ’c4 ’q)))

(highest e))

=>

PITCH: frequency: 261.6255569458008, midi-note: 60, midi-channel: NIL

pitch-bend: 0.0

degree: 120, data-consistent: T, white-note: C4

nearest-chromatic: C4

src: 1.0, src-ref-pitch: C4, score-note: C4

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 4, c5ths: 0, no-8ve: C, no-8ve-no-acc: C

show-accidental: T, white-degree: 28,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: C4, tag: NIL,

data: C4

;; Returns the highest note of a chord object within an event object ;

(let ((e (make-event ’(d4 fs4 a4) ’q)))

(data (highest e)))

=> A4

20 SC/NAMED-OBJECT 369

SYNOPSIS:

(defmethod highest ((e event))

20.2.116 event/inc-duration

[event] [Methods]

DESCRIPTION:

Increase the duration of a given event object by a specified time in

seconds. This will result in new values for the end-time,

duration-in-tempo, and compound-duration-in-tempo slots.

NB: Changing this value directly could result in incorrect timing info in a

bar.

ARGUMENTS:

- An event object.

- A value that is the increment in seconds by which the duration is to be

extended.

RETURN VALUE:

The new duration in seconds.

EXAMPLE:

;;; Create a slippery-chicken object, assign a variable to one of the event

;;; objects it contains, print the corresponding duration slots; apply

;;; inc-duration and print the corresponding duration slots again to see the

;;; change.

(let* ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:set-palette ’((1 ((gs3 as3 b3))))

:set-map ’((1 (1)))

:rthm-seq-palette ’((1 ((((2 4) q (e) s (32) 32))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vc (1)))))))

(e (get-event mini 1 3 ’vc)))

(print (end-time e))

(print (duration-in-tempo e))

20 SC/NAMED-OBJECT 370

(print (compound-duration-in-tempo e))

(inc-duration e 7.0)

(print (end-time e))

(print (duration-in-tempo e))

(print (compound-duration-in-tempo e)))

=>

1.75

0.25

0.25

8.75

7.25

7.25

SYNOPSIS:

(defmethod inc-duration ((e event) inc)

20.2.117 event/is-chord

[event] [Methods]

DESCRIPTION:

Test to determine whether a given event object consists of a chord (as

opposed to a single pitch or a rest).

ARGUMENTS:

- An event object.

RETURN VALUE:

- If the given event object is a chord, the method returns a number that is

the number of notes in the chord.

- Returns NIL if the given event object is not a chord.

EXAMPLE:

;; Returns NIL if not a chord ;

(let ((e (make-event ’c4 ’q)))

(is-chord e))

=> NIL

20 SC/NAMED-OBJECT 371

;; If a chord, returns the number of notes in the chord ;

(let ((e (make-event ’(c4 e4 g4) ’q)))

(is-chord e))

=> 3

;; A rest is not a chord ;

(let ((e (make-rest ’q)))

(is-chord e))

=> NIL

SYNOPSIS:

(defmethod is-chord ((e event))

20.2.118 event/is-dynamic

[event] [Functions]

DESCRIPTION:

Determine whether a specified symbol belongs to the list of predefined

dynamic marks.

ARGUMENTS:

- A symbol.

RETURN VALUE:

NIL if the specified mark is not found on the predefined list of possible

dynamic marks, otherwise the tail of the list of possible dynamics starting

with the given dynamic.

EXAMPLE:

(is-dynamic ’pizz)

=> NIL

(is-dynamic ’f)

=> (F FF FFF FFFF)

20 SC/NAMED-OBJECT 372

SYNOPSIS:

(defun is-dynamic (mark)

20.2.119 event/is-single-pitch

[event] [Methods]

DESCRIPTION:

Test to see if an event object consists of a single pitch (as opposed to a

chord or a rest).

ARGUMENTS:

- An event object.

RETURN VALUE:

Returns T if the given event object consists of a single pitch, otherwise

returns NIL.

EXAMPLE:

;; Returns T if the event object consists of a single pitch ;

(let ((e (make-event ’c4 ’q)))

(is-single-pitch e))

=> T

;; Returns NIL if the event object is a chord ;

(let ((e (make-event ’(c4 e4 g4) ’q)))

(is-single-pitch e))

=> NIL

;; Also returns NIL if the event object is a rest ;

(let ((e (make-rest ’q)))

(is-single-pitch e))

=> NIL

SYNOPSIS:

(defmethod is-single-pitch ((e event))

20 SC/NAMED-OBJECT 373

20.2.120 event/lowest

[event] [Methods]

DESCRIPTION:

Get the lowest pitch (of a chord) in a given event object. If the given

event object contains a single pitch only, that pitch is returned.

ARGUMENTS:

- An event object.

RETURN VALUE:

A pitch object.

EXAMPLE:

;; Returns a pitch object ;

(let ((e (make-event ’c4 ’q)))

(lowest e))

=>

PITCH: frequency: 261.6255569458008, midi-note: 60, midi-channel: NIL

pitch-bend: 0.0

degree: 120, data-consistent: T, white-note: C4

nearest-chromatic: C4

src: 1.0, src-ref-pitch: C4, score-note: C4

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 4, c5ths: 0, no-8ve: C, no-8ve-no-acc: C

show-accidental: T, white-degree: 28,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: C4, tag: NIL,

data: C4

;; Returns the lowest note of a chord object within an event object ;

(let ((e (make-event ’(d4 fs4 a4) ’q)))

(data (lowest e)))

=> D4

20 SC/NAMED-OBJECT 374

SYNOPSIS:

(defmethod lowest ((e event))

20.2.121 event/make-event

[event] [Functions]

DESCRIPTION:

Create an event object for holding rhythm, pitch, and timing data.

ARGUMENTS:

- A pitch or chord. This can be one of those objects (will be added to the

pitch-or-chord slot without cloning), or a pitch symbol or list of pitch

symbols (for a chord).

- The event’s rhythm (e.g. ’e). If this is a number, its interpretation is

dependent on the value of duration (see below). NB if this is a rhythm

object, it will be cloned.

OPTIONAL ARGUMENTS:

keyword arguments:

- :start-time. The start time of the event in seconds. Default = NIL.

- :is-rest. Set to T or NIL to indicate whether or not the given event is a

rest. Default = NIL. NB: The make-rest method is better suited to making

rests; however, if using make-event to do so, the pitch-or-chord slot

must be set to NIL.

- :is-tied-to. This argument is for score output and playing purposes. Set

to T or NIL to indicate whether this event is tied to the previous event

(i.e. it won’t sound independently). Default = NIL.

- :duration. T or NIL to indicate whether the specified duration of the

event has been stated in absolute seconds, not a known rhythm like

’e. Thus (make-event ’c4 4 :duration nil) indicates a quarter note with

duration 1, but (make-event ’(c4 d4) 4 :duration t) indicates a whole

note with an absolute duration of 4 seconds (both assuming a tempo of

60). Default = NIL.

- :amplitude sets the amplitude of the event. Possible values span from 0.0

(silent) to maximum of 1.0. Default = (get-sc-config ’default-amplitude).

- :tempo. A number to indicate the tempo of the event as a normal bpm

value. Default = 60. This argument is only used when creating the rhythm

slots (e.g. duration) not for setting duration-in-tempo.

- :midi-channel. A number from 0 to 127 indicating the MIDI channel on

which the event should be played back. Default = NIL.

20 SC/NAMED-OBJECT 375

- :microtones-midi-channel. If the event is microtonal, this argument

indicates the MIDI-channel to be used for the playback of the microtonal

notes. Default = NIL. NB: See player.lsp/make-player for details on

microtones in MIDI output.

- :transposition. A number in semitones that indicates the transposition of

the instrument that this event is being created for. E.g. -2 would be

for a B-flat clarinet.

- :written. The given pitch or chord is the written value. In this case

the sounding value will be set according to the (required) transposition

argument. Default = NIL.

RETURN VALUE:

- An event object.

EXAMPLE:

;; A quarter-note (crotchet) C ;

(make-event ’c4 4)

=>

EVENT: start-time: NIL, end-time: NIL,

duration-in-tempo: 0.0,

compound-duration-in-tempo: 0.0,

amplitude: 0.7,

bar-num: -1, marks-before: NIL,

tempo-change: NIL

instrument-change: NIL

display-tempo: NIL, start-time-qtrs: -1,

midi-time-sig: NIL, midi-program-changes: NIL,

8va: 0

pitch-or-chord:

PITCH: frequency: 261.6255569458008, midi-note: 60, midi-channel: NIL

pitch-bend: 0.0

degree: 120, data-consistent: T, white-note: C4

nearest-chromatic: C4

src: 1.0, src-ref-pitch: C4, score-note: C4

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 4, c5ths: 0, no-8ve: C, no-8ve-no-acc: C

show-accidental: T, white-degree: 28,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: C4, tag: NIL,

20 SC/NAMED-OBJECT 376

data: C4

written-pitch-or-chord: NIL

RHYTHM: value: 4.0, duration: 1.0, rq: 1, is-rest: NIL, score-rthm: 4.0f0,

undotted-value: 4, num-flags: 0, num-dots: 0, is-tied-to: NIL,

is-tied-from: NIL, compound-duration: 1.0, is-grace-note: NIL,

needs-new-note: T, beam: NIL, bracket: NIL, rqq-note: NIL,

rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 4,

tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: 4, tag: NIL,

data: 4

;; Create a whole-note (semi-breve) chord, then print its data, value, duration ;

;; and pitch content ;

(let ((e (make-event ’(c4 e4 g4) 4 :duration t)))

(print (data e))

(print (value e))

(print (duration e))

(print (loop for p in (data (pitch-or-chord e)) collect (data p))))

=>

W

1.0f0

4.0

(C4 E4 G4)

;; Create a single-pitch quarter-note event which is tied to, plays back on ;

;; MIDI channel 1 and has an amplitude of 0.5, then print these values by ;

;; accessing the corresponding slots. ;

(let ((e (make-event ’c4 4

:is-tied-to t

:midi-channel 1

:amplitude 0.5)))

(print (is-tied-to e))

(print (midi-channel (pitch-or-chord e)))

(print (amplitude e)))

=>

T

1

0.5

;; Create an event object that consists of a quarter-note rest and print the ;

;; contents of the corresponding slots ;

(let ((e (make-event nil ’q :is-rest t)))

(print (pitch-or-chord e))

20 SC/NAMED-OBJECT 377

(print (data e))

(print (is-rest e)))

=>

NIL

Q

T

SYNOPSIS:

(defun make-event (pitch-or-chord rthm &key

start-time

is-rest

is-tied-to

duration

midi-channel

microtones-midi-channel

;; MDE Thu May 31 19:03:59 2012 -- allow us to auto-set the

;; written-pitch-or-chord slot

transposition

;; MDE Sat Apr 20 15:13:41 2013 -- allow us to create

;; written pitch events and auto-set sounding

written

(amplitude (get-sc-config ’default-amplitude))

(tempo 60))

20.2.122 event/make-events

[event] [Functions]

DESCRIPTION:

Make a list of events using the specified data, whereby a list indicates a

note (or chord) and its rhythm and a single datum is the rhythm of a rest.

ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

- A whole number indicating the MIDI channel on which the event is to be

played.

- A whole number indicating the MIDI channel on which microtonal pitches of

the event are to be played. NB: See player.lsp/make-player for details on

microtones in MIDI output.

20 SC/NAMED-OBJECT 378

RETURN VALUE:

A list.

EXAMPLE:

;; Create a list of events including a quarter note, two rests, and a chord, ;

;; then print-simple its contents ;

(let ((e (make-events ’((g4 q) e s ((d4 fs4 a4) s)))))

(loop for i in e do (print-simple i)))

=>

G4 Q, rest E, rest S, (D4 FS4 A4) S,

;; Create a list of events to be played on MIDI-channel 3, then check the MIDI ;

;; channels of each sounding note ;

(let ((e (make-events ’((g4 q) e s (a4 s) q e (b4 s)) 3)))

(loop for i in e

when (not (is-rest i))

collect (midi-channel (pitch-or-chord i))))

=> (3 3 3)

SYNOPSIS:

(defun make-events (data-list &optional midi-channel microtones-midi-channel)

20.2.123 event/make-events2

[event] [Functions]

DESCRIPTION:

Like make-events, but rhythms and pitches are given in separate lists to

allow for rhythms with ties using "+" etc. "Nil" or "r" given in the pitch

list indicates a rest; otherwise, a single note name will set a single

pitch while a list of note names will set a chord. Pitches for tied notes

only have to be given once.

ARGUMENTS:

- A list of rhythms.

- A list of note names (including NIL or R for rests).

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 379

- A whole number value to indicate the MIDI channel on which to play back

the event.

- A whole number value to indicate the MIDI channel on which to play back

microtonal pitch material for the event. NB: See player.lsp/make-player

for details on microtones in MIDI output.

RETURN VALUE:

A list.

EXAMPLE:

;; Create a make-events2 list and use the print-simple function to retrieve its

;; contents.

(let ((e (make-events2 ’(q e e. h+s 32 q+te) ’(cs4 d4 (e4 g4 b5) nil a3 r))))

(loop for i in e do (print-simple i)))

=>

CS4 Q, D4 E, (E4 G4 B5) E., rest H, rest S, A3 32, rest Q, rest TE,

;; Create a list of events using make-events2, indicating they be played back

;; on MIDI-channel 3, then print the corresponding slots to check it

(let ((e (make-events2 ’(q e. h+s 32 q+te) ’(cs4 b5 nil a3 r) 3)))

(loop for i in e

when (not (is-rest i))

collect (midi-channel (pitch-or-chord i))))

=>

(3 3 3)

SYNOPSIS:

(defun make-events2 (rhythms pitches

&optional midi-channel microtones-midi-channel)

20.2.124 event/make-punctuation-events

[event] [Functions]

DESCRIPTION:

Given a list of numbers, a rhythm, and a note name or list of note names,

create a new list of single events separated by rests.

The rhythm specified serves as the basis for the new list. The numbers

20 SC/NAMED-OBJECT 380

specified represent groupings in the new list that are each made up of one

rhythm followed by rests. Each consecutive grouping in the new list has the

length of each consecutive number in the numbers list multiplied by the

rhythm specified.

Notes can be a single note or a list of notes. If the latter, they’ll be

used one after the other, repeating the final note once reached.

ARGUMENTS:

- A list of grouping lengths.

- A rhythm.

- A note name or list of note names.

RETURN VALUE:

A list.

EXAMPLE:

;; Create a list of three groups that are 2, 3, and 5 16th-notes long, with the ;

;; first note of each grouping being a C4, then print-simple it’s contents. ;

(let ((pe (make-punctuation-events ’(2 3 5) ’s ’c4)))

(loop for e in pe do (print-simple e)))

=>

C4 S, rest S, C4 S, rest S, rest S, C4 S, rest S, rest S, rest S, rest S,

;; Create a list of "punctuated" events using a list of note names. Once the ;

;; final note name is reached, it is repeated for all remaining non-rest ;

;; rhythms. ;

(let ((pe (make-punctuation-events ’(2 3 5 8) ’q ’(c4 e4))))

(loop for e in pe do (print-simple e)))

=>

C4 Q, rest Q, E4 Q, rest Q, rest Q, E4 Q, rest Q, rest Q, rest Q, rest Q, E4 Q,

rest Q, rest Q, rest Q, rest Q, rest Q, rest Q, rest Q,

SYNOPSIS:

(defun make-punctuation-events (distances rhythm notes)

20.2.125 event/make-rest

[event] [Functions]

20 SC/NAMED-OBJECT 381

DESCRIPTION:

Create an event object that consists of a rest.

ARGUMENTS:

- A rhythm (duration).

OPTIONAL ARGUMENTS:

keyword arguments:

- :start-time. A number that is the start-time of the event in seconds.

- :duration. T or NIL. T indicates that the duration given is a value of

absolute seconds rather than a known rhythm (e.g. ’e). Default = NIL.

- :tempo. Beats per minute. Default = 60.

RETURN VALUE:

- An event object.

EXAMPLE:

;; Make an event object consisting of a quarter rest ;

(make-rest 4)

=>

EVENT: start-time: NIL, end-time: NIL,

duration-in-tempo: 0.0,

compound-duration-in-tempo: 0.0,

amplitude: 0.7,

bar-num: -1, marks-before: NIL,

tempo-change: NIL

instrument-change: NIL

display-tempo: NIL, start-time-qtrs: -1,

midi-time-sig: NIL, midi-program-changes: NIL,

8va: 0

pitch-or-chord: NIL

written-pitch-or-chord: NIL

RHYTHM: value: 4.0, duration: 1.0, rq: 1, is-rest: T, score-rthm: 4.0f0,

undotted-value: 4, num-flags: 0, num-dots: 0, is-tied-to: NIL,

is-tied-from: NIL, compound-duration: 1.0, is-grace-note: NIL,

needs-new-note: NIL, beam: NIL, bracket: NIL, rqq-note: NIL,

rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 4,

tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

20 SC/NAMED-OBJECT 382

NAMED-OBJECT: id: 4, tag: NIL,

data: 4

;; Make an event object consisting of 4 seconds of rest (rather than a quarter; ;

;; indicated by the :duration t) starting at time-point 13.7 seconds, then ;

;; print the corresponding slot values. ;

(let ((e (make-rest 4 :start-time 13.7 :duration t)))

(print (is-rest e))

(print (data e))

(print (duration e))

(print (value e))

(print (start-time e)))

=>

T

W

4.0

1.0f0

13.7

SYNOPSIS:

(defun make-rest (rthm &key start-time duration (tempo 60))

20.2.126 event/natural-p

[event] [Methods]

DESCRIPTION:

Determine whether the pitch of a given event object is a natural note (no

sharps or flats).

ARGUMENTS:

- An event object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the test is to handle the written or

sounding pitch in the event. T = written. Default = NIL.

RETURN VALUE:

Returns T if the note tested is natural, otherwise NIL (ie, has a flat or

has a sharp).

20 SC/NAMED-OBJECT 383

EXAMPLE:

;; Returns T when the note is natural

(let ((e (make-event ’c4 ’q)))

(natural-p e))

=> T

;; Returns NIL when the note is not natural (ie, is sharp or flat)

(let ((e (make-event ’cs4 ’q)))

(natural-p e))

=> NIL

(let ((e (make-event ’df4 ’q)))

(natural-p e))

=> NIL

SYNOPSIS:

(defmethod natural-p ((e event) &optional written)

20.2.127 event/no-accidental

[event] [Methods]

DESCRIPTION:

Sets the SHOW-ACCIDENTAL and ACCIDENTAL-IN-PARENTHESES slots of the given

event object to NIL.

ARGUMENTS:

- An event object.

RETURN VALUE:

Always returns NIL.

EXAMPLE:

;; The SHOW-ACCIDENTAL slot is automatically set to T on new event objects

;; that consist of a sharp or flat note.

(let ((e (make-event ’cs4 ’q)))

20 SC/NAMED-OBJECT 384

(show-accidental (pitch-or-chord e)))

=> T

;; The method no-accidental sets the SHOW-ACCIDENTAL slot to NIL (and the

;; ACCIDENTAL-IN-PARENTHESES if not already).

(let ((e (make-event ’cs4 ’q)))

(no-accidental e)

(show-accidental (pitch-or-chord e)))

=> NIL

SYNOPSIS:

(defmethod no-accidental ((e event))

20.2.128 event/output-midi

[event] [Methods]

DESCRIPTION:

Generate the data necessary for MIDI output for a given event object.

NB: The given event object must contain data for start-time and

midi-channel.

ARGUMENTS:

- An event object.

OPTIONAL ARGUMENTS:

- A decimal number that is the number of seconds to offset the timing of

the MIDI output.

- A decimal number that is to override any other existing event object data

for amplitude.

RETURN VALUE:

Returns the data required for MIDI output.

EXAMPLE:

20 SC/NAMED-OBJECT 385

;; Simple use

(let ((e (make-event ’c4 ’q

:start-time 0.0

:midi-channel 1)))

(output-midi e))

=> (#i(midi time 0.0 keynum 60 duration 1.0 amplitude 0.7 channel 0))

;; Specifying time offset and forced amplitude value

(let ((e (make-event ’c4 ’q

:start-time 0.0

:midi-channel 1)))

(output-midi e 0.736 0.3))

=> (#i(midi time 0.736 keynum 60 duration 1.0 amplitude 0.3 channel 0))

SYNOPSIS:

(defmethod output-midi ((e event) &optional (time-offset 0.0) force-velocity)

20.2.129 event/pitch-

[event] [Methods]

DESCRIPTION:

Determine the interval in half-steps between two pitches.

NB: This is determined by subtracting the MIDI note value of one event from

the other. Negative numbers may result if the greater MIDI note value is

subtracted from the lesser.

ARGUMENTS:

- A first event object.

- A second event object.

RETURN VALUE:

A number.

EXAMPLE:

(let ((e1 (make-event ’c4 ’q))

(e2 (make-event ’a3 ’q)))

20 SC/NAMED-OBJECT 386

(pitch- e1 e2))

=> 3.0

;; Subtracting the upper from the lower note returns a negative number

(let ((e1 (make-event ’a3 ’q))

(e2 (make-event ’c4 ’q)))

(pitch- e1 e2))

=> -3.0

SYNOPSIS:

(defmethod pitch- ((e1 event) (e2 event))

20.2.130 event/remove-dynamics

[event] [Methods]

DESCRIPTION:

Remove all dynamic symbols from the list of marks attached to a given event

object.

NB: This doesn’t change the amplitude.

ARGUMENTS:

- An event object.

RETURN VALUE:

Returns the modified list of marks attached to the given event object if

the specified dynamic was initially present in that list and successfully

removed, otherwise returns NIL.

EXAMPLE:

;; Create an event object, add one dynamic mark and one non-dynamic mark, print

;; all marks attached to the object, and remove just the dynamics from that

;; list of all marks.

(let ((e (make-event ’c4 ’q)))

(add-mark-once e ’ppp)

(add-mark-once e ’pizz)

(print (marks e))

20 SC/NAMED-OBJECT 387

(remove-dynamics e))

=>

(PIZZ PPP)

(PIZZ)

;; Attempting to remove dynamics when none are present returns NIL.

(let ((e (make-event ’c4 ’q)))

(remove-dynamics e))

=> NIL

SYNOPSIS:

(defmethod remove-dynamics ((e event))

20.2.131 event/replace-mark

[event] [Methods]

DESCRIPTION:

Replace a specified mark of a given event object with a second specified

mark. If an event object contains more than one mark, individual marks can

be changed without modifying the remaining marks.

ARGUMENTS:

- An event object.

- The mark to be replaced.

- The new mark.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the mark to be replaced is in the

MARKS-BEFORE slot. T = it is in the MARKS-BEFORE slot. Default = NIL.

RETURN VALUE:

Returns the new value of the MARKS/MARKS-BEFORE slot of the given object.

EXAMPLE:

;; Add marks to the MARKS slot and replace ’a with ’batt ;

20 SC/NAMED-OBJECT 388

(let ((e (make-event ’c4 ’q)))

(loop for m in ’(a s pizz)

do (add-mark e m))

(replace-mark e ’a ’batt))

=> (PIZZ S BATT)

;; Add marks to the MARKS-BEFORE slot and replace ’arco with ’at ;

(let ((e (make-event ’c4 ’q)))

(loop for m in ’(arco col-legno)

do (add-mark-before e m))

(replace-mark e ’arco ’at t))

=> (COL-LEGNO AT)

|#

(defmethod replace-mark ((e event) what with &optional before)

20.2.132 event/set-midi-channel

[event] [Methods]

DESCRIPTION:

Set the MIDI-channel and microtonal MIDI-channel for the pitch object

within a given event object.

ARGUMENTS:

- An event object.

- A whole number indicating the MIDI-channel to be used for playback of

this event object.

- A whole number indicating the MIDI-channel to be used for playback of the

microtonal pitch material of this event.

RETURN VALUE:

Returns the value of the MIDI-channel setting (a whole number) if the

MIDI-channel slot has been set, otherwise NIL.

EXAMPLE:

;; Unless specified the MIDI channel of a newly created event object defaults

;;; to NIL.

(let ((e (make-event ’c4 ’q)))

20 SC/NAMED-OBJECT 389

(midi-channel (pitch-or-chord e)))

=> NIL

(let ((e (make-event ’c4 ’q)))

(set-midi-channel e 7 8)

(midi-channel (pitch-or-chord e)))

=> 7

SYNOPSIS:

(defmethod set-midi-channel ((e event) midi-channel microtonal-midi-channel)

20.2.133 event/set-midi-time-sig

[event] [Methods]

DESCRIPTION:

Sets a MIDI time signature for the given event object. This must be a

time-sig object, not just a time signature list.

ARGUMENTS:

- An event object.

- A time-sig object.

RETURN VALUE:

Returns a time-sig object.

EXAMPLE:

;; Creating a new event object sets the midi-time-sig slot to NIL by default

(let ((e (make-event ’c4 ’q)))

(midi-time-sig e))

=> NIL

;; The set-midi-time-sig method returns a time-sig object

(let ((e (make-event ’c4 ’q)))

(set-midi-time-sig e (make-time-sig ’(3 4))))

=>

20 SC/NAMED-OBJECT 390

TIME-SIG: num: 3, denom: 4, duration: 3.0, compound: NIL, midi-clocks: 24,

num-beats: 3

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "0304", tag: NIL,

data: (3 4)

;; Set the midi-time-sig slot and read the data of the given time-sig object

(let ((e (make-event ’c4 ’q)))

(set-midi-time-sig e (make-time-sig ’(3 4)))

(data (midi-time-sig e)))

=> (3 4)

SYNOPSIS:

(defmethod set-midi-time-sig ((e event) time-sig)

20.2.134 event/set-written

[event] [Methods]

DESCRIPTION:

Set the written pitch (as opposed to sounding; i.e., for transposing

instruments) of a given event object. The sounding pitch remains unchanged

as a pitch object in the PITCH-OR-CHORD slot, while the written pitch is

added as a pitch object to the WRITTEN-PITCH-OR-CHORD slot.

ARGUMENTS:

- An event object.

- A number indicating the difference in semitones (positive or

negative) between the written and sounding pitches. E.g. to set the

written-note for a B-flat Clarinet, this would be 2, for an E-flat

Clarinet, it would be -3.

RETURN VALUE:

The ’written’ pitch object.

EXAMPLE:

;; Returns a pitch object (here for example for a D Trumpet or Clarinet) ;

(let ((e (make-event ’c4 ’q)))

20 SC/NAMED-OBJECT 391

(set-written e -2))

=>

PITCH: frequency: 233.08186975464196, midi-note: 58, midi-channel: NIL

pitch-bend: 0.0

degree: 116, data-consistent: T, white-note: B3

nearest-chromatic: BF3

src: 0.8908987045288086, src-ref-pitch: C4, score-note: BF3

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: T, natural: NIL,

octave: 3, c5ths: 1, no-8ve: BF, no-8ve-no-acc: B

show-accidental: T, white-degree: 27,

accidental: F,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: BF3, tag: NIL,

data: BF3

;; Create a single-pitch event object, set it’s written pitch to two half-steps ;

;; lower, and print the corresponding data slots ;

(let ((e (make-event ’c4 ’q)))

(set-written e -2)

(print (data (pitch-or-chord e)))

(print (data (written-pitch-or-chord e))))

=>

C4

BF3

SYNOPSIS:

(defmethod set-written ((e event) transposition)

20.2.135 event/setf amplitude

[event] [Methods]

DESCRIPTION:

Change the amplitude slot of a given event object and automatically add a

mark to set a corresponding dynamic.

Numbers greater than 1.0 and less than 0.0 will also be stored in the

amplitude slot of the given event object without printing a warning, though

20 SC/NAMED-OBJECT 392

corresponding dynamic marks are only available for values between 0.0 and

1.0. Any value above 1.0 or below 0.0 will result in a dynamic marking of

FFFF and NIENTE respectively.

ARGUMENTS:

- An amplitude value (real number).

- An event object.

RETURN VALUE:

Returns the specified amplitude value.

EXAMPLE:

;; When no amplitude is specified, new event objects are created with a default

;; amplitude of 0.7.

(let ((e (make-event ’c4 ’q)))

(amplitude e))

=> 0.7

;; Setting an amplitude returns the amplitude set

(let ((e (make-event ’c4 ’q)))

(setf (amplitude e) .3))

=> 0.3

;; Create an event object, set its amplitude, then print the contents of the

;; amplitude and marks slots to see the dynamic setting.

(let ((e (make-event ’c4 ’q)))

(setf (amplitude e) .3)

(print (amplitude e))

(print (marks e)))

=>

0.3

(PP)

;; Setting an amplitude greater than 1.0 or less than 0.0 sets the amplitude

;; correspondingly and sets the dynamic mark to FFFF or NIENTE respectively.

(let ((e1 (make-event ’c4 ’q))

(e2 (make-event ’c4 ’q)))

(setf (amplitude e1) 1.3)

(setf (amplitude e2) -1.3)

20 SC/NAMED-OBJECT 393

(print (marks e1))

(print (marks e2)))

=>

(FFFF)

(NIENTE)

SYNOPSIS:

(defmethod (setf amplitude) :after (value (e event))

20.2.136 event/setf tempo-change

[event] [Methods]

DESCRIPTION:

Store the tempo when a change is made.

NB: This creates a full tempo object, not just a number representing bpm.

ARGUMENTS:

- An event object.

- A number indicating the new tempo bpm.

RETURN VALUE:

Returns a tempo object.

EXAMPLE:

;; Creation of a new event object sets the tempo-change slot to NIL by default,

;; unless otherwise specified.

(let ((e (make-event ’c4 ’q)))

(tempo-change e))

=> NIL

;; The tempo-change method returns a tempo object

(let ((e (make-event ’c4 ’q)))

(setf (tempo-change e) 132))

=>

TEMPO: bpm: 132, beat: 4, beat-value: 4.0, qtr-dur: 0.45454545454545453

20 SC/NAMED-OBJECT 394

qtr-bpm: 132.0, usecs: 454545, description: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: 132

;; The new tempo object is stored in the event object’s tempo-change slot.

(let ((e (make-event ’c4 ’q)))

(setf (tempo-change e) 132)

e)

=>

EVENT: start-time: NIL, end-time: NIL,

duration-in-tempo: 0.0,

compound-duration-in-tempo: 0.0,

amplitude: 0.7, score-marks: NIL,

bar-num: -1, cmn-objects-before: NIL,

tempo-change:

TEMPO: bpm: 132, beat: 4, beat-value: 4.0, qtr-dur: 0.45454545454545453

qtr-bpm: 132.0, usecs: 454545, description: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: 132

[...]

SYNOPSIS:

(defmethod (setf tempo-change) (value (e event))

20.2.137 event/sharp-p

[event] [Methods]

DESCRIPTION:

Determine whether the pitch of a given event object has a sharp.

ARGUMENTS:

- An event object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the test is to handle the written or

sounding pitch in the event. T = written. Default = NIL.

RETURN VALUE:

20 SC/NAMED-OBJECT 395

Returns T if the note tested has a sharp, otherwise NIL (ie, is natural or

has a flat).

EXAMPLE:

;; Returns T when the note is sharp

(let ((e (make-event ’cs4 ’q)))

(sharp-p e))

=> T

;; Returns NIL when the note is not sharp (ie, is flat or natural)

(let ((e (make-event ’c4 ’q)))

(sharp-p e))

=> NIL

(let ((e (make-event ’df4 ’q)))

(sharp-p e))

=> NIL

SYNOPSIS:

(defmethod sharp-p ((e event) &optional written)

20.2.138 event/sort-event-list

[event] [Functions]

DESCRIPTION:

Sort a list of event objects by start time from lowest to highest.

ARGUMENTS:

- A list of event objects.

RETURN VALUE:

A list of event objects.

EXAMPLE:

20 SC/NAMED-OBJECT 396

;; Create a list of event object with non-sequential start-times, sort them,

;; and return the pitches and start times of the newly ordered list.

(let ((e-list (loop repeat 8

for nn in ’(c4 d4 e4 f4 g4 a4 b4 c5)

for st in ’(1.0 3.0 2.0 5.0 8.0 4.0 7.0 6.0)

collect (make-event nn ’e :start-time st))))

(sort-event-list e-list)

(loop for e in e-list

collect (get-pitch-symbol e)

collect (start-time e)))

=> (C4 1.0 E4 2.0 D4 3.0 A4 4.0 F4 5.0 C5 6.0 B4 7.0 G4 8.0)

SYNOPSIS:

(defun sort-event-list (event-list)

20.2.139 event/transpose

[event] [Methods]

DESCRIPTION:

Transpose the pitch content of a given event object by a specified number

of semitones. This method can be applied to chords or single-pitches.

If functions are given, these will be used for the note or chord in the

event, whereby semitones may or may not be NIL in that case (transposition

could be dependent on the note or chord rather than being a fixed shift).

NB: By default this method returns a modified clone of the original rather

than changing the values of the original itself. The user can choose to

replace the values of the original by setting the keyword argument

:destructively to T.

ARGUMENTS:

- An event object.

- A number (can be positive or negative).

OPTIONAL ARGUMENTS:

keyword arguments:

- :destructively. T or NIL to indicate whether the method is to replace the

pitch values of the original event object (T) or return a new event

20 SC/NAMED-OBJECT 397

object with the new pitches (NIL). Default = NIL.

- :chord-function. A function to be used for the transposition of

chords. Default = #’transpose.

- :pitch-function. A function to be used for the transposition of

pitches. Default = #’transpose.

RETURN VALUE:

An event object.

EXAMPLE:

;; Transpose returns an event object ;

(let ((e (make-event ’c4 ’q)))

(transpose e 1))

=>

EVENT: start-time: NIL, end-time: NIL,

duration-in-tempo: 0.0,

[...]

;; By default transpose returns a modified clone, leaving the original event ;

;; object untouched. ;

(let ((e (make-event ’c4 ’q)))

(print (data (pitch-or-chord (transpose e 1))))

(print (data (pitch-or-chord e))))

=>

CS4

C4

;; When the keyword argument :destructively is set to T, the data of the ;

;; original event object is replaced ;

(let ((e (make-event ’c4 ’q)))

(transpose e 1 :destructively t)

(data (pitch-or-chord e)))

=> CS4

;; Can transpose by 0 as well (effectively no transposition) ;

(let ((e (make-event ’c4 ’q)))

(transpose e 0 :destructively t)

(data (pitch-or-chord e)))

=> C4

20 SC/NAMED-OBJECT 398

;; ...or by negative intervals ;

(let ((e (make-event ’c4 ’q)))

(transpose e -3 :destructively t)

(data (pitch-or-chord e)))

=> A3

;; Can transpose chords too ;

(let ((e (make-event ’(c4 e4 g4) ’q)))

(transpose e -3 :destructively t)

(loop for p in (data (pitch-or-chord e)) collect (data p)))

=> (A3 CS4 E4)

SYNOPSIS:

(defmethod transpose ((e event) semitones

&key

destructively

;; the default functions are the class methods for pitch

;; or chord.

(chord-function #’transpose)

(pitch-function #’transpose))

20.2.140 event/wrap-events-list

[event] [Functions]

DESCRIPTION:

Given a list of time-ascending event objects, rotate their start-times by

moving the lowest start time to a specified point in the list (determined

either by time or by nth position), assigning the subsequent start times

sequentially through the remainder of events in the list, and wrapping

around to the head of the list again to assign the final remaining start

times. If the first event doesn’t start at 0, its start time will be

conserved.

ARGUMENTS:

- A flat list of event objects.

- An integer that is the number of the event object with which to start

(nth position), or a decimal time in seconds.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 399

keyword argument:

- :time. T or NIL to indicate whether the second argument is a time in

seconds or an nth index. If a time in seconds, the method skips to the

closest event object in the list. T = time in seconds. Default = NIL.

RETURN VALUE:

Returns a flat list of event objects with adjust start-times.

EXAMPLE:

;;; Create a list of events of eighth-note durations, specifying start-times at ;

;;; 0.5-second intervals and print the pitches and start-times. Then apply the ;

;;; function and print the pitches and start-times again to see the change. ;

(let ((e-list (loop for st from 1.0 by 0.5

for nn in ’(c4 d4 e4 f4 g4 a4 b4 c5)

collect (make-event nn ’e :start-time st))))

(print

(loop for e in e-list

collect (get-pitch-symbol e)

collect (start-time e)))

(wrap-events-list e-list 3)

(print

(loop for e in e-list

collect (get-pitch-symbol e)

collect (start-time e))))

=>

(C4 1.0 D4 1.5 E4 2.0 F4 2.5 G4 3.0 A4 3.5 B4 4.0 C5 4.5)

(C4 3.5 D4 4.0 E4 4.5 F4 1.0 G4 1.5 A4 2.0 B4 2.5 C5 3.0)

SYNOPSIS:

(defun wrap-events-list (events start-at &key (time nil))

20.2.141 rhythm/force-rest

[rhythm] [Methods]

DESCRIPTION:

Force the given rhythm object to be a rest.

ARGUMENTS:

20 SC/NAMED-OBJECT 400

- A rhythm object.

RETURN VALUE:

A rhythm object.

EXAMPLE:

(let ((r (make-rhythm 8)))

(force-rest r)

(is-rest r))

=> T

SYNOPSIS:

(defmethod force-rest ((r rhythm))

20.2.142 rhythm/has-mark

[rhythm] [Methods]

DESCRIPTION:

Check to see if a given rhythm object possesses a specified mark.

ARGUMENTS:

- A rhythm object.

- A mark.

RETURN VALUE:

If the specified mark is indeed found in the MARKS slot of the given rhythm

object, the tail of the list of marks contained in that slot is returned;

otherwise NIL is returned.

EXAMPLE:

;; Add a specific mark and check to see if the rhythm object has it.

(let ((r (make-rhythm ’q)))

(add-mark r ’a)

(has-mark r ’a))

20 SC/NAMED-OBJECT 401

=> (A)

;; Check to see if the given rhythm object possess a mark we know it doesn’t.

(let ((r (make-rhythm ’q)))

(add-mark r ’a)

(has-mark r ’s))

=> NIL

SYNOPSIS:

(defmethod has-mark ((r rhythm) mark &optional (test #’equal))

20.2.143 rhythm/is-multiple

[rhythm] [Methods]

DESCRIPTION:

Determines if the value of one rhythm object is a multiple of the value of

a second rhythm object. This is established by dividing the one by the

other and checking to see if the quotient is a whole number.

ARGUMENTS:

- A first rhythm object.

- A second rhythm object.

RETURN VALUE:

Returns T if true and NIL if not. Always also returns the quotient.

EXAMPLE:

(let ((r1 (make-rhythm ’q))

(r2 (make-rhythm ’e)))

(is-multiple r1 r2))

=> T, 2.0

(let ((r1 (make-rhythm ’q))

(r2 (make-rhythm ’e.)))

(is-multiple r1 r2))

=> NIL, 1.3333333333333333

20 SC/NAMED-OBJECT 402

SYNOPSIS:

(defmethod is-multiple ((r1 rhythm) (r2 rhythm))

20.2.144 rhythm/make-rhythm

[rhythm] [Functions]

DESCRIPTION:

Make a rhythm object.

ARGUMENTS:

- A duration either as a numeric representation of a rhythm (subdivision of

a whole note; 2 = half note, 4 = quarter, 8 = eighth etc), a quoted

alphabetic shorthand for a duration (ie, ’h, ’q, ’e etc.), or an absolute

duration in seconds.

OPTIONAL ARGUMENTS:

keyword arguments:

- :is-rest. T or NIL to denote whether the given duration is a rest or

not. T = rest. Default = NIL.

- :is-tied-to. T or NIL to denote whether the given duration is tied later

to the next duration in a given rthm-seq-bar/rthm-seq object. T =

tied. Default = NIL.

- :duration. Indicates whether the duration argument has been given as a

duration in seconds, not a known rhythm like ’e or 8. T indicates that

the duration is a duration in seconds. Default = NIL.

- :tempo. Indicates the tempo for the given rhythm and is used only when

:duration is set to figure out the rhythm type (1/8, 1/4 etc.) from the

two values. So this is not related to any tempi applied, rather one that

is reflected in the duration-in-tempo slot of event.

RETURN VALUE:

A rhythm object.

EXAMPLE:

(make-rhythm 16)

=>

RHYTHM: value: 16.0, duration: 0.25, rq: 1/4, is-rest: NIL, score-rthm: 16.0,

20 SC/NAMED-OBJECT 403

undotted-value: 16, num-flags: 2, num-dots: 0, is-tied-to: NIL,

is-tied-from: NIL, compound-duration: 0.25, is-grace-note: NIL,

needs-new-note: T, beam: NIL, bracket: NIL, rqq-note: NIL,

rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 16,

tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: 16, tag: NIL,

data: 16

(make-rhythm 16 :is-rest t :is-tied-to t)

=>

RHYTHM: value: 16.0, duration: 0.25, rq: 1/4, is-rest: T, score-rthm: 16.0,

undotted-value: 16, num-flags: 2, num-dots: 0, is-tied-to: T,

is-tied-from: NIL, compound-duration: 0.25, is-grace-note: NIL,

needs-new-note: NIL, beam: NIL, bracket: NIL, rqq-note: NIL,

rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 16,

tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: 16, tag: NIL,

data: 16

(make-rhythm .23 :duration t)

=>

RHYTHM: value: 17.391304, duration: 0.23, rq: 23/100, is-rest: NIL, score-rthm: NIL,

undotted-value: -1.0, num-flags: 0, num-dots: 0, is-tied-to: NIL,

is-tied-from: NIL, compound-duration: 0.23, is-grace-note: NIL,

needs-new-note: T, beam: NIL, bracket: NIL, rqq-note: NIL,

rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: -1,

tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: NIL

SYNOPSIS:

(defun make-rhythm (rthm &key (is-rest nil) (is-tied-to nil) (duration nil)

(tempo 60.0))

20.2.145 rhythm/replace-mark

[rhythm] [Methods]

DESCRIPTION:

20 SC/NAMED-OBJECT 404

Replace a specified mark of a given rhythm object with a second specified

mark. If a rhythm object contains more than one mark, individual marks can

be changed without modifying the remaining marks.

ARGUMENTS:

- A rhythm object.

- The mark to be replaced.

- The new mark.

RETURN VALUE:

Returns the new value of the MARKS slot of the given object.

EXAMPLE:

;; Make a rhythm object, add the mark ’a, then replace ’a with ’s

(let ((r (make-rhythm ’q)))

(add-mark r ’a)

(replace-mark r ’a ’s))

=> (S)

;; Make a rhythm object, add a list of marks, replace just the ’pizz mark with

;; a ’batt mark

(let ((r (make-rhythm ’q)))

(loop for m in ’(a s pizz col-legno) do (add-mark-once r m))

(replace-mark r ’pizz ’batt))

=> (COL-LEGNO BATT S A)

SYNOPSIS:

(defmethod replace-mark ((r rhythm) what with &optional ignore)

20.2.146 rhythm/rhythm-equal

[rhythm] [Methods]

DESCRIPTION:

Compares the values of two rhythm objects to determine if they are equal.

NB rhythm-equal compares the values only, so rhythms with the same values

20 SC/NAMED-OBJECT 405

will still be considered equal even if their other attributes (such as

:is-rest and :is-tied-to etc.) are different.

ARGUMENTS:

- A first rhythm object.

- A second rhythm object.

RETURN VALUE:

T if the values of the given rhythm objects are equal, else NIL.

EXAMPLE:

(let ((r1 (make-rhythm 4))

(r2 (make-rhythm 4)))

(rhythm-equal r1 r2))

=> T

(let ((r1 (make-rhythm 4))

(r2 (make-rhythm 8)))

(rhythm-equal r1 r2))

=> NIL

(let ((r1 (make-rhythm 4 :is-rest T))

(r2 (make-rhythm 4 :is-rest NIL)))

(rhythm-equal r1 r2))

=> T

(let ((r1 (make-rhythm 4 :is-tied-to T))

(r2 (make-rhythm 4 :is-tied-to NIL)))

(rhythm-equal r1 r2))

=> T

SYNOPSIS:

(defmethod rhythm-equal ((r1 rhythm) (r2 rhythm))

20.2.147 rhythm/rhythm-list

[rhythm] [Functions]

20 SC/NAMED-OBJECT 406

DESCRIPTION:

Create a list of rhythms from symbols, possibly involving ties and not

needing meters etc. (i.e. not as strict as rthm-seq).

ARGUMENTS:

- The list of rhythm symbols.

OPTIONAL ARGUMENTS:

- T or NIL indicates whether to create a circular-sclist from the

result. If NIL, a simple list will be returned (default = NIL).

RETURN VALUE:

A list or circular-sclist of the rhythm objects.

EXAMPLE:

;; Create a list of rhythm objects

(rhythm-list ’(q w+e q. h.+s e.+ts))

=>(

RHYTHM: value: 4.0f0, duration: 1.0

[...]

RHYTHM: value: 1.0f0, duration: 4.0

[...]

RHYTHM: value: 8.0f0, duration: 0.5

[...]

RHYTHM: value: 2.6666666666666665, duration: 1.5

[...]

RHYTHM: value: 1.3333333333333333, duration: 3.0

[...]

RHYTHM: value: 16.0f0, duration: 0.25

[...]

RHYTHM: value: 5.333333333333333, duration: 0.75

[...]

RHYTHM: value: 24.0f0, duration: 0.16666666666666666

)

;; Collect the data from each of the individual rhythm objects in the list.

(let ((rl (rhythm-list ’(q w+e q. h.+s e.+ts))))

(print (loop for r in rl collect (data r))))

20 SC/NAMED-OBJECT 407

=> (Q "W" "E" Q. "H." "S" "E." "TS")

;; Set the optional argument to T to create a circular-sclist instead

(rhythm-list ’(q w+e q. h.+s e.+ts) t)

=>

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 8, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (

[...]

)

;; Create a circular-sclist and check that it’s a circular-sclist using cscl-p

(let ((rl (rhythm-list ’(q w+e q. h.+s e.+ts) t)))

(cscl-p rl))

=> T

SYNOPSIS:

(defun rhythm-list (rthms &optional circular)

20.2.148 rhythm/rhythm/

[rhythm] [Methods]

DESCRIPTION:

Determines the ratio of one rhythm object’s duration to that of a second

rhythm object by use of division.

ARGUMENTS:

- A rhythm object.

- A second rhythm object.

RETURN VALUE:

A number.

EXAMPLE:

(let ((r1 (make-rhythm ’q))

20 SC/NAMED-OBJECT 408

(r2 (make-rhythm ’e)))

(rhythm/ r1 r2))

=> 2.0

(let ((r1 (make-rhythm ’q))

(r3 (make-rhythm ’s.)))

(rhythm/ r1 r3))

=> 2.6666667

SYNOPSIS:

(defmethod rhythm/ ((r1 rhythm) (r2 rhythm))

20.2.149 rhythm/rm-marks

[rhythm] [Methods]

DESCRIPTION:

Remove a specified mark (or a list of specified marks) from the MARKS slot

of a given rhythm object. If the mark specified is not present in the given

rhythm object’s MARKS slot, a warning is printed. If some marks of a list

of specified marks are present in the rhythm object’s MARKS slot and other

aren’t, those that are will be removed and a warning will be printed for

the rest.

ARGUMENTS:

- A rhythm object.

- A mark or list of marks.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether a warning is to be printed if the specified

mark is not present in the given rhythm object’s MARKS slot.

RETURN VALUE:

Always returns NIL.

EXAMPLE:

20 SC/NAMED-OBJECT 409

;; The method itself returns NIL

(let ((r (make-rhythm ’q)))

(add-mark-once r ’a)

(rm-marks r ’a))

=> NIL

;; Adding a list of marks to r, then removing only ’s

(let ((r (make-rhythm ’q)))

(loop for m in ’(a s pizz col-legno x-head) do

(add-mark-once r m))

(rm-marks r ’s)

(marks r))

=> (X-HEAD COL-LEGNO PIZZ A)

;; Removing a list of marks from r

(let ((r (make-rhythm ’q)))

(loop for m in ’(a s pizz col-legno x-head) do

(add-mark-once r m))

(rm-marks r ’(s a))

(marks r))

=> (X-HEAD COL-LEGNO PIZZ)

;; Attempting to remove a mark that isn’t present results in a warning

;; being printed by default

(let ((r (make-rhythm ’q)))

(loop for m in ’(a s pizz col-legno x-head) do

(add-mark-once r m))

(rm-marks r ’zippy))

=> NIL

WARNING: rhythm::rm-marks: no mark ZIPPY in (X-HEAD COL-LEGNO PIZZ S A)

;; Suppress printing the warning when the specified mark isn’t present

(let ((r (make-rhythm ’q)))

(loop for m in ’(a s pizz col-legno x-head) do

(add-mark-once r m))

(rm-marks r ’zippy nil))

=> NIL

SYNOPSIS:

(defmethod rm-marks ((r rhythm) marks &optional (warn t))

20 SC/NAMED-OBJECT 410

20.2.150 rhythm/scale

[rhythm] [Methods]

DESCRIPTION:

Change the value of a rhythm object’s duration value by a specified

scaling factor.

ARGUMENTS:

- A rhythm object.

- A scaling factor.

OPTIONAL ARGUMENTS:

- <clone>. This argument determines whether a new rhythm object is made or

the duration value of the old object is replaced. When set to T, a new

object is made based on the duration value of the original. When set to

NIL, the original duration value is replaced (see example). Default = T.

RETURN VALUE:

A rhythm object.

EXAMPLE:

(let ((r (make-rhythm 4)))

(data (scale r 2)))

=> H

(let ((r (make-rhythm 4)))

(data (scale r 3)))

=> H.

(let ((r (make-rhythm 4)))

(data (scale r .5)))

=> E

(let ((r (make-rhythm 4)))

(dotimes (i 5)

(print (value (scale r .5)))))

20 SC/NAMED-OBJECT 411

=>

8.0

8.0

8.0

8.0

8.0

(let ((r (make-rhythm 4)))

(dotimes (i 5)

(print (value (scale r .5 nil)))))

=>

8.0

16.0

32.0

64.0

128.0

SYNOPSIS:

(defmethod scale ((r rhythm) scaler &optional (clone t) ignore1 ignore2)

20.2.151 rhythm/subtract

[rhythm] [Methods]

DESCRIPTION:

Create a new rhythm object with a duration that is equal to the difference

between the duration of two other given rhythm objects.

NB: This method only returns a single rhythm rather than a list with

ties. Thus h - e., for example, returns TQ...

If the resulting duration cannot be presented as a single rhythm, the DATA

slot of the resulting rhythm object is set to NIL, though the VALUE and

DURATION slots are still set with the corresponding numeric values.

If the resulting duration is equal to or less than 0, NIL is returned and

an optional warning may be printed.

ARGUMENTS:

- A first rhythm object.

- A second rhythm object.

20 SC/NAMED-OBJECT 412

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether a warning is to be printed when the

resulting duration is less than or equal to 0. Default = 0.

RETURN VALUE:

A rhythm object if the resulting duration is greater than 0, else NIL and

the optional warning.

EXAMPLE:

;; Make a new rhythm object with a duration equal to one quarter minus one

;; eighth.

(let ((r1 (make-rhythm ’q))

(r2 (make-rhythm ’e)))

(subtract r1 r2))

=>

RHYTHM: value: 8.0f0, duration: 0.5, rq: 1/2, is-rest: NIL, score-rthm: 8.0f0,

undotted-value: 8, num-flags: 1, num-dots: 0, is-tied-to: NIL,

is-tied-from: NIL, compound-duration: 0.5, is-grace-note: NIL,

needs-new-note: T, beam: NIL, bracket: NIL, rqq-note: NIL,

rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 8,

tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: E, tag: NIL,

data: E

;; A half minus a dotted eighth is represented as a triplet half

(let ((r1 (make-rhythm ’h))

(r2 (make-rhythm ’e.)))

(data (subtract r1 r2)))

=> TQ...

;; If the resulting duration is 0 or less, return NIL, with no warning by

;; default

(let ((r1 (make-rhythm ’e))

(r2 (make-rhythm ’q)))

(subtract r1 r2))

=> NIL

;; Setting the optional argument to t returns a warning when the resulting

20 SC/NAMED-OBJECT 413

;; duration is less than 0

(let ((r1 (make-rhythm ’e))

(r2 (make-rhythm ’q)))

(subtract r1 r2 t))

=> NIL

WARNING: rhythm::arithmetic: new duration is -0.5; can’t create rhythm

;; Subtracting a septuplet-16th from a quarter results in a duration that

;; cannot be represented as a single rhythm, therefore setting the DATA to NIL

;; while VALUE and DURATION are still set.

(let ((r1 (make-rhythm 4))

(r2 (make-rhythm 28)))

(print (value (subtract r1 r2)))

(print (duration (subtract r1 r2)))

(print (data (subtract r1 r2))))

=>

4.666666666666666

0.8571428571428572

NIL

SYNOPSIS:

(defmethod subtract ((r1 rhythm) (r2 rhythm) &optional warn)

20.2.152 linked-named-object/sclist

[linked-named-object] [Classes]

NAME:

player

File: sclist.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of a simple but self-checking (hence

sclist) list class.

20 SC/NAMED-OBJECT 414

Author: Michael Edwards: m@michael-edwards.org

Creation date: February 11th 2001

$$ Last modified: 21:07:47 Sun Dec 1 2013 GMT

SVN ID: $Id: sclist.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.153 sclist/change-data

[sclist] [Classes]

NAME:

change-data

File: change-data.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

change-data

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the change-data class. Holds data

regarding parameter changes for a whole section

(e.g. tempo). For use in change-map. The data in the

<changes> slot is a three-element list: the sequence

number, the bar number of the sequence where the change

takes place (defaults to 1) and the new data (e.g. a

tempo value).

When giving this data, the sequence number and bar

numbers are always integers > 0, unlike sequences

themselves which may be given any kind of id. Therefore

it’s OK to sort the given data according to integer

precedence and perform numeric tests on them too.

No public interface envisaged (so no robodoc entries).

Author: Michael Edwards: m@michael-edwards.org

Creation date: 2nd April 2001

$$ Last modified: 20:31:51 Mon May 14 2012 BST

20 SC/NAMED-OBJECT 415

SVN ID: $Id: change-data.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.154 change-data/get-change-data

[change-data] [Methods]

DESCRIPTION:

Get the change data (for example, from an instrument-change-map object) for

a specified sequence.

ARGUMENTS:

- A change-data object.

- An integer that is the number of the sequence within the given

change-data object for which to retrieve the data.

OPTIONAL ARGUMENTS:

- An integer that is the number of the bar within the specified sequence

for which to return the change data.

RETURN VALUE:

The change data of the specified sequence (and bar).

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax ((alto-sax tenor-sax) :midi-channel 1))

(db (double-bass :midi-channel 2))))

:instrument-change-map ’((1 ((sax ((1 alto-sax) (3 tenor-sax))))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s)

(w))

:pitch-seq-palette ((1 2 3 4 5 6)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))))))

(get-change-data

(get-data ’(1 sax) (instrument-change-map mini)) 2 2))

=> ALTO-SAX, NIL

20 SC/NAMED-OBJECT 416

SYNOPSIS:

(defmethod get-change-data ((cd change-data) sequence &optional (bar 1))

20.2.155 change-data/make-change-data

[change-data] [Functions]

DESCRIPTION:

Create a change-data object, which holds data for use by a change-map

object. The data stored in change-data object will be that of parameter

changes for a whole section, such as tempo values.

The data is passed to the make-change-data function as a list of

three-element lists, each consisting of the number of the sequence, the

number of the bar within that sequence, and the new data.

ARGUMENTS:

- An ID for the change-data object to be created.

- A list of three-item lists, each consisting of the number of the sequence

in which the data is to change, the number of the bar within that

sequence in which the data is to change, and the data value itself. The

sequence number and bar number are always integers > 0. If no bar-number

is given, it will default to 1.

RETURN VALUE:

A change-data object.

EXAMPLE:

(make-change-data ’cd-test ’((1 1 23) (6 1 28) (18 1 35)))

=>

CHANGE-DATA:

previous-data: NIL,

last-data: 35

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: CD-TEST, tag: NIL,

data: ((1 1 23) (6 1 28) (18 1 35))

SYNOPSIS:

(defun make-change-data (id data)

20 SC/NAMED-OBJECT 417

20.2.156 sclist/chord

[sclist] [Classes]

NAME:

chord

File: chord.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist -> chord

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the chord class that is simply an

sclist whose data is a list of pitch instances.

Author: Michael Edwards: m@michael-edwards.org

Creation date: July 28th 2001

$$ Last modified: 19:12:34 Sat Oct 4 2014 BST

SVN ID: $Id: chord.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.157 chord/add-harmonics

[chord] [Methods]

DESCRIPTION:

Adds pitches to the set which are harmonically related to the existing

pitches. The keywords are the same as for the get-harmonics function. See

also sc-set method of the same name and get-pitch-list-harmonics.

NB This will automatically sort all pitches from high to low.

ARGUMENTS:

- a chord object

keyword arguments:

see get-harmonics function

RETURN VALUE:

20 SC/NAMED-OBJECT 418

the same set object as the first argument but with new pitches added.

SYNOPSIS:

(defmethod add-harmonics ((c chord) &rest keywords)

20.2.158 chord/add-mark

[chord] [Methods]

DESCRIPTION:

Add the specified mark to the MARKS slot of the given chord object.

ARGUMENTS:

- A chord object.

- A mark.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to print a warning when attempting to add a

mark to a rest.

RETURN VALUE:

Returns the full contents of the MARKS slot of the given chord object

EXAMPLE:

;;; Returns the complete contents of the MARKS slot

(let ((chrd (make-chord ’(cs4 e4 fs4 af4 bf4))))

(add-mark chrd ’fff)

(add-mark chrd ’pizz))

=> (PIZZ FFF)

SYNOPSIS:

(defmethod add-mark ((c chord) mark &optional warn-rest)

20.2.159 chord/add-pitches

[chord] [Methods]

DESCRIPTION:

20 SC/NAMED-OBJECT 419

Add the specified pitches to the given chord object.

ARGUMENTS:

- A chord object.

- The pitches to add to that object. These can be pitch objects or any data

that can be passed to make-pitch, or indeed lists of these, as they will

be flattened.

RETURN VALUE:

- A chord object.

EXAMPLE:

(let ((ch (make-chord ’(c4 e4 g4))))

(print (get-pitch-symbols ch))

(add-pitches ch ’bf3)

(print (get-pitch-symbols ch))

(add-pitches ch ’af3 ’a4 ’b4)

(print (get-pitch-symbols ch))

(add-pitches ch ’(cs5 ds5 fs5))

(print (get-pitch-symbols ch)))

=>

(C4 E4 G4)

(BF3 C4 E4 G4)

(AF3 BF3 C4 E4 G4 A4 B4)

(AF3 BF3 C4 E4 G4 A4 B4 CS5 DS5 FS5)

SYNOPSIS:

(defmethod add-pitches ((c chord) &rest pitches)

20.2.160 chord/artificial-harmonic?

[chord] [Methods]

DATE:

October 4th 2014

DESCRIPTION:

20 SC/NAMED-OBJECT 420

Determine whether a chord represents an artificial harmonic of the type

that strings play. An artificial harmonic here is defined as a three note

chord where the second note has a ’flag-head mark (i.e diamond shape) and

the 1st and 3rd are related in frequency by an interger ratio.

NB What we don’t do (yet) is test whether the 2nd note is the correct nodal

point to produce the given pitch.

ARGUMENTS:

- a chord object

OPTIONAL ARGUMENTS:

- cents-tolerance: how many cents the top note can deviate from a pure

partial frequency. E.g. the 7th harmonic is about 31 cents from the

nearest tempered note.

RETURN VALUE:

If the chord is an artificial harmonic then the sounding (3rd) note is

returned, otherwise NIL.

SYNOPSIS:

(defmethod artificial-harmonic? ((c chord) &optional (cents-tolerance 31))

20.2.161 chord/chord-equal

[chord] [Methods]

DESCRIPTION:

Test to see if two chords are equal.

NB: Two unsorted chord objects that contain the exact same pitch objects in

a different order will not be considered equal and will return NIL.

NB: Equality is tested on pitch content only, not on, for example, the

values of the MIDI slots of those pitch objects etc.

ARGUMENTS:

- A first chord object.

- A second chord object.

20 SC/NAMED-OBJECT 421

RETURN VALUE:

T or NIL. T if the pitch content of the chords is equal, otherwise NIL.

EXAMPLE:

;; Two chords are equal

(let ((chrd1 (make-chord ’(c4 e4 gqs4 bqf4 d5 f5)

:midi-channel 11

:microtones-midi-channel 12))

(chrd2 (make-chord ’(c4 e4 gqs4 bqf4 d5 f5)

:midi-channel 11

:microtones-midi-channel 12)))

(chord-equal chrd1 chrd2))

=> T

;; Chord objects with the same pitch objects in a different order are unequal

(let ((chrd1 (make-chord ’(c4 e4 gqs4 bqf4 d5 f5)

:midi-channel 11

:microtones-midi-channel 12))

(chrd2 (make-chord ’(e4 c4 gqs4 bqf4 d5 f5)

:midi-channel 11

:microtones-midi-channel 12

:auto-sort nil)))

(chord-equal chrd1 chrd2))

=> NIL

;; Only the pitch content is compared. Content of other slots is irrelevant.

(let ((chrd1 (make-chord ’(e4 c4 gqs4 bqf4 d5 f5)

:midi-channel 11

:microtones-midi-channel 12))

(chrd2 (make-chord ’(e4 c4 gqs4 bqf4 d5 f5)

:midi-channel 7

:microtones-midi-channel 8)))

(chord-equal chrd1 chrd2))

=> T

SYNOPSIS:

(defmethod chord-equal ((c1 chord) (c2 chord))

20 SC/NAMED-OBJECT 422

20.2.162 chord/chord-member

[chord] [Methods]

DESCRIPTION:

Test whether a specified pitch object is a member of a given chord object.

ARGUMENTS:

- A chord object.

- A pitch object. This must be a pitch object, not just a note-name symbol,

but the pitch object can be made with either a note-name symbol or a

numerical hertz frequency value.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not the method should consider

enharmonically equivalent pitches to be equal. T = enharmonics are

equal. Default = T.

RETURN VALUE:

Similar to Lisp’s "member" function, this method returns the tail of the

data (list of pitch objects) of the tested chord object starting with the

specified pitch object if that pitch is indeed a member of that list,

otherwise returns NIL.

NB: Since the method returns the tail of the given chord (the "rest" of the

pitches after the given pitch), the result may be different depending

on whether that chord has been auto-sorted or not.

EXAMPLE:

;; Returns the tail of pitch objects contained starting with the tested pitch

(let ((chrd (make-chord ’(c4 e4 gqs4 a4 d5 f5 bqf5)

:midi-channel 11

:microtones-midi-channel 12)))

(pitch-list-to-symbols (chord-member chrd (make-pitch ’a4))))

=> (A4 D5 F5 BQF5)

;; The chord object’s default auto-sort feature might appear to affect outcome

(let ((chrd (make-chord ’(d5 c4 gqs4 a4 bqf5 f5 e4)

:midi-channel 11

20 SC/NAMED-OBJECT 423

:microtones-midi-channel 12)))

(pitch-list-to-symbols (chord-member chrd (make-pitch ’a4))))

=> (A4 D5 F5 BQF5)

;; Returns NIL if the pitch is not present in the tested chord object. This

;; example uses the "pitch-list-to-symbols" function to simplify the

;; pitch-object output.

(let ((chrd (make-chord ’(d5 c4 gqs4 a4 bqf5 f5 e4)

:midi-channel 11

:microtones-midi-channel 12)))

(pitch-list-to-symbols (chord-member chrd (make-pitch ’b4))))

=> NIL

;; The optional <enharmonics-are-equal> argument is set to NIL by default

(let ((chrd (make-chord ’(c4 e4 a4 d5 f5))))

(pitch-list-to-symbols (chord-member chrd (make-pitch ’ds4))))

=> NIL

;; Setting the optional <enharmonics-are-equal> argument to T

(let ((chrd (make-chord ’(c4 ef4 a4 d5 f5))))

(pitch-list-to-symbols (chord-member chrd (make-pitch ’ds4) t)))

=> (EF4 A4 D5 F5)

;; The optional <octaves-are-true> argument is NIL by default

(let ((chrd (make-chord ’(c4 ef4 a4 d5 ef5 f5))))

(pitch-list-to-symbols (chord-member chrd (make-pitch ’c5))))

=> NIL

;; If optional <octaves-are-true> argument is set to T, any occurrence of the

;; same pitch class in a different octave will be considered part of the chord

;; and return a positive result.

(let ((chrd (make-chord ’(c4 ef4 a4 d5 ef5 f5))))

(pitch-list-to-symbols (chord-member chrd (make-pitch ’c5) nil t)))

=> (C4 EF4 A4 D5 EF5 F5)

SYNOPSIS:

(defmethod chord-member ((c chord) (p pitch)

&optional (enharmonics-are-equal t)

20 SC/NAMED-OBJECT 424

(octaves-are-true nil))

20.2.163 chord/chord=

[chord] [Methods]

DATE:

November 11th 2013

DESCRIPTION:

Test whether the pitch objects of the two chords are pitch=. Assumes both

chords are sorted by pitch height. See pitch= in the pitch class for

details of comparing pitches.

RETURN VALUE:

T or NIL

SYNOPSIS:

(defmethod chord= ((c1 chord) (c2 chord) &optional enharmonics-are-equal

(frequency-tolerance 0.01)) ; (src-tolerance 0.0001))

20.2.164 chord/common-notes

[chord] [Methods]

DESCRIPTION:

Return the integer number of pitches common to two chord objects.

ARGUMENTS:

- A first chord object.

- A second chord object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether enharmonically equivalent pitches are to be

considered the same pitch. T = enharmonically equivalent pitches are

considered the same pitch. Default = T.

- T or NIL to indicate whether the same pitch class in different octaves is

to be considered the same pitch. T = consider the same pitch class from

octaves to be the same pitch. Default = NIL.

20 SC/NAMED-OBJECT 425

RETURN VALUE:

Returns an integer that is the number of pitches common to the two chords

objects.

EXAMPLE:

;; The following two chord objects have 3 pitches in common

(let ((chrd-1 (make-chord ’(c4 e4 g4 b4 d5 f5)))

(chrd-2 (make-chord ’(d3 f3 a3 c4 e4 g4))))

(common-notes chrd-1 chrd-2))

=> 3

;; By default, enharmonically equivalent pitches are considered to be the same

;; pitch

(let ((chrd-1 (make-chord ’(c4 e4 g4 b4 d5 f5)))

(chrd-2 (make-chord ’(d3 f3 a3 c4 ff4 g4))))

(common-notes chrd-1 chrd-2))

=> 3

;; Setting the first optional argument to NIL causes enharmonically equivalent

;; pitches to be considered separate pitches

(let ((chrd-1 (make-chord ’(c4 e4 g4 b4 d5 f5)))

(chrd-2 (make-chord ’(d3 f3 a3 c4 ff4 g4))))

(common-notes chrd-1 chrd-2 nil))

=> 2

;; By default, the same pitch class in different octaves is considered to be a

;; separate pitch

(let ((chrd-1 (make-chord ’(c4 e4 g4 b4 d5 f5)))

(chrd-2 (make-chord ’(d3 f3 a3 ff4 g4 c5))))

(common-notes chrd-1 chrd-2 t))

=> 2

;; Setting the second optional argument to T causes all pitches of the same

;; pitch class to be considered equal regardless of their octave

(let ((chrd-1 (make-chord ’(c4 e4 g4 b4 d5 f5)))

(chrd-2 (make-chord ’(d3 f3 a3 ff4 g4 c5))))

(common-notes chrd-1 chrd-2 t t))

=> 5

20 SC/NAMED-OBJECT 426

SYNOPSIS:

(defmethod common-notes ((c1 chord) (c2 chord)

&optional (enharmonics-are-equal t)

(octaves-are-true nil))

20.2.165 chord/delete-marks

[chord] [Methods]

DESCRIPTION:

Delete all marks from the MARKS slot of the given chord object.

ARGUMENTS:

- A chord object.

RETURN VALUE:

Returns NIL.

EXAMPLE:

;;; Make a chord object, add two marks, and print the MARKS slot to see them;

;;; apply delete-marks and print the MARKS slot again to see the change

(let ((chrd (make-chord ’(cs4 e4 fs4 af4 bf4))))

(add-mark chrd ’fff)

(add-mark chrd ’pizz)

(print (marks chrd))

(delete-marks chrd)

(print (marks chrd)))

=>

(PIZZ FFF)

NIL

SYNOPSIS:

(defmethod delete-marks ((c chord))

20.2.166 chord/get-midi-channel

[chord] [Methods]

DESCRIPTION:

20 SC/NAMED-OBJECT 427

Get the MIDI channel of the first pitch object contained in a given chord

object.

NB: This method returns only the midi-channel of the first pitch object in

the chord object’s data list.

ARGUMENTS:

- A chord object.

RETURN VALUE:

An integer.

EXAMPLE:

(let ((chrd (make-chord ’(c4 e4 gqs4 bqf4 d5 f5)

:midi-channel 11

:microtones-midi-channel 12)))

(get-midi-channel chrd))

=> 11

SYNOPSIS:

(defmethod get-midi-channel ((c chord))

20.2.167 chord/get-pitch

[chord] [Methods]

DESCRIPTION:

Get the pitch object located at the specified index within the given chord

object. The <ref> argument is 1-based.

ARGUMENTS:

- A chord object.

- An integer that is the index of the pitch object sought within the data

list of the given chord object.

RETURN VALUE:

A pitch object.

20 SC/NAMED-OBJECT 428

EXAMPLE:

(let ((chrd (make-chord ’(c4 e4 gqs4 bqf4 d5 f5)

:midi-channel 11

:microtones-midi-channel 12)))

(get-pitch chrd 3))

=>

PITCH: frequency: 403.482, midi-note: 67, midi-channel: 12

pitch-bend: 0.5

degree: 135, data-consistent: T, white-note: G4

nearest-chromatic: G4

src: 1.5422108173370361, src-ref-pitch: C4, score-note: GS4

qtr-sharp: 1, qtr-flat: NIL, qtr-tone: 1,

micro-tone: T,

sharp: NIL, flat: NIL, natural: NIL,

octave: 4, c5ths: 0, no-8ve: GQS, no-8ve-no-acc: G

show-accidental: T, white-degree: 32,

accidental: QS,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: GQS4, tag: NIL,

data: GQS4

SYNOPSIS:

(defmethod get-pitch ((c chord) ref)

20.2.168 chord/get-pitch-symbols

[chord] [Methods]

DESCRIPTION:

Return the data of the pitch objects from a given chord object as a list of

note-name symbols.

ARGUMENTS:

- A chord object.

RETURN VALUE:

A list of note-name symbols.

20 SC/NAMED-OBJECT 429

EXAMPLE:

(let ((chrd (make-chord ’(c4 e4 gqs4 bqf4 d5 f5)

:midi-channel 11

:microtones-midi-channel 12)))

(get-pitch-symbols chrd))

=> (C4 E4 GQS4 BQF4 D5 F5)

SYNOPSIS:

(defmethod get-pitch-symbols ((c chord) &optional ignore)

20.2.169 chord/has-notes

[chord] [Methods]

DATE:

16-Aug-2010

DESCRIPTION:

Tests whether a given chord object contains at least one pitch

object.

(make-chord nil) is a valid function call and creates a chord object with

no notes.

ARGUMENTS:

- A chord object.

RETURN VALUE:

Returns T if the given chord object contains at least one pitch object,

otherwise returns NIL.

EXAMPLE:

;; Returns T if the given chord object contains at least one pitch object

(let ((chrd (make-chord ’(c4))))

(has-notes chrd))

20 SC/NAMED-OBJECT 430

=> T

(let ((chrd (make-chord ’(c4 e4 g4))))

(has-notes chrd))

=> T

;; Otherwise returns NIL

(let ((chrd (make-chord nil)))

(has-notes chrd))

=> NIL

SYNOPSIS:

(defmethod has-notes ((c chord))

20.2.170 chord/highest

[chord] [Methods]

DESCRIPTION:

Return the pitch object from the given chord object that has the highest

pitch data.

NB: As opposed to the "lowest" method, this method cannot handle chord

objects whose pitches have not been auto-sorted from low to high.

ARGUMENTS:

- A chord object.

RETURN VALUE:

A pitch object

EXAMPLE:

;; Returns the last pitch object of a chord object

(let ((chrd (make-chord ’(e4 c4 gqs4 bqf4 d5 f5)

:midi-channel 11

:microtones-midi-channel 12)))

(highest chrd))

20 SC/NAMED-OBJECT 431

=>

PITCH: frequency: 698.456, midi-note: 77, midi-channel: 11

pitch-bend: 0.0

degree: 154, data-consistent: T, white-note: F5

nearest-chromatic: F5

src: 2.669679641723633, src-ref-pitch: C4, score-note: F5

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 5, c5ths: 0, no-8ve: F, no-8ve-no-acc: F

show-accidental: T, white-degree: 38,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: F5, tag: NIL,

data: F5

;; Is not capable of returning the highest pitch object from chord objects that

;; have not been auto-sorted

(let ((chrd (make-chord ’(e4 c4 gqs4 bqf4 f5 d5)

:midi-channel 11

:microtones-midi-channel 12

:auto-sort nil)))

(data (highest chrd)))

=> D5

SYNOPSIS:

(defmethod highest ((c chord))

20.2.171 chord/lowest

[chord] [Methods]

DESCRIPTION:

Return the pitch object from the given chord object that has the lowest

pitch data. The method can handle chord objects whose pitches have not been

auto-sorted from low to high.

ARGUMENTS:

- A chord object.

RETURN VALUE:

20 SC/NAMED-OBJECT 432

A pitch object.

EXAMPLE:

;; Returns the pitch object of the lowest pitch despite not being sorted

(let ((chrd (make-chord ’(e4 c4 gqs4 bqf4 d5 f5)

:midi-channel 11

:microtones-midi-channel 12

:auto-sort nil)))

(lowest chrd))

=>

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 11

pitch-bend: 0.0

degree: 120, data-consistent: T, white-note: C4

nearest-chromatic: C4

src: 1.0, src-ref-pitch: C4, score-note: C4

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 4, c5ths: 0, no-8ve: C, no-8ve-no-acc: C

show-accidental: T, white-degree: 28,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: C4, tag: NIL,

data: C4

SYNOPSIS:

(defmethod lowest ((c chord))

20.2.172 chord/make-chord

[chord] [Functions]

DESCRIPTION:

Create a chord object from a list of note-name symbols.

ARGUMENTS:

- A list of note-name symbols.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 433

keyword arguments:

- :id. An element of any type that is to be the ID of the chord object

created.

- :auto-sort. T or NIL to indicate whether the method should first sort the

individual pitch objects created from low to high before returning the

new chord object. T = sort. Default = T.

- :midi-channel. An integer that is to be the MIDI channel value to which

all of the chromatic pitch objects in the given chord object are to be

set for playback. Default = 1.

- :microtones-midi-channel. An integer that is to be the MIDI channel value

to which all of the microtonal pitch objects in the given chord object

are to be set for playback. Default = 1. NB: See

player.lsp/make-player for details on microtones in MIDI output.

- :force-midi-channel. T or NIL to indicate whether to force a given value

to the MIDI-CHANNEL slot, even if the notes passed to the method are

already pitch objects with non-zero MIDI-CHANNEL values.

RETURN VALUE:

A chord object.

EXAMPLE:

;; Simple usage with default values for keyword arguments

(make-chord ’(c4 e4 g4 b4 d5 f5))

=>

CHORD: auto-sort: T, marks: NIL, micro-tone: NIL

SCLIST: sclist-length: 6, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 0

[...]

data: C4

PITCH: frequency: 329.628, midi-note: 64, midi-channel: 0

[...]

data: E4

[...]

PITCH: frequency: 391.995, midi-note: 67, midi-channel: 0

[...]

data: G4

[...]

PITCH: frequency: 493.883, midi-note: 71, midi-channel: 0

[...]

data: B4

20 SC/NAMED-OBJECT 434

[...]

PITCH: frequency: 587.330, midi-note: 74, midi-channel: 0

[...]

data: D5

[...]

PITCH: frequency: 698.456, midi-note: 77, midi-channel: 0

[...]

data: F5

)

;; By default the pitches are first sorted low to high

(let ((mc (make-chord ’(e4 c4 g4 b4 f5 d5))))

(loop for p in (data mc) collect (data p)))

=> (C4 E4 G4 B4 D5 F5)

;; Setting the :midi-channel and :microtones-midi-channel arguments results in

;; the MIDI-CHANNEL slot of each of the contained pitch objects being set

;; accordingly, depending on whether it is a chromatic or microtonal pitch

(let ((mc (make-chord ’(cqs4 e4 gqf4 b4 dqf5 f5)

:midi-channel 11

:microtones-midi-channel 12)))

(loop for p in (data mc) collect (midi-channel p)))

=> (12 11 12 11 12 11)

SYNOPSIS:

(defun make-chord (note-list &key (id nil) (auto-sort t) (midi-channel 1)

(microtones-midi-channel 1) (force-midi-channel t))

20.2.173 chord/no-accidental

[chord] [Methods]

DESCRIPTION:

Set the SHOW-ACCIDENTAL slot of all pitch objects within a given chord

object to NIL. This results in no accidentals for the given chord being printed

when written to a score, and also excludes the writing of any accidentals

for that chord in parentheses.

ARGUMENTS:

- A chord object.

20 SC/NAMED-OBJECT 435

RETURN VALUE:

Always returns NIL.

EXAMPLE:

;;; Make a chord, print the SHOW-ACCIDENTAL slots of the pitch objects it

;;; contains; then call the method and print the same slots again to see the

;;; change.

(let ((chrd (make-chord ’(cs4 e4 fs4 af4 bf4))))

(print (loop for p in (data chrd) collect (show-accidental p)))

(no-accidental chrd)

(print (loop for p in (data chrd) collect (show-accidental p))))

=>

(T T T T T)

(NIL NIL NIL NIL NIL)

SYNOPSIS:

(defmethod no-accidental ((c chord))

20.2.174 chord/output-midi-note

[chord] [Methods]

DESCRIPTION:

Generate the MIDI-related data for each pitch in a given chord object.

ARGUMENTS:

- A chord object.

- A number that is the start time in seconds of the given chord within the

output MIDI file.

- A decimal number between 0.0 and 1.0 that is the amplitude of the given

chord in the output MIDI file.

- A number that is the duration in seconds of the given chord in the output

MIDI file.

RETURN VALUE:

The corresponding data in list form.

20 SC/NAMED-OBJECT 436

EXAMPLE:

;; Generate the MIDI-related data required for a 5-note chord that starts 100

;; seconds into the output MIDI file, with an amplitude of 0.5 and a duration

;; of 13.0 seconds.

(let ((chrd (make-chord ’(cs4 e4 fs4 af4 bf4))))

(output-midi-note chrd 100.0 0.5 13.0))

=> (#i(midi time 100.0 keynum 61 duration 13.0 amplitude 0.5 channel -1)

#i(midi time 100.0 keynum 64 duration 13.0 amplitude 0.5 channel -1)

#i(midi time 100.0 keynum 66 duration 13.0 amplitude 0.5 channel -1)

#i(midi time 100.0 keynum 68 duration 13.0 amplitude 0.5 channel -1)

#i(midi time 100.0 keynum 70 duration 13.0 amplitude 0.5 channel -1))

SYNOPSIS:

(defmethod output-midi-note ((c chord) time amplitude duration)

20.2.175 chord/pitch-

[chord] [Methods]

DESCRIPTION:

Determine the difference between the lowest pitch of two chords. This

method can be used, for example, to compare the written and sounding

versions of a chord to determine transposition.

If the lower chord is passed as the first argument, the method will return

a negative number.

NB: This method takes pitch bend into consideration when calculating.

ARGUMENTS:

- A first chord object.

- A second chord object.

RETURN VALUE:

A positive or negative decimal number.

EXAMPLE:

20 SC/NAMED-OBJECT 437

;; The method measures the distance between the first (lowest) pitches of the

;;; chord only.

(let ((chrd-1 (make-chord ’(c4 e4 g4)))

(chrd-2 (make-chord ’(d4 e4 fs4 a4))))

(pitch- chrd-2 chrd-1))

=> 2.0

;;; Passing the lower chord as the first argument produces a negative result

(let ((chrd-1 (make-chord ’(c4 e4 g4)))

(chrd-2 (make-chord ’(d4 e4 fs4 a4))))

(pitch- chrd-1 chrd-2))

=> -2.0

SYNOPSIS:

(defmethod pitch- ((c1 chord) (c2 chord))

20.2.176 chord/respell-chord

[chord] [Methods]

DESCRIPTION:

Respell the pitches of a given chord object to improve interval structure;

i.e., removing augmented intervals etc.

This method respells pitches from the bottom of the chord upwards. It does

not process the pitches downwards again once pitches has been

changed. Instead, it reattempts the whole respelling with the enharmonic of

the lowest pitch to determine which spelling produces the fewest

accidentals.

NB: Respelling pitches in a chord is a rather complex process and is by no

means fool-proof. The process employed here is based on avoiding double

accidentals; thus, since both FS4 and BS4 have single sharps, the BS4

won’t be changed to C5.

ARGUMENTS:

- A chord object.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 438

- T or NIL to indicate whether to print feedback from the process to the

listener. T = print. Default = NIL.

RETURN VALUE:

A chord object.

EXAMPLE:

(let ((chrd (make-chord ’(a3 ds4 f4 fs5 c6))))

(pitch-list-to-symbols (data (respell-chord chrd t))))

=> (A3 EF4 F4 GF5 C6)

SYNOPSIS:

(defmethod respell-chord ((c chord) &optional verbose)

20.2.177 chord/rm-pitches

[chord] [Methods]

DESCRIPTION:

Remove the specified pitches from an existing chord object.

ARGUMENTS:

- A chord object.

- The pitches to remove from that object. These can be pitch objects or any

data that can be passed to make-pitch, or indeed lists of these, as they

will be flattened. NB: No warning/error will be signalled if the pitches

to be removed are not actually in the chord.

RETURN VALUE:

- A chord object.

EXAMPLE:

(let ((ch (make-chord ’(af3 bf3 c4 e4 g4 a4 b4 cs5 ds5 fs5))))

(print (get-pitch-symbols ch))

(rm-pitches ch ’bf3)

(print (get-pitch-symbols ch))

20 SC/NAMED-OBJECT 439

(rm-pitches ch ’af3 ’a4 ’b4)

(print (get-pitch-symbols ch))

(rm-pitches ch ’(cs5 ds5 fs5))

(print (get-pitch-symbols ch)))

=>

(AF3 BF3 C4 E4 G4 A4 B4 CS5 DS5 FS5)

(AF3 C4 E4 G4 A4 B4 CS5 DS5 FS5)

(C4 E4 G4 CS5 DS5 FS5)

(C4 E4 G4)

SYNOPSIS:

(defmethod rm-pitches ((c chord) &rest pitches)

20.2.178 chord/set-midi-channel

[chord] [Methods]

DESCRIPTION:

Set the MIDI channel of the pitch objects in a given chord object to the

specified values.

ARGUMENTS:

- A chord object.

- An integer that is to be the MIDI channel for chromatic pitches in the

given chord object.

- An integer that is to be the MIDI channel for microtonal pitches in the

given chord object. NB: See player.lsp/make-player for details on

microtones in MIDI output.

RETURN VALUE:

Always returns NIL.

EXAMPLE:

;; Returns NIL

(let ((chrd (make-chord ’(c4 e4 gqs4 bqf4 d5 f5)

:midi-channel 11

:microtones-midi-channel 12)))

(set-midi-channel chrd 3 4))

20 SC/NAMED-OBJECT 440

=> NIL

;; Print the value of the MIDI slot for each of the pitch objects contained in

;; the chord object before and after setting

(let ((chrd (make-chord ’(c4 e4 gqs4 bqf4 d5 f5)

:midi-channel 11

:microtones-midi-channel 12)))

(print (loop for p in (data chrd) collect (midi-channel p)))

(set-midi-channel chrd 3 4)

(print (loop for p in (data chrd) collect (midi-channel p))))

=>

(11 11 12 12 11 11)

(3 3 4 4 3 3)

SYNOPSIS:

(defmethod set-midi-channel ((c chord) midi-channel microtones-midi-channel)

20.2.179 chord/sort-pitches

[chord] [Methods]

DESCRIPTION:

Sort the pitch objects contained within a given chord object and return

them as a list of pitch objects.

As an optional argument, ’ascending or ’descending can be given to indicate

whether to sort from low to high or high to low.

ARGUMENTS:

- A chord object.

OPTIONAL ARGUMENTS:

- The symbol ’ASCENDING or ’DESCENDING to indicate whether to sort the

given pitch objects from low to high or high to low.

Default = ’ASCENDING.

RETURN VALUE:

Returns a list of pitch objects.

20 SC/NAMED-OBJECT 441

EXAMPLE:

;; Apply the method with no optional argument (defaults to ’ASCENDING) and

;; collect and print the data of the pitch objects in the resulting list

(let ((chrd (make-chord ’(d5 c4 gqs4 bqf5 f5 e4)

:midi-channel 11

:microtones-midi-channel 12)))

(print (loop for p in (sort-pitches chrd) collect (data p))))

=> (C4 E4 GQS4 D5 F5 BQF5)

;; Sort from high to low

(let ((chrd (make-chord ’(d5 c4 gqs4 bqf5 f5 e4)

:midi-channel 11

:microtones-midi-channel 12)))

(print (loop for p in (sort-pitches chrd ’descending) collect (data p))))

=> (BQF5 F5 D5 GQS4 E4 C4)

SYNOPSIS:

(defmethod sort-pitches ((c chord) &optional (order ’ascending))

20.2.180 chord/transpose

[chord] [Methods]

DESCRIPTION:

Transpose the pitches of a given chord object by a specified number of

semitones. The specified number can be positive or negative, and may

contain a decimal segment for microtonal transposition. If passed a decimal

number, the resulting note-names will be scaled to the nearest degree of

the current tuning.

ARGUMENTS:

- A chord object.

- A positive or negative integer or decimal number indicating the number of

semitones by which the pitches of the given chord object are to be

transposed.

RETURN VALUE:

Returns a chord object.

20 SC/NAMED-OBJECT 442

EXAMPLE:

;; Returns a chord object

(let ((chrd (make-chord ’(c4 e4 g4))))

(transpose chrd 3))

=>

CHORD: auto-sort: T, marks: NIL, micro-tone: NIL

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (

[...]

)

;; Accepts positive and negative integers and decimal numbers

(let ((chrd (make-chord ’(c4 e4 g4))))

(pitch-list-to-symbols (data (transpose chrd 3))))

=> (EF4 G4 BF4)

(let ((chrd (make-chord ’(c4 e4 g4))))

(pitch-list-to-symbols (data (transpose chrd -3))))

=> (A3 CS4 E4)

(let ((chrd (make-chord ’(c4 e4 g4))))

(pitch-list-to-symbols (data (transpose chrd -3.17))))

=> (AQF3 CQS4 EQF4)

SYNOPSIS:

(defmethod transpose ((c chord) semitones &key ignore1 ignore2 ignore3)

20.2.181 sclist/circular-sclist

[sclist] [Classes]

NAME:

circular-sclist

File: circular-sclist.lsp

20 SC/NAMED-OBJECT 443

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the circular-sclist class which offers

the use of a function to cycle through the values in the

sclist, starting at the beginning again once we’ve

reached the end.

Author: Michael Edwards: m@michael-edwards.org

Creation date: February 19th 2001

$$ Last modified: 19:59:35 Mon Apr 21 2014 BST

SVN ID: $Id: circular-sclist.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.182 circular-sclist/assoc-list

[circular-sclist] [Classes]

NAME:

assoc-list

File: assoc-list.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the assoc-list class that is somewhat

like the lisp association list but with more

error-checking.

Author: Michael Edwards: m@michael-edwards.org

Creation date: February 18th 2001

$$ Last modified: 15:03:30 Tue Dec 3 2013 GMT

20 SC/NAMED-OBJECT 444

SVN ID: $Id: assoc-list.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.183 assoc-list/add

[assoc-list] [Methods]

DESCRIPTION:

Add a new element to the given assoc-list object.

ARGUMENTS:

- A key/data pair as a list, or a named-object.

- The assoc-list object to which it is to be added.

OPTIONAL ARGUMENTS:

- (This optional argument will be ignored; it exists only because of its use

in the recursive-assoc-list class).

RETURN VALUE:

Returns T if the specified named-object is successfully added to the given

assoc-list.

Returns an error if an attempt is made to add NIL to the given assoc-list

or if the given named-object is already present in the given assoc-list.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(add ’(makers mark) al))

=> T

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(add ’(makers mark) al)

(get-data ’makers al))

=>

20 SC/NAMED-OBJECT 445

NAMED-OBJECT: id: MAKERS, tag: NIL,

data: MARK

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(add ’(makers mark) al)

(get-position ’makers al))

=> 3

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(add ’(knob creek) al))

=> T

SYNOPSIS:

(defmethod add (named-object (al assoc-list) &optional ignore)

20.2.184 assoc-list/add-to-list-data

[assoc-list] [Methods]

DESCRIPTION:

Add an element of any type to the end of the data (list) associated with a

given key of a given assoc-list.

The data associated with the given key must already be a list.

ARGUMENTS:

- An item of any type.

- A given key that must be present in the given assoc-list.

- The given assoc-list.

RETURN VALUE:

Returns the whole named-object to which the new element was added.

This method will abort with an error if a key is sought which does not

exist within the given assoc-list. For such cases, use

add-to-list-data-force instead.

20 SC/NAMED-OBJECT 446

EXAMPLE:

(let ((al (make-assoc-list ’test ’((cat felix)

(dog (fido spot))

(cow bessie)))))

(add-to-list-data ’rover ’dog al))

=>

NAMED-OBJECT: id: DOG, tag: NIL,

data: (FIDO SPOT ROVER)

SYNOPSIS:

(defmethod add-to-list-data (new-element key (al assoc-list))

20.2.185 assoc-list/add-to-list-data-force

[assoc-list] [Methods]

DESCRIPTION:

Similar to add-to-list-data, but if the given key doesn’t already exist in

the given assoc-list, it is first added, then the given new element is

added to that as a 1-element list.

If the given key already exists within the given assoc-list, its data must

already be in the form of a list.

ARGUMENTS:

- A (new) element of any type.

- A given key that may or may not be present in the given assoc-list.

- The the given assoc-list.

RETURN VALUE:

Returns the whole named-object to which the element was added when used

with a key that already exists within the given assoc-list.

Returns T when used with a key that does not already exist in the given

assoc-list.

EXAMPLE:

20 SC/NAMED-OBJECT 447

(let ((al (make-assoc-list ’test ’((cat felix)

(dog (fido spot))

(cow bessie)))))

(add-to-list-data-force ’rover ’dog al))

=>

NAMED-OBJECT: id: DOG, tag: NIL,

data: (FIDO SPOT ROVER)

(let ((al (make-assoc-list ’test ’((cat felix)

(dog (fido spot))

(cow bessie)))))

(add-to-list-data-force ’wilbur ’pig al)

(get-keys al))

=> (CAT DOG COW PIG)

SYNOPSIS:

(defmethod add-to-list-data-force (new-element key (al assoc-list))

20.2.186 assoc-list/get-data

[assoc-list] [Methods]

DESCRIPTION:

Return the named-object (id, tag and data) that is identified by a

specified key within a given assoc-list.

NB: This method returns the named object itself, not just the data

associated with the key (use get-data-data for that).

ARGUMENTS:

- A symbol that is the key (id) of the named-object sought.

- The assoc-list object in which it is be sought.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether a warning is printed if the specified key

cannot be found within the given assoc-list. T = print. Default = T.

Mostly we define whether we want to warn in the instance itself, but

sometimes it would be good to warn or not on a call basis, hence the

optional argument.

20 SC/NAMED-OBJECT 448

RETURN VALUE:

A named-object is returned if the specified key is found within the given

assoc-list object.

NIL is returned and a warning is printed if the specified key is not found

in the given assoc-list object.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(get-data ’four al))

=>

NAMED-OBJECT: id: FOUR, tag: NIL,

data: ROSES

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(get-data ’jack al))

=> NIL

WARNING:

assoc-list::get-data: Could not find data with key JACK in assoc-list with

id TEST

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(get-data ’jack al t))

=> NIL

WARNING:

assoc-list::get-data: Could not find data with key JACK in assoc-list with

id TEST

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(get-data ’jack al nil))

=> NIL

20 SC/NAMED-OBJECT 449

SYNOPSIS:

(defmethod get-data (key (al assoc-list) &optional (warn t))

20.2.187 assoc-list/get-data-data

[assoc-list] [Methods]

DESCRIPTION:

(Short-cut for (data (get-data ...))

Get the data associated with the given key of the given assoc-list.

ARGUMENTS:

- The assoc-list key symbol associated with the data list which is sought.

- The assoc-list in which it is to be sought.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to print a warning if no such named-object

can be found within the given assoc-list (default = T).

RETURN VALUE:

If the given key is found within the given assoc-list, the data associated

with that key is returned.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(get-data-data ’jim al))

=> BEAM

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(get-data-data ’jack al))

=> NIL

WARNING:

assoc-list::get-data: Could not find data with key JACK in assoc-list with

id TEST

20 SC/NAMED-OBJECT 450

SYNOPSIS:

(defmethod get-data-data (key (al assoc-list) &optional (warn t))

20.2.188 assoc-list/get-first

[assoc-list] [Methods]

DESCRIPTION:

Returns the first named-object in the DATA slot of the given assoc-list

object.

ARGUMENTS:

- An assoc-list object.

RETURN VALUE:

A named-object that is the first object in the DATA slot of the given

assoc-list object.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(get-first al))

=>

NAMED-OBJECT: id: JIM, tag: NIL,

data BEAM

SYNOPSIS:

(defmethod get-first ((al assoc-list))

20.2.189 assoc-list/get-keys

[assoc-list] [Methods]

DESCRIPTION:

Get a simple list of the keys in a given association list.

20 SC/NAMED-OBJECT 451

ARGUMENTS:

- An assoc-list.

OPTIONAL ARGUMENTS:

- Optional argument: T or NIL (default T) to indicate whether a warning

should be printed when the first argument is a recursive assoc-list.

RETURN VALUE:

A list of the keys only of all top-level association list pairs in the

given assoc-list.

get-keys is a method of the assoc-list class and therefore returns only

top-level keys if accessing a recursive assoc-list.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((cat felix)

(dog fido)

(cow bessie)))))

(get-keys al))

=> (CAT DOG COW)

(let ((al (make-assoc-list ’test ’((cat felix)

(dog ((scottish terrier)

(german shepherd)

(irish wolfhound)))

(cow bessie)))))

(get-keys al))

=> (CAT DOG COW)

SYNOPSIS:

(defmethod get-keys ((al assoc-list) &optional (warn t))

20.2.190 assoc-list/get-last

[assoc-list] [Methods]

DESCRIPTION:

20 SC/NAMED-OBJECT 452

Returns the last named-object in the data list of a given assoc-list.

ARGUMENTS:

- An assoc-list.

RETURN VALUE:

The last object in the data list of a given assoc-list.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(get-last al))

=>

NAMED-OBJECT: id: WILD, tag: NIL,

data TURKEY

SYNOPSIS:

(defmethod get-last ((al assoc-list))

20.2.191 assoc-list/get-position

[assoc-list] [Methods]

DESCRIPTION:

Returns the index position (zero-based) of a named-object within a given

assoc-list.

ARGUMENTS:

- The assoc-list key symbol (named-object id) of the object for which the

position is sought.

- The assoc-list in which it is to be sought.

OPTIONAL ARGUMENTS:

- Optional argument: An indexing integer. In this case, get-position will

search for the given object starting part-way into the list, skipping all

objects located at indices lower than the given integer (default = 0).

20 SC/NAMED-OBJECT 453

RETURN VALUE:

The integer index of the named-object within the given assoc-list.

NIL is returned if the object is not present in the assoc-list starting

with the index number given as the start argument (i.e., in the entire list

if the optional start argument is omitted).

EXAMPLE:

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(get-position ’four al))

=> 1

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(get-position ’jack al))

=> NIL

(let ((al (make-assoc-list ’test ’((jim beam)

(four roses)

(wild turkey)))))

(get-position ’jim al 1))

=> NIL

SYNOPSIS:

(defmethod get-position (key (al assoc-list) &optional (start 0))

20.2.192 assoc-list/l-for-lookup

[assoc-list] [Classes]

NAME:

l-for-lookup

File: l-for-lookup

20 SC/NAMED-OBJECT 454

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> l-for-lookup

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the l-for-lookup class. The name

stands for L-System for Lookups (L for

Lindenmayer). This provides an L-System

function for generating sequences of numbers

from rules and seeds, and then using these

numbers for lookups into the assoc-list. In the

assoc list are stored groups of numbers, meant

to represent in the first place, for example,

rhythmic sequences. The grouping could be as

follows: ((2 3 7) (11 12 16) (24 27 29) and

would mean that a transition should take place

(over the length of the number of calls

represented by the number of L-Sequence results)

from the first group to the second, then from

the second to the third. When the first group

is in use, then we will simple cycle around the

given values, similar with the other groups.

The transition is based on a fibonacci algorithm

(see below).

The sequences are stored in the data slot. The l-sequence

will be a list like (3 1 1 2 1 2 2 3 1 2 2 3 2 3 3 1).

These are the references into the assoc-list (the 1, 2, 3

ids in the list below).

e.g. ((1 ((2 3 7) (11 16 12)))

(2 ((4 5 9) (13 14 17)))

(3 ((1 6 8) (15 18 19))))

Author: Michael Edwards: m@michael-edwards.org

Creation date: 15th February 2002

$$ Last modified: 12:23:28 Thu Jun 13 2013 BST

SVN ID: $Id: l-for-lookup.lsp 5048 2014-10-20 17:10:38Z medward2 $

20 SC/NAMED-OBJECT 455

20.2.193 l-for-lookup/count-elements

[l-for-lookup] [Functions]

DESCRIPTION:

Count the number of times each element occurs in a given list.

ARGUMENTS:

- A list of numbers or symbols (or anything which can be compared using

EQL).

RETURN VALUE:

Returns a list of two-element lists, each consisting of one list

element from the specified list and the number of times that element occurs

in the list. If the elements are numbers, these will be sorted from low to

high, otherwise symbols will be returned from most populous to least.

EXAMPLE:

(count-elements ’(1 4 5 7 3 4 1 5 4 8 5 7 3 2 3 6 3 4 5 4 1 4 8 5 7 3 2))

=> ((1 3) (2 2) (3 5) (4 6) (5 5) (6 1) (7 3) (8 2))

SYNOPSIS:

(defun count-elements (list)

20.2.194 l-for-lookup/do-lookup

[l-for-lookup] [Methods]

DESCRIPTION:

Generate an L-sequence from the rules of the specified l-for-lookup object

and use it to perform the Fibonacci-based transitioning look-up of values in

the specified sequences.

ARGUMENTS:

- An l-for-lookup object.

- The start seed, or axiom, that is the initial state of the L-system. This

must be the key-id of one of the sequences.

20 SC/NAMED-OBJECT 456

- An integer that is the length of the sequence to be returned. NB: This

number does not indicate the number of L-system passes, but only the

number of elements in the list returned, which may be the first segment

of a sequence returned by a pass that actually generates a much longer

sequence.

OPTIONAL ARGUMENTS:

- A number which is the factor by which returned numerical values are to be

scaled. If NIL, the method will use the value in the given l-for-lookup

object’s SCALER slot instead. Default = NIL. NB: The value of the given

l-for-lookup object’s OFFSET slot is additionally used to increase

numerical values before they are returned.

RETURN VALUE:

This method returns three lists:

- The resulting sequence.

- The distribution of the values returned by the look-up.

- The L-sequence of the key-IDs.

EXAMPLE:

;; Create an l-for-lookup object in which the sequences are defined such that

;; the transition takes place over the 3 given lists and from x to y to z, and

;; apply the do-lookup method to see the results. Each time one of these lists

;; is accessed, it will cyclically return the next value.

(let ((lfl (make-l-for-lookup

’lfl-test

’((1 ((ax1 ax2 ax3) (ay1 ay2 ay3 ay4) (az1 az2 az3 az4 az5)))

(2 ((bx1 bx2 bx3) (by1 by2 by3 by4) (bz1 bz2 bz3 bz4 bz5)))

(3 ((cx1 cx2 cx3) (cy2 cy2 cy3 cy4) (cz1 cz2 cz3 cz4 cz5))))

’((1 (1 2 2 2 1 1))

(2 (2 1 2 3 2))

(3 (2 3 2 2 2 3 3))))))

(do-lookup lfl 1 211))

=>

(AX1 BX1 BX2 BX3 AX2 AX3 BX1 AX1 BX2 CX1 BX3 BX1 AX2 BX2 CX2 BX3 BX1 AX3 BX2

CX3 BX3 AX1 BY1 BX1 BX2 AY1 AX2 AX3 BX3 BX1 BX2 AX1 AX2 BX3 AY2 BX1 CX1

BY2 AX3 BX2 BX3 BX1 AX1 AY3 BX2 AX2 BY3 CY2 BX3 BX1 CX2 BY4 BX2 BX3 CX3

CY2 BY1 AY4 BX1 CX1 BY2 BX2 AY1 BY3 CY3 BY4 AX3 BX3 BY1 BX1 AY2 AX1 BY2

AY3 BY3 CY4 BX2 BY4 CX2 BY1 BX3 BY2 CY2 CX3 BY3 AY4 BY4 CY2 BY1 BX1 AX2

BY2 CY3 BY3 AY1 BY4 BY1 BY2 AY2 AY3 BY3 AY4 BY4 CY4 BY1 BY2 CY2 BY3 BY4

BY1 CY2 CY3 BY2 AY1 BY3 CY4 BY4 AY2 BY1 BY2 BY3 AY3 AY4 BY4 AY1 BY1 CZ1

20 SC/NAMED-OBJECT 457

BZ1 BY2 AY2 BY3 CY2 BY4 BY1 AY3 BY2 CY2 BY3 AY4 BY4 BZ2 BY1 AZ1 AY1 AY2

BY2 BY3 BY4 AY3 AY4 AZ2 BZ3 BY1 BY2 AY1 AY2 BZ4 AZ3 BY3 CZ2 BY4 BZ5 AY3

BY1 CY3 BZ1 BY2 AZ4 BZ2 CZ3 BZ3 AZ5 BY3 BZ4 BY4 AY4 AZ1 AY1 BZ5 BZ1 BY1

AZ2 AZ3 BZ2 AY2 BZ3 CY4 BY2 AZ4 BZ4 BZ5 BZ1 AZ5 AZ1 BZ2 AZ2 BY3 CZ4 BZ3

BZ4 CY2 BZ5 BZ1 BZ2 CZ5 CZ1 BZ3 AZ3 BZ4 CZ2 BZ5),

((CX1 3) (AX3 5) (AX1 6) (BX2 11) (CX2 3) (BX3 11) (CX3 3) (BX1 12) (AX2 6)

(AY3 7) (CY3 4) (CZ3 1) (BY4 14) (AY4 7) (AY1 8) (BY1 15) (AY2 8) (CY4 4)

(BY2 15) (AZ4 2) (AZ5 2) (AZ1 3) (AZ2 3) (BY3 15) (CZ4 1) (CY2 9) (BZ1 5)

(BZ25) (CZ5 1) (CZ1 2) (BZ3 5) (AZ3 3) (BZ4 5) (CZ2 2) (BZ5 5)),

(1 2 2 2 1 1 2 1 2 3 2 2 1 2 3 2 2 1 2 3 2 1 2 2 2 1 1 1 2 2 2 1 1 2 1 2 3 2 1

2 2 2 1 1 2 1 2 3 2 2 3 2 2 2 3 3 2 1 2 3 2 2 1 2 3 2 1 2 2 2 1 1 2 1 2 3 2

2 3 2 2 2 3 3 2 1 2 3 2 2 1 2 3 2 1 2 2 2 1 1 2 1 2 3 2 2 3 2 2 2 3 3 2 1 2

3 2 1 2 2 2 1 1 2 1 2 3 2 2 1 2 3 2 2 1 2 3 2 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2

2 1 1 2 1 2 3 2 2 1 2 3 2 2 1 2 3 2 1 2 2 2 1 1 1 2 2 2 1 1 2 1 2 3 2 1 2 2

2 1 1 2 1 2 3 2 2 3 2 2 2 3 3 2 1 2 3 2)

SYNOPSIS:

(defmethod do-lookup ((lflu l-for-lookup) seed stop &optional scaler)

20.2.195 l-for-lookup/do-lookup-linear

[l-for-lookup] [Methods]

DESCRIPTION:

Similar to do-lookup but here we generate a linear sequence (with

get-linear-sequence) instead of an L-System.

ARGUMENTS:

- An l-for-lookup object.

- The start seed, or axiom, that is the initial state of the linear

system. This must be the key-id of one of the sequences.

- An integer that is the length of the sequence to be returned.

OPTIONAL ARGUMENTS:

keyword arguments:

- :scaler. A number which is the factor by which returned numerical values

are to be scaled. If NIL, the method will use the value in the given

l-for-lookup object’s SCALER slot instead. Default = NIL. NB: The value

of the given l-for-lookup object’s OFFSET slot is additionally used to

increase numerical values before they are returned. Default = NIL.

- :reset. T or NIL to indicate whether to reset the pointers of the given

circular lists before proceeding. T = reset. Default = T.

20 SC/NAMED-OBJECT 458

RETURN VALUE:

This method returns three lists:

- The resulting sequence.

- The distribution of the values returned by the look-up.

- The L-sequence of the key-IDs.

EXAMPLE:

;; This will return the result of lookup, the number of repetitions of each

;; rule key in the result of lookup, and the linear-sequence itself.

(let* ((tune (make-l-for-lookup

’tune

’((1 ((2 1 8)))

(2 ((3 4)))

(3 ((4 5)))

(4 ((5 1 6)))

(5 ((6 5 7 4)))

(6 ((4 5)))

(7 ((4 5 1)))

(8 ((1))))

’((1 (1 2)) (2 (1 3 2)) (3 (1 4 3)) (4 (1 2 1)) (5 (5 3 1))

(6 (2 5 6)) (7 (5 6 4)) (8 (3 2))))))

(do-lookup-linear tune 1 100))

=>

(1 3 4 1 4 4 6 8 2 1 1 4 5 5 6 5 1 1 7 6 8 2 1 1 3 5 4 4 5 5 6 5 4 7 1 4 4 6 8

2 1 1 4 5 5 6 5 5 8 2 1 1 3 4 1 7 6 8 2 1 1 4 5 4 1 4 5 6 5 1 6 8 2 1 1 3 5 7

5 4 1 4 5 6 5 4 7 6 8 2 1 1 4 5 4 1 4 5 6 5)

((1 24) (2 7) (3 4) (4 20) (5 21) (6 12) (7 5) (8 7))

(1 2 3 4 5 6 4 1 1 8 1 2 4 6 5 5 7 4 5 4 1 1 8 1 2 3 5 6 4 6 5 5 7 5 4 5 6 4 1

1 8 1 2 4 6 5 5 7 1 1 8 1 2 3 4 5 4 1 1 8 1 2 4 6 4 5 6 5 5 7 4 1 1 8 1 2 3 5

4 6 4 5 6 5 5 7 5 4 1 1 8 1 2 4 6 4 5 6 5 5)

SYNOPSIS:

(defmethod do-lookup-linear ((lflu l-for-lookup) seed stop

&key scaler (reset t))

20.2.196 l-for-lookup/do-simple-lookup

[l-for-lookup] [Methods]

DESCRIPTION:

Performs a simple look-up procedure whereby a given reference key always

20 SC/NAMED-OBJECT 459

returns a specific and single piece of data. This is different from

do-lookup, which performs a transitioning between lists and returns items

from those lists in a circular manner. do-simple-lookup always returns the

first element of the sequence list associated with a given key-ID.

N.B. the SCALER and OFFSET slots are ignored by this method.

ARGUMENTS:

- An l-for-lookup object.

- The start seed, or axiom, that is the initial state of the L-system. This

must be the key-id of one of the sequences.

- An integer that is the number of elements to be returned.

RETURN VALUE: EXAMPLE:

;; Create an l-for-lookup object using three production rules and three

;; sequences of three lists. Applying do-simple-lookup returns the first

;; element of each sequence based on the L-sequence of keys created by the

;; rules of the give l-for-lookup object.

(let ((lfl (make-l-for-lookup

’lfl-test

’((1 ((ax1 ax2 ax3) (ay1 ay2 ay3 ay4) (az1 az2 az3 az4 az5)))

(2 ((bx1 bx2 bx3) (by1 by2 by3 by4) (bz1 bz2 bz3 bz4 bz5)))

(3 ((cx1 cx2 cx3) (cy2 cy2 cy3 cy4) (cz1 cz2 cz3 cz4 cz5))))

’((1 (1 2 2 2 1 1))

(2 (2 1 2 3 2))

(3 (2 3 2 2 2 3 3))))))

(do-simple-lookup lfl 1 21))

=> ((AX1 AX2 AX3) (BX1 BX2 BX3) (BX1 BX2 BX3) (BX1 BX2 BX3) (AX1 AX2 AX3)

(AX1 AX2 AX3) (BX1 BX2 BX3) (AX1 AX2 AX3) (BX1 BX2 BX3) (CX1 CX2 CX3)

(BX1 BX2 BX3) (BX1 BX2 BX3) (AX1 AX2 AX3) (BX1 BX2 BX3) (CX1 CX2 CX3)

(BX1 BX2 BX3) (BX1 BX2 BX3) (AX1 AX2 AX3) (BX1 BX2 BX3) (CX1 CX2 CX3)

(BX1 BX2 BX3))

SYNOPSIS:

(defmethod do-simple-lookup ((lflu l-for-lookup) seed stop)

20.2.197 l-for-lookup/fibonacci

[l-for-lookup] [Functions]

DESCRIPTION:

20 SC/NAMED-OBJECT 460

Return the longest possible list of sequential Fibonacci numbers whose

combined sum is less than or equal to the specified value. The list is

returned in descending sequential order, ending with 0.

The function also returns as a second individual value the first Fibonacci

number that is greater than the sum of the list returned.

NB: The value of the second number returned will always be equal to the sum

of the list plus one. In most cases that number will be less than the

number specified as the argument to the fibonacci function, and

sometimes it will be equal to the number specified; but in cases where

the sum of the list returned is equal to the number specified, the

second number returned will be equal to the specified number plus one.

ARGUMENTS:

A number that is to be the test number.

RETURN VALUE:

A list of descending sequential Fibonacci numbers, of which list the last

element is 0.

Also returns as a second individual value the first Fibonacci number that

is greater than the sum of the list returned, which will always be the sum

of that list plus one.

EXAMPLE:

;; Returns a list of consecutive Fibonacci numbers from 0 whose sum is equal to

;; or less than the value specified. The second number returned is the first

;; Fibonacci number whose value is greater than the sum of the list, and will

;; always be the sum of the list plus one.

(fibonacci 5000)

=> (1597 987 610 377 233 144 89 55 34 21 13 8 5 3 2 1 1 0), 4181

;; The sum of the list

(+ 1597 987 610 377 233 144 89 55 34 21 13 8 5 3 2 1 1 0)

=> 4180

SYNOPSIS:

(defun fibonacci (max-sum)

20 SC/NAMED-OBJECT 461

20.2.198 l-for-lookup/fibonacci-start-at-2

[l-for-lookup] [Functions]

DESCRIPTION:

Return the longest possible list of sequential Fibonacci numbers, excluding

0 and 1, whose combined sum is less than or equal to the specified

value. The list is returned in descending sequential order.

The function also returns as a second value the sum of the list.

NB: In addition to excluding 0 and 1, this function also differs from the

plain fibonacci function in that the second value returned is the sum

of the list rather than the first Fibonacci number greater than that

sum.

ARGUMENTS:

A number that is to be the test number.

RETURN VALUE:

A list of descending sequential Fibonacci numbers, of which list the last

element is 2.

Also returns as a second result the sum of the list.

EXAMPLE:

;; Returns a list whose sum is less than or equal to the number specified as

;; the function’s only argument

(fibonacci-start-at-2 17)

=> (5 3 2), 10

(fibonacci-start-at-2 20)

=> (8 5 3 2), 18

;; Two examples showing the different results of fibonacci

;; vs. fibonacci-start-at-2

;; 1

(fibonacci 18)

20 SC/NAMED-OBJECT 462

=> (5 3 2 1 1 0), 13

(fibonacci-start-at-2 18)

=> (8 5 3 2), 18

;; 2

(fibonacci 20)

=> (8 5 3 2 1 1 0), 21

(fibonacci-start-at-2 20)

=> (8 5 3 2), 18

SYNOPSIS:

(defun fibonacci-start-at-2 (max-sum)

20.2.199 l-for-lookup/fibonacci-transition

[l-for-lookup] [Functions]

DESCRIPTION:

Uses Fibonacci relationships to produces a sequence that is a gradual

transition from one repeating state to a second over n repetitions. The

function gradually increases the frequency of the second repeating state

until it completely dominates.

NB: The similar but separate function fibonacci-transition-aux1 gradually

decreases state 1 and increases state 2.

ARGUMENTS:

- An integer that is the desired number of elements in the resulting list

(i.e., the number of repetitions over which the transition is to occur).

OPTIONAL ARGUMENTS:

- Repeating item 1 (starting state). This can be any Lisp type, including

lists. Default = 0.

- Repeating item 2 (target state): This can also be any Lisp type.

Default = 1.

RETURN VALUE:

20 SC/NAMED-OBJECT 463

A list.

EXAMPLE:

;; Defaults to 0 and 1 (no optional arguments)

(fibonacci-transition 31)

=> (0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1 1)

;; Using optional arguments set to numbers

(fibonacci-transition 23 11 37)

=> (11 11 11 11 37 11 11 37 11 37 11 37 11 37 37 11 37 11 37 11 37 37 37)

;; Using lists

(fibonacci-transition 27 ’(1 2 3) ’(5 6 7))

=> ((1 2 3) (1 2 3) (1 2 3) (1 2 3) (5 6 7) (1 2 3) (1 2 3) (5 6 7) (1 2 3)

(1 2 3) (5 6 7) (1 2 3) (5 6 7) (1 2 3) (5 6 7) (1 2 3) (5 6 7) (5 6 7)

(1 2 3) (5 6 7) (5 6 7) (1 2 3) (5 6 7) (5 6 7) (5 6 7) (5 6 7) (5 6 7))

SYNOPSIS:

(defun fibonacci-transition (num-items &optional

(item1 0)

(item2 1))

20.2.200 l-for-lookup/fibonacci-transitions

[l-for-lookup] [Functions]

DATE:

18 Feb 2010

DESCRIPTION:

This function builds on the concept of the function fibonacci-transition by

allowing multiple consecutive transitions over a specified number of

repetitions. The function either produces sequences consisting of

transitions from each consecutive increasing number to its upper

neighbor, starting from 0 and continuing through a specified number of

integers, or it can be used to produce a sequence by transitioning between

each element of a user-specified list of items.

ARGUMENTS:

20 SC/NAMED-OBJECT 464

- An integer indicating the number of repetitions over which the

transitions are to be performed.

- Either:

- An integer indicating the number of consecutive values, starting from

0, the function is to transition (i.e. 3 will produce a sequence that

transitions from 0 to 1, then from 1 to 2 and finally from 2 to 3), or

- A list of items of any type (including lists) through which the

function is to transition.

RETURN VALUE:

A list.

EXAMPLE:

;; Using just an integer transitions from 0 to 1 below that integer

(fibonacci-transitions 76 4)

=> (0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 2 1 1 2 1 2 1

2 2 1 2 1 2 2 2 2 2 2 2 3 2 2 3 2 3 2 3 3 2 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3)

;; Using a list transitions consecutively through that list

(fibonacci-transitions 152 ’(1 2 3 4))

=> (1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 2 1 2 1 2

2 1 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 3 2 2 3 2 3 2 3

3 2 3 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 4 3 3 4 3 3 4 3 4 3 4

4 3 4 3 4 4 3 4 4 3 4 4 4 4 4 3 4)

;; A list of lists is also viable

(fibonacci-transitions 45 ’((1 2 3) (4 5 4) (3 2 1)))

=> ((1 2 3) (1 2 3) (1 2 3) (1 2 3) (1 2 3) (4 5 4) (1 2 3) (1 2 3) (4 5 4)

(1 2 3) (4 5 4) (1 2 3) (4 5 4) (1 2 3) (4 5 4) (1 2 3) (4 5 4) (1 2 3)

(4 5 4) (4 5 4) (4 5 4) (4 5 4) (4 5 4) (3 2 1) (4 5 4) (3 2 1) (4 5 4)

(3 2 1) (4 5 4) (3 2 1) (4 5 4) (3 2 1) (4 5 4) (3 2 1) (3 2 1) (3 2 1)

(4 5 4) (3 2 1) (3 2 1) (3 2 1) (3 2 1) (3 2 1) (3 2 1) (3 2 1) (3 2 1))

SYNOPSIS:

(defun fibonacci-transitions (total-items levels)

20.2.201 l-for-lookup/get-l-sequence

[l-for-lookup] [Methods]

20 SC/NAMED-OBJECT 465

DESCRIPTION:

Return an L-sequence of the key-ids for the rules of a given l-for-lookup

object, created using the rules of that object. This method can be called

with an l-for-lookup object that contains no sequences, as it only returns

a list of the key-ids for the object’s rules.

Tip: It seems that systems where one rule key yields all other keys as a

result makes for evenly distributed results which are different for each

seed.

ARGUMENTS:

- An l-for-lookup object.

- The start seed, or axiom, that is the initial state of the L-system. This

must be the key-id of one of the sequences.

- An integer that is the length of the sequence to be returned. NB: This

number does not indicate the number of L-system passes, but only the

number of elements in the list returned, which may be the first segment

of a sequence returned by a pass that actually generates a much longer

sequence.

RETURN VALUE:

A list that is the L-sequence of rule key-ids.

The second value returned is a count of each of the rule keys in the

sequence created, in their given order.

EXAMPLE:

;; Create an l-for-lookup object with three rules and generate a new sequence

;; of 29 rule keys from those rules. The l-for-lookup object here has been

;; created with the SEQUENCES argument set to NIL, as the get-l-sequence

;; method requires no sequences. The second list returned indicates the

;; number of times each key appears in the resulting sequence (thus 1 appears 5

;; times, 2 appears 12 times etc.)

(let ((lfl (make-l-for-lookup ’lfl-test

NIL

’((1 (2))

(2 (1 3))

(3 (3 2))))))

(get-l-sequence lfl 1 29))

=> (2 3 2 3 2 1 3 2 3 2 3 2 1 3 2 3 2 1 3 3 2 1 3 2 3 2 3 2 1), (5 12 12)

20 SC/NAMED-OBJECT 466

;; A similar example using symbols rather than numbers as keys and data

(let ((lfl (make-l-for-lookup ’lfl-test

NIL

’((a (b))

(b (a c))

(c (c b))))))

(get-l-sequence lfl ’a 19))

=> (A C C B A C C B A C B C B A C C B A C), (5 5 9)

SYNOPSIS:

(defmethod get-l-sequence ((lflu l-for-lookup) seed stop-length)

20.2.202 l-for-lookup/get-linear-sequence

[l-for-lookup] [Methods]

DESCRIPTION:

Instead of creating L-sequences with specified rules, use the given

sequences to generate a simply sequential list.

The method first returns the first element in the list whose ID matches the

SEED argument, then that element is used as the ID for the next

look-up. Each time a sequence is accessed, the next element in the sequence

is returned (if there is more than one), cycling to the head of the list

once its end is reached.

In order for this method to function properly, no rules can have been

entered for the given l-for-lookup object (that slot must be set to NIL).

Seen very loosely, this method functions a bit like a first-order Markov

chain, but without the randomness.

ARGUMENTS:

- An l-for-lookup object.

- The seed, which is the starting key for the resulting sequence. This must

be the key-ID of one of the sequences.

- An integer that is the number of elements to be in the resulting list.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 467

- T or NIL to indicate whether to reset the pointers of the given circular

lists before proceeding. T = reset. Default = T.

RETURN VALUE:

A list of results of user-defined length.

EXAMPLE:

(let ((lfl (make-l-for-lookup ’lfl-test

’((1 ((2 3)))

(2 ((3 1 2)))

(3 ((1))))

NIL)))

(get-linear-sequence lfl 1 23))

=> (1 2 3 1 3 1 2 1 3 1 2 2 3 1 3 1 2 1 3 1 2 2 3)

SYNOPSIS:

(defmethod get-linear-sequence ((lflu l-for-lookup) seed stop-length

&optional (reset t))

20.2.203 l-for-lookup/make-l-for-lookup

[l-for-lookup] [Functions]

DESCRIPTION:

Create an l-for-lookup object. The l-for-lookup object uses techniques

associated with Lindenmayer-systems (or L-systems) by storing a series of

rules about how to produce new, self-referential sequences from the data of

original, shorter sequences.

NB: This method just stores the data concerning sequences and rules. To

manipulate the data and create new sequences, see do-lookup or

get-l-sequence etc.

ARGUMENTS:

- A symbol that will be the object’s ID.

- A sequence (list) or list of sequences, that serve(s) as the initial

material, from which the new sequence is to be produced.

- A production rule or list of production rules, each consisting of a

predecessor and a successor, defining how to expand and replace the

individual predecessor items.

20 SC/NAMED-OBJECT 468

OPTIONAL ARGUMENTS:

keyword arguments:

- :auto-check-redundancy. Default = NIL.

- :scaler. Factor by which to scale the values returned by

do-lookup. Default = 1. Does not modify the original data.

- :offset. Number to be added to values returned by do-lookup (after they

are scaled). Default = NIL. Does not modify the original data.

RETURN VALUE:

Returns an l-for-lookup object.

EXAMPLE:

;; Create an l-for-lookup object based on the Lindenmayer rules (A->AB) and

;; (B->A), using the defaults for the keyword arguments

(make-l-for-lookup ’l-sys-a

’((1 ((a)))

(2 ((b))))

’((1 (1 2)) (2 (1))))

=>

L-FOR-LOOKUP:

[...]

l-sequence: NIL

l-distribution: NIL

ll-distribution: NIL

group-indices: NIL

scaler: 1

offset: 0

auto-check-redundancy: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: L-SYS-A, tag: NIL,

data: (

[...]

;; A larger list of sequences, with keyword arguments specified

(make-l-for-lookup ’lfl-test

’((1 ((2 3 4) (5 6 7)))

(2 ((3 4 5) (6 7 8)))

(3 ((4 5 6) (7 8 9))))

20 SC/NAMED-OBJECT 469

’((1 (3)) (2 (3 1)) (3 (1 2)))

:scaler 1

:offset 0

:auto-check-redundancy nil)

SYNOPSIS:

(defun make-l-for-lookup (id sequences rules &key (auto-check-redundancy nil)

(offset 0)

(scaler 1))

20.2.204 l-for-lookup/remix-in

[l-for-lookup] [Functions]

DESCRIPTION:

Given a list (for example generated by fibonacci-transitions) where we

proceed sequentially through adjacent elements, begin occasionally mixing

earlier elements of the list back into the original list once we’ve reached

the third unique element in the original list.

The earlier elements are mixed back in sequentially (the list is mixed back

into itself), starting at the beginning of the original list, and inserted

at automatically selected positions within the original list.

This process results in a longer list than the original, as earlier

elements are spliced in, without removing the original elements and their

order. If however the :replace keyword is set to T, then at the selected

positions those original elements will be replaced by the earlier

elements. This could of course disturb the appearance of particular

results and patterns.

The :remix-in-fib-seed argument determines how often an earlier element is

re-inserted into the original list. The lower the number, the more often an

earlier element is mixed back in. A value of 1 or 2 will result in each

earlier element being inserted after every element of the original (once

the third element of the original has been reached).

NB: The affects of this method are less evident on short lists.

ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 470

keyword arguments:

- :remix-in-fib-seed. A number that indicates how frequently an earlier

element will be mixed back into the original list. The higher the number,

the less often earlier elements are remixed in. Default = 13.

- :mirror. T or NIL to indicate whether the method should pass backwards

through the original list once it has reached the end. T = pass

backwards. Default = NIL.

- :test. The function used to determine the third element in the list. This

function must be able to compare whatever data type is in the

list. Default = #’eql.

- :replace. If T, retain the original length of the list by replacing items

rather than splicing them in (see above). Default = NIL.

RETURN VALUE:

Returns a new list.

EXAMPLE:

;; Straightforward usage with default values

(remix-in (fibonacci-transitions 320 ’(1 2 3 4 5)))

=> (1 2 1 1 1 1 1 1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1

2 2 2 2 1 2 3 2 2 1 2 2 1 2 2 1 2 1 3

1 2 2 1 2 1 2 1 3 2 2 1 3 2 1 2 3 1 2 1 3 1 2 3 1 2 1 3 1 2 3 2 1 3 2 1 3 2

1 3 1 3 1 2 3 1 3 1 2 1 3 3 3 2 3 2 1 3 3 1 3 1 3 1 3 3 1 3 1 3 1 3 3 3 1 3

3 1 3 3 1 3 1 3 1 3 3 2 3 1 4 1 3 3 3 1 3 3 1 3 3 1 4 1 3 1 3 3 2 3 1 4 1 3

3 4 1 3 3 1 4 3 2 4 1 3 1 4 3 2 4 1 3 1 4 3 4 2 3 4 1 3 4 2 4 1 3 2 4 4 1 3

2 4 1 4 4 4 2 3 4 1 4 4 2 4 1 4 2 4 4 1 4 2 4 2 4 4 4 1 4 4 2 4 4 2 4 1 4 2

4 4 2 5 2 4 2 4 4 4 1 4 4 2 4 5 2 4 2 4 2 4 4 2 5 2 4 2 4 5 4 2 4 5 2 4 5 2

4 2 5 2 4 5 2 4 2 5 2 4 5 4 2 5 4 2 5 5 2 4 2 5 2 5 4 3 5 2 5 2 5 5 4 2 5 5

2 5 5 2 5 2 5 2 5 5 3 4 2 5 2 5 5 5 2 5 5 2 5 5 3 5 2 5 2 5 5 3 5 2 5 2 5 5

5 3 5 5 2 5 5 3 5 2 5 3 5 5 2 5 3 5 2 5 5 5 3 5 5 2 5 5 3 5 2 5 3 5 5 2)

;; A lower :remix-in-fib-seed value causes the list to be mixed back into

;; itself at more frequent intervals

(remix-in (fibonacci-transitions 320 ’(1 2 3 4 5)) :remix-in-fib-seed 3)

=> (1 2 1 1 1 1 1 1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1

2 2 2 2 1 2 3 2 1 2 1 2 2 1 2 1 2 2 1

3 1 2 2 1 2 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 3 2 1 3 1 2 3 1 2 1 3 2 1 3 1 2

3 1 2 1 3 3 1 2 1 3 3 2 2 1 3 3 1 3 1 3 2 1 3 1 3 3 1 3 1 3 3 1 3 1 3 3 1 3

1 3 3 1 3 2 3 3 1 3 1 3 3 1 3 1 3 4 1 3 1 3 3 1 3 2 3 3 1 3 1 4 3 1 3 1 3 3

2 4 1 3 3 1 4 2 3 3 1 4 1 3 4 2 3 1 4 3 2 4 1 3 4 2 3 1 4 3 2 4 1 3 4 2 4 1

20 SC/NAMED-OBJECT 471

3 4 2 4 1 3 4 2 4 1 4 4 2 3 2 4 4 1 4 2 4 4 2 4 1 4 4 2 4 2 4 4 2 4 2 4 4 1

4 2 4 4 2 4 2 4 4 2 5 2 4 4 2 4 2 4 4 2 4 2 4 5 2 4 2 4 4 2 4 2 5 4 2 4 2 5

4 2 4 2 5 4 2 5 2 4 5 2 4 3 5 4 2 5 2 4 5 2 4 2 5 4 2 5 2 5 4 2 5 3 5 4 2 5

2 5 5 2 5 2 4 5 3 5 2 5 5 2 5 3 5 5 2 5 2 4 5 3 5 2 5 5 3 5 2 5 5 3 5 2 5 5

3 5 2 5 5 3 5 2 5 5 3 5 2 5 5 3 5 2 5 5 3 5 3 5 5 2 5 3 5 5 3 5 2 5 5 3 5 3

5 5 3 5 3 5 5 2 5 3)

;; Setting the keyword argument <mirror> to T causes the method to reverse back

;; through the original list after the end has been reached

(remix-in (fibonacci-transitions 320 ’(1 2 3 4 5))

:remix-in-fib-seed 3

:mirror t)

=> (1 2 1 1 1 1 1 1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1

2 2 2 2 1 2 3 2 1 2 1 2 2 1 2 1 2 2 1

3 1 2 2 1 2 1 2 3 1 2 1 2 3 1 2 1 2 3 1 2 1 3 2 1 3 1 2 3 1 2 1 3 2 1 3 1 2

3 1 2 1 3 3 1 2 1 3 3 2 2 1 3 3 1 3 1 3 2 1 3 1 3 3 1 3 1 3 3 1 3 1 3 3 1 3

1 3 3 1 3 2 3 3 1 3 1 3 3 1 3 1 3 4 1 3 1 3 3 1 3 2 3 3 1 3 1 4 3 1 3 1 3 3

2 4 1 3 3 1 4 2 3 3 1 4 1 3 4 2 3 1 4 3 2 4 1 3 4 2 3 1 4 3 2 4 1 3 4 2 4 1

3 4 2 4 1 3 4 2 4 1 4 4 2 3 2 4 4 1 4 2 4 4 2 4 1 4 4 2 4 2 4 4 2 4 2 4 4 1

4 2 4 4 2 4 2 4 4 2 5 2 4 4 2 4 2 4 4 2 4 2 4 5 2 4 2 4 4 2 4 2 5 4 2 4 2 5

4 2 4 2 5 4 2 5 2 4 5 2 4 3 5 4 2 5 2 4 5 2 4 2 5 4 2 5 2 5 4 2 5 3 5 4 2 5

2 5 5 2 5 2 4 5 3 5 2 5 5 2 5 3 5 5 2 5 2 4 5 3 5 2 5 5 3 5 2 5 5 3 5 2 5 5

3 5 2 5 5 3 5 2 5 5 3 5 2 5 5 3 5 2 5 5 3 5 3 5 5 2 5 3 5 5 3 5 2 5 5 3 5 3

5 5 3 5 3 5 5 2 5 3 5 5 3 5 3 5 5 3 5 3 5 5 3 5 3 5 5 3 5 3 5 5 3 5 3 5 5 3

5 3 5 5 3 5 3 5 5 3 5 3 5 5 3 5 3 5 5 3 5 4 5 5 3 5 3 5 5 3 5 3 5 4 3 5 3 5

5 3 5 4 5 5 3 5 3 5 4 3 5 3 5 5 4 5 3 4 5 3 5 4 4 5 3 5 3 4 5 4 4 3 5 4 4 5

3 4 5 4 4 3 5 4 4 5 3 4 5 4 4 3 4 5 4 4 3 4 5 4 4 3 4 4 4 4 4 5 4 3 4 4 4 4

4 4 3 4 4 4 5 4 4 4 4 4 4 4 4 3 4

4 4 4 3 4 4 4 4 4 4 4 3 4 4 4 4 3 4 4 4 4 3 4 4 4 3 4 4 3 5 4 3 4 4 4 3 4 4

3 4 4 3 4 4 4 3 3 4 4 5 3 3 4 4 4 3 3 4 3 4 3 4 5 3 4 3 3 4 3 5 3 3 4 3 4 4

3 5 3 4 3 3 5 3 4 3 3 5 3 4 3 3 5 3 4 3 3 5 3 4 3 3 5 3 4 3 3 5 3 4 2 3 5 3

5 3 3 4 2 5 3 3 5 2 4 3 3 5 2 5 3 2 5 3 5 2 3 4 2 5 3 2 5 3 5 2 3 5 2 5 3 2

5 2 5 3 2 5 2 4 3 2 5 2 5 2 2 5 3 5 2 2 5 2 5 2 2 5 2 5 2 3 5 2 5 2 2 5 2 5

2 2 5 2 5 2 2 5 2 5 2 2 5 2 5 2 2 5 2 5 2 2 5 2 5 2 1 5 2 5 2 2 5 2 5 1 2 5

2 5 1 2 5 2 5 1 2 5 1 5 2 1 5 2 5 1 2 5 1 5 2 1 5 2 5 1 2 5 1 5 1 2 5 1 5 1

2 5 1 5 1 1 5 1 5 2 1 5 1 5 1 1 5 1 5 1 1 5 2 5 1 1 5 1 5 1 1 5 1 5 1 1 5 1

5 1 1 5 1 5 2 1 5 1 5 1 1 5 1 5 1 1 5 1 5 1 1 5 1 5 1 1 5 1 5 1 1 5 1 5 1 1

5 1 5 1 1 5 1 4 1)

SYNOPSIS:

(defun remix-in (list &key (remix-in-fib-seed 13) (mirror nil) (test #’eql)

(replace nil))

20 SC/NAMED-OBJECT 472

20.2.205 l-for-lookup/reset

[l-for-lookup] [Methods]

DESCRIPTION:

Sets the counters (index pointers) of all circular-sclist objects stored

within a given l-for-lookup object back to zero.

ARGUMENTS:

- An l-for-lookup object.

OPTIONAL ARGUMENTS:

- (an optional IGNORE argument for internal use only).

RETURN VALUE:

Always T.

SYNOPSIS:

(defmethod reset ((lflu l-for-lookup) &optional ignore1 ignore2)

20.2.206 assoc-list/make-assoc-list

[assoc-list] [Functions]

DESCRIPTION:

A function that provides a shortcut to creating an assoc-list, filling it

with data, and assigning a name to it.

ARGUMENTS:

- The name of the assoc-list to be created.

- The data with which to fill it.

OPTIONAL ARGUMENTS:

keyword arguments:

- :warn-not-found. T or NIL to indicate whether a warning is printed when an

index which doesn’t exist is used for look-up. T = warn. Default = T.

20 SC/NAMED-OBJECT 473

RETURN VALUE:

Returns the assoc-list as a named-object.

EXAMPLE:

(make-assoc-list ’looney-tunes ’((bugs bunny)

(daffy duck)

(porky pig)))

=>

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL

this: NIL

next: NIL

NAMED-OBJECT: id: LOONEY-TUNES, tag: NIL,

data: (

NAMED-OBJECT: id: BUGS, tag: NIL,

data: BUNNY

NAMED-OBJECT: id: DAFFY, tag: NIL,

data: DUCK

NAMED-OBJECT: id: PORKY, tag: NIL,

data: PIG)

SYNOPSIS:

(defun make-assoc-list (id al &key (warn-not-found t))

20.2.207 assoc-list/map-data

[assoc-list] [Methods]

DESCRIPTION:

Map a function over the data in the assoc-list. See also

recursive-assoc-list’s rmap method which does pretty much the same but

acting recursively on each named-object (unless it is itself recursive),

rather than the named-object’s data.

ARGUMENTS:

- The assoc-list to which the function is to be applied.

20 SC/NAMED-OBJECT 474

- The function to be applied. This must take the data in the assoc-list as

a first argument.

OPTIONAL ARGUMENTS:

- Optional argument(s): Further arguments for the function.

RETURN VALUE:

Returns a list of the values returned by the function call on the data.

EXAMPLE:

(let ((al (make-assoc-list ’al-test

’((1 (1 2 3 4))

(2 (5 6 7 8))

(3 (9 10 11 12))))))

(map-data al #’(lambda (y)

(loop for i in (data y) collect

(* i 2)))))

=> ((2 4 6 8) (10 12 14 16) (18 20 22 24))

SYNOPSIS:

(defmethod map-data ((al assoc-list) function &optional further-arguments)

20.2.208 assoc-list/recursive-assoc-list

[assoc-list] [Classes]

NAME:

recursive-assoc-list

File: recursive-assoc-list.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Extension of the assoc-list class to allow and

20 SC/NAMED-OBJECT 475

automatically instantiate association lists inside of

association lists to any level of nesting. E.g.

(setf x

’((1 one)

(2 two)

(3 ((cat "cat")

(dog ((mickey mouse)

(donald duck)

(daffy duck)

(uncle ((james dean)

(dean martin)

(fred astaire)

(ginger ((wolfgang mozart)

(johann bach)

(george gershwin)))))))

(mouse "mouse")))

(4 four)))

Author: Michael Edwards: m@michael-edwards.org

Creation date: March 18th 2001

$$ Last modified: 18:37:51 Mon Dec 23 2013 WIT

SVN ID: $Id: recursive-assoc-list.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.209 recursive-assoc-list/add

[recursive-assoc-list] [Methods]

DESCRIPTION:

Add a new element (key/data pair) to the given recursive-assoc-list

object.

If no value is specified for the optional argument, the new element is

added at the end of the top level. The optional argument allows for the

FULL-REF to be specified, i.e. a recursive path of keys down to the nested

level where the new element is to be placed.

ARGUMENTS:

- A key/data pair.

- A recursive-assoc-list object.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 476

- A list that is the FULL-REF, i.e. a recursive path of keys, down to the

nested level where the new element is to be placed.

RETURN VALUE:

Returns T if the specified named-object is successfully added to the given

recursive-assoc-list.

Returns an error if an attempt is made to add NIL to the given

recursive-assoc-list or if the given named-object is already present at the

same level within the given recursive-assoc-list.

EXAMPLE:

;; Adding an element while specifying no optional argument results in the new

;; element being placed at the end of the top level by default (evident here by

;; the fact that the ref for (MAKERS) is a single-item list)

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(add ’(makers mark) ral)

(get-all-refs ral))

=> ((JIM) (WILD) (FOUR ROSES) (FOUR VIOLETS BLUE) (FOUR VIOLETS RED DRAGON)

(FOUR VIOLETS RED VIPER) (FOUR VIOLETS RED FOX) (FOUR VIOLETS WHITE)

(MAKERS))

;; A list that is a path of keys (FULL-REF) to the desired recursive level must

;; be given as the optional argument in order to place the specified element

;; deeper in the given recursive-assoc-list object

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(add ’(yellow sky) ral ’(four violets))

20 SC/NAMED-OBJECT 477

(get-all-refs ral))

=> ((JIM) (WILD) (FOUR ROSES) (FOUR VIOLETS BLUE) (FOUR VIOLETS RED DRAGON)

(FOUR VIOLETS RED VIPER) (FOUR VIOLETS RED FOX) (FOUR VIOLETS WHITE)

(FOUR VIOLETS YELLOW))

;; Attempting to add an element that is already present at the given level of

;; the given recursive-assoc-list object results in an error

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(add ’(makers mark) ral)

(add ’(makers mark) ral))

=>

assoc-list::add: Can’t add MAKERS to assoc-list with id MIXED-BAG

because key already exists!

[Condition of type SIMPLE-ERROR]

;; Attempting to add NIL also results in an error

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(add ’() ral))

=>

assoc-list::add: named-object is NIL!

[Condition of type SIMPLE-ERROR]

SYNOPSIS:

(defmethod add (named-object (ral recursive-assoc-list) &optional ref)

20 SC/NAMED-OBJECT 478

20.2.210 recursive-assoc-list/add-empty-parcel

[recursive-assoc-list] [Methods]

DESCRIPTION:

Add an recursive-assoc-list object with NIL data (an empty level of

recursion) to the end of the top-level of a given recursive-assoc-list

object.

NB: Adding an empty parcel to a given recursive-assoc-list object will

cause the method get-all-refs to fail on that recursive-assoc-list

object.

ARGUMENTS:

- A recursive-assoc-list object.

- A symbol that will be the ID of the new, empty recursive-assoc-list

object that is to be added.

OPTIONAL ARGUMENTS:

- <new-class> The name of an existing subclass of recursive-assoc-list that

the parcel should be promoted to.

RETURN VALUE:

A recursive-assoc-list object with DATA of NIL (the "empty parcel")

EXAMPLE:

;; Add two new empty parcels (the first a recursive-assoc-list, by default, the

;; second a rthm-seq-palette) and return the new list of REFS:

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(add-empty-parcel ral ’bricolage)

(add-empty-parcel ral ’rsp ’rthm-seq-palette)

(get-all-refs ral))

20 SC/NAMED-OBJECT 479

Mark set

=>

((JIM) (WILD) (FOUR ROSES) (FOUR VIOLETS BLUE) (FOUR VIOLETS RED DRAGON)

(FOUR VIOLETS RED VIPER) (FOUR VIOLETS RED FOX) (FOUR VIOLETS WHITE)

(BRICOLAGE) (RSP))

SYNOPSIS:

(defmethod add-empty-parcel ((ral recursive-assoc-list) id &optional new-class)

20.2.211 recursive-assoc-list/assoc-list-id-list

[recursive-assoc-list] [Functions]

DESCRIPTION:

Determine whether a given list contains only atoms which could be used as

assoc-list IDs. To pass the test, a given atom must be either a symbol, a

number or a string.

ARGUMENTS:

A list.

RETURN VALUE:

T or NIL indicating whether the atoms of the given list are all capable of

being used as assoc-list IDs. T = all can be used as assoc-list IDs.

EXAMPLE:

;; All of the elements in this list are either a symbol, a number or a

;; string. The list therefore returns a T when tested.

(let ((alil ’(jim beam 3 "Allegro" 5 flute)))

(assoc-list-id-list alil))

=> T

;; This list fails, as the last element is a list (and therefore not of type

;; string, number or symbol)

(let ((alil ’(jim beam 3 "Allegro" 5 (flute))))

(assoc-list-id-list alil))

=> NIL

20 SC/NAMED-OBJECT 480

SYNOPSIS:

(defun assoc-list-id-list (id-list)

20.2.212 recursive-assoc-list/ensemble

[recursive-assoc-list] [Classes]

NAME:

ensemble

File: ensemble.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

ensemble

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the ensemble class.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 4th September 2001

$$ Last modified: 20:07:49 Thu Aug 28 2014 BST

SVN ID: $Id: ensemble.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.213 ensemble/add-player

[ensemble] [Methods]

DESCRIPTION:

Add a player to an existing ensemble. It will be added at the end of the

list.

ARGUMENTS:

- The ensemble object.

- The new player, either as a player object or symbol. If the latter this

becomes the id of the player we’ll create.

20 SC/NAMED-OBJECT 481

OPTIONAL ARGUMENTS:

- The id of the instrument in the already existing instrument-palette.

This is required if the player argument is a symbol. Default NIL.

- An instrument-palette object. Default =

+slippery-chicken-standard-instrument-palette+.

RETURN VALUE:

The player object added.

SYNOPSIS:

(defmethod add-player ((e ensemble) player

&optional

instrument-id

(instrument-palette

+slippery-chicken-standard-instrument-palette+))

20.2.214 ensemble/balanced-load?

[ensemble] [Methods]

DATE:

28th August 2014

DESCRIPTION:

Determine whether the playing load is balanced across the players of the

ensemble. By default, if the least active player is playing 80% of the time

that the most active player is playing, we’ll return T.

ARGUMENTS:

- an ensemble instance

OPTIONAL ARGUMENTS:

keyword arguments:

- :threshold. A number between 0.0 and 1.0 which represents the lowest

ratio between the most and least active players.

- :stats-fun. One of the player methods which tots up statistics,

i.e. total-notes, total-degrees, total-duration, or total-bars

- :ignore. A list of players (symbols) not to count in the sorting.

20 SC/NAMED-OBJECT 482

RETURN VALUE:

T or NIL

SYNOPSIS:

(defmethod balanced-load? ((e ensemble) &key (threshold .8)

(stats-fun #’total-duration)

ignore)

20.2.215 ensemble/get-player

[ensemble] [Methods]

DESCRIPTION:

Return a player object from an ensemble, if it exists.

ARGUMENTS:

- An ensemble object.

- The ID of a player.

RETURN VALUE:

The player object or NIL if there’s no such player.

SYNOPSIS:

(defmethod get-player ((e ensemble) player)

20.2.216 ensemble/get-players

[ensemble] [Methods]

DESCRIPTION:

Return the IDs of the players from a given ensemble object.

ARGUMENTS:

- An ensemble object.

RETURN VALUE:

20 SC/NAMED-OBJECT 483

- A list of symbols that are the player IDs of the given ensemble object.

EXAMPLE:

(let ((ens (make-ensemble

’ens

’((flt ((flute piccolo) :midi-channel 1))

(clr ((b-flat-clarinet)))

(tpt ((b-flat-trumpet c-trumpet) :midi-channel 2))

(vln ((violin))))

:instrument-palette

+slippery-chicken-standard-instrument-palette+)))

(get-players ens))

=> (FLT CLR TPT VLN)

SYNOPSIS:

(defmethod get-players ((e ensemble))

20.2.217 ensemble/make-ensemble

[ensemble] [Functions]

DESCRIPTION:

Make an ensemble object, specifying the players and associated

instruments.

NB: If you have an ensemble with a player doubling two instruments, be sure

to indicate some keyword argument or other as

(fl1 ((piccolo violin) :midi-channel 1)) works but

(fl1 ((piccolo violin))) thinks that piccolo is a nested ensemble!!!

NB: The argument :instrument-palette is a required argument although it is

a keyword argument.

ARGUMENTS:

- An ID consisting of a symbol, string or number.

- A list of 2-element sublists that define the ensemble. See the above

comment on adding a keyword argument for doubling players.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 484

keyword arguments:

- :instrument-palette. An instrument palette object. Default =

+slippery-chicken-standard-instrument-palette+

- :bar-line-writers. Obsolete as no longer used.

RETURN VALUE:

An ensemble object.

EXAMPLE:

(let ((ens (make-ensemble

’ens

’((flt ((flute piccolo) :midi-channel 1))

(clr ((b-flat-clarinet))))

:instrument-palette

+slippery-chicken-standard-instrument-palette+)))

(print ens))

=>

ENSEMBLE: bar-line-writers: NIL

players: (FLT CLR)

(id instrument-palette): SLIPPERY-CHICKEN-STANDARD-INSTRUMENT-PALETTE

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 2

linked: T

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: ENS, tag: NIL,

data: (

PLAYER: (id instrument-palette): SLIPPERY-CHICKEN-STANDARD-INSTRUMENT-PALETTE

doubles: T, cmn-staff-args: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: (FLT), next: (CLR)

NAMED-OBJECT: id: FLT, tag: NIL,

data:

[...]

data: (

INSTRUMENT: lowest-written:

[...]

NAMED-OBJECT: id: FLUTE, tag: NIL,

[...]

INSTRUMENT: lowest-written:

20 SC/NAMED-OBJECT 485

[...]

NAMED-OBJECT: id: PICCOLO, tag: NIL,

[...]

PLAYER: (id instrument-palette): SLIPPERY-CHICKEN-STANDARD-INSTRUMENT-PALETTE

doubles: NIL, cmn-staff-args: NIL

LINKED-NAMED-OBJECT: previous: (FLT), this: (CLR), next: NIL

NAMED-OBJECT: id: CLR, tag: NIL,

data:

INSTRUMENT: lowest-written:

[...]

NAMED-OBJECT: id: B-FLAT-CLARINET, tag: NIL,

)

SYNOPSIS:

(defun make-ensemble (id ensemble &key bar-line-writers

(instrument-palette

+slippery-chicken-standard-instrument-palette+))

20.2.218 ensemble/num-notes

[ensemble] [Methods]

DESCRIPTION:

Get the number of attacked notes in a given slippery-chicken object. This

method accesses the ensemble object within the given slippery-chicken

object to perform this task.

ARGUMENTS:

- An ensemble object.

RETURN VALUE:

An integer that is the total number of attacked notes in the given

slippery-chicken object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(vc (cello :midi-channel 2))))

20 SC/NAMED-OBJECT 486

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) e e e e))

:pitch-seq-palette ((1 2 3 4)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(num-notes (ensemble mini)))

=> 40

SYNOPSIS:

(defmethod num-notes ((e ensemble))

20.2.219 ensemble/num-players

[ensemble] [Methods]

DESCRIPTION:

Get the number of players in a given ensemble object.

ARGUMENTS:

- An ensemble object.

RETURN VALUE:

- An integer.

EXAMPLE:

(let ((ens (make-ensemble

’ens

’((flt ((flute piccolo) :midi-channel 1))

(clr ((b-flat-clarinet)))

(tpt ((b-flat-trumpet c-trumpet) :midi-channel 2))

(vln ((violin))))

:instrument-palette

+slippery-chicken-standard-instrument-palette+)))

(num-players ens))

=> 4

SYNOPSIS:

(defmethod num-players ((e ensemble))

20 SC/NAMED-OBJECT 487

20.2.220 ensemble/players-exist

[ensemble] [Methods]

DESCRIPTION:

Produce an error message and drop into the debugger if the specified

player IDs are not found within the given ensemble object.

ARGUMENTS:

- An ensemble object.

- A list of symbols that are the IDs of the players sought.

RETURN VALUE:

NIL if the specified player ID is present within the given ensemble object,

otherwise drops into the debugger with an error.

EXAMPLE:

;;; Returns NIL if a player with the specified ID is found in the given

;;; ensemble object.

(let ((ens (make-ensemble

’ens

’((flt ((flute piccolo) :midi-channel 1))

(clr ((b-flat-clarinet)))

(tpt ((b-flat-trumpet c-trumpet) :midi-channel 2))

(vln ((violin))))

:instrument-palette

+slippery-chicken-standard-instrument-palette+)))

(players-exist ens ’(vln)))

=> NIL

;; Drops into the debugger with an error if no player with the specified ID is

;; found in the given ensemble object.

(let ((ens (make-ensemble

’ens

’((flt ((flute piccolo) :midi-channel 1))

(clr ((b-flat-clarinet)))

(tpt ((b-flat-trumpet c-trumpet) :midi-channel 2))

(vln ((violin))))

:instrument-palette

+slippery-chicken-standard-instrument-palette+)))

(players-exist ens ’(vla)))

20 SC/NAMED-OBJECT 488

=>

ensemble::players-exist: VLA is not a member of the ensemble

[Condition of type SIMPLE-ERROR]

SYNOPSIS:

(defmethod players-exist ((e ensemble) players)

20.2.221 ensemble/tessitura

[ensemble] [Methods]

DESCRIPTION:

Get the average pitch of a given slippery-chicken object. This method

accesses the ensemble object within the given slippery-chicken object to

perform this task.

NB: This method processes data in relationship to degrees of the current

tuning system (scale), which is quarter-tone by default. It is

therefore possible, when generating a piece using only chromatic

pitches but within a non-chromatic tuning to get microtonal results.

ARGUMENTS:

- An ensemble object.

RETURN VALUE:

An integer that is the average pitch of the given slippery-chicken object

in degrees.

EXAMPLE:

;;; Change the tuning to chromatic first to get an accurate result:

(in-scale :chromatic)

=> #<tuning "chromatic-scale">

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(vc (cello :midi-channel 2))))

20 SC/NAMED-OBJECT 489

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) e e e e))

:pitch-seq-palette ((1 2 3 4)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(tessitura (ensemble mini)))

=> C4

SYNOPSIS:

(defmethod tessitura ((e ensemble))

20.2.222 recursive-assoc-list/get-all-refs

[recursive-assoc-list] [Methods]

DESCRIPTION:

Return a list of all the keys (REFS) in a given recursive-assoc-list

object. Nested keys are given in FULL-REF form, i.e. a list that is the

path of keys to the specific key.

Keys that are not part of nesting-path are also returned as lists

(single-item lists) by default. An optional argument allows these to be

returned as individual symbols rather than lists.

NB This will only work on the top-level object due to the creation of

references when linking.

ARGUMENTS:

- A recursive-assoc-list object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to return single REFS (non-nested keys) as

lists or as individual symbols. T = as list. Default = T.

RETURN VALUE:

A list.

EXAMPLE:

20 SC/NAMED-OBJECT 490

;; By default all keys are returned as lists, even single (non-nested) keys

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-all-refs ral))

=> ((JIM) (WILD) (FOUR ROSES) (FOUR VIOLETS BLUE) (FOUR VIOLETS RED DRAGON)

(FOUR VIOLETS RED VIPER) (FOUR VIOLETS RED FOX) (FOUR VIOLETS WHITE))

;; Setting the optional argument to NIL returns non-nested keys as symbols

;; rather than lists

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-all-refs ral nil))

=> (JIM WILD (FOUR ROSES) (FOUR VIOLETS BLUE) (FOUR VIOLETS RED DRAGON)

(FOUR VIOLETS RED VIPER) (FOUR VIOLETS RED FOX) (FOUR VIOLETS WHITE))

SYNOPSIS:

(defmethod get-all-refs ((ral recursive-assoc-list)

&optional

(single-ref-as-list t))

20.2.223 recursive-assoc-list/get-data

[recursive-assoc-list] [Methods]

DESCRIPTION:

Return the named-object (or linked-named-object) that is identified by a

specified key within a given recursive-assoc-list object.

20 SC/NAMED-OBJECT 491

NB: This method returns the named object itself, not just the data

associated with the key (use assoc-list::get-data-data for that).

ARGUMENTS:

- A symbol that is the key (id) of the named-object sought, or a list of

symbols that are the path to the desired named-object within the given

recursive-assoc-list.

- The recursive-assoc-list object in which it is sought.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether a warning is printed if the specified key

cannot be found within the given assoc-list. T = print. Default = T.

RETURN VALUE:

A named-object is returned if the specified key is found within the given

recursive-assoc-list object.

NIL is returned and a warning is printed if the specified key is not found

in the given recursive-assoc-list object. This applies, too, when a nested

key is specified without including the other keys that are the path to that

key (see example).

EXAMPLE:

;; Get a named-object from the top-level of the recursive-assoc-list object

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-data ’wild ral))

=>

NAMED-OBJECT: id: WILD, tag: NIL,

data: TURKEY

;; A list including all keys that are the path to the specified key is required

20 SC/NAMED-OBJECT 492

;; to get nested named-objects

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-data ’(four violets white) ral))

=>

NAMED-OBJECT: id: WHITE, tag: NIL,

data: RIBBON

;; Searching for a key that is not present in the given recursive-assoc-list

;; object returns NIL and a warning

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-data ’johnnie ral))

=> NIL

WARNING:

assoc-list::get-data: Could not find data with key JOHNNIE

in assoc-list with id MIXED-BAG

;; Searching for a nested key without specifying the path to that key within a

;; list also returns a NIL and a warning

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-data ’fox ral))

20 SC/NAMED-OBJECT 493

=> NIL

WARNING:

assoc-list::get-data: Could not find data with key FOX

in assoc-list with id MIXED-BAG

SYNOPSIS:

(defmethod get-data :around (ids (ral recursive-assoc-list)

&optional (warn t))

20.2.224 recursive-assoc-list/get-first

[recursive-assoc-list] [Methods]

DESCRIPTION:

Returns the first named-object in the DATA slot of the given

recursive-assoc-list object.

ARGUMENTS:

- A recursive-assoc-list object.

RETURN VALUE:

A named-object that is the first object in the DATA slot of the given

recursive-assoc-list object.

EXAMPLE:

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-first ral))

=>

NAMED-OBJECT: id: JIM, tag: NIL,

data: BEAM

20 SC/NAMED-OBJECT 494

SYNOPSIS:

(defmethod get-first ((ral recursive-assoc-list))

20.2.225 recursive-assoc-list/get-first-ref

[recursive-assoc-list] [Methods]

DESCRIPTION:

Get the full reference into the given recursive-assoc-list object of the

first named-object in the given recursive-assoc-list object.

NB: If the <ral> argument happens to be a recursive-assoc-list object that

is contained within another recursive-assoc-list object (i.e. is a

nested recursive-assoc-list object), then the result is the reference

into the top-level recursive-assoc-list object, not the argument.

ARGUMENTS:

- A recursive-assoc-list object.

RETURN VALUE: EXAMPLE:

;; A simple call returns the first top-level named-object

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-first-ref ral))

=> (JIM)

;; Return the first ref of a nested recursive-assoc-list object

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

20 SC/NAMED-OBJECT 495

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-first-ref (get-data-data ’(four violets) ral)))

=> (FOUR VIOLETS BLUE)

SYNOPSIS:

(defmethod get-first-ref ((ral recursive-assoc-list))

20.2.226 recursive-assoc-list/get-last

[recursive-assoc-list] [Methods]

DESCRIPTION:

Get the last named-object in a given recursive-assoc-list object.

NB: This method functions linearly, not hierarchically. The last named

object is therefore not necessarily the deepest of a nest, but the last

listed.

ARGUMENTS:

- A recursive-assoc-list object.

RETURN VALUE:

A named-object (or linked-named-object).

EXAMPLE:

;; This returns ’(white ribbon), not ’(fox hole)

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-last ral))

20 SC/NAMED-OBJECT 496

=>

NAMED-OBJECT: id: WHITE, tag: NIL,

data: RIBBON

SYNOPSIS:

(defmethod get-last ((ral recursive-assoc-list))

20.2.227 recursive-assoc-list/get-last-ref

[recursive-assoc-list] [Methods]

DESCRIPTION:

Get the last REF (path of nested keys) of the given recursive-assoc-list

object.

NB: This method functions linearly, not hierarchically. The last-ref may

not be the deepest nested.

ARGUMENTS:

- A recursive-assoc-list object.

RETURN VALUE:

Returns a list that is the last REF of the given recursive-assoc-list

object.

EXAMPLE:

;; Typical usage with nesting

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-last-ref ral))

=> (FOUR VIOLETS WHITE)

20 SC/NAMED-OBJECT 497

;; Returns the last-ref as a list even if the given recursive-assoc-list object

;; contains no nesting

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four roses)))))

(get-last-ref ral))

=> (FOUR)

SYNOPSIS:

(defmethod get-last-ref ((ral recursive-assoc-list))

20.2.228 recursive-assoc-list/get-previous

[recursive-assoc-list] [Methods]

DESCRIPTION:

Get the previous named-object in the given recursive-assoc-list object by

specifying the ID of a named-object contained within that given

recursive-assoc-list object.

An optional argument allows for the retrieval of a previous named-object

that is more than one step back in the given recursive-assoc-list object

(i.e., not the named-object that immediately precedes the specified key).

If the number given for the optional <how-many> argument is greater than

the number of items in the given recursive-assoc-list object, the value

returned will be a negative number.

The method proceeds linearly, not hierarchically, when getting previous

named-objects from further down into nested assoc-lists. In other words,

the named-object immediately previous to (white ribbon) in this nested list

is (fox hole), which is at a deeper level, not (red ...) or (blue velvet),

which are at the same level:

((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)

In order to retrieve objects that are nested more deeply, the list that is

the <keys> argument must consist of the consecutive path of keys leading to

20 SC/NAMED-OBJECT 498

that object. If only the key of a named object that is deeper in the list

is given, and not the path of keys to that object, a warning will be

printed that the given key cannot be found in the list.

NB: When this method is applied to keys that contain further assoc-list

objects, the method will drop into the debugger with an error.

ARGUMENTS:

- A recursive-assoc-list object.

- A list containing one or more symbols that are either the ID of the

specified named object or the path of keys to that object within the

given recursive-assoc-list object.

OPTIONAL ARGUMENTS:

- An integer indicating how many steps back in the given

recursive-assoc-list from the specified named-object to look when

retrieving the desired object (e.g. 1 = immediately previous object, 2 =

the one before that etc.)

RETURN VALUE:

A linked-named-object.

EXAMPLE:

;; Get the object immediately previous to that with the key WILD returns the

;; object with key JIM and data BEAM

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-previous ral ’(wild)))

=>

LINKED-NAMED-OBJECT: previous: NIL, this: (JIM), next: (WILD)

NAMED-OBJECT: id: JIM, tag: NIL,

data: BEAM

20 SC/NAMED-OBJECT 499

;; Attempting to get the previous object from the key FOUR, which contains a

;; nested list, returns an error unless the first key in the nested list is

;; also included

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-previous ral ’(four)))

=>

There is no applicable method for the generic function

#<STANDARD-GENERIC-FUNCTION PREVIOUS (1)>

when called with arguments

(

NAMED-OBJECT: id: FOUR, tag: NIL,

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-previous ral ’(four roses)))

=>

LINKED-NAMED-OBJECT: previous: (JIM), this: (WILD), next: (FOUR ROSES)

NAMED-OBJECT: id: WILD, tag: NIL,

data: TURKEY

;; The method defines the previous object linearly, not hierarchically; i.e.,

;; the previous object to (white ribbon) here is (fox hole) and not (red ...)

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

20 SC/NAMED-OBJECT 500

(fox hole)))

(white ribbon)))))))))

(get-previous ral ’(four violets white)))

=>

LINKED-NAMED-OBJECT: previous: (FOUR VIOLETS RED VIPER),

this: (FOUR VIOLETS RED FOX),

next: (FOUR VIOLETS WHITE)

NAMED-OBJECT: id: FOX, tag: NIL,

data: HOLE

;; Use the <how-many> argument to retrieve previous objects further back than

;; the immediate predecessor

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-previous ral ’(four violets white) 4))

=>

LINKED-NAMED-OBJECT: previous: (FOUR ROSES),

this: (FOUR VIOLETS BLUE),

next: (FOUR VIOLETS RED DRAGON)

NAMED-OBJECT: id: BLUE, tag: NIL,

data: VELVET

;; Using a <how-many> value greater than the number of items in the given

;; recursive-assoc-list object returns a negative number

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(get-previous ral ’(four violets white) 14))

=> -7

20 SC/NAMED-OBJECT 501

SYNOPSIS:

(defmethod get-previous ((ral recursive-assoc-list) keys

&optional (how-many 1))

20.2.229 recursive-assoc-list/link-named-objects

[recursive-assoc-list] [Methods]

DESCRIPTION:

Create linked-named-objects from the named-objects in the data slots of the

given recursive-assoc-list object. The linked-named-objects created hold

keys that serve as pointers to the previous and next objects in the given

recursive-assoc-list object, whether recursive or not.

The optional <previous> and <higher-next> arguments are only for internal

recursive calls and so shouldn’t be given by the user.

ARGUMENTS:

- A recursive-assoc-list object.

OPTIONAL ARGUMENTS:

- <previous>

- <higher-next>

EXAMPLE:

;;; The recursive-assoc-list may not be linked on creation, evident here

;;; through the value of the LINKED slot

(make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))

=>

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 8

20 SC/NAMED-OBJECT 502

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: MIXED-BAG, tag: NIL,

data: (

NAMED-OBJECT: id: JIM, tag: NIL,

data: BEAM

NAMED-OBJECT: id: WILD, tag: NIL,

data: TURKEY

[...]

;; The recursive-assoc-list object and the named-objects it contains are linked

;; after applying the link-named-objects method

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(link-named-objects ral))

=>

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 8

linked: T

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: MIXED-BAG, tag: NIL,

data: (

LINKED-NAMED-OBJECT: previous: NIL, this: (JIM), next: (WILD)

NAMED-OBJECT: id: JIM, tag: NIL,

data: BEAM

LINKED-NAMED-OBJECT: previous: (JIM), this: (WILD), next: (FOUR ROSES)

NAMED-OBJECT: id: WILD, tag: NIL,

data: TURKEY

20 SC/NAMED-OBJECT 503

RETURN VALUE:

the recursive-assoc-list object

SYNOPSIS:

(defmethod link-named-objects ((ral recursive-assoc-list)

&optional previous higher-next)

20.2.230 recursive-assoc-list/lisp-assoc-listp

[recursive-assoc-list] [Functions]

DESCRIPTION:

Determine whether a given list can has the structure of a lisp

assoc-list. This is assessed based on each of the elements being a 2-item

list, of which the first is a symbol, number or string (qualifies as a

key).

The optional argument <recurse-simple-data> allows the data portion of

key/data pairs to be viewed as flat lists rather than as recursive lists.

ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

T or NIL to indicate whether to consider lists of 2-item lists in the data

position of a given key/data pair to be a list or a recursive list.

T = list. Default = T.

RETURN VALUE:

T or NIL. T = the tested list can be considered a Lisp assoc-list.

EXAMPLE:

;; A list of 2-item lists, each of whose item are all either a symbol, number,

;; or string, can be considered a Lisp assoc-list.

(let ((lal ’((roses red) (3 "allegro") (5 flute))))

(lisp-assoc-listp lal))

20 SC/NAMED-OBJECT 504

=> T

;; By default, lists of 2-item lists in the DATA portion of a key/data pair

;; will be considered as a simple list, rather than a recursive list, resulting

;; in the tested list passing as T.

(let ((lal ’((1 2) (3 ((4 5) (6 7))) (8 9))))

(lisp-assoc-listp lal))

=> T

;; Setting the optional argument to NIL will cause the same list to fail with

(let ((lal ’((1 2) (3 ((4 5) (6 7))) (8 9))))

(lisp-assoc-listp lal nil))

=> NIL

SYNOPSIS:

(defun lisp-assoc-listp (candidate &optional (recurse-simple-data t))

20.2.231 recursive-assoc-list/make-ral

[recursive-assoc-list] [Functions]

DESCRIPTION:

Create a recursive-assoc-list object, which allows and automatically

instantiates association lists inside of association lists to any level of

nesting.

ARGUMENTS:

- A symbol that is the object’s ID.

- A list of nested lists, or a list.

OPTIONAL ARGUMENTS:

keyword arguments:

- :recurse-simple-data. T or NIL to indicate whether to recursively

instantiate a recursive-assoc-list in place of data that appears to be a

simple assoc-list (i.e. a 2-element list). If NIL, the data of 2-element

lists whose second element is a number or a symbol will be ignored,

therefore remaining as a list. For example, this data would normally

result in a recursive call: (y ((2 23) (7 28) (18 2))). T = replace

assoc-list data with recursive-assoc-lists. Default = T.

20 SC/NAMED-OBJECT 505

- :full-ref. Nil or a list representing the path to a nested

recursive-assoc-list object within the given recursive-assoc-list object,

starting from the top level of the given object. When NIL, the given

recursive-assoc-list object itself is the top level. Default = NIL.

- :tag. A symbol that is another name, description etc. for the given

recursive-assoc-list object. The tag may be used for identification but

not for searching purposes. Default = NIL.

- :warn-not-found. T or NIL to indicate whether a warning is printed when

an index which doesn’t exist is used for look-up. Default = T.

RETURN VALUE:

Returns a recursive-assoc-list object.

EXAMPLE:

;; Create a recursive-assoc-list object with default keyword argument values

(make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))

=>

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 8

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: MIXED-BAG, tag: NIL,

data: (

[...]

;; Use the class’s get-all-refs method to show that by default, simple data is

;; recursed. The sublists in the second list in this example are processed as

;; nested lists

(let ((ral (make-ral ’ral-test

’((1 one)

(2 ((3 4) (5 6)))

20 SC/NAMED-OBJECT 506

(3 three)))))

(get-all-refs ral))

=> ((1) (2 3) (2 5) (3))

;; Using the same data, but setting the :recurse-simple-data argument to NIL

;; will cause the method to process simple data as a unit rather than nested

;; lists

(let ((ral (make-ral ’ral-test

’((1 one)

(2 ((3 4) (5 6)))

(3 three))

:recurse-simple-data nil)))

(get-all-refs ral))

=> ((1) (2) (3))

SYNOPSIS:

(defun make-ral (id ral &key (recurse-simple-data t) (warn-not-found t)

(tag nil) (full-ref nil))

20.2.232 recursive-assoc-list/palette

[recursive-assoc-list] [Classes]

NAME:

palette

File: palette.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

palette

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the palette class which adds nothing to

its direct superclass assoc-list (as of yet) but spawns a

new base type for more specialised palettes.

Author: Michael Edwards: m@michael-edwards.org

20 SC/NAMED-OBJECT 507

Creation date: 19th February 2001

$$ Last modified: 19:45:19 Mon Oct 28 2013 GMT

SVN ID: $Id: palette.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.233 palette/instrument-palette

[palette] [Classes]

NAME:

instrument-palette

File: instrument-palette.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

palette -> instrument-palette

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the instrument-palette class which

intantiates instruments to be used in an ensemble

instance.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 6th September 2001

$$ Last modified: 21:57:31 Wed Jul 18 2012 BST

SVN ID: $Id: instrument-palette.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.234 instrument-palette/make-instrument-palette

[instrument-palette] [Functions]

DESCRIPTION:

Create an instrument-palette object from a list of instrument descriptions

based on the keyword arguments of make-instrument.

20 SC/NAMED-OBJECT 508

ARGUMENTS:

- A symbol that will serve as the ID for the instrument-palette object.

- A list of instrument descriptions based on the keyword arguments of

make-instrument.

OPTIONAL ARGUMENTS:

keyword arguments:

- :warn-not-found. T or NIL to indicate whether a warning is printed when

an index which doesn’t exist is used for look-up. Default = T.

RETURN VALUE:

An instrument palette.

EXAMPLE:

;; Returns an instrument-palette object

(make-instrument-palette ’inst-pal

’((piccolo (:transposition-semitones 12

:lowest-written d4 :highest-written c6))

(bf-clarinet (:transposition-semitones -2

:lowest-written e3

:highest-written c6))

(horn (:transposition f :transposition-semitones -7

:lowest-written f2 :highest-written c5))

(violin (:lowest-written g3 :highest-written c7

:chords t))

(viola (:lowest-written c3 :highest-written f6

:chords t))))

=>

INSTRUMENT-PALETTE:

PALETTE:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 5

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 5, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: INST-PAL, tag: NIL,

data: (

[...]

20 SC/NAMED-OBJECT 509

SYNOPSIS:

(defun make-instrument-palette (id ip &key (warn-not-found t))

20.2.235 instrument-palette/set-prefers-high

[instrument-palette] [Methods]

DATE:

05 Feb 2011

DESCRIPTION:

Set the PREFERS-NOTES slot of a specified instrument object within a given

instrument-palette object to ’HIGH. The instrument object is specified

using the ID symbol assigned to it within the instrument-palette object

definition.

NB: The optional argument is actually required, but is listed as optional

because of the attributes of the instrument class method.

ARGUMENTS:

- An instrument-palette object.

OPTIONAL ARGUMENTS:

- A symbol that is the ID of the instrument object within the

instrument-palette object definition.

RETURN VALUE:

Returns the symbol ’HIGH.

EXAMPLE:

;; Define an instrument-palette object, then set the PREFERS-NOTES slot of the

;; instrument object ’piccolo within that instrument-palette object to ’HIGH

(let ((ip (make-instrument-palette ’inst-pal

’((piccolo (:transposition-semitones 12

:lowest-written d4

:highest-written c6))

(bf-clarinet (:transposition-semitones -2

20 SC/NAMED-OBJECT 510

:lowest-written e3

:highest-written c6))

(horn (:transposition f

:transposition-semitones -7

:lowest-written f2

:highest-written c5))

(violin (:lowest-written g3

:highest-written c7

:chords t))

(viola (:lowest-written c3

:highest-written f6

:chords t))))))

(set-prefers-high ip ’piccolo))

=> HIGH

SYNOPSIS:

(defmethod set-prefers-high ((ip instrument-palette) &optional instrument)

20.2.236 instrument-palette/set-prefers-low

[instrument-palette] [Methods]

DATE:

05 Feb 2011

DESCRIPTION:

Set the PREFERS-NOTES slot of a specified instrument object within a given

instrument-palette object to ’LOW. The instrument object is specified

using the ID symbol assigned to it within the instrument-palette object

definition.

NB: The optional argument is actually required, but is listed as optional

because of the attributes of the instrument class method.

ARGUMENTS:

- An instrument-palette object.

OPTIONAL ARGUMENTS:

- A symbol that is the ID of the instrument object within the

instrument-palette object definition.

20 SC/NAMED-OBJECT 511

RETURN VALUE:

Returns the symbol ’LOW.

EXAMPLE:

;; Define an instrument-palette object, then set the PREFERS-NOTES slot of the

;; instrument object ’piccolo within that instrument-palette object to ’LOW

(let ((ip (make-instrument-palette ’inst-pal

’((piccolo (:transposition-semitones 12

:lowest-written d4

:highest-written c6))

(bf-clarinet (:transposition-semitones -2

:lowest-written e3

:highest-written c6))

(horn (:transposition f

:transposition-semitones -7

:lowest-written f2

:highest-written c5))

(violin (:lowest-written g3

:highest-written c7

:chords t))

(viola (:lowest-written c3

:highest-written f6

:chords t))))))

(set-prefers-low ip ’piccolo))

=> LOW

SYNOPSIS:

(defmethod set-prefers-low ((ip instrument-palette) &optional instrument)

20.2.237 palette/pitch-seq-palette

[palette] [Classes]

NAME:

pitch-seq-palette

File: pitch-seq-palette.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

20 SC/NAMED-OBJECT 512

palette -> pitch-seq-palette

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the pitch-seq-palette class.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 19th February 2001

$$ Last modified: 09:57:56 Tue Oct 1 2013 BST

SVN ID: $Id: pitch-seq-palette.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.238 pitch-seq-palette/add-inversions

[pitch-seq-palette] [Methods]

DESCRIPTION:

Add inversions of the existing pitch-seq objects in a given

pitch-seq-palette object to the end of that pitch-seq-palette object. (See

pitch-seq::invert for more details on slippery-chicken inversions.)

ARGUMENTS:

- A pitch-seq-palette object.

RETURN VALUE:

Always returns T.

EXAMPLE:

;; Create a pitch-seq-palette object and print the DATA of the pitch-seq

;; objects it contains; then apply the add-inversions method and print the same

;; DATA to see the changes

(let ((mpsp (make-psp ’mpsp 5 ’((2 5 3 1 4)

(1 4 2 5 3)

(5 1 3 2 4)

(2 3 4 5 1)

(3 2 4 1 5)))))

(print (loop for ps in (data mpsp)

20 SC/NAMED-OBJECT 513

collect (data ps)))

(add-inversions mpsp)

(print (loop for ps in (data mpsp)

collect (data ps))))

=>

((2 5 3 1 4) (1 4 2 5 3) (5 1 3 2 4) (2 3 4 5 1) (3 2 4 1 5))

((2 5 3 1 4) (1 4 2 5 3) (5 1 3 2 4) (2 3 4 5 1) (3 2 4 1 5) (4 1 3 5 2)

(5 2 4 1 3) (1 5 3 4 2) (4 3 2 1 5) (3 4 2 5 1))

SYNOPSIS:

(defmethod add-inversions ((psp pitch-seq-palette))

20.2.239 pitch-seq-palette/combine

[pitch-seq-palette] [Methods]

DESCRIPTION:

Create a new pitch-seq-palette object by combining the pitch-seq lists from

one pitch-seq-palette object with those of another.

The method combines the contents of the two given rthm-seq-palette objects

consecutively; i.e., the first pitch-seq object of the first

pitch-seq-palette is combined with the first pitch-seq object of the other,

then the second with the second, the third with the third etc.

If one pitch-seq-palette object contains more pitch-seq objects than the

other, the method cycles through the shorter one until all of the members

of the longer one have been handled. The new pitch-seq-palette object will

therefore contain the same number of pitch-seq objects as is in the longest

of the two starting pitch-seq-palette objects.

It is not necessary for the lengths of the pitch-seq objects in the two

starting pitch-seq-palette objects to be the same.

NB Both pitch-seq-palettes are reset by this method.

ARGUMENTS:

- A first pitch-seq-palette object.

- A second pitch-seq-palette object.

RETURN VALUE:

20 SC/NAMED-OBJECT 514

A pitch-seq-palette object.

EXAMPLE:

;;; Combine two pitch-seq-palette objects of the same length, each of whose

;;; pitch-seqs are the same length

(let ((mpsp1 (make-psp ’mpsp1 5 ’((2 5 3 1 4) (1 4 2 5 3) (5 1 3 2 4))))

(mpsp2 (make-psp ’mpsp2 5 ’((2 3 4 5 1) (3 2 4 1 5) (3 2 1 5 4)))))

(combine mpsp1 mpsp2))

=>

PITCH-SEQ-PALETTE: num-notes: 10, instruments: NIL

PALETTE:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 3

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "MPSP1-MPSP2", tag: NIL,

data: (

PITCH-SEQ: notes: NIL

[...]

data: (2 5 3 1 4 2 3 4 5 1)

PITCH-SEQ: notes: NIL

[...]

data: (1 4 2 5 3 3 2 4 1 5)

[...]

PITCH-SEQ: notes: NIL

[...]

data: (5 1 3 2 4 3 2 1 5 4)

)

;; When combining pitch-seq-palette objects of different lengths, the method

;; cyles through the shorter of the two

(let ((mpsp1 (make-psp ’mpsp1 5 ’((2 5 3 1 4) (1 4 2 5 3) (5 1 3 2 4))))

(mpsp2 (make-psp ’mpsp2 5 ’((2 3 4 5 1) (3 2 4 1 5)))))

(loop for ps in (data (combine mpsp1 mpsp2))

collect (data ps)))

=> ((2 5 3 1 4 2 3 4 5 1) (1 4 2 5 3 3 2 4 1 5) (5 1 3 2 4 2 3 4 5 1))

;; The two starting pitch-seq-palette objects are not required to have

;; pitch-seq objects of the same length

20 SC/NAMED-OBJECT 515

(let ((mpsp1 (make-psp ’mpsp1 5 ’((2 5 3 1 4) (1 4 2 5 3) (5 1 3 2 4))))

(mpsp2 (make-psp ’mpsp2 3 ’((2 3 4) (3 2 4)))))

(loop for ps in (data (combine mpsp1 mpsp2))

collect (data ps)))

=> ((2 5 3 1 4 2 3 4) (1 4 2 5 3 3 2 4) (5 1 3 2 4 2 3 4))

SYNOPSIS:

(defmethod combine ((psp1 pitch-seq-palette) (psp2 pitch-seq-palette))

20.2.240 pitch-seq-palette/make-psp

[pitch-seq-palette] [Functions]

DESCRIPTION:

Create a pitch-seq-palette object from an ID, a specified number of notes,

and a list of lists of numbers representing the pitch curve of the intended

pitch-seq objects.

ARGUMENTS:

- A symbol that is to be the ID of the pitch-seq-palette to be created.

- An integer that is the number of notes there are to be in each pitch-seq

object created.

- A list of lists, each of which contained list is a list of numbers

representing the pitch curve of the intended pitch-seq object.

RETURN VALUE:

A pitch-seq-palette object.

EXAMPLE:

;; Returns a pitch-seq-palette object

(make-psp ’mpsp 5 ’((2 5 3 1 4)

(1 4 2 5 3)

(5 1 3 2 4)

(2 3 4 5 1)

(3 2 4 1 5)))

=>

PITCH-SEQ-PALETTE: num-notes: 5, instruments: NIL

PALETTE:

20 SC/NAMED-OBJECT 516

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 5

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 5, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: MPSP, tag: NIL,

data: (

PITCH-SEQ: notes: NIL

[...]

data: (2 5 3 1 4)

PITCH-SEQ: notes: NIL

[...]

data: (1 4 2 5 3)

PITCH-SEQ: notes: NIL

[...]

data: (5 1 3 2 4)

PITCH-SEQ: notes: NIL

[...]

data: (2 3 4 5 1)

PITCH-SEQ: notes: NIL

[...]

data: (3 2 4 1 5)

)

;; Interrupts with an error if any of the <pitch-seqs> lists is not of the

;; length specified by <num-notes>

(make-psp ’mpsp 5 ’((1 2 1 1 3)

(1 3 2 1 5)

(1 3 5 6 7 8)))

=>

pitch-seq-palette::verify-and-store:

In pitch-seq MPSP-ps-3 from palette MPSP:

Each pitch sequence must have 5 notes (you have 6):

[...]

(1 3 5 6 7 8))

[Condition of type SIMPLE-ERROR]

;; We can also assign instruments to specific pitch-seqs by passing their names

;; (not player names, but instrument names) e.g.

(make-psp ’mpsp 5 ’((1 2 1 1 3)

((1 3 2 1 5) violin flute)

(1 3 5 6 7)))

20 SC/NAMED-OBJECT 517

SYNOPSIS:

(defun make-psp (id num-notes pitch-seqs)

20.2.241 palette/rthm-seq-palette

[palette] [Classes]

NAME:

set-palette

File: rthm-seq-palette.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

palette -> rthm-seq-palette

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the rthm-seq-palette class.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 19th February 2001

$$ Last modified: 18:31:28 Mon Dec 23 2013 WIT

SVN ID: $Id: rthm-seq-palette.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.242 rthm-seq-palette/chop

[rthm-seq-palette] [Methods]

DESCRIPTION:

Applies the chop method to each rthm-seq object in the given

rthm-seq-palette object (see rthm-seq-bar::chop for details). Returns a

new rthm-seq-palette object with the same structure as the argument, but

with a further level of nesting: Each rthm-seq object in the argument is

replaced by a list of rthm-seq objects that are each one "slice" of the

original rthm-seq objects.

20 SC/NAMED-OBJECT 518

The chop method is the basis for slippery-chicken’s feature of

intra-phrasal looping.

NB: Since the chop method functions by comparing each beat of a given

rthm-seq-bar object to the specified <chop-points> pattern for

segmenting that beat, all rthm-seq-bar objects in the given

rthm-seq-palette object must be evenly divisible by the beat for which

the pattern is defined. For example, if the <chop-points> argument

defines a quarter-note, all bars in the given rthm-seq-palette object

must be evenly divisible by a quarter-note, and a rthm-seq-palette

consisting of a rthm-seq object with a 2/4, a 3/4 and a 3/8 bar would

fail at the 3/8 bar with an error.

NB: The <unit> argument must be a duplet rhythmic value (i.e. 32, ’s, ’e

etc.) and cannot be a tuplet value (i.e. ’te ’fe etc.).

NB: In order for the resulting chopped rhythms to be parsable by LilyPond

and CMN, there can be no tuplets (triplets etc.) among the rhythms to

be chopped. Such rhythms will result in LilyPond and CMN errors. This

has only minimal bearing on any MIDI files produced, however, and these

can potentially be imported into notation software.

ARGUMENTS:

- A rthm-seq-palette object.

OPTIONAL ARGUMENTS:

- <chop-points>. A list of integer pairs, each of which delineates a

segment of the beat of the given rthm-seq-bar objects within the given

rthm-seq-palette object, measured in the rhythmic unit specified by the

<unit> argument. See the documentation for rthm-seq-bar::chop for more

details.

- <unit>. The rhythmic duration that serves as the unit of measurement for

the chop points. Default = ’s.

- <number-bars-first>. T or NIL. This argument helps in naming (and

therefore debugging) the newly-created bars. If T, the bars in the

original rthm-seq will be renumbered, starting from 1, and this will be

reflected in the tag of the new bars. E.g. if T, a new bar’s tag may be

new-bar-from-rs1-b3-time-range-1.750-to-2.000, if NIL this would be

new-bar-from-rs1-time-range-1.750-to-2.000. Default = T.

RETURN VALUE:

A rthm-seq-palette with the same top-level structure of the first argument,

20 SC/NAMED-OBJECT 519

but each ID now referencing a sub-rthm-seq-palette with sequentially

numbered rthm-seqs for each of the chopped results.

EXAMPLE:

;;; Create a rthm-seq-palette object, chop it with user-defined chop-points and

;;; a <unit> value of ’e, and print-simple the results

(let* ((rsp-orig (make-rsp

’sl-rsp

’((1

((((2 4) (e) e (e) e))

:pitch-seq-palette (1 8)))

(2

((((2 4) (s) e s e. (s)))

:pitch-seq-palette (3 5 7)))

(3

((((3 4) q +s e. +q))

:pitch-seq-palette (1 7))))))

(rsp-chopped (chop rsp-orig

’((1 1) (1 2) (2 2))

’e)))

(print-simple rsp-chopped))

=>

rthm-seq-palette SL-RSP

rthm-seq-palette 1

rthm-seq 1

(1 8): rest 8,

rthm-seq 2

(1 4): rest E, NIL E,

rthm-seq 3

(1 8): NIL E,

rthm-seq 4

(1 8): rest 8,

rthm-seq 5

(1 4): rest E, NIL E,

rthm-seq 6

(1 8): NIL E,

rthm-seq 1

(1 8): rest S, NIL S,

rthm-seq 2

(1 4): rest S, NIL E, NIL S,

rthm-seq 3

(1 8): rest S, NIL S,

rthm-seq 4

(1 8): NIL E,

20 SC/NAMED-OBJECT 520

rthm-seq 5

(1 4): NIL E., rest S,

rthm-seq 6

(1 8): rest 8,

rthm-seq 1

(1 8): NIL E,

rthm-seq 2

(1 4): NIL Q,

rthm-seq 3

(1 8): rest 8,

rthm-seq 4

(1 8): rest S, NIL S,

rthm-seq 5

(1 4): rest S, NIL E.,

rthm-seq 6

(1 8): rest 8,

rthm-seq 7

(1 8): rest 8,

rthm-seq 8

(1 4): rest 4,

rthm-seq 9

(1 8): rest 8,

SYNOPSIS:

(defmethod chop ((rsp rthm-seq-palette) &optional chop-points

(unit ’s)

(number-bars-first t))

20.2.243 rthm-seq-palette/cmn-display

[rthm-seq-palette] [Methods]

DESCRIPTION:

Generate printable music notation output (.EPS) of the given

rthm-seq-palette object using the Common Music Notation (CMN)

interface. The method requires at least the name of the given

rthm-seq-palette object to set, but has several additional optional

arguments for customizing output.

NB: Most of the keyword arguments are CMN attributes and share the same

name as the CMN feature they effect.

ARGUMENTS:

20 SC/NAMED-OBJECT 521

- A rthm-seq-palette object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :all-output-in-one-file. T or NIL to indicate whether to write the output

to a multi-page file or to separate files for each page.

T = one multi-page file. Default = T. This is a direct CMN attribute.

- :file. The file path, including the file name, of the file to be

generated.

- :staff-separation. A number to indicate the amount of white space between

staves belong to the same system, measured as a factor of the staff

height. Default = 3. This is a direct CMN attribute.

- :line-separation. A number to indicate the amount of white space between

lines of music (systems), measured as a factor of the staff

height. Default = 5. This is a direct CMN attribute.

- :page-nums. T or NIL to indicate whether or not to print page numbers on

the pages. T = print page numbers. Default = T.

- :no-accidentals. T or NIL to indicate whether or not to supress printing

accidentals for each and every note (rather than once per bar).

T = supress printing all accidentals. Default = NIL.

- :seqs-per-system. An integer indicating the number of rthm-seq objects to

be printed in one staff system. Default = 1.

- :size. A number to indicate the font size of the CMN output.

- :auto-open. Automatically open the EPS file?.

Default = (get-sc-config cmn-display-auto-open)

RETURN VALUE:

T

EXAMPLE:

;; A typical example with some specified keyword values for file and size

(let ((mrsp

(make-rsp ’rsp-test

’((seq1 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3 4 5 6 7)

(1 3 5 7 2 4 6)

(1 4 2 6 3 7 5)

(1 5 2 7 3 2 4))))

(seq2 ((((4 4) (e.) s { 3 te te te } +h)

({ 3 +te (te) te } e e (h)))

20 SC/NAMED-OBJECT 522

:pitch-seq-palette (2 3 4 5 6 7 8)))

(seq3 ((((2 4) e e { 3 te te te })

((4 4) (e) e e e s s (s) s q))

:pitch-seq-palette (3 4 5 6 7 8 9 10 1 2 3 7)))))))

(cmn-display mrsp

:file "/tmp/rmsp-output.eps"

:size 10))

SYNOPSIS:

(defmethod cmn-display ((rsp rthm-seq-palette)

&key

(all-output-in-one-file t)

(file

(format nil "~a~a.eps"

(get-sc-config ’default-dir)

(string-downcase (id rsp))))

(staff-separation 3)

(line-separation 5)

(page-nums t)

(no-accidentals t)

(seqs-per-system 1)

(auto-open (get-sc-config ’cmn-display-auto-open))

(size 15))

20.2.244 rthm-seq-palette/create-psps

[rthm-seq-palette] [Methods]

DATE:

30 Mar 2006

DESCRIPTION:

Automatically create pitch-seq-palette objects for each rthm-seq object in

the given rthm-seq-palette object.

The selection function given as an optional keyword argument should be able

to generate a list of numbers (relative note levels) for a rthm-seq of any

length; it takes two arguments only: the number of notes needed and the

pitch-seq data lists (see below).

As a pitch-seq-palette usually has several options for each rthm-seq

object, it’s best when the selection-fun doesn’t always return the same

20 SC/NAMED-OBJECT 523

thing given the same number of notes. NB: This will silently kill the data

of any pitch-seq-palette objects already supplied for any rthm-seqs in the

palette.

Note that the default selection function will suffice in lots of cases.

However, you may just want to use different data lists with the default

function. In that case just pass these via :selection-fun-data.

ARGUMENTS:

- A rth-seq-palette object.

OPTIONAL ARGUMENTS:

keyword arguments

- :selection-fun. This is a function that will return the pitch-seq

numbers. It takes two arguments only: 1) the number of notes needed, and

2) the pitch-seq data lists. The function also needs to be able to handle

being passed NIL NIL as arguments. In this case it should reset, if needs

be; i.e. it’s just a call to init and should return nothing. Default =

#’create-psps-default.

- :pitch-seqs-per-rthm-seq. This is an integer that is the number of

pitch-seqs each rthm-seq should have. NB: The method will simply cycle

through the pitch-seqs given in the selection function to create the

required number. Default = 3.

- :selection-fun-data. This contains the pitch-seq lists to be passed to

the default selection function. There can be as many pitch-seqs in these

lists as desired. The number of notes the pitch-seq will provide is the

first item of the list. They need not be in ascending order. When this

argument is passed a value of T, the selection function will reinitialize

its default data and use that.

- :reinit. Used internally. Do not change.

At the moment, the default data are:

’((1 ((3) (3) (1) (25)))

(2 ((3 4) (5 2) (25 25) (1 25)))

(3 ((3 4 3) (5 9 6) (1 2 4) (5 2 2) (6 2 3)))

(4 ((3 4 3 4) (5 3 6 4) (9 4 5 11) (2 10 4 8)))

(5 ((5 5 6 5 8) (7 7 7 4 8) (11 8 4 10 2) (7 7 4 9 9)))

(6 ((4 5 5 3 6 6) (3 8 3 9 3 8) (9 3 9 5 10 6)))

(7 ((8 8 8 5 9 6 9) (9 3 8 4 7 5 4) (3 4 3 5 3 4 3)))

(8 ((3 3 4 3 3 1 5 4) (10 3 9 3 8 3 7 4) (3 5 8 2 8 9 4 11)))

(9 ((3 6 4 7 4 7 3 6 7) (10 2 9 2 8 2 7 2 3)

(2 9 3 9 4 9 9 6 11)))

(10 ((9 9 9 3 9 9 3 5 9 5) (8 9 8 9 5 9 9 5 6 6)))

(12 ((1 2 5 5 5 5 5 5 5 5 4 5) (2 1 5 1 5 1 6 5 1 5 2 5)))

20 SC/NAMED-OBJECT 524

(13 ((1 2 5 5 5 5 5 5 5 5 4 5 2) (2 1 5 1 5 1 6 5 1 5 2 5 1)))

(14 ((1 2 5 5 5 5 5 5 5 5 4 5 2 1)

(2 1 5 1 5 1 6 5 1 5 2 5 1 2)))

(15 ((1 2 5 5 5 5 5 5 5 5 4 5 2 1 2)

(2 1 5 1 5 1 6 5 1 5 2 5 1 2 6))))))

RETURN VALUE:

Always returns T.

EXAMPLE:

;; Create a rthm-seq-palette object that specifies pitch-seq-palettes for each

;; contained rthm-seq object and print the values of the individual

;; pitch-seq-palettes. Then apply the create-psps method using its default

;; values, and print the values of the individual pitch-seq-palettes again to

;; see the change. NB You wouldn’t normally specify pitch-seq-palettes in your

;; rthm-seq-palette as the whole point of this method is to have them created

;; algorithmically, but they are given here for purposes of comparison.

(let ((mrsp (make-rsp ’rsp-test

’((seq1 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))

:pitch-seq-palette (1 2 3 4 5 6 7)))

(seq2 ((((3 4) (e.) s { 3 te te te } +q)

({ 3 +te (te) te } e e (q)))

:pitch-seq-palette (2 3 4 5 6 7 8)))

(seq3 ((((2 4) e e { 3 te te te })

((5 8) (e) e e e s s))

:pitch-seq-palette (3 4 5 6 7 8 9 10 1 2)))))))

(print

(loop for rs in (data mrsp)

collect

(loop for ps in (data (pitch-seq-palette rs))

collect (data ps))))

(create-psps mrsp)

(print

(loop for rs in (data mrsp)

collect

(loop for ps in (data (pitch-seq-palette rs))

collect (data ps)))))

=>

(((1 2 3 4 5 6 7)) ((2 3 4 5 6 7 8)) ((3 4 5 6 7 8 9 10 1 2)))

(((8 8 8 5 9 6 9) (9 3 8 4 7 5 4) (3 4 3 5 3 4 3))

20 SC/NAMED-OBJECT 525

((8 8 8 5 9 6 9) (9 3 8 4 7 5 4) (3 4 3 5 3 4 3))

((9 9 9 3 9 9 3 5 9 5) (8 9 8 9 5 9 9 5 6 6) (9 9 9 3 9 9 3 5 9 5)))

;; Use the :pitch-seqs-per-rthm-seq keyword argument to specify the number of

;; pitch-seq objects to be created for each rthm-seq. This example creates 5

;; instead of the default 3.

(let ((mrsp (make-rsp ’rsp-test

’((seq1 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))))

(seq2 ((((3 4) (e.) s { 3 te te te } +q)

({ 3 +te (te) te } e e (q)))))

(seq3 ((((2 4) e e { 3 te te te })

((5 8) (e) e e e s s))))))))

(create-psps mrsp :pitch-seqs-per-rthm-seq 5)

(loop for rs in (data mrsp)

collect

(loop for ps in (data (pitch-seq-palette rs))

collect (data ps))))

=>

(((8 8 8 5 9 6 9) (9 3 8 4 7 5 4) (3 4 3 5 3 4 3) (8 8 8 5 9 6 9)

(9 3 8 4 7 5 4))

((3 4 3 5 3 4 3) (8 8 8 5 9 6 9) (9 3 8 4 7 5 4) (3 4 3 5 3 4 3)

(8 8 8 5 9 6 9))

((9 9 9 3 9 9 3 5 9 5) (8 9 8 9 5 9 9 5 6 6) (9 9 9 3 9 9 3 5 9 5)

(8 9 8 9 5 9 9 5 6 6) (9 9 9 3 9 9 3 5 9 5)))

;;; Now an example with our own selection-fun creating random pitch-seqs for

;;; demo purposes only:

(let ((mrsp (make-rsp ’rsp-test

’((seq1 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))))

(seq2 ((((3 4) (e.) s { 3 te te te } +q)

({ 3 +te (te) te } e e (q)))))

(seq3 ((((2 4) e e { 3 te te te })

((5 8) (e) e e e s s))))))))

(create-psps

mrsp

:selection-fun #’(lambda

(num-notes data-lists)

;; NB we’re not doing anything with data-lists here

(loop repeat num-notes collect (random 10))))

(loop for rs in (data mrsp)

collect

20 SC/NAMED-OBJECT 526

(loop for ps in (data (pitch-seq-palette rs))

collect (data ps))))

=>

(((5 4 3 0 3 8 0) (1 2 8 5 3 7 8) (5 5 7 3 9 1 7))

((3 1 5 6 6 7 1) (7 7 8 5 5 2 4) (9 1 3 0 8 7 8))

((4 8 6 9 6 6 0 8 1 2) (1 5 5 7 7 2 9 3 1 2) (1 5 6 2 5 3 7 3 4 2)))

SYNOPSIS:

(defmethod create-psps ((rsp rthm-seq-palette)

&key

(selection-fun #’create-psps-default)

(selection-fun-data nil)

;; MDE Sat Jul 14 17:20:27 2012 --

(reinit t)

(pitch-seqs-per-rthm-seq 3))

20.2.245 rthm-seq-palette/create-psps-default

[rthm-seq-palette] [Functions]

ARGUMENTS:

- An integer that is the number of notes for which a pitch-seq-palette

object is needed.

- the pitch-seq data (see documentation for create psps method). Ideally

this would only be passed the first time the function is called.

RETURN VALUE:

A list of numbers suitable for use in creating a pitch-seq object.

SYNOPSIS:

(defun create-psps-default (num-notes data-lists)

20.2.246 rthm-seq-palette/get-multipliers

[rthm-seq-palette] [Methods]

DESCRIPTION:

Get a list of factors by which a specified rhythmic unit must be multiplied

in order to create the rhythms of a specified rthm-seq object within the

given rthm-seq-palette object.

20 SC/NAMED-OBJECT 527

See also rthm-seq method for more information.

ARGUMENTS:

- A rthm-seq object.

- A rhythm unit, either as a number of a CMN shorthand symbol (i.e. ’e)

- A symbol that is the ID of the rthm-seq-object for which the multipliers

is sought is also a required argument (though it is listed as an optional

argument for internal reasons).

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to round the results. T = round.

Default = NIL. NB: Lisp always rounds to even numbers, meaning x.5 may

sometimes round up and sometimes round down; thus (round 1.5) => 2, and

(round 2.5) => 2.

RETURN VALUE:

A list of numbers.

EXAMPLE:

;; Returns a list of numbers, by default not rounded

(let ((mrsp

(make-rsp ’rsp-test

’((seq1 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3 4 5 6 7)

(1 3 5 7 2 4 6)

(1 4 2 6 3 7 5)

(1 5 2 7 3 2 4))))

(seq2 ((((4 4) (e.) s { 3 te te te } +h)

({ 3 +te (te) te } e e (h)))

:pitch-seq-palette (2 3 4 5 6 7 8)))

(seq3 ((((2 4) e e { 3 te te te })

((4 4) (e) e e e s s (s) s q))

:pitch-seq-palette (3 4 5 6 7 8 9 10 1 2 3 7)))))))

(get-multipliers mrsp ’e ’seq1))

=> (2.0 1.0 1.5 2.0 1.1666666666666665 0.6666666666666666 0.6666666666666666)

;; Setting the option <round> argument to T returns rounded results

20 SC/NAMED-OBJECT 528

(let ((mrsp

(make-rsp ’rsp-test

’((seq1 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3 4 5 6 7)

(1 3 5 7 2 4 6)

(1 4 2 6 3 7 5)

(1 5 2 7 3 2 4))))

(seq2 ((((4 4) (e.) s { 3 te te te } +h)

({ 3 +te (te) te } e e (h)))

:pitch-seq-palette (2 3 4 5 6 7 8)))

(seq3 ((((2 4) e e { 3 te te te })

((4 4) (e) e e e s s (s) s q))

:pitch-seq-palette (3 4 5 6 7 8 9 10 1 2 3 7)))))))

(get-multipliers mrsp ’e ’seq1 t))

=> (2 1 2 2 1 1 1)

;; The ID argument is required, even though it’s listed as being optional. The

;; method interrupts with an error if no ID is supplied

(let ((mrsp

(make-rsp ’rsp-test

’((seq1 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3 4 5 6 7)

(1 3 5 7 2 4 6)

(1 4 2 6 3 7 5)

(1 5 2 7 3 2 4))))

(seq2 ((((4 4) (e.) s { 3 te te te } +h)

({ 3 +te (te) te } e e (h)))

:pitch-seq-palette (2 3 4 5 6 7 8)))

(seq3 ((((2 4) e e { 3 te te te })

((4 4) (e) e e e s s (s) s q))

:pitch-seq-palette (3 4 5 6 7 8 9 10 1 2 3 7)))))))

(get-multipliers mrsp ’e))

=>

rthm-seq-palette::get-multipliers: third argument (rthm-seq ID) is required.

[Condition of type SIMPLE-ERROR]

;;; Applying the method to the a multiple-bar rthm-seq object may return

;;; different results than applying the method to each of the bars contained

;;; within that rthm-seq object as individual one-bar rthm-seq objects, as the

;;; method measures the distances between attacked notes, regardless of ties

20 SC/NAMED-OBJECT 529

;;; and rests.

(let ((rs1 (make-rthm-seq ’(seq1 ((((2 4) q +e. s))

:pitch-seq-palette ((1 2))))))

(rs2 (make-rthm-seq ’(seq2 ((((2 4) (s) e (s) q))

:pitch-seq-palette ((1 2))))))

(rs3 (make-rthm-seq ’(seq3 ((((2 4) +e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3))))))

(rs4 (make-rthm-seq ’(seq4 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3 4 5 6 7)))))))

(print (get-multipliers rs1 ’e))

(print (get-multipliers rs2 ’e))

(print (get-multipliers rs3 ’e))

(print (get-multipliers rs4 ’e)))

=>

(3.5 0.5)

(1.5 2.0)

(1.1666666666666665 0.6666666666666666 0.6666666666666666)

(3.5 1.0 1.5 3.5 1.1666666666666665 0.6666666666666666 0.6666666666666666)

SYNOPSIS:

(defmethod get-multipliers ((rsp rthm-seq-palette) rthm &optional id round)

20.2.247 rthm-seq-palette/make-rsp

[rthm-seq-palette] [Functions]

DESCRIPTION:

Create a rthm-seq-palette object.

ARGUMENTS:

- A symbol that is to be the ID of the rhtm-seq-palette object created.

- A list containing rhtm-seq data to be made into rthm-seqs. Each item in

this list is a list of data formatted as it would be when passed to the

make-rthm-seq function.

OPTIONAL ARGUMENTS:

T or NIL to indicate whether to automatically generate and store inversions

of the pitch-seq-palette passed to the rthm-seq objects in the

rthm-seq-palette object created. T = generate and store. Default = NIL.

20 SC/NAMED-OBJECT 530

RETURN VALUE:

A rthm-seq-palette object.

EXAMPLE:

(make-rsp ’rsp-test ’((seq1 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))

:pitch-seq-palette (1 7 3 4 5 2 6)))

(seq2 ((((3 4) (e.) s { 3 te te te } +q)

({ 3 +te (te) te } e e (q)))

:pitch-seq-palette (3 1 2 5 1 7 6)))

(seq3 ((((2 4) e e { 3 te te te })

((5 8) (e) e e e s s))

:pitch-seq-palette (4 4 4 5 4 4 4 5 4 3)))))

=>

RTHM-SEQ-PALETTE: psp-inversions: NIL

PALETTE:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 3

linked: T

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: RSP-TEST, tag: NIL,

data: (

RTHM-SEQ: num-bars: 3

[...]

;; Create two rthm-seq-palette objects, one with :psp-inversions set to NIL and

;; one with it set to T, and print the DATA of the pitch-seq-palettes of each

(let ((mrsp1 (make-rsp ’rsp-test

’((seq1 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))

:pitch-seq-palette (1 7 3 4 5 2 6))))

:psp-inversions nil))

(mrsp2 (make-rsp ’rsp-test

’((seq1 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))

:pitch-seq-palette (1 7 3 4 5 2 6))))

20 SC/NAMED-OBJECT 531

:psp-inversions t)))

(print

(loop for i in (data (pitch-seq-palette (first (data mrsp1))))

collect (data i)))

(print

(loop for i in (data (pitch-seq-palette (first (data mrsp2))))

collect (data i))))

=>

((1 7 3 4 5 2 6))

((1 7 3 4 5 2 6) (7 1 5 4 3 6 2))

SYNOPSIS:

(defun make-rsp (id data &key (psp-inversions nil))

20.2.248 rthm-seq-palette/reset-psps

[rthm-seq-palette] [Methods]

DESCRIPTION:

Call the reset method (inherited from circular-sclist) for all

pitch-seq-palette objects of all rthm-seq objects in the given

rthm-seq-palette object, resetting their pointers to the head of the

sequence. This ensures that each rthm-seq starts over again at the first

note of the first given pitch-seq.

NB Since 28/10/13 there’s also a reset method for the palette class which

will mean we call the reset method of all pitch-seqs here. So this method

is now partially obsolete (but still perhaps useful in that in only resets

the psps, not the whole palette).

ARGUMENTS:

- A rthm-seq-palette object.

RETURN VALUE:

Always returns T.

EXAMPLE:

;; Create a rthm-seq-palette object whose first rthm-seq has three pitch-seq

;; objects in its pitch-seq-palette. Apply the get-next method to the

20 SC/NAMED-OBJECT 532

;; pitch-seq-palette object of the first rthm-seq object twice, then print the

;; data of the next pitch-seq object to show where we are. Apply the reset-psps

;; method and print the data of the next pitch-seq object to show that we’ve

;; returned to the beginning of the pitch-seq-palette.

(let ((mrsp

(make-rsp ’rsp-test

’((seq1 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3 4 5 6 7)

(1 3 5 7 2 4 6)

(1 4 2 6 3 7 5)

(1 5 2 7 3 2 4))))

(seq2 ((((3 4) (e.) s { 3 te te te } +q)

({ 3 +te (te) te } e e (q)))

:pitch-seq-palette (2 3 4 5 6 7 8)))

(seq3 ((((2 4) e e { 3 te te te })

((5 8) (e) e e e s s))

:pitch-seq-palette (3 4 5 6 7 8 9 10 1 2)))))))

(loop repeat 2

do (get-next (pitch-seq-palette (first (data mrsp)))))

(print (data (get-next (pitch-seq-palette (first (data mrsp))))))

(reset-psps mrsp)

(print (data (get-next (pitch-seq-palette (first (data mrsp)))))))

=>

(1 4 2 6 3 7 5)

(1 2 3 4 5 6 7)

SYNOPSIS:

(defmethod reset-psps ((rsp rthm-seq-palette))

20.2.249 rthm-seq-palette/rsp-subseq

[rthm-seq-palette] [Methods]

DATE:

23rd October 2013

DESCRIPTION:

(Recursively) change all the rthm-seq objects in the palette to be a

subsequence of the existing rthm-seqs.

20 SC/NAMED-OBJECT 533

ARGUMENTS:

- the original rthm-seq-palette object

- the start bar (1-based)

OPTIONAL ARGUMENTS:

- the end bar (1-based and (unlike Lisp’s subseq function) inclusive). If

NIL, we’ll use the original end bar of each rthm-seq. Default = NIL.

RETURN VALUE:

The original rthm-seq-palette but with the new rthm-seqs

SYNOPSIS:

(defmethod rsp-subseq ((rsp rthm-seq-palette) start &optional end)

20.2.250 rthm-seq-palette/scale

[rthm-seq-palette] [Methods]

DESCRIPTION:

Scale the durations of the rhythm objects in a given rthm-seq-palette

object by the specified factor.

NB: As is evident in the examples below, this method does not replace the

original data in the rthm-seq-palette object’s DATA slot.

ARGUMENTS:

- A rthm-seq-palette object.

- A real number that is the scaling factor.

OPTIONAL ARGUMENTS:

(- the three IGNORE arguments are for internal purposes only).

RETURN VALUE:

Returns a rthm-seq-palette object.

EXAMPLE:

20 SC/NAMED-OBJECT 534

;; Returns a rthm-seq-palette object

(let ((mrsp

(make-rsp ’rsp-test

’((seq1 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3 4 5 6 7)

(1 3 5 7 2 4 6)

(1 4 2 6 3 7 5)

(1 5 2 7 3 2 4))))

(seq2 ((((4 4) (e.) s { 3 te te te } +h)

({ 3 +te (te) te } e e (h)))

:pitch-seq-palette (2 3 4 5 6 7 8)))

(seq3 ((((2 4) e e { 3 te te te })

((4 4) (e) e e e s s (s) s q))

:pitch-seq-palette (3 4 5 6 7 8 9 10 1 2 3 7)))))))

(scale mrsp 2))

=>

RTHM-SEQ-PALETTE: psp-inversions: NIL

PALETTE:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 3

linked: T

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: RSP-TEST, tag: NIL,

data: (

RTHM-SEQ: num-bars: 3

;; Apply the method and loop through the rthm-seq objects in the

;; rthm-seq-palette object’s DATA slot, using the print-simple method to see

;; the changes

(let ((mrsp

(make-rsp ’rsp-test

’((seq1 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3 4 5 6 7)

(1 3 5 7 2 4 6)

(1 4 2 6 3 7 5)

(1 5 2 7 3 2 4))))

20 SC/NAMED-OBJECT 535

(seq2 ((((4 4) (e.) s { 3 te te te } +h)

({ 3 +te (te) te } e e (h)))

:pitch-seq-palette (2 3 4 5 6 7 8)))

(seq3 ((((2 4) e e { 3 te te te })

((4 4) (e) e e e s s (s) s q))

:pitch-seq-palette (3 4 5 6 7 8 9 10 1 2 3 7)))))))

(scale mrsp .5)

(print-simple mrsp))

=>

rthm-seq-palette RSP-TEST

rthm-seq SEQ1

(2 8): note E, note S., note 32,

(2 8): rest 32, note S, rest 32, note E,

(2 8): note S., note 32, rest TS, note TS, note TS,

rthm-seq SEQ2

(4 8): rest S., note 32, note TS, note TS, note TS, note Q,

(4 8): note TS, rest TS, note TS, note S, note S, rest Q,

rthm-seq SEQ3

(2 8): note S, note S, note TS, note TS, note TS,

(4 8): rest S, note S, note S, note S, note 32, note 32, rest 32, note 32, note E,

SYNOPSIS:

(defmethod scale ((rsp rthm-seq-palette) scaler

&optional ignore1 ignore2 ignore3)

20.2.251 rthm-seq-palette/set-slot

[rthm-seq-palette] [Methods]

DESCRIPTION:

Set the specified slot of an object with a recursive-assoc-list structure

to the specified value. This is particularly useful for changing the

parameters of instrument objects within an instrument palette, for example.

ARGUMENTS:

- The name of the slot whose value is to be set.

- The value to which that slot is to be set.

- The key within the given recursive-assoc-list object for which the slot

is to be set.

- The recursive-assoc-list object in which the slot is to be changed.

RETURN VALUE:

20 SC/NAMED-OBJECT 536

The value to which the slot has been set.

EXAMPLE:

(set-slot ’largest-fast-leap 10 ’oboe

+slippery-chicken-standard-instrument-palette+)

=> 10

SYNOPSIS:

(defmethod set-slot (slot value id (ral recursive-assoc-list))

20.2.252 rthm-seq-palette/split-into-single-bars

[rthm-seq-palette] [Methods]

DESCRIPTION:

Split every rthm-seq in a palette into as many single-bar rthm-seqs as

there are bars. This creates an extra level of recursion so that whereas a

rthm-seq that was referenced by e.g. ’(long 1 a) beforehand, afterwards

each bar will be reference by ’(long 1 a 1), ’(long 1 a 2) etc. This is

true even for sequences that only contained one bar before processing. The

pitch-seq-palettes of the original rthm-seqs will be used to set the

pitch-seqs of the new rthm-seqs.

ARGUMENTS:

- the rthm-seq-palette object

OPTIONAL ARGUMENTS:

- whether to clone the palette before processing (T or NIL). Default = T.

RETURN VALUE:

A rthm-seq-palette object with extra layers of recursion.

SYNOPSIS:

(defmethod split-into-single-bars ((rsp rthm-seq-palette) &optional (clone t))

20 SC/NAMED-OBJECT 537

20.2.253 palette/set-palette

[palette] [Classes]

NAME:

set-palette

File: set-palette.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

palette -> set-palette

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the set-palette class which extends the

palette class by simply instantiating the sets given in

the palette.

Note that the sets in this palette may refer to

previously defined sets in order to obviate retyping note

lists. Hence the reference to bcl-chord2 in the

bcl-chord3 set of the example below will instantiate a

set based on a transposed clone of that set previously

stored as bcl-chord2.

(make-set-palette

’test

’((bcl-chord1

((bf1 ef2 aqf2 c3 e3 gqf3 gqs3 cs4 d4 g4 a4 cqs5

dqf5 gs5 b5)

:subsets

((tc1 (ds2 e3 a4))

(tc2 (bf1 d4 cqs5))

(qc1 (aqf2 e3 a4 dqf5 b5))

(qc2 (bf1 c3 gqs3 cs4 cqs5)))

:related-sets

((missing (bqs0 eqs1 f5 aqs5 eqf6 fqs6

bqf6 dqs7 fs7)))))

(bcl-chord2

((bf1 d2 fqf2 fqs2 b2 c3 f3 g3 bqf3 bqs3 fs4 gs4 a4

cs5 gqf5)

:subsets

20 SC/NAMED-OBJECT 538

((tc1 (d2 g3 cs5))

(tc2 (eqs2 f3 bqf3))

(qc1 (eqs2 c3 f3 fs4 gqf5))

(qc2 (d2 fqs2 bqs3 gs4 a4)))

:related-sets

((missing (aqs0 dqs1 ds5 gqs5 dqf6 eqf6 aqf6 cqs7

e7)))))

(bcl-chord3

(bcl-chord2 :transposition 13))))

Author: Michael Edwards: m@michael-edwards.org

Creation date: August 14th 2001

$$ Last modified: 17:53:28 Mon Oct 28 2013 GMT

SVN ID: $Id: set-palette.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.254 set-palette/cmn-display

[set-palette] [Methods]

DESCRIPTION:

Generate printable music notation output (.EPS) of the given set-palette

object, including separate notation of the SUBSETS and RELATED-SETS slots,

using the Common Music Notation (CMN) interface. The method requires at

least the name of the given set-palette object, but has several additional

optional arguments for customizing output.

NB: Some of the keyword arguments are CMN attributes and share the same

name as the CMN feature they effect.

ARGUMENTS:

- A set-palette object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :file. The file path, including the file name, of the file to be

generated.

- :4stave. T or NIL to indicate whether the note-heads of the output should

be printed on 4 staves (or 2). T = 4. Default = NIL.

20 SC/NAMED-OBJECT 539

- :text-x-offset. Number (positive or negative) to indicate the horizontal

offset of any text in the output. A value of 0.0 results in all text

being lined up left-flush with the note-heads below it. Units here and

below are relative to CMN staff size. Default = -0.5.

- :text-y-offset. Number (positive or negative) to indicate the vertical

offset of any text in the output.

- :font-size. A number indicating the size of any text font used in the

output. This affects text only and not the music (see :size below for

changing the size of the music).

- :break-line-each-set. T or NIL to indicate whether each set-palette

object should be printed on a separate staff or consecutively on the same

staff. T = one staff per set-palette object. Default = T.

- :line-separation. A number to indicate the amount of white space between

lines of music (systems), measured as a factor of the staff

height. Default = 3. This is a direct CMN attribute.

- :staff-separation. A number to indicate the amount of white space between

staves belong to the same system, measured as a factor of the staff

height. Default = 3. This is a direct CMN attribute.

- :transposition. Nil or a number (positive or negative) to indicate the

number of semitones by which the pitches of the given set-palette object

should be transposed before generating the CMN output. Default = NIL (0).

- :size. A number to indicate the size of the music-font in the CMN

output. This affects music only, not text.

- :use-octave-signs. T or NIL to indicate whether to automatically insert

ottava spanners. Automatic placement depends on the overall pitch

content. This is a slippery-chicken process and may produce different

results than :automatic-octave-signs, which is a direct CMN process.

T = insert octave signs. Default = NIL.

- :automatic-octave-signs. T or NIL to indicate whether to automatically

insert ottava spanners. Automatic placement depends on the overall pitch

content. This is a direct CMN process and may produce different results

than :use-octave-signs, which is a slippery-chicken process. T = insert

octave signs. Default = NIL.

- :include-missing-chromatic. T or NIL to indicate whether to also print

any chromatic pitches from the complete-set that are not present in the

given set-palette object. T = print. Default = T.

- :include-missing-non-chromatic. T or NIL to indicate whether to also

print any microtonal pitches from the complete-set that are not

present in the given set-palette object. T = print. Default = T.

RETURN VALUE:

T

EXAMPLE:

20 SC/NAMED-OBJECT 540

;; A typical example with some specified keyword values for file, font-size,

;; break-line-each-set, size, include-missing-chromatic and

;; include-missing-non-chromatic

(let ((msp (make-set-palette

’test

’((1 ((1

((c3 g3 cs4 e4 fs4 a4 bf4 c5 d5 f5 gf5 af5 ef6)))

(2

((c3 g3 cs4 e4 fs4 a4 bf4 c5 d5 f5 gf5 af5 ef6)

:subsets

((tc1 (d2 g3 cs5))

(tc2 (eqs2 f3 bqf3))

(tc3 (b2 bqs3 gqf5)))))))

(2 ((1 ((1 1) :transposition 5))

(2 ((1 2) :transposition 5))))

(3 ((1 ((1 1) :transposition -2))

(2 ((1 2) :transposition -2))))))))

(cmn-display msp

:file "/tmp/sp-output.eps"

:font-size 8

:break-line-each-set nil

:size 10

:include-missing-chromatic nil

:include-missing-non-chromatic nil))

SYNOPSIS:

(defmethod cmn-display ((sp set-palette)

&key

;; 10.3.10: display on 4 staves (treble+15 bass-15)?

(4stave nil)

(file

(format nil "~a~a.eps"

(get-sc-config ’default-dir)

(string-downcase (id sp))))

(text-x-offset -0.5)

(text-y-offset nil)

(font-size 10.0)

(break-line-each-set t)

(line-separation 3)

(staff-separation nil)

(transposition nil) ;; in semitones

(size 20)

(use-octave-signs nil)

(automatic-octave-signs nil)

(include-missing-chromatic t)

20 SC/NAMED-OBJECT 541

(auto-open (get-sc-config ’cmn-display-auto-open+))

(include-missing-non-chromatic t))

20.2.255 set-palette/find-sets-with-pitches

[set-palette] [Methods]

DESCRIPTION:

Return a list of sets (as complete-set objects) from a given set-palette

object based on whether they contain specified pitches.

NB: Only sets which contain all of the specified pitches will be returned.

ARGUMENTS:

- A set-palette object.

- A list of pitches, either as pitch objects or note-name symbols.

OPTION ARGUMENTS

- T or NIL to indicate whether to print the notes of each successful set as

they are being examined.

RETURN VALUE:

A list of complete-set objects.

EXAMPLE:

;; Find sets that contain a single pitch

(let ((msp (make-set-palette

’test

’((1 ((1

((g3 c4 e4 g4)))

(2

((c4 d4 e4 g4)))))

(2 ((1 ((1 1) :transposition 5))

(2 ((1 2) :transposition 5))))

(3 ((1 ((1 1) :transposition -2))

(2 ((1 2) :transposition -2))))))))

(find-sets-with-pitches msp ’(c4)))

=>

(

COMPLETE-SET: complete: NIL

20 SC/NAMED-OBJECT 542

[...]

data: (BF3 C4 D4 F4)

[...]

COMPLETE-SET: complete: NIL

[...]

data: (C4 F4 A4 C5)

[...]

COMPLETE-SET: complete: NIL

[...]

data: (C4 D4 E4 G4)

[...]

COMPLETE-SET: complete: NIL

[...]

data: (G3 C4 E4 G4)

)

;; Search for a set of two pitches, printing the successfully matched sets

(let ((msp (make-set-palette

’test

’((1 ((1

((g3 c4 e4 g4)))

(2

((c4 d4 e4 g4)))))

(2 ((1 ((1 1) :transposition 5))

(2 ((1 2) :transposition 5))))

(3 ((1 ((1 1) :transposition -2))

(2 ((1 2) :transposition -2))))))))

(print (find-sets-with-pitches msp ’(c4 f4) t)))

=>

(2 1): (C4 F4 A4 C5)

(3 2): (BF3 C4 D4 F4)

(

COMPLETE-SET: complete: NIL

[...]

data: (BF3 C4 D4 F4)

COMPLETE-SET: complete: NIL

[...]

data: (C4 F4 A4 C5)

)

SYNOPSIS:

(defmethod find-sets-with-pitches ((sp set-palette) pitches &optional print)

20 SC/NAMED-OBJECT 543

20.2.256 set-palette/force-micro-tone

[set-palette] [Methods]

DESCRIPTION:

Change the value of the MICRO-TONE slot of all pitch objects in a given

set-palette object to the specified <value>.

ARGUMENTS:

- A set-palette object.

OPTIONAL ARGUMENTS:

- An item of any type that is to be the new value of the MICRO-TONE slot of

all pitch objects in the given sc-set object (generally T or

NIL). Default = NIL.

RETURN VALUE:

Always returns T.

EXAMPLE:

;; Create a set-palette object whose individual sets contain some micro-tones

;; and print the contents of all the MICRO-TONE slots to see the values. Then

;; apply the force-micro-tone method and print the slots again to see the

;; changes.

(let ((msp (make-set-palette

’test

’((1 ((1

((bf1 ef2 aqf2 c3 e3 gqf3 gqs3 cs4 d4 g4 a4 cqs5 dqf5 gs5

b5)))

(2

((bf1 d2 fqf2 fqs2 b2 c3 f3 g3 bqf3 bqs3 fs4 gs4 a4 cs5 gqf5)

:subsets

((tc1 (d2 g3 cs5))

(tc2 (eqs2 f3 bqf3))

(tc3 (b2 bqs3 gqf5)))))))

(2 ((1 ((1 1) :transposition 5))

(2 ((1 2) :transposition 5))))

(3 ((1 ((1 1) :transposition -2))

(2 ((1 2) :transposition -2))))))))

20 SC/NAMED-OBJECT 544

(print (loop for i in (data msp)

collect (loop for j in (data (data i))

collect (loop for p in (data j)

collect (micro-tone p)))))

(force-micro-tone msp t)

(print (loop for i in (data msp)

collect (loop for j in (data (data i))

collect (loop for p in (data j)

collect (micro-tone p))))))

=>

(((NIL NIL T NIL NIL T T NIL NIL NIL NIL T T NIL NIL)

(NIL NIL T T NIL NIL NIL NIL T T NIL NIL NIL NIL T))

((NIL NIL T NIL NIL T T NIL NIL NIL NIL T T NIL NIL)

(NIL NIL T T NIL NIL NIL NIL T T NIL NIL NIL NIL T))

((NIL NIL T NIL NIL T T NIL NIL NIL NIL T T NIL NIL)

(NIL NIL T T NIL NIL NIL NIL T T NIL NIL NIL NIL T)))

(((T T T T T T T T T T T T T T T) (T T T T T T T T T T T T T T T))

((T T T T T T T T T T T T T T T) (T T T T T T T T T T T T T T T))

((T T T T T T T T T T T T T T T) (T T T T T T T T T T T T T T T)))

SYNOPSIS:

(defmethod force-micro-tone ((sp set-palette) &optional value)

20.2.257 set-palette/gen-max-coll-file

[set-palette] [Methods]

DATE:

26-Dec-2009

DESCRIPTION:

Write a text file from a given set-palette object suitable for reading into

Max/MSP’s coll object. The resulting text file has one line for each set in

the palette, with the coll index being the ID of the set. The rest of the

line is a list of frequency/amplitude pairs (or MIDI note numbers if

required).

ARGUMENTS:

- A set-palette object.

- The name (and path) of the .txt file to write.

20 SC/NAMED-OBJECT 545

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether MIDI note numbers or frequencies should be

generated. T = MIDI. Default = NIL (frequencies).

RETURN VALUE: EXAMPLE:

;; Generates frequencies by default

(let ((msp (make-set-palette

’test

’((1 ((1

((g3 c4 e4 g4)))

(2

((c4 d4 e4 g4)))))

(2 ((1 ((1 1) :transposition 5))

(2 ((1 2) :transposition 5))))

(3 ((1 ((1 1) :transposition -2))

(2 ((1 2) :transposition -2))))))))

(gen-max-coll-file msp "/tmp/msp-mcf.txt"))

;; Set the optional argument to T to generate MIDI note numbers instead

(let ((msp (make-set-palette

’test

’((1 ((1

((g3 c4 e4 g4)))

(2

((c4 d4 e4 g4)))))

(2 ((1 ((1 1) :transposition 5))

(2 ((1 2) :transposition 5))))

(3 ((1 ((1 1) :transposition -2))

(2 ((1 2) :transposition -2))))))))

(gen-max-coll-file msp "/tmp/msp-mcf.txt" t))

SYNOPSIS:

(defmethod gen-max-coll-file ((sp set-palette) file &optional midi)

20.2.258 set-palette/gen-midi-chord-seq

[set-palette] [Methods]

DESCRIPTION:

Generate a MIDI file in which each set of the given set-palette object is

played at 1 second intervals.

20 SC/NAMED-OBJECT 546

ARGUMENTS:

- A set-palette object.

- The name and path for the MIDI file to be generated.

RETURN VALUE:

Always returns T

EXAMPLE:

(let ((msp (make-set-palette

’test

’((1 ((1

((bf1 ef2 aqf2 c3 e3 gqf3 gqs3 cs4 d4 g4 a4 cqs5 dqf5 gs5

b5)))

(2

((bf1 d2 fqf2 fqs2 b2 c3 f3 g3 bqf3 bqs3 fs4 gs4 a4 cs5 gqf5)

:subsets

((tc1 (d2 g3 cs5))

(tc2 (eqs2 f3 bqf3))

(tc3 (b2 bqs3 gqf5)))))))

(2 ((1 ((1 1) :transposition 5))

(2 ((1 2) :transposition 5))))

(3 ((1 ((1 1) :transposition -2))

(2 ((1 2) :transposition -2))))))))

(gen-midi-chord-seq msp "/tmp/msp-gmchs.mid"))

SYNOPSIS:

(defmethod gen-midi-chord-seq ((sp set-palette) midi-file)

20.2.259 set-palette/make-set-palette

[set-palette] [Functions]

DESCRIPTION:

Create a set-palette object.

Note that the sets in this palette may refer to previously defined sets in

order to avoid retyping note lists (see example below).

ARGUMENTS:

20 SC/NAMED-OBJECT 547

- A symbol that is to be the ID of the resulting set-palette object.

- A recursive list of key/data pairs, of which the deepest level of data

will be a list of note-name symbols.

OPTIONAL ARGUMENTS:

keyword arguments:

- :recurse-simple-data. T or NIL to indicate whether to interpret

two-element data lists as recursive palettes. Default = T.

- :warn-note-found. T or NIL to indicate whether to print warnings when

specified data is not found with subsequent calls to the get-data method.

RETURN VALUE:

A set-palette object.

EXAMPLE:

;;; Create a set-palette object

(make-set-palette

’test

’((1 ((1

((bf1 ef2 aqf2 c3 e3 gqf3 gqs3 cs4 d4 g4 a4 cqs5 dqf5 gs5 b5)

:subsets

((tc1 ((ds2 e3 a4) "a-tag"))

(tc2 (bf1 d4 cqs5))

(tc3 (c3 cs4 gs5)))))

(2

((bf1 d2 fqf2 fqs2 b2 c3 f3 g3 bqf3 bqs3 fs4 gs4 a4 cs5 gqf5)

:subsets

((tc1 (d2 g3 cs5))

(tc2 (eqs2 f3 bqf3))

(tc3 (b2 bqs3 gqf5)))))

(3

((cqs2 fs2 g2 c3 d3 fqs3 gqf3 cs4 ds4 e4 gs4 dqf5 f5 a5 bqs5)

:subsets

((tc1 (cqs2 c3 f5))

(tc2 (fs2 e4 bqs5))

(tc3 (d3 ef4 a5)))))))

(2 ((1 ((1 1) :transposition 5))

(2 ((1 2) :transposition 5))

(3 ((1 3) :transposition 5))))

(3 ((1 ((1 1) :transposition -2))

(2 ((1 2) :transposition -2))

(3 ((1 3) :transposition -2))))))

20 SC/NAMED-OBJECT 548

=>

SET-PALETTE:

PALETTE:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 9

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: TEST, tag: NIL,

data: (

[...]

;;; NB A simple list of sets (with unique id slots) can also be passed.

;;; Create a set-palette object by referencing a set-palette-object already

;;; defined (sp1) and transposing a clone of that object.

(make-set-palette

’test

’((sp1

((bf1 ef2 aqf2 c3 e3 gqf3 gqs3 cs4 d4 g4 a4 cqs5

dqf5 gs5 b5)

:subsets

((tc1 (ds2 e3 a4))

(tc2 (bf1 d4 cqs5))

(qc1 (aqf2 e3 a4 dqf5 b5))

(qc2 (bf1 c3 gqs3 cs4 cqs5)))

:related-sets

((missing (bqs0 eqs1 f5 aqs5 eqf6 fqs6

bqf6 dqs7 fs7)))))

(sp2

(sp1 :transposition 13))))

=>

SET-PALETTE:

PALETTE:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 2

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

20 SC/NAMED-OBJECT 549

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: TEST, tag: NIL,

data: (

COMPLETE-SET: complete: NIL

num-missing-non-chromatic: 7

num-missing-chromatic: 2

missing-non-chromatic: (BQS BQF AQS FQS EQS EQF DQS)

missing-chromatic: (FS F)

[...]

subsets:

TC1: (DS2 E3 A4)

TC2: (BF1 D4 CQS5)

QC1: (AQF2 E3 A4 DQF5 B5)

QC2: (BF1 C3 GQS3 CS4 CQS5)

related-sets:

MISSING: (BQS0 EQS1 F5 AQS5 EQF6 FQS6 BQF6 DQS7 FS7)

SCLIST: sclist-length: 15, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: SP1, tag: NIL,

data: (BF1 EF2 AQF2 C3 E3 GQF3 GQS3 CS4 D4 G4 A4 CQS5 DQF5 GS5 B5)

[...]

COMPLETE-SET: complete: NIL

num-missing-non-chromatic: 7

num-missing-chromatic: 2

missing-non-chromatic: (BQS BQF AQS FQS EQS EQF DQS)

missing-chromatic: (FS F)

TL-SET: transposition: 13

limit-upper: NIL

limit-lower: NIL

[...]

subsets:

TC1: (E3 F4 BF5)

TC2: (B2 EF5 DQF6)

QC1: (AQS3 F4 BF5 DQS6 C7)

QC2: (B2 CS4 AQF4 D5 DQF6)

related-sets:

MISSING: (BQS0 EQS1 F5 AQS5 EQF6 FQS6 BQF6 DQS7 FS7)

SCLIST: sclist-length: 15, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: SP2, tag: NIL,

data: (B2 E3 AQS3 CS4 F4 GQS4 AQF4 D5 EF5 AF5 BF5 DQF6 DQS6 A6 C7)

)

SYNOPSIS:

20 SC/NAMED-OBJECT 550

(defun make-set-palette (id palette

&key (recurse-simple-data t) (warn-not-found t))

20.2.260 set-palette/recursive-set-palette-from-ring-mod

[set-palette] [Functions]

DESCRIPTION:

Create a set-palette object consisting of sub palette-objects whose pitch

content is generated based on ring modulation routines applied to the

specified pitches.

ARGUMENTS:

- A list of note-name symbols, each of which will serve as the reference

pitch from which a new set-palette object is made using the

set-palette-from-ring-mod method.

- A symbol that will be the ID for the top-level set-palette object. The

IDs of the new set-palette objects contained in the top-level object are

generated from the note-name symbols of the reference-pitches, with the

IDs of the pitch sets contained with them then generated by sequential

numbers.

OPTIONAL ARGUMENTS:

keyword arguments:

- :partials. A list of integers that are the partials which the method is

to ring modulate, with 1 being either the reference-note or the bass note

that would have the reference-note as the highest partial in the given

list. Default = ’(1 3 5 7).

- :warn-no-bass. T or NIL to indicate whether to issue a warning when

ring-mod-bass fails to find suitable bass notes for the generated sets. T

= warn. Default = T.

- :do-bass. T or NIL to indicate whether to add notes created by the

ring-mod-bass function to the resulting set-palette object. T = create and

add bass notes. Default = T.

- :remove-octaves. T or NIL to indicate whether to remove the upper

instances of any octave-equivalent pitches from the resulting set-palette

object. T = remove. Default = NIL.

- :min-bass-notes. An integer that is the minimum number of bass notes to

be generated and added to the resulting set-palette object. Default = 1.

- :ring-mod-bass-octave. An integer that is the MIDI octave reference

number (such as the 4 in ’C4), indicating the octave from which the bass

note(s) are to be taken.

20 SC/NAMED-OBJECT 551

RETURN VALUE:

- A set-palette object (recursive)

EXAMPLE:

;; Simple useage with default keyword argument values

(recursive-set-palette-from-ring-mod ’(a4 b4 c4) ’rspfrm-test)

=>

SET-PALETTE:

PALETTE:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 3

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: RSPFRM-TEST, tag: NIL,

data: (

NAMED-OBJECT: id: A4, tag: NIL,

data:

SET-PALETTE:

PALETTE:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 21

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 21, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: A4, tag: NIL,

data: (

COMPLETE-SET: complete: NIL

[...]

SYNOPSIS:

(defun recursive-set-palette-from-ring-mod (reference-notes id &key

(warn-no-bass t)

(ring-mod-bass-octave 0)

(do-bass t)

20 SC/NAMED-OBJECT 552

remove-octaves

(min-bass-notes 1)

(partials ’(1 3 5 7)))

20.2.261 set-palette/ring-mod

[set-palette] [Functions]

DESCRIPTION:

Ring modulate two frequencies and return the resulting pitch and harmonic

partials thereof.

ARGUMENTS:

- A first pitch, either as a numeric hertz frequencey or a note-name

symbol.

- A second pitch, either as a numeric hertz frequencey or a note-name

symbol. The second value needn’t be higher than first.

OPTIONAL ARGUMENTS:

keyword arguments

- :return-notes. T or NIL to indicate whether to return the results as

note-name symbols or frequency numbers. T = note-name symbols.

Default = NIL.

- :pitch1-partials. An integer that indicates how many harmonic partials of

the first pitch are to be included in the modulation. Default = 3.

- :pitch2-partials. An integer that indicates how many harmonic partials of

the second pitch are to be included in the modulation. Default = 2.

- :min-freq. A number that is the the minimum frequency (hertz) that may be

returned. Default = 20.

- :max-freq. A number that is the the maximum frequency (hertz) that may be

returned. Default = 20000.

- :round. T or NIL to indicate whether frequency values returned are first

rounded to the nearest hertz. T = round. Default = T

- :remove-duplicates. T or NIL to indicate whether any duplicate

frequencies are to be removed from the resulting list before returning

it. T = remove. Default = T.

- :print. T or NIL to indicate whether resulting data is to be printed as

it is being generated. T = print. Default = NIL.

- :remove-octaves. T or NIL to indicate whether octave repetitions of

pitches will be removed from the resulting list before returning it,

keeping only the lowest instance of each pitch. This argument can also be

set as a number or a list of numbers that indicates which octave

20 SC/NAMED-OBJECT 553

repetitions will be allowed, the rest being removed. For example,

:remove-octaves ’(1 2) will remove all octave repetitions of a given

pitch except for those that are 1 octave and 2 octaves above the given

pitch; thus ’(c1 c2 c3 c4 c5) would return ’(c1 c2 c3), removing c4 and

c5. Default = NIL.

- :scale. A variable that indicates which scale to use when converting

frequencies to note-names. Default = cm::*scale* i.e. the value to which

the Common Music scale is set, which in slippery chicken is

quarter-tone by default.

RETURN VALUE:

A list of note-name symbols or frequencies.

EXAMPLE:

;; Apply ring modulation to ’C4 and ’D4, using 5 partials of the first pitch

;; and 3 partials of the second, removing octave repetitions, and returning the

;; results as rounded hertz-frequencies

(ring-mod ’c4 ’d4

:pitch1-partials 5

:pitch2-partials 3

:min-freq 60

:max-freq 2000

:remove-octaves t)

=> (64.0 96.0 166.0 198.0 230.0 358.0 427.0 459.0 491.0 555.0 619.0 817.0

1079.0 1143.0 1340.0 1372.0 1404.0 1666.0 1895.0 1927.0)

;; Applying ring modulation to two frequencies, returning the results as

;; note-name symbols within the chromatic scale.

(ring-mod ’261.63 ’293.66

:return-notes t

:remove-duplicates nil

:scale cm::*chromatic-scale*)

=> (C1 C2 G3 BF3 E4 B4 CS5 AF5 AF5 CS6 CS6 F6)

SYNOPSIS:

(defun ring-mod (pitch1 pitch2 ;; hertz or notes

&key (return-notes nil) (pitch1-partials 3) (pitch2-partials 2)

(min-freq 20) (max-freq 20000) (round t) (remove-duplicates t)

(print nil) remove-octaves (scale cm::*scale*))

20 SC/NAMED-OBJECT 554

20.2.262 set-palette/ring-mod-bass

[set-palette] [Functions]

DESCRIPTION:

Using ring-modulation techniques, invent (sensible) bass note(s) from a

list of frequencies.

ARGUMENTS:

- A list of numbers that are hertz frequencies from which the bass note(s)

are to be generated.

OPTIONAL ARGUMENTS:

keyword arguments

- :bass-octave. An integer that is an octave indicator (e.g. the 4 in

’C4). The method will only return any frequencies/note-names generated

that fall in this octave. Default = 0.

- :low. A note-name symbol that is the lowest possible pitch of those

returned. This argument further restricts the :bass-octave argument. Thus

a :bass-octave value of 1 could be further limited to no pitches below

:low ’DS1. Default = ’A0.

- :high. A note-name symbol that is the highest possible pitch of those

returned. This argument further restricts the :bass-octave argument. Thus

a :bass-octave value of 1 could be further limted to no pitches above

:high ’FS1. Default = ’G3.

- :round. T or NIL to indicate whether the frequencies returned are rounded

to integer values. T = round. Default = T.

- :warn. T or NIL to print a warning when no bass can be created from the

specified frequencies/note-names. T = print warning. Default = T.

- :return-notes. T or NIL to indicate whether the resulting pitches should

be returned as note-names instead of frequencies. T = return as

note-names. Default = NIL.

- :scale. A variable pointing to the scale to which any translation of

frequencies into note-names symbols should take place. By default this

value is set to cm::*scale*, which is automatically set by slippery

chicken to ’quarter-tone at initialisation. To return e.g. pitches rounded

to chromatic note-names set this argument to cm::*chromatic-scale*.

RETURN VALUE:

Returns a list of frequencies by default.

Setting the :return-notes keyword argument to T will cause the method to

return note-name symbols instead.

20 SC/NAMED-OBJECT 555

EXAMPLE:

;; Simple usage with default keyword argument values

(ring-mod-bass ’(261.63 293.66 329.63 349.23))

=> (28 29 32)

;; Return as note-names instead, in quarter-tone scale by default

(ring-mod-bass ’(261.63 293.66 329.63 349.23)

:return-notes t)

=> (A0 BF0 BQS0)

;; Set the :scale argument to cm::*chromatic-scale* to return equal-tempered

;; note-name symbols instead

(ring-mod-bass ’(261.63 293.66 329.63 349.23)

:return-notes t

:scale cm::*chromatic-scale*)

=> (A0 BF0 C1)

;; Return pitches from bass octave 1 rather than default 0

(ring-mod-bass ’(261.63 293.66 329.63 349.23 392.00)

:return-notes t

:scale cm::*chromatic-scale*

:bass-octave 1)

=> (CS1 D1 F1 G1 A1 B1)

;; Further limit the notes returned by setting :low and :high values

(ring-mod-bass ’(261.63 293.66 329.63 349.23 392.00)

:return-notes t

:scale cm::*chromatic-scale*

:bass-octave 1

:low ’e1

:high ’a1)

=> (F1 G1)

;; Set the :round argument to NIL to return decimal-point frequencies

(ring-mod-bass ’(261.63 293.66 329.63 349.23 392.00)

:bass-octave 1

:low ’e1

:high ’a1

:round NIL)

20 SC/NAMED-OBJECT 556

=> (42.76999999999998 43.45666666666667 43.80000000000001 49.16999999999999)

;; The method prints a warning by default if no bass note can be made

(ring-mod-bass ’(261.63))

=>

NIL

WARNING: set-palette::ring-mod-bass: can’t get bass from (261.63)!

;; This warning can be suppressed by setting the :warn argument to NIL

(ring-mod-bass ’(261.63) :warn nil)

=> NIL

SYNOPSIS:

(defun ring-mod-bass (freqs &key (bass-octave 0) (low ’a0) (high ’g3) (round t)

(warn t) (return-notes nil) (scale cm::*scale*))

20.2.263 set-palette/set-palette-from-ring-mod

[set-palette] [Functions]

DESCRIPTION:

Create a new set-palette object from the pitches returned by applying ring

modulation procedures (difference and sum tones of partials).

ARGUMENTS:

- A note-name symbol that is the central pitch from which we perform the

ring-modulation. See :partials below.

- A symbol that is to be the ID for the new set-palette object.

OPTIONAL ARGUMENTS:

keyword arguments

- :partials. A list of integers that are the partials which the method uses

to ring modulate. We create partials ascending from the reference-note

but also ascending from a fundamental calculated so that reference-note

would be the highest partial in the partials list. E.g. if

reference-note were ’a4 (440Hz) and :partials was ’(1 2) we’d have

partial frequencies of 440 and 880, as these are the ascending partials 1

and 2 from 440, but also have 220, as that is the fundamental for which

440 would be the highest partial out of (1 2). Default = ’(1 3 5 7).

20 SC/NAMED-OBJECT 557

- :warn-no-bass. T or NIL to indicate whether to issue a warning when

ring-mod-bass fails to find suitable bass notes for the generated sets.

T = warn. Default = T.

- :do-bass. T or NIL to indicate whether to add notes created by the

ring-mod-bass function to the resulting set-palette object. T = create and

add bass notes. Default = T.

- :remove-octaves. T or NIL to indicate whether to remove the upper

instances of any octave-equivalent pitches from the resulting set-palette

object. T = remove. Default = NIL.

- :min-bass-notes. An integer that is the minimum number of bass notes to

be generated and added to the resulting set-palette object. Default = 1.

- :ring-mod-bass-octave. An integer that is the MIDI octave reference

number (such as the 4 in ’C4), indicating the octave from which the bass

note(s) are to be taken.

RETURN VALUE:

A set-palette object.

EXAMPLE:

;; Simple usage with default keyword argument values

(set-palette-from-ring-mod ’a4 ’spfrm-test)

=>

SET-PALETTE:

PALETTE:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 21

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 21, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: SPFRM-TEST, tag: NIL,

data: (

[...]

;;; Use with the :partials argument

(let ((spfrm2 (set-palette-from-ring-mod ’a4 ’spfrm-test

:partials ’(2 4 6 8))))

(loop for cs in (data spfrm2) collect (pitch-symbols cs)))

=> ((BQS0 CS5 E5 GQF5 B5 CS6 DQS6 FQS6 GQF6 AF6 BF6 B6 C7)

(BQF0 B0 A2 A3 E4 A4 CS5 E5 GQF5)

20 SC/NAMED-OBJECT 558

(BQS0 FQS6 GQF6 AF6 BF6 B6 C7 GQS7 AF7 AQF7 AQS7 BF7 BQF7)

(B0 A2 A3 E4 A4 CS5 E5 GQF5 A5 B5) (BQS0 DQF7 DQS7 EQF7 EQS7 FQS7 FS7)

(BQF0 A2 A3 E4 CS5 E5 GQF5 B5 CS6 DQS6)

(AQS0 BQF0 B0 GQS7 AF7 AQF7 AQS7 BF7 BQF7)

(B0 A4 E5 CS6 E6 GQF6 B6 CS7 DQS7 FQS7 GQF7) (B0 A5 A6 E7 A7)

(B0 A3 CS5 CS6 DQS6 FQS6 GQF6 B6 C7 DQF7 DQS7 FS7 AF7) (BQS0 A5 A6 E7 A7)

(B0 A4 A5 E6 A6 CS7 E7 GQF7 A7) (BQS0 A5 A6 E7)

(BQS0 CS6 E6 GQF6 B6 CS7 DQS7 FQS7 GQF7 AF7 BF7 B7 C8)

(BQF0 B0 BQS0 A2 A3 E4 A4 CS5 GQF5 A5 B5 CS6 E6)

(BQS0 B6 CS7 DQS7 FQS7 GQF7 AF7) (B0 A3 A4 E5 A5 CS6 E6 GQF6)

(B0 BQS0 FQS7 GQF7 AF7 BF7 B7 C8) (BQS0 CS6 FQS6 C7 DQS7 FQS7 GQS7 BQF7 C8)

(B0 A5 A6 E7 A7) (BQS0 A5 E6 CS7 E7 GQF7 B7) (BQS0 A6 A7)

(BQS0 AF6 B6 DQF7 FS7 AF7 AQS7)

(BQF0 B0 BQS0 A2 A3 CS5 GQF5 CS6 DQS6 FQS6 GQF6 BF6)

(BQS0 EQF7 FQS7 GQS7 BQF7 C8) (BQS0 A6 CS7 GQF7 A7) (B0 A5 A6)

(BQS0 CS7 E7 GQF7 B7))

;;; Use with the :do-bass and :remove-octaves arguments

(let ((spfrm3 (set-palette-from-ring-mod ’a4 ’spfrm-test

:do-bass nil

:remove-octaves t)))

(loop for cs in (data spfrm3) collect (pitch-symbols cs)))

=> ((BQS1 GQF3 EF4 A4 DQF5) (DQF6 DQS6 EF6 F6 FQS6 GQF6 EQF7 EQS7)

(BQS2 GQF3 A4 DQF5 F5 GQS5) (BQS6 C7 CQS7 DQF7 D7 DQS7)

(BQS3 EF4 GQF4 DQF5 F5 GQS5 BF5 CQS6) (FQS7 FS7 GQF7 G7 GQS7)

(GQF5 BF5 DQF6 AQF6 C7 DQS7 F7 GQS7) (BQS1 A4 F5 GQS5 DQS6)

(GQS6 AQS6 BQS6 DQS7 EQF7 F7 BQF7) (BQS1 EF4 F5 GQS5 CQS6 FQS6)

(EF7 EQS7 FQS7 GQS7 AQF7 AQS7) (F5 BQS5 GQS6 B6 D7 FS7 AF7 AQS7) (A4 GQF7)

(A4 CS7 GQF7) (A4 CS7) (EF6 G6 BF6 F7 AQF7 BQS7)

(BQS1 GQF3 DQF5 CQS6 DQS6 F6 AQS6) (CQS7 DQS7 F7 AQF7 BF7 BQS7)

(E6 A6 GQF7 B7) (A4 E6 B7) (A6 CS7 E7 B7))

SYNOPSIS:

(defun set-palette-from-ring-mod (reference-note id &key

(warn-no-bass t)

(do-bass t)

remove-octaves

(min-bass-notes 1)

(ring-mod-bass-octave 0)

(partials ’(1 3 5 7)))

20.2.264 set-palette/set-palette-p

[set-palette] [Functions]

20 SC/NAMED-OBJECT 559

DESCRIPTION:

Test whether a given object is a set-palette object.

ARGUMENTS:

- A lisp object

EXAMPLE:

(let ((msp (make-set-palette

’test

’((1 ((1

((bf1 ef2 aqf2 c3 e3 gqf3 gqs3 cs4 d4 g4 a4 cqs5 dqf5 gs5

b5)))

(2

((bf1 d2 fqf2 fqs2 b2 c3 f3 g3 bqf3 bqs3 fs4 gs4 a4 cs5 gqf5)

:subsets

((tc1 (d2 g3 cs5))

(tc2 (eqs2 f3 bqf3))

(tc3 (b2 bqs3 gqf5)))))))

(2 ((1 ((1 1) :transposition 5))

(2 ((1 2) :transposition 5))))

(3 ((1 ((1 1) :transposition -2))

(2 ((1 2) :transposition -2))))))))

(set-palette-p msp))

=> T

RETURN VALUE:

t or nil

SYNOPSIS:

(defun set-palette-p (thing)

20.2.265 palette/sndfile-palette

[palette] [Classes]

NAME:

sndfile-palette

20 SC/NAMED-OBJECT 560

File: sndfile-palette.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

palette -> sndfile-palette

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the sndfile-palette class, which is a

simple palette that checks that all the sound files given

in a list for each id exist. See comments in methods for

limitations and special features of this class.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 18th March 2001

$$ Last modified: 16:19:56 Wed Oct 23 2013 BST

SVN ID: $Id: sndfile-palette.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.266 sndfile-palette/analyse-followers

[sndfile-palette] [Methods]

DESCRIPTION:

Using the followers slots of each sndfile in the palette, go through each

sndfile in the palette and generate a large number of following sounds,

i.e. emulate the max-play. The results of the follow-on process are then

analysed and a warning will be issued if any sndfile seems to dominate

(defined as being present at least twice as many times as its ’fair share’,

where ’fair share’ would mean an even spread for all the sound files in the

palette).

ARGUMENTS:

- The sndfile-palette object.

OPTIONAL ARGUMENTS:

How many times to repeat the generation process. Default = 1000.

RETURN VALUE:

20 SC/NAMED-OBJECT 561

T or NIL depending on whether the analysis detects an even spread or not.

SYNOPSIS:

(defmethod analyse-followers ((sfp sndfile-palette) &optional (depth 1000))

20.2.267 sndfile-palette/auto-cue-nums

[sndfile-palette] [Methods]

DESCRIPTION:

Set the cue-num slot of every sndfile-ext object in the palette to be an

ascending integer starting at 2. NB If a sndfile has it’s :use slot set to

NIL it won’t be given a cue number.

ARGUMENTS:

- a sndfile-palette object.

RETURN VALUE:

The cue number of the last sndfile-ext object.

SYNOPSIS:

(defmethod auto-cue-nums ((sfp sndfile-palette))

20.2.268 sndfile-palette/find-sndfile

[sndfile-palette] [Methods]

DESCRIPTION:

Return the full directory path and file name of a specified sound file,

from within the directories given in the PATHS slot.

ARGUMENTS:

- A sndfile-palette object.

- The name of a sound file from within that object. This can be a string or

a symbol. Unless it is given as a string, it will be handled as a symbol

and will be converted to lowercase. Inclusion of the file extension is

optional.

20 SC/NAMED-OBJECT 562

RETURN VALUE:

Returns the full directory path and file name of the specified sound file

as a string.

EXAMPLE:

(let ((msfp (make-sfp ’sfp-test

’((sndfile-group-1

(test-sndfile-1))

(sndfile-group-2

(test-sndfile-2 test-sndfile-3

(test-sndfile-4 :frequency 261.61)))

(sndfile-group-3

((test-sndfile-5 :start 0.006 :end 0.182)

test-sndfile-6)))

:paths

’("/path/to/sndfiles-dir-1"

"/path/to/sndfiles-dir-2"))))

(find-sndfile msfp ’test-sndfile-4))

=> "/path/to/sndfiles-dir-2/test-sndfile-4.aiff"

SYNOPSIS:

(defmethod find-sndfile ((sfp sndfile-palette) sndfile)

20.2.269 sndfile-palette/get-snd-with-cue-num

[sndfile-palette] [Methods]

DESCRIPTION:

Return the (first, but generally unique) sndfile object which has the

given cue-num slot.

ARGUMENTS:

- the sndfile-palette object.

- the cue number (integer).

RETURN VALUE:

The sndfile/sndfile-ext object with the given cue number or NIL if it can’t

be found.

20 SC/NAMED-OBJECT 563

SYNOPSIS:

(defmethod get-snd-with-cue-num ((sfp sndfile-palette) cue-num)

20.2.270 sndfile-palette/make-sfp

[sndfile-palette] [Functions]

DESCRIPTION:

Make a sndfile-palette object. This object is a simple palette which checks

to make sure that all of the sound files in a given list exist for each

given ID.

Sound files are given as as single names, without the path and without the

extension. These can be given using the optional keyword arguments <paths>

and <extensions>.

NB Although this class is a palette and therefore a subclass of

recursive-assoc-list, the sound lists in this case cannot be nested beyond

a depth of two (as in example below).

ARGUMENTS:

- An ID for the palette.

- A list of lists that contains IDs for the names of one or more groups of

sound files, each paired with a list of one or more names of existing

sound files. The sound file names themselves can be paired with keywords

from the sndfile class, such as :start, :end, and :frequency, to define

and describe segments of a given sound file.

OPTIONAL ARGUMENTS:

keyword arguments:

- :paths. A list of one or more paths to where the sound files are located.

- :extensions. A list of one or more sound file extensions for the

specified sound files. The default initialization for this slot of the

sndfile-palette already contains ("wav" "aiff" "aif" "snd"), so this

argument can often be left unspecified.

- :warn-not-found. T or NIL to indicate whether a warning should be printed

to the Lisp listener if the specified sound file cannot be found.

T = print warning. Default = T.

RETURN VALUE:

Returns NIL.

20 SC/NAMED-OBJECT 564

EXAMPLE:

(let ((msfp (make-sfp ’sfp-test

’((sndfile-group-1

(test-sndfile-1))

(sndfile-group-2

(test-sndfile-2 test-sndfile-3

(test-sndfile-4 :frequency 261.61)))

(sndfile-group-3

((test-sndfile-5 :start 0.006 :end 0.182)

test-sndfile-6)))

:paths ’("/path/to/sound-files-dir-1/"

"/path/to/sound-files-dir-2/")))))

SYNOPSIS:

(defun make-sfp (id sfp &key paths (extensions ’("wav" "aiff" "aif" "snd"))

with-followers (warn-not-found t))

20.2.271 sndfile-palette/make-sfp-from-groups-in-wavelab-marker-file

[sndfile-palette] [Functions]

DESCRIPTION:

Automatically generate a sndfile-palette object using the specified sound

file from grouping defined in the specified wavelab marker file.

The <marker-file> argument can be passed as a list of marker files, in

which case these will first be concatenated.

ARGUMENTS:

- A string that is the name of the marker file, including the directory

path and extension.

- A string that is the name of the sound file. This can either be a full

directory path, file name, and extension, or just a base file name. If

the latter, values for the optional arguments :paths and :extensions must

also be specified.

OPTIONAL ARGUMENTS:

- :paths. NIL or a list of strings that are the directory paths to the

specified sound files. If the sound file is passed with the directory

path, this must be set to NIL. NB: The paths given here apply only to the

20 SC/NAMED-OBJECT 565

sound files, not to the marker files. Default = NIL.

- :extensions. A list of strings that are the extensions to the given sound

files. If the sound files are passed with their extensions, this must be

set to NIL. Default = NIL.

- :warn-not-found. T or NIL to indicate whether to print a warning to the

listener if the specified sound file is not found. T = print a

warning. Default = NIL.

- :sampling-rate. An integer that is the sampling rate of the specified

sound file. Changing this value will alter the start-times determined for

each sound segment. Default = 44100.

- :print. T or NIL to indicate whether feedback about the groups found and

created should be printed to the listener. T = print. Default = T.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(make-sfp-from-groups-in-wavelab-marker-file

"/path/to/24-7.mrk"

"24-7"

:paths ’("/path/to/sndfile/directory/")

:sampling-rate 44100

:extensions ’("wav"))

=>

24 markers read from /path/to/24-7.mrk

Adding tapping: 2.753 -> 4.827

Adding tapping: 5.097 -> 6.581

Adding tapping: 6.763 -> 8.538

Adding splinter: 13.878 -> 15.993

Adding tapping: 16.338 -> 18.261

Adding splinter: 19.403 -> 25.655

tapping: 4 sounds

splinter: 2 sounds

SYNOPSIS:

(defun make-sfp-from-groups-in-wavelab-marker-file (marker-file sndfile

&key

paths

extensions

warn-not-found

20 SC/NAMED-OBJECT 566

(sampling-rate 44100)

(print t))

20.2.272 sndfile-palette/make-sfp-from-wavelab-marker-file

[sndfile-palette] [Functions]

DESCRIPTION:

Automatically create a sndfile-palette object from the specified wavelab

marker file and the specified sound file (from which the marker file must

have been generated).

The function will produce a sndfile-palette object with multiple groups,

each of which consists of the number of sound file segments specified using

the :snds-per-group argument (defaults to 8). By default the segments will

be collected into the groups in chronological order. If the optional

:random-every argument is given a value, every nth group will consist of

random segments instead.

The sound file segments of each group will correspond to the time points

stored in the marker file.

The <marker-file> argument can consist of a list of marker files, in which

case these would first be concatenated.

NB: Be aware that marker files created on operating systems differing from

the one on which this function is called might trigger errors due to

newline character mismatches.

ARGUMENTS:

- A string that is the name of the marker file, including the directory

path and extension.

- A string that is the name of the sound file. This can either be a full

directory path, file name, and extension, or just a base file name. If

the latter, values for the optional arguments :paths and :extensions must

also be specified.

OPTIONAL ARGUMENTS:

keyword arguments:

- :snds-per-group. An integer that is the number of sound file segments to

include in each group. Default = 8.

- :random-every. An integer to indicate that every nth group is to consist

20 SC/NAMED-OBJECT 567

of random (rather than chronologically consecutive) sound file segments.

Default = 999999 (i.e. essentially never)

- :paths. NIL or a list of strings that are the directory paths to the

specified sound files. If the sound file is passed with the directory

path, this must be set to NIL. NB: The paths given here apply only to the

sound files, not to the marker files. Default = NIL.

- :sampling-rate. An integer that is the sampling rate of the specified

sound file. Changing this value will alter the start-times determined for

each sound segment. Default = 44100.

- :extensions. A list of strings that are the extensions to the given sound

files. If the sound files are passed with their extensions, this must be

set to NIL. Default = NIL.

- :warn-not-found. T or NIL to indicate whether to print a warning to the

listener if the specified sound file is not found. T = print a

warning. Default = NIL.

- :name. The name for the overall sndfile-palette and the base name for

each group within (these will have a suffix that is an auto-incrementing

number e.g. ’auto would become ’auto1 ’auto2 etc.). Default = ’auto.

RETURN VALUE:

A sndfile-palette object.

EXAMPLE:

(make-sfp-from-wavelab-marker-file

"/path/to/24-7.mrk"

"24-7"

:snds-per-group 2

:random-every 3

:paths ’("/path/to/sound-file/directory/")

:sampling-rate 44100

:extensions ’("wav"))

=>

SNDFILE-PALETTE: paths: (/Volumes/JIMMY/SlipperyChicken/sc/test-suite/)

extensions: (wav)

PALETTE:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 8

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found NIL

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 8, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

20 SC/NAMED-OBJECT 568

NAMED-OBJECT: id: AUTO, tag: NIL,

data: (

NAMED-OBJECT: id: "auto1", tag: NIL,

data: (

SNDFILE: path: /Volumes/JIMMY/SlipperyChicken/sc/test-suite/24-7.wav,

snd-duration: 29.652811, channels: 2, frequency: 261.62555

start: 0.09142857, end: 1.0361905, amplitude: 1.0, duration 0.94476193

will-be-used: 0, has-been-used: 0

data-consistent: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "24-7", tag: NIL,

data: /Volumes/JIMMY/SlipperyChicken/sc/test-suite/24-7.wav

[...]

SYNOPSIS:

(defun make-sfp-from-wavelab-marker-file (marker-file sndfile

&key

(snds-per-group 8)

(random-every 999999) ;; i.e. never

paths

(sampling-rate 44100)

extensions

;; MDE Fri Oct 5 14:04:08 2012

(name ’auto)

warn-not-found)

20.2.273 sndfile-palette/max-play

[sndfile-palette] [Methods]

DESCRIPTION:

This generates the data necessary to play the next sound in the current

sound’s followers list. See the sndfile-ext method for details.

ARGUMENTS:

- The sndfile-palette object.

- The fade (in/out) duration in seconds.

- The maximum loop duration in seconds.

- The time to trigger the next file, as a percentage of the current

sndfile-ext’s duration.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 569

- whether to print data to the listener as it is generated. Default = NIL.

RETURN VALUE:

A list of values returned by the sndfile-ext method.

SYNOPSIS:

(defmethod max-play ((sfp sndfile-palette) fade-dur max-loop start-next

&optional print)

20.2.274 sndfile-palette/osc-send-cue-nums

[sndfile-palette] [Methods]

DESCRIPTION:

Send via OSC the cue number of each sound file in a form that a Max sflist~

can process and store.

ARGUMENTS:

- the sndfile-palette object.

RETURN VALUE:

The number of cue numbers sent. NB This is not the same as the last cue

number as cues start from 2.

SYNOPSIS:

#+(and darwin sbcl)

(defmethod osc-send-cue-nums ((sfp sndfile-palette))

20.2.275 sndfile-palette/reset

[sndfile-palette] [Methods]

DESCRIPTION:

Reset the followers’ slot circular list to the beginning or to <where>

ARGUMENTS:

- the sndfile-palette object.

20 SC/NAMED-OBJECT 570

OPTIONAL ARGUMENTS:

- an integer to set the point at which to restart. This can be higher than

the number of followers as it will wrap. Default = nil (which equates to

0 lower down in the class hierarchy).

- whether to issue a warning if <where> is greater than the number of

followers (i.e. that wrapping will occur). Default = T.

RETURN VALUE:

T

SYNOPSIS:

(defmethod reset ((sfp sndfile-palette) &optional where (warn t))

20.2.276 recursive-assoc-list/parcel-data

[recursive-assoc-list] [Methods]

DATE:

10 Apr 2010

DESCRIPTION:

Put all the data of a given recursive-assoc-list object into a new

named-object at the top level of that recursive-assoc-list object; i.e. add

a level of recursion. This is a means of making a collection of data

before perhaps adding more with potentially conflicting ids.

ARGUMENTS:

- A recursive-assoc-list object.

- A symbol that is new the top-level id for the current data

RETURN VALUE:

The new recursive-assoc-list object.

EXAMPLE:

;; Collect all the data contained within the object ’mixed-bag and store it at

;; the top-level of ’mixed-bag within a new named-object with the id ’potpourri

20 SC/NAMED-OBJECT 571

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(parcel-data ral ’potpourri))

=>

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 8

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 1, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: MIXED-BAG, tag: FROM-PARCEL-DATA,

data: (

NAMED-OBJECT: id: POTPOURRI, tag: NIL,

data:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 8

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: MIXED-BAG, tag: NIL,

data: (

NAMED-OBJECT: id: JIM, tag: NIL,

data: BEAM

[...]

SYNOPSIS:

(defmethod parcel-data ((ral recursive-assoc-list) new-id)

20.2.277 recursive-assoc-list/r-count-elements

[recursive-assoc-list] [Methods]

20 SC/NAMED-OBJECT 572

DESCRIPTION:

Return the total number of elements recursively (across all depths) of the

given recursive-assoc-list object.

ARGUMENTS:

- A recursive-assoc-list object.

RETURN VALUE:

An integer.

EXAMPLE:

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(r-count-elements ral))

=> 8

SYNOPSIS:

(defmethod r-count-elements ((ral recursive-assoc-list))

20.2.278 recursive-assoc-list/ral-econs

[recursive-assoc-list] [Methods]

DESCRIPTION:

Automatically create new recursive-assoc-list objects.

This method assumes that any existing key that may be referenced will be

associated with data that is already a list, to the end of which the new

data will be added (an error will be signalled if this is not the case.)

ARGUMENTS:

20 SC/NAMED-OBJECT 573

- The data which is to be added.

- The key to which the data is to be added (see above note for cases where

this key already exists).

- The recursive-assoc-list object to which this data is to be added.

RETURN VALUE:

The new data added.

EXAMPLE:

;;; Make an empty recursive-assoc-list object and add key/data pairs to the top

;;; level.

(let ((ral (make-ral nil nil)))

(print (get-all-refs ral))

(ral-econs ’beam ’jim ral)

(ral-econs ’turkey ’wild ral)

(ral-econs ’roses ’four ral)

(print (get-all-refs ral))

(print (get-data-data ’wild ral)))

=>

NIL

((JIM) (WILD) (FOUR))

(TURKEY)

;;; Add data to existing keys within a given recursive-assoc-list object

;;; Note that the data VELVET must be a list for this to succeed

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue (velvet))

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(print (get-all-refs ral))

(ral-econs ’underground ’(four violets blue) ral)

(print (get-data-data ’(four violets blue) ral)))

=>

((JIM) (WILD) (FOUR ROSES) (FOUR VIOLETS BLUE) (FOUR VIOLETS RED DRAGON)

(FOUR VIOLETS RED VIPER) (FOUR VIOLETS RED FOX) (FOUR VIOLETS WHITE))

(VELVET UNDERGROUND)

20 SC/NAMED-OBJECT 574

SYNOPSIS:

(defmethod ral-econs (data key (ral recursive-assoc-list))

20.2.279 recursive-assoc-list/recursivep

[recursive-assoc-list] [Methods]

DESCRIPTION:

Check whether the data in a recursive-assoc-list object is really

recursive.

ARGUMENTS:

- A recursive-assoc-list object.

RETURN VALUE:

T or NIL to indicate whether or not the tested data is recursive.

T = recursive.

EXAMPLE:

;; The data in this recursive-assoc-list object is really recursive, and

;; the method therefore returns T

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(recursivep ral))

=> T

;; The data in this recursive-assoc-list object is not actually recursive, and

;; the method therefore returns NIL

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four roses)))))

20 SC/NAMED-OBJECT 575

(recursivep ral))

=> NIL

SYNOPSIS:

(defmethod recursivep ((ral recursive-assoc-list))

20.2.280 recursive-assoc-list/relink-named-objects

[recursive-assoc-list] [Methods]

DESCRIPTION:

This method is essentially the same as the method link-named objects, but

resets the LINKED slot to NIL and forces the link-named-objects method to

be applied again.

ARGUMENTS:

- A recursive-alloc-list object.

RETURN VALUE:

A recursive-alloc-list object.

EXAMPLE:

;; Usage as presented here; see the documentation for method link-named-objects

;; for more detail

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(relink-named-objects ral))

=>

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 8

linked: T

20 SC/NAMED-OBJECT 576

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: MIXED-BAG, tag: NIL,

data: (

LINKED-NAMED-OBJECT: previous: NIL, this: (JIM), next: (WILD)

NAMED-OBJECT: id: JIM, tag: NIL,

data: BEAM

[...]

SYNOPSIS:

(defmethod relink-named-objects ((ral recursive-assoc-list))

20.2.281 recursive-assoc-list/rmap

[recursive-assoc-list] [Methods]

DESCRIPTION:

Recurse over the objects in a recursive-assoc-list and call the given

function for each each named-object. See also assoc-list’s map-data method

which does pretty much the same but acting on each named-object’s data

rather than the named-object itself.

ARGUMENTS:

- the recursive-assoc-list object

- the function to call (function object)

OPTIONAL ARGUMENTS:

- &rest further arguments to be passed to the function after the

named-object from the recursive-assoc-list.

RETURN VALUE:

T

EXAMPLE:

(let ((ral (make-ral ’mixed-bag

20 SC/NAMED-OBJECT 577

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(rmap ral #’print))

=>

NAMED-OBJECT: id: JIM, tag: NIL,

data: BEAM

NAMED-OBJECT: id: WILD, tag: NIL,

data: TURKEY

NAMED-OBJECT: id: ROSES, tag: NIL,

data: RED

NAMED-OBJECT: id: BLUE, tag: NIL,

data: VELVET

NAMED-OBJECT: id: DRAGON, tag: NIL,

data: DEN

NAMED-OBJECT: id: VIPER, tag: NIL,

data: NEST

NAMED-OBJECT: id: FOX, tag: NIL,

data: HOLE

NAMED-OBJECT: id: WHITE, tag: NIL,

data: RIBBON

T

SYNOPSIS:

(defmethod rmap ((ral recursive-assoc-list) function &rest arguments)

20.2.282 recursive-assoc-list/sc-map

[recursive-assoc-list] [Classes]

NAME:

20 SC/NAMED-OBJECT 578

sc-map

File: sc-map.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

sc-map

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the sc-map class for mapping rhythmic

sequences, chords etc. to specific parts of a piece.

The extension to the recursive-assoc-list class is in the

data returned when get-data-from-palette is called: being

a map, the data returned by the superclass get-data

function is actually a reference into a palette. Instead

of just returning this reference, with

get-data-from-palette we then use this as a lookup into

the palette slot. If the reference happens to be a list,

then each element of the list is used as a reference into

the palette and the resulting objects are returned in a

list.

When in a list of references, perhaps the rthm-seq

references for a section, a single reference is also a

list this can be one of two things: the reference is to a

recursive palette, whereupon the data will simply be

returned for that reference; or, the reference is a list

of references that together build up an object consisting

of the referenced smaller objects. This is the case

when, for example, 4-bar sequences in one or more

instruments are accompanied by groups of 4 single bar

sequences in others:

(2

((bsn ((r1-1 r1-2 r1-3 r1-5) 20 1 ...))

(trb (2 23 3 ...))))

Author: Michael Edwards: m@michael-edwards.org

Creation date: March 21st 2001

$$ Last modified: 19:58:51 Mon Oct 28 2013 GMT

20 SC/NAMED-OBJECT 579

SVN ID: $Id: sc-map.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.283 sc-map/change-map

[sc-map] [Classes]

NAME:

change-map

File: change-map.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

sc-map -> change-map

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the change-map class where, unlike

normal sc-maps (data is given for each sequence) gives

data sporadically when the parameter changes, for

instance tempo.

It is assumed that maps will be typed in the order in

which sections occur so that previous-data slots can be

kept up-to-date; also, unless all data will be given,

that the sections (but not instrument ids) will be in

integer sequential order so that nearest sections can be

returned when given a non-existent section reference.

For example, the following change-map indicates tempo

(though tempo-maps have their own class now).

It has sections within sections so that the tempo for

section ’(1 2 3) can be defined, that is, section 1 has

subsections 1, 2, and 3 and subsection 2 has further

subsections 1, 2, and 3. This can be nested to any

depth. The tempo information itself is given in sublists

where (3 27) means that in the third sequence of the

section, the tempo is 27. (3 2 27) means the 2nd bar of

the third sequence has tempo 27: when only two numbers

are in the list, bar 1 is assumed. The trick is, that

this tempo then remains, as would be expected, until the

next tempo change is indicated, which means that

requesting the tempo of section (2 2 3) with any sequence

20 SC/NAMED-OBJECT 580

and bar in the map below would return 25, because that is

the last tempo given in section 1 and no tempo is defined

for section 2.

(setf x

(make-change-map

’test nil

’((0 ((3 27) (9 3 45)))

(1

((1 ((1 21) (5 28) (8 35) (3 2 40) (3 1 54)))

(2

((1 ((1 23) (6 28) (18 35)))

(2 ((2 2 24) (7 28) (18 22)))

(3 ((3 34) (7 28) (18 42)))))

(3 ((1 22) (5 34) (10 5 25)))))

(4

((1 ((1 21) (5 28) (8 36) (3 2 40) (3 1 55)))

(2 ((1 22) (5 34) (10 5 103)))))

(5 ((2 28) (6 3 45)))

(10

((1 ((1 21) (5 28) (8 37) (3 2 40) (3 1 56)))

(2 ((1 22) (5 34) (10 5 27))))))))

You have to be careful with change-maps however as the

nesting is flexible and therefore ambiguous. For

instance, in the following the bcl, tape1 etc. ids are

not subsections of section 1, rather these are the hint

pitches assigned to the instruments in section 1 (which

has no subsections). This is where the last-ref-required

class slot comes in: If this slot is t (this is the

second argument to make-change-map) then the last

reference in a call to cm-get-data is always respected,

i.e. not the last data given will be returned when the

section doesn’t exist, rather the last data for this

reference. E.g. In the following map, if

last-ref-required were nil, then the call to

(cm-get-data x ’(2 tape2) 1) would fail (because we can’t

find nearest data when references aren’t numbers), but

because it’s t, we get the last data given for tape2 and

return cs5.

(setf x

(make-change-map

’hint-pitches t

’((1 ((bcl ((1 a4) (2 b4) (3 c5) (4 d6)))

(tape1 ((1 a3) (2 ds2) (3 e4)))

20 SC/NAMED-OBJECT 581

(tape2 ((1 a3) (2 ds2) (3 cs5)))

(tape3 ((1 a3) (2 ds2) (3 eqf4)))))

(2 ((bcl ((1 a4) (2 b4) (3 c5) (4 d6)))

(tape1 ((1 a3) (2 ds2) (5 fs4)))))

(3 ((bcl ((1 a4) (2 b4) (3 c5) (4 d6)))

(tape1 ((1 a3) (2 ds2) (5 f4))))))))

Author: Michael Edwards: m@michael-edwards.org

Creation date: 2nd April 2001

$$ Last modified: 21:14:11 Thu Dec 8 2011 ICT

SVN ID: $Id: change-map.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.284 change-map/cm-get-data

[change-map] [Methods]

DESCRIPTION:

Return the data for a specified section and player of a given change-map

object.

NB: The <section> argument may require the ID of the player as well if

used, for example, with the instrument-change-map subclass of this

class .

ARGUMENTS:

- A change-map object.

- A simple key reference into the given change-map object or a list of

references. NB: This reference may require a player ID if, for example,

used with an instrument-change-map subclass of this class.

OPTIONAL ARGUMENTS:

- The ID of the sequence from which to return the change-map data.

- An integer that is the bar number for which to return the change-map

data.

RETURN VALUE:

The change-map data stored at the specified location within the given

change-map.

20 SC/NAMED-OBJECT 582

EXAMPLE:

;;; An example using the instrument-change-map subclass of change-map

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax ((alto-sax tenor-sax) :midi-channel 1))))

:instrument-change-map ’((1 ((sax ((1 alto-sax) (3 tenor-sax)))))

(2 ((sax ((2 alto-sax) (5 tenor-sax)))))

(3 ((sax ((3 alto-sax) (4 tenor-sax))))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))))

(2 ((sax (1 1 1 1 1))))

(3 ((sax (1 1 1 1 1))))))))

(cm-get-data (instrument-change-map mini) ’(2 sax) 4))

=> ALTO-SAX

SYNOPSIS:

(defmethod cm-get-data ((cm change-map) section

&optional (sequence 1) (bar 1))

20.2.285 change-map/find-nearest

[change-map] [Methods]

DESCRIPTION:

Return the nearest change-data object to the specified section within the

given change-map. NB: The section may require a player ID if used, for

example, with an instrument-change-map subclass of change-map.

ARGUMENTS:

- A section indication, either as a single reference ID or a list of

reference IDs into the given change-map.

- A change-map object.

RETURN VALUE:

20 SC/NAMED-OBJECT 583

Returns a change-data object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax ((alto-sax tenor-sax) :midi-channel 1))))

:instrument-change-map ’((1 ((sax ((1 alto-sax) (3 tenor-sax)))))

(2 ((sax ((2 alto-sax) (5 tenor-sax)))))

(3 ((sax ((3 alto-sax) (4 tenor-sax))))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))))

(2 ((sax (1 1 1 1 1))))

(3 ((sax (1 1 1 1 1))))))))

(find-nearest ’(4 sax) (instrument-change-map mini)))

=>

CHANGE-DATA:

previous-data: TENOR-SAX,

last-data: TENOR-SAX

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: (2 SAX), this: (3 SAX), next: NIL

NAMED-OBJECT: id: SAX, tag: NIL,

data: ((3 1 ALTO-SAX) (4 1 TENOR-SAX))

SYNOPSIS:

(defmethod find-nearest (section (cm change-map))

20.2.286 change-map/instrument-change-map

[change-map] [Classes]

NAME:

instrument-change-map

File: instrument-change-map

20 SC/NAMED-OBJECT 584

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

sc-map -> change-map -> instrument-change-map

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Extends change-map to check that instruments defined in

the map have data for the first bar of the first section.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 12th April 2002

$$ Last modified: 18:12:52 Tue Apr 3 2012 BST

SVN ID: $Id: instrument-change-map.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.287 instrument-change-map/get-first-for-player

[instrument-change-map] [Methods]

DESCRIPTION:

Return the first instrument object assigned to a given player in cases

where a player has been assigned more than one instrument.

ARGUMENTS:

- An instrument-change-map

- The ID of the player for whom to return the first instrument.

RETURN VALUE:

The ID of the first instrument object assigned to the specified player.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax ((alto-sax tenor-sax) :midi-channel 1))

(db (double-bass :midi-channel 2))))

:instrument-change-map ’((1 ((sax ((1 alto-sax) (3 tenor-sax))))))

20 SC/NAMED-OBJECT 585

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))))))

(get-first-for-player (instrument-change-map mini) ’sax))

=> ALTO-SAX, T

SYNOPSIS:

(defmethod get-first-for-player ((icm instrument-change-map)

player)

20.2.288 instrument-change-map/make-instrument-change-map

[instrument-change-map] [Functions]

DESCRIPTION:

Create an instrument-change-map object.

ARGUMENTS:

- An ID for the instrument-change-map to be created.

- A list of lists. The top level of these lists consists of the section IDs

for the given slippery-chicken object paired with lists of data for the

specified players for each section. Each player list then consists of the

ID of the player paired with a list of two-item lists pairing measure

numbers with the instrument to which that player is to change, e.g.:

’((1 ((fl ((1 flute) (3 piccolo) (5 flute)))

(cl ((1 b-flat-clarinet) (2 bass-clarinet) (6 b-flat-clarinet)))))

(2 ((fl ((2 piccolo) (4 flute)))

(cl ((2 bass-clarinet) (3 b-flat-clarinet))))))

OPTIONAL ARGUMENTS:

- :warn-not-found. T or NIL to indicate whether a warning is printed when

an index which doesn’t exist is used for look-up. T = warn. Default = T.

RETURN VALUE: EXAMPLE:

(make-instrument-change-map

20 SC/NAMED-OBJECT 586

’icm-test

’((1 ((fl ((1 flute) (3 piccolo) (5 flute)))

(cl ((1 b-flat-clarinet) (2 bass-clarinet) (6 b-flat-clarinet)))))

(2 ((fl ((2 piccolo) (4 flute)))

(cl ((2 bass-clarinet) (3 b-flat-clarinet)))))))

=>

INSTRUMENT-CHANGE-MAP:

CHANGE-MAP: last-ref-required: T

SC-MAP: palette id: NIL

RECURSIVE-ASSOC-LIST: recurse-simple-data: NIL

num-data: 4

linked: T

full-ref: NIL

ASSOC-LIST: warn-not-found NIL

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: ICM-TEST, tag: NIL,

data: (

NAMED-OBJECT: id: 1, tag: NIL,

data:

CHANGE-MAP: last-ref-required: T

SC-MAP: palette id: NIL

RECURSIVE-ASSOC-LIST: recurse-simple-data: NIL

num-data: 2

linked: T

full-ref: (1)

ASSOC-LIST: warn-not-found NIL

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "sub-ral-of-ICM-TEST", tag: NIL,

data: (

CHANGE-DATA:

previous-data: NIL,

last-data: FLUTE

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: (1 FL), next: (1 CL)

NAMED-OBJECT: id: FL, tag: NIL,

data: ((1 1 FLUTE) (3 1 PICCOLO) (5 1 FLUTE))

CHANGE-DATA:

20 SC/NAMED-OBJECT 587

previous-data: NIL,

last-data: B-FLAT-CLARINET

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: (1 FL), this: (1 CL), next: (2 FL)

NAMED-OBJECT: id: CL, tag: NIL,

data: ((1 1 B-FLAT-CLARINET) (2 1 BASS-CLARINET) (6 1 B-FLAT-CLARINET))

)

NAMED-OBJECT: id: 2, tag: NIL,

data:

CHANGE-MAP: last-ref-required: T

SC-MAP: palette id: NIL

RECURSIVE-ASSOC-LIST: recurse-simple-data: NIL

num-data: 2

linked: T

full-ref: (2)

ASSOC-LIST: warn-not-found NIL

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "sub-ral-of-ICM-TEST", tag: NIL,

data: (

CHANGE-DATA:

previous-data: FLUTE,

last-data: FLUTE

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: (1 CL), this: (2 FL), next: (2 CL)

NAMED-OBJECT: id: FL, tag: NIL,

data: ((2 1 PICCOLO) (4 1 FLUTE))

CHANGE-DATA:

previous-data: B-FLAT-CLARINET,

last-data: B-FLAT-CLARINET

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: (2 FL), this: (2 CL), next: NIL

NAMED-OBJECT: id: CL, tag: NIL,

data: ((2 1 BASS-CLARINET) (3 1 B-FLAT-CLARINET))

)

20 SC/NAMED-OBJECT 588

)

SYNOPSIS:

(defun make-instrument-change-map (id icm &key (warn-not-found nil))

20.2.289 change-map/simple-change-map

[change-map] [Classes]

NAME:

simple-change-map

File: simple-change-map.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

sc-map -> change-map -> simple-change-map

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the simple-change-map class which gives

data associated with a non-recursive list of number ids.

For example, good for specifying data which changes at

specific bar numbers.

Author: Michael Edwards: m@michael-edwards.org

Creation date: March 31st 2002

$$ Last modified: 20:16:16 Mon May 14 2012 BST

SVN ID: $Id: simple-change-map.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.290 simple-change-map/make-simple-change-map

[simple-change-map] [Functions]

DESCRIPTION:

20 SC/NAMED-OBJECT 589

Create a simple-change-map object, which stores data associated with a

non-recursive list of number IDs. This object could be good, for example,

for specifying data which changes at specific bar numbers.

ARGUMENTS:

- An ID for the simple-change-map object to be created.

- A list of non-recursive lists consisting of ID/data pairs, of which the

first item is a numerical ID.

RETURN VALUE:

A simple-change-map object.

EXAMPLE:

(make-simple-change-map ’bar-map ’((1 3) (34 3) (38 4)))

=>

SIMPLE-CHANGE-MAP:

CHANGE-MAP: last-ref-required: NIL

SC-MAP: palette id: NIL

RECURSIVE-ASSOC-LIST: recurse-simple-data: NIL

num-data: 3

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found NIL

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: BAR-MAP, tag: NIL,

data: (

NAMED-OBJECT: id: 1, tag: NIL,

data: 3

NAMED-OBJECT: id: 34, tag: NIL,

data: 3

NAMED-OBJECT: id: 38, tag: NIL,

data: 4

20 SC/NAMED-OBJECT 590

)

SYNOPSIS:

(defun make-simple-change-map (id scm)

20.2.291 simple-change-map/scm-get-data

[simple-change-map] [Methods]

DESCRIPTION:

Get the data associated with the specified key within a given

simple-change-map object.

ARGUMENTS:

- An integer that is an existing key ID within the given simple-change-map

object.

- A simple-change-map-object.

RETURN VALUE:

The data associated with the specified key ID, as a named object.

EXAMPLE:

(let ((scm (make-simple-change-map ’bar-map ’((1 3) (34 3) (38 4)))))

(scm-get-data 34 scm))

=>

NAMED-OBJECT: id: 34, tag: NIL,

data: 3

SYNOPSIS:

(defmethod scm-get-data (ref (scm simple-change-map))

20.2.292 simple-change-map/tempo-map

[simple-change-map] [Classes]

NAME:

20 SC/NAMED-OBJECT 591

tempo-map

File: tempo-map.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

sc-map -> change-map -> simple-change-map -> tempo-map

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Allow the specification of tempi by just a number

(defaulting to crotchet number) or a list where the first

element would be the beat, the second the speed.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 6th May 2006

$$ Last modified: 15:49:41 Fri Oct 11 2013 BST

SVN ID: $Id: tempo-map.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.293 sc-map/delete-nth-in-map

[sc-map] [Methods]

DATE:

05 Feb 2011

DESCRIPTION:

Replace the element at the specified location within the specified list of

a given sc-map object with NIL.

ARGUMENTS:

- A list that is the map-ref; i.e., the path of IDs into the list to be

searched.

- An integer that is the zero-based index of the element to be returned

from the specified list.

- An sc-map object.

RETURN VALUE:

20 SC/NAMED-OBJECT 592

Always returns NIL

EXAMPLE:

(let ((mscm (make-sc-map ’scm-test

’((1

((vn (1 2 3 4 5))

(va (2 3 4 5 1))

(vc (3 4 5 1 2))))

(2

((vn (6 7 8))

(va (7 8 6))

(vc (8 6 7))))

(3

((vn (9))

(va (9))

(vc (9))))))))

(delete-nth-in-map ’(1 vn) 1 mscm)

(get-data-from-palette ’(1 vn) mscm))

=>

NAMED-OBJECT: id: VN, tag: NIL,

data: (1 NIL 3 4 5)

SYNOPSIS:

(defmethod delete-nth-in-map (map-ref nth (scm sc-map))

20.2.294 sc-map/double

[sc-map] [Methods]

DATE:

13-Feb-2011

DESCRIPTION:

Change the specified sequences of one or more specified players within an

existing sc-map object to double the rhythms of the corresponding sequences

of another specified player.

This allows an existing map, for example, to have several players playing

in rhythmic unison.

ARGUMENTS:

20 SC/NAMED-OBJECT 593

- An sc-map object.

- A section reference (i.e. section ID or list of section-subsection IDs).

- An integer that is the 1-based number of the first sequence within the

given section to be changed.

- An integer that is the 1-based number of the last sequence within the

given section to be changed.

- The ID of the player whose part is to serve as the source for the

doubling.

- An ID or list of IDs of the player(s) whose parts are to be changed.

RETURN VALUE:

Returns NIL.

EXAMPLE:

;;; Create an sc-map with parts for players ’fl and ’cl containing only NILs

;;; and print the corresponding data. Double the second and third sequence of

;;; the ’vn part of that section into the ’fl and ’cl parts and print the same

;;; data again to see the change.

(let ((scm (make-sc-map ’sc-m

’((1

((fl (nil nil nil))

(cl (nil nil nil))

(vn (set1 set3 set2))

(va (set2 set3 set1))

(vc (set3 set1 set2))))

(2

((vn (set1 set2 set1))

(va (set2 set1 set3))

(vc (set1 set3 set3))))

(3

((vn (set1 set1 set3))

(va (set1 set3 set2))

(vc (set3 set2 set3))))))))

(print (get-data-data ’(1 fl) scm))

(print (get-data-data ’(1 cl) scm))

(double scm 1 2 3 ’vn ’(fl cl))

(print (get-data-data ’(1 fl) scm))

(print (get-data-data ’(1 cl) scm)))

=>

(NIL NIL NIL)

(NIL NIL NIL)

(NIL SET3 SET2)

(NIL SET3 SET2)

20 SC/NAMED-OBJECT 594

SYNOPSIS:

(defmethod double ((scm sc-map) section-ref start-seq end-seq master-player

doubling-players)

20.2.295 sc-map/get-all-data-from-palette

[sc-map] [Methods]

DESCRIPTION:

Given an sc-map object that has been bound to a palette object of any type,

return all of the palette data contained in the given sc-map object as it

has been allocated to the map, in the order in which it appears in the map.

The given sc-map object must be bound to a palette object for this method

to work. If no palette object has been bound to the given sc-map object,

the method returns NIL and prints a warning.

ARGUMENTS:

- An sc-map object.

RETURN VALUE:

- A list of objects, the type depending on the given palette.

EXAMPLE:

;; Create a set-palette object and an sc-map object, bind them using the

;; <palette> argument of the make-sc-map function, and print the results of

;; applying the get-all-data-from-palette method by printing the data of each

;; of the objects in the list it returns as note-name symbols.

(let* ((sp (make-set-palette ’set-pal ’((set1 ((c2 b2 a3 g4 f5 e6)))

(set2 ((d2 c3 b3 a4 g5 f6)))

(set3 ((e2 d3 c4 b4 a5 g6))))))

(scm (make-sc-map ’sc-m ’((sec1

((vn (set1 set3 set2))

(va (set2 set3 set1))

(vc (set3 set1 set2))))

(sec2

((vn (set1 set2 set1))

(va (set2 set1 set3))

(vc (set1 set3 set3))))

(sec3

20 SC/NAMED-OBJECT 595

((vn (set1 set1 set3))

(va (set1 set3 set2))

(vc (set3 set2 set3)))))

:palette sp)))

(loop for cs in (get-all-data-from-palette scm)

collect (pitch-list-to-symbols (data cs))))

=>

((C2 B2 A3 G4 F5 E6) (E2 D3 C4 B4 A5 G6) (D2 C3 B3 A4 G5 F6)

(D2 C3 B3 A4 G5 F6) (E2 D3 C4 B4 A5 G6) (C2 B2 A3 G4 F5 E6)

(E2 D3 C4 B4 A5 G6) (C2 B2 A3 G4 F5 E6) (D2 C3 B3 A4 G5 F6)

(C2 B2 A3 G4 F5 E6) (D2 C3 B3 A4 G5 F6) (C2 B2 A3 G4 F5 E6)

(D2 C3 B3 A4 G5 F6) (C2 B2 A3 G4 F5 E6) (E2 D3 C4 B4 A5 G6)

(C2 B2 A3 G4 F5 E6) (E2 D3 C4 B4 A5 G6) (E2 D3 C4 B4 A5 G6)

(C2 B2 A3 G4 F5 E6) (C2 B2 A3 G4 F5 E6) (E2 D3 C4 B4 A5 G6)

(C2 B2 A3 G4 F5 E6) (E2 D3 C4 B4 A5 G6) (D2 C3 B3 A4 G5 F6)

(E2 D3 C4 B4 A5 G6) (D2 C3 B3 A4 G5 F6) (E2 D3 C4 B4 A5 G6))

;; Applying the method to an sc-map object that is not bound to a palette

;; object returns NIL

(let ((scm (make-sc-map ’sc-m ’((sec1

((vn (set1 set3 set2))

(va (set2 set3 set1))

(vc (set3 set1 set2))))

(sec2

((vn (set1 set2 set1))

(va (set2 set1 set3))

(vc (set1 set3 set3))))

(sec3

((vn (set1 set1 set3))

(va (set1 set3 set2))

(vc (set3 set2 set3))))))))

(get-all-data-from-palette scm))

=>

NIL

WARNING:

sc-map::get-all-data-from-palette:

palette slot is nil so can’t return data from it.

SYNOPSIS:

(defmethod get-all-data-from-palette ((scm sc-map))

20 SC/NAMED-OBJECT 596

20.2.296 sc-map/get-data-from-palette

[sc-map] [Methods]

DESCRIPTION:

Given an sc-map object that has been bound to a palette object of any type,

return the palette data contained allocated to the location within the

given sc-map object as specified by the <IDs> argument.

Deeper levels of the map can be accessed by specifying a path of IDs into

the given sc-map object.

If no palette object has been bound to the given sc-map object, the method

returns the contents of the sc-map object at the specified location

instead.

ARGUMENTS:

- A symbol or list of symbols that is/are the ID or path of nested IDs

within the given sc-map object for which the data is sought.

- The sc-map object in which the data is sought.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to print a warning if the specified ID is

not found in the given sc-map object. T = print warning. Default = T.

RETURN VALUE:

The named object or list of named objects associated with the specified ID

or path of IDs.

If the specified ID is not found within the given sc-map object, the method

returns NIL. If the optional <warn> argument is set to T, a warning is also

printed in this case.

EXAMPLE:

;;; Create a palette object and an sc-map object and bind them using the

;;; <palette> keyword argument of the make-sc-map function. Then apply the

;;; get-data-from-palette object to a nested ID in the sc-map object. Loop

;;; through the data of the named objects in the list returned and return them

;;; as note-name symbols.

(let* ((sp (make-set-palette ’set-pal ’((set1 ((c2 b2 a3 g4 f5 e6)))

20 SC/NAMED-OBJECT 597

(set2 ((d2 c3 b3 a4 g5 f6)))

(set3 ((e2 d3 c4 b4 a5 g6))))))

(scm (make-sc-map ’sc-m ’((sec1

((vn (set1 set3 set2))

(va (set2 set3 set1))

(vc (set3 set1 set2))))

(sec2

((vn (set1 set2 set1))

(va (set2 set1 set3))

(vc (set1 set3 set3))))

(sec3

((vn (set1 set1 set3))

(va (set1 set3 set2))

(vc (set3 set2 set3)))))

:palette sp)))

(loop for cs in (get-data-from-palette ’(sec1 vn) scm)

collect (pitch-list-to-symbols (data cs))))

=> ((C2 B2 A3 G4 F5 E6) (E2 D3 C4 B4 A5 G6) (D2 C3 B3 A4 G5 F6))

;; If applied to an sc-map object that is not bound to a palette, the contents

;; of the sc-map object at the specified location are returned and a warning is

;; printed by default

(let ((scm (make-sc-map ’sc-m ’((sec1

((vn (set1 set3 set2))

(va (set2 set3 set1))

(vc (set3 set1 set2))))

(sec2

((vn (set1 set2 set1))

(va (set2 set1 set3))

(vc (set1 set3 set3))))

(sec3

((vn (set1 set1 set3))

(va (set1 set3 set2))

(vc (set3 set2 set3))))))))

(get-data-from-palette ’(sec1 vn) scm))

=>

NAMED-OBJECT: id: VN, tag: NIL,

data: (SET1 SET3 SET2)

, NO-PALETTE

SYNOPSIS:

(defmethod get-data-from-palette (ids (scm sc-map) &optional (warn t))

20 SC/NAMED-OBJECT 598

20.2.297 sc-map/get-nth-from-map

[sc-map] [Methods]

DESCRIPTION:

Get the element located at the nth position within a given sc-map

object. Both the map-ref (the path of IDs into the list to be searched) and

the nth must be specified.

ARGUMENTS:

- A list that is the map-ref; i.e., the path of IDs into the list to be

searched.

- An integer that is the zero-based index of the element to be returned

from the specified list.

- An sc-map object.

RETURN VALUE:

Returns the element located at the given index.

Returns NIL if the index does not exist.

EXAMPLE:

;; Specify the path of IDs into the desired list ("map-ref") as a list, then

;; the position to be read from within the list located there.

(let ((mscm (make-sc-map ’scm-test

’((1

((vn (1 2 3 4 5))

(va (2 3 4 5 1))

(vc (3 4 5 1 2))))

(2

((vn (6 7 8))

(va (7 8 6))

(vc (8 6 7))))

(3

((vn (9))

(va (9))

(vc (9))))))))

(get-nth-from-map ’(1 vn) 1 mscm))

=> 2

;; Returns NIL if the specified index does not exist

20 SC/NAMED-OBJECT 599

(let ((mscm (make-sc-map ’scm-test

’((1

((vn (1 2 3 4 5))

(va (2 3 4 5 1))

(vc (3 4 5 1 2))))

(2

((vn (6 7 8))

(va (7 8 6))

(vc (8 6 7))))

(3

((vn (9))

(va (9))

(vc (9))))))))

(get-nth-from-map ’(3 vn) 1 mscm))

=> NIL

SYNOPSIS:

(defmethod get-nth-from-map (map-ref nth (scm sc-map))

20.2.298 sc-map/get-nth-from-palette

[sc-map] [Methods]

DESCRIPTION:

Given an sc-map object that is bound to a palette object of any type,

return the data of the palette object located at the nth position of the

list found at the specified ID or path of nested IDs.

If the given sc-map object is not bound to a palette object, NIL is

returned instead.

ARGUMENTS:

- An ID or list of IDs that are the path to the list within the given

sc-map object from which the specified nth position is to be returned.

- A zero-based integer that is the position within the list found at the

path specified from which the given element is to be returned.

- An sc-map object.

RETURN VALUE:

- An element/object of the type contained within the given palette object

of the given sc-map object.

20 SC/NAMED-OBJECT 600

EXAMPLE:

;;; Create a set-palette object and an sc-map object, bind them using the

;;; <palette> object of the make-sc-map function, and apply the

;;; get-nth-from-palette method

(let* ((sp (make-set-palette ’set-pal ’((set1 ((c2 b2 a3 g4 f5 e6)))

(set2 ((d2 c3 b3 a4 g5 f6)))

(set3 ((e2 d3 c4 b4 a5 g6))))))

(scm (make-sc-map ’sc-m ’((sec1

((vn (set1 set3 set2))

(va (set2 set3 set1))

(vc (set3 set1 set2))))

(sec2

((vn (set1 set2 set1))

(va (set2 set1 set3))

(vc (set1 set3 set3))))

(sec3

((vn (set1 set1 set3))

(va (set1 set3 set2))

(vc (set3 set2 set3)))))

:palette sp)))

(get-nth-from-palette ’(sec1 vn) 0 scm))

=>

COMPLETE-SET: complete: NIL

num-missing-non-chromatic: 12

num-missing-chromatic: 6

missing-non-chromatic: (BQS BQF AQS AQF GQS GQF FQS EQS EQF DQS

DQF CQS)

missing-chromatic: (BF AF FS EF D CS)

TL-SET: transposition: 0

limit-upper: NIL

limit-lower: NIL

SC-SET: auto-sort: T, used-notes:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 0

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 0, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: USED-NOTES, tag: NIL,

data: NIL

20 SC/NAMED-OBJECT 601

**** N.B. All pitches printed as symbols only, internally they are all

pitch-objects.

subsets:

related-sets:

SCLIST: sclist-length: 6, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: SET1, tag: NIL,

data: (C2 B2 A3 G4 F5 E6)

;;; Applying the method to an sc-map object that is not bound to a palette

;;; object returns NIL

(let ((scm (make-sc-map ’sc-m ’((sec1

((vn (set1 set3 set2))

(va (set2 set3 set1))

(vc (set3 set1 set2))))

(sec2

((vn (set1 set2 set1))

(va (set2 set1 set3))

(vc (set1 set3 set3))))

(sec3

((vn (set1 set1 set3))

(va (set1 set3 set2))

(vc (set3 set2 set3))))))))

(get-nth-from-palette ’(sec1 vn) 0 scm))

=> NIL

SYNOPSIS:

(defmethod get-nth-from-palette (sc-map-ref nth (scm sc-map))

20.2.299 sc-map/make-sc-map

[sc-map] [Functions]

DESCRIPTION:

Create an sc-map object, which will be used for mapping rhythmic sequences,

chords etc. to specific parts of a piece.

ARGUMENTS:

20 SC/NAMED-OBJECT 602

- The ID of the resulting sc-map object.

- A list of data, most likely recursive.

OPTIONAL ARGUMENTS:

keyword arguments:

- :warn-not-found. T or NIL to indicate whether a warning is printed when

an index which doesn’t exist is used for look-up. T = warn. Default = T.

- :recurse-simple-data. T or NIL to indicate whether to recursively

instantiate a recursive-assoc-list in place of data that appears to be a

simple assoc-list (i.e. a 2-element list). If NIL, the data of 2-element

lists whose second element is a number or a symbol will be ignored,

therefore remaining as a list. For example, this data would normally

result in a recursive call: (y ((2 23) (7 28) (18 2))).

T = recurse. Default = T.

- :replacements. A list of lists in the format ’(((1 2 vla) 3 20b) ((2 3

vln) 4 16a)) that indicate changes to individual elements of lists within

the given sc-map object. (Often sc-map data is generated algorithmically,

but individual elements of the lists need to be changed.) Each such list

indicates a change, the first element of the list being the reference

into the sc-map (the viola voice of section 1 subsection 2 in the first

element here, for example), the second element being the nth of the data

list to change for this key, and the third being the new data.

- :palette. A palette object or NIL. If a palette object is specified or

defined here, it will be automatically bound to the given sc-map

object. Default = NIL

RETURN VALUE:

An sc-map object.

EXAMPLE:

;; Create an sc-map object with contents that could be used as a rthm-seq-map

(make-sc-map ’scm-test

’((1

((vn (1 2 3 4 5))

(va (2 3 4 5 1))

(vc (3 4 5 1 2))))

(2

((vn (6 7 8))

(va (7 8 6))

(vc (8 6 7))))

(3

((vn (9))

20 SC/NAMED-OBJECT 603

(va (9))

(vc (9))))))

=>

SC-MAP: palette id: NIL

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 9

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: SCM-TEST, tag: NIL,

data: (

NAMED-OBJECT: id: 1, tag: NIL,

data:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 3

linked: NIL

full-ref: (1)

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "sub-ral-of-SCM-TEST", tag: NIL,

data: (

NAMED-OBJECT: id: VN, tag: NIL,

data: (1 2 3 4 5)

[...]

;;; Create an sc-map object and automatically bind it to a set-palette object

;;; using the <palette> keyword argument. Then read the PALETTE slot of the

;;; sc-map created to see its contents.

(let ((scm

(make-sc-map

’scm-test

’((1

((vn (1 2 3 4 5))

(va (2 3 4 5 1))

(vc (3 4 5 1 2))))

(2

((vn (6 7 8))

(va (7 8 6))

(vc (8 6 7))))

(3

20 SC/NAMED-OBJECT 604

((vn (9))

(va (9))

(vc (9)))))

:palette (make-set-palette ’set-pal

’((set1 ((c2 b2 a3 g4 f5 e6)))

(set2 ((d2 c3 b3 a4 g5 f6)))

(set3 ((e2 d3 c4 b4 a5 g6))))))))

(palette scm))

=>

SET-PALETTE:

PALETTE:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 3

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: SET-PAL, tag: NIL,

data: (

COMPLETE-SET: complete: NIL

[...]

data: (C2 B2 A3 G4 F5 E6)

[...]

COMPLETE-SET: complete: NIL

[...]

data: (D2 C3 B3 A4 G5 F6)

[...]

COMPLETE-SET: complete: NIL

[...]

data: (E2 D3 C4 B4 A5 G6)

)

;;; An example using replacements

(make-sc-map ’sc-m

’((1

((vn (set1 set3 set2))

(va (set2 set3 set1))

(vc (set3 set1 set2))))

(2

((vn (set1 set2 set1))

(va (set2 set1 set3))

(vc (set1 set3 set3))))

20 SC/NAMED-OBJECT 605

(3

((vn (set1 set1 set3))

(va (set1 set3 set2))

(vc (set3 set2 set3)))))

:replacements ’(((1 va) 2 set2)))

=>

SC-MAP: palette id: NIL

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 9

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: SC-M, tag: NIL,

data: (

NAMED-OBJECT: id: 1, tag: NIL,

data:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 3

linked: NIL

full-ref: (1)

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "sub-ral-of-SC-M", tag: NIL,

data: (

NAMED-OBJECT: id: VN, tag: NIL,

data: (SET1 SET3 SET2)

NAMED-OBJECT: id: VA, tag: NIL,

data: (SET2 SET2 SET1)

NAMED-OBJECT: id: VC, tag: NIL,

data: (SET3 SET1 SET2)

)

20 SC/NAMED-OBJECT 606

[...]

SYNOPSIS:

(defun make-sc-map (id scm &key (palette nil) (warn-not-found t)

(recurse-simple-data t) (replacements nil))

20.2.300 sc-map/rthm-seq-map

[sc-map] [Classes]

NAME:

rthm-seq-map

File: rthm-seq-map.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

sc-map -> rthm-seq-map

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the rthm-seq-map class which maps

references to rthm-seq objects for the players in the

piece. Extensions to the sc-map superclass are the

collection of all the players in the piece and a

check to make sure that each list each instrument has the

same number of rthm-seq references for each section.

Instances of this class must declare sections and

players so if the piece is in one section, give it

the label 1 or whatever, e.g.

’((1

((vln (2 20 1 9 10 22 16 25 6 14 21 17 4 9 13 2))

(vla (2 23 3 7 13 22 19 3 8 12 23 14 2 10 15 4))

(vc (2 21 3 12 11 22 16 1 8 17 23 20 24 9 12 2)))))

Author: Michael Edwards: m@michael-edwards.org

Creation date: July 28th 2001

20 SC/NAMED-OBJECT 607

$$ Last modified: 18:24:55 Mon Dec 23 2013 WIT

SVN ID: $Id: rthm-seq-map.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.301 rthm-seq-map/add-repeats

[rthm-seq-map] [Methods]

DATE:

30-Dec-2010

DESCRIPTION:

Generate repeating sequences at given cycle points using recurring-event

data. This process modifies the number of beats.

ARGUMENTS:

- A rthm-seq-map object.

- A list of two-item lists of integers that determine the cycle

pattern. This list will have the format of the recurring-event class’s

DATA slot (see recurring-event.lsp).

- A list of two-item lists of integers that determine the number of repeats

made (or references into the :repeats list). This list is also processed

cyclically (i.e. the recurring-event class’s RETURN-DATA-CYCLE slot).

OPTIONAL ARGUMENTS:

keyword arguments:

- :section. The section map reference. Default = 1.

- :repeats-indices. A list of the number of repeat bars returned by the

cycle data (i.e. recurring-event class’s RETURN-DATA slot). Generally

this will remain NIL and the number of repeats will be expressed

directly in the third argument, but it could be useful to use references

into this list there instead, since the recurring-event class already

makes this possible. Default = NIL.

- :start. An integer that is the number of the bar/rthm-seq where the

process is to begin. Default = 1.

- :end. An integer that is the number of the bar/rthm-seq where the process

is to end. NIL = process all bars/rthm-seqs. Default = NIL.

- :print. T or NIL to indicate whether to print the rthm-seq ID and the

number repetitions to the listener. T = print. Default = NIL.

- :repeat-rest-seqs. T or NIL to indicate whether sequences consisting of

20 SC/NAMED-OBJECT 608

just rests should be repeated also. This will need the :palette in order

to work. Default = T.

- :palette. The rthm-seq-palette to check that sequences are not

rest sequences, if about to repeat them and repeat-rest-seqs is NIL.

RETURN VALUE:

An integer that is the number of sequences added.

EXAMPLE:

;;; Straightforward usage, additionally printing the DATA slot before and after

;;; applying the method

(let ((mrsm

(make-rthm-seq-map

’rsm-test

’((1 ((vn (1 2 3 2 1 3 1 3 2 3 1 2 1 3 1 3 2 1)))))

:palette (make-rsp

’rs-pal

’((1 ((((2 4) q e s s))))

(2 ((((2 4) e s s q))))

(3 ((((2 4) s s q e)))))))))

(print (get-data-data ’(1 vn) mrsm))

;; so there’ll be a repeat after two events three times in a row, then after

;; three events twice in a row. The number of repeats will be 5 eight times

;; in a row, then 8 twice in a row.

(add-repeats mrsm ’((2 3) (3 2)) ’((5 3) (8 2)))

(print (get-data-data ’(1 vn) mrsm)))

=>

(1 2 3 2 1 3 1 3 2 3 1 2 1 3 1 3 2 1)

(1 2 3 3 3 3 3 2 1 1 1 1 1 3 1 1 1 1 1 3 2 3 3 3 3 3 3 3 3 1 2 1 1 1 1 1 1

1 1 3 1 1 1 1 1 3 2 2 2 2 2 1)

;;; Using the :start, :end, and :print arguments

(let ((mrsm

(make-rthm-seq-map

’rsm-test

’((1 ((vn (1 2 3 2 1 3 1 3 2 3 1 2 1 3 1 3 2 1)))))

:palette (make-rsp

’rs-pal

’((1 ((((2 4) q e s s))))

(2 ((((2 4) e s s q))))

(3 ((((2 4) s s q e)))))))))

(print (get-data-data ’(1 vn) mrsm))

(add-repeats mrsm ’((1 6) (2 6)) ’((11 6) (23 3))

20 SC/NAMED-OBJECT 609

:start 3

:end 11

:print t)

(print (get-data-data ’(1 vn) mrsm)))

=>

(1 2 3 2 1 3 1 3 2 3 1 2 1 3 1 3 2 1)

2 x 11

1 x 11

3 x 11

1 x 11

3 x 11

2 x 11

1 x 23

(1 2 3 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 1

1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 3 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 3 1 3 2 1)

SYNOPSIS:

(defmethod add-repeats ((rsm rthm-seq-map) repeat-every repeats &key

(repeat-rest-seqs t) palette

(section 1) repeats-indices (start 1) end print)

20.2.302 rthm-seq-map/add-repeats-simple

[rthm-seq-map] [Methods]

DESCRIPTION:

Add repeats of a specified rthm-seq within the given rthm-seq-map object a

specified number of times.

ARGUMENTS:

- A rthm-seq-map object.

- An integer that is the number of the rthm-seq (position within the

rthm-seq-map) to be repeated.

- An integer that is the number of times that rthm-seq is to be repeated.

OPTIONAL ARGUMENTS:

keyword arguments:

- :section. An integer that is the ID of the section in which the repeat

operation is to be performed.

20 SC/NAMED-OBJECT 610

- :print. T or NIL to indicate whether to print the rthm-seq ID and the

number repetitions to the listener. T = print. Default = NIL.

RETURN VALUE:

Always returns T.

EXAMPLE:

;;; Print the DATA of the given rthm-seq-map, apply the method, and print again

;;; to see the difference.

(let ((mrsm

(make-rthm-seq-map

’rsm-test

’((1 ((vn (1 2 3 2 1 3 1 3 2 3 1 2 1 3 1 3 2 1)))))

:palette (make-rsp

’rs-pal

’((1 ((((2 4) q e s s))))

(2 ((((2 4) e s s q))))

(3 ((((2 4) s s q e)))))))))

(print (get-data-data ’(1 vn) mrsm))

(add-repeats-simple mrsm 3 13)

(print (get-data-data ’(1 vn) mrsm)))

=>

(1 2 3 2 1 3 1 3 2 3 1 2 1 3 1 3 2 1)

(1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 3 1 3 2 3 1 2 1 3 1 3 2 1)

SYNOPSIS:

(defmethod add-repeats-simple ((rsm rthm-seq-map) start-seq repeats &key

(section 1) print)

20.2.303 rthm-seq-map/check-num-sequences

[rthm-seq-map] [Functions]

DESCRIPTION:

Check to ensure that each player in each section of the given rthm-seq-map

object has the same number of references as every other instrument. If not,

drop into the debugger with an error.

NB: This function is called automatically every time make-rthm-seq-map is

called so it shouldn’t generally be necessary for the user to call this

20 SC/NAMED-OBJECT 611

method. However, if the rthm-seq-map is changed somehow, it might be a

good idea to recheck.

ARGUMENTS:

- A rthm-seq-map object.

RETURN VALUE:

Returns T if all players have the same number of references in each

section, otherwise drops into the debugger with an error.

EXAMPLE:

;;; Passes the test:

(let ((rsmt (make-rthm-seq-map

’rsm-test

’((sec1 ((vn (rs1a rs3a rs2a))

(va (rs1b rs3b rs2b))

(vc (rs1a rs3b rs2a))))

(sec2 ((vn (rs1a rs2a rs1a))

(va (rs1a rs2a rs1b))

(vc (rs1a rs2b rs1a))))

(sec3 ((vn (rs1a rs1a rs3a))

(va (rs1a rs1a rs3b))

(vc (rs1a rs1b rs3a))))

(sec4 ((vn (rs1a rs1a rs1a))

(va (rs1a rs1a rs1b))

(vc (rs1a rs1b rs1a))))))))

(check-num-sequences rsmt))

=> T

;;; Doesn’t pass the test; drops into debugger with an error.

(let ((rsmt (make-rthm-seq-map

’rsm-test

’((sec1 ((vn (rs1a rs3a rs2a))

(va (rs1b rs3b))

(vc (rs1a rs3b rs2a))))

(sec2 ((vn (rs1a))

(va (rs1a rs2a rs1b))

(vc (rs1a rs2b rs1a))))

(sec3 ((vn (rs1a rs3a))

(va (rs1a))

(vc (rs1a rs1b rs3a))))

20 SC/NAMED-OBJECT 612

(sec4 ((vn (rs1a))

(va (rs1a rs1a rs1b))

(vc (rs1a rs1a))))))))

(check-num-sequences rsmt))

=>

rthm-seq-map::check-num-sequences: In rthm-seq-map RSM-TEST-5, instrument VA:

Each instrument must have the same number of sequences for any given section:

(RS1B RS3B)

[Condition of type SIMPLE-ERROR]

SYNOPSIS:

(defun check-num-sequences (rsm)

20.2.304 rthm-seq-map/get-map-refs

[rthm-seq-map] [Methods]

DATE:

29-Dec-2010

DESCRIPTION:

Return the list of rthm-seq-palette references for the given player and

section.

ARGUMENTS:

- A rthm-seq-map object.

- The ID of the section in which the references are sought.

- The ID of the player for whom the references are sought.

RETURN VALUE:

A list of references (each of which might also be a list).

EXAMPLE:

(let ((rsmt (make-rthm-seq-map

’rsm-test-5

’((sec1 ((vn (rs1 rs3 rs2))

(va (rs2 rs3 rs1))

20 SC/NAMED-OBJECT 613

(vc (rs3 rs1 rs2))))

(sec2 ((vn (rs1 rs2 rs1))

(va (rs2 rs1 rs3))

(vc (rs1 rs3 rs3))))

(sec3 ((vn (rs1 rs1 rs3))

(va (rs1 rs3 rs2))

(vc (rs3 rs2 rs3)))))

:palette (make-rsp

’rs-pal

’((rs1 ((((2 4) q e s s))))

(rs2 ((((2 4) e s s q))))

(rs3 ((((2 4) s s q e)))))))))

(get-map-refs rsmt ’sec3 ’vc))

=> (RS3 RS2 RS3)

SYNOPSIS:

(defmethod get-map-refs ((rsm rthm-seq-map) section player)

20.2.305 rthm-seq-map/get-time-sig-ral

[rthm-seq-map] [Methods]

DESCRIPTION:

Collate the IDs of all rthm-seq objects in a given rthm-seq-map into groups

based on identical time signatures and return this as a

recursive-assoc-list object that has the same structure of the map.

Instead of having the list of rthm-seq references for each

section/instrument, the method returns an assoc-list whose keys are the

time-sig tags, with the corresponding data being circular-sclists of

rthm-seq IDs.

The result is a recursive-assoc-list for each instrument/section that can

be queried to find the rthm-seq refs of all rthm-seqs that share the same

bar/time-sig structure; e.g., all those that have a 2/4 bar followed by a

3/4 bar etc.

ARGUMENTS:

- A rthm-seq-map object.

- A rthm-seq-palette object.

RETURN VALUE:

20 SC/NAMED-OBJECT 614

A recursive-assoc-list object.

EXAMPLE:

(let* ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax (alto-sax :midi-channel 1))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s) ((2 4) h))))

(2 ((((4 4) h q e s s))))

(3 ((((4 4) h q e s s))))

(4 ((((4 4) h q q) ((2 4) q q))))

(5 ((((4 4) h q e s s))))

(6 ((((4 4) h q q) ((2 4) q q)))))

:rthm-seq-map ’((1 ((sax (1 2 3 5 2 4 6 2 3 1 3 2 3 2 1 3 2)))))))

(tsral (get-time-sig-ral (rthm-seq-map mini) (rthm-seq-palette mini))))

(get-data-data 1 tsral))

=>

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 1

linked: T

full-ref: (1)

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 1, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "sub-ral-of-+MINI+-RTHM-SEQ-MAP", tag: NIL,

data: (

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: (1 SAX), next: NIL

NAMED-OBJECT: id: SAX, tag: NIL,

data: (

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "0404-0204", tag: NIL,

data: (4 6 1)

CIRCULAR-SCLIST: current 0

20 SC/NAMED-OBJECT 615

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "0404", tag: NIL,

data: (5 3 2)

)

)

SYNOPSIS:

(defmethod get-time-sig-ral ((rsm rthm-seq-map) (rsp rthm-seq-palette))

20.2.306 rthm-seq-map/make-rthm-seq-map

[rthm-seq-map] [Functions]

DESCRIPTION:

Make a rthm-seq-map object.

ARGUMENTS:

- The ID of the rthm-seq-map object to be made.

- A list of nested lists, generally taking the form

’((section1 ((player1 (rthm-seq ids))

(player2 (rthm-seq ids))

(etc... (etc...))))

(section2 ((player1 (rthm-seq ids))

(player2 (rthm-seq ids))

(etc...)))

(etc...))

OPTIONAL ARGUMENTS:

keyword arguments:

- :palette. A palette object or NIL. If a palette object is specified or

defined here, it will be automatically bound to the given rthm-seq-map

object. Default = NIL.

- :warn-not-found. T or NIL to indicate whether a warning is printed when

an index which doesn’t exist is used for look-up.

T = warn. Default = NIL.

- :replacements. A list of lists in the format

’(((1 2 vla) 3 20b) ((2 3 vln) 4 16a)) that indicate changes to

20 SC/NAMED-OBJECT 616

individual elements of lists within the given rthm-seq-map object. (Often

rthm-seq-map data is generated algorithmically but individual elements of

the lists need to be changed.) Each such list indicates a change, the

first element of the list being the reference into the rthm-seq-map (the

vla player of section 1, subsection 2 in the first example here), the

second element is the nth of the data list for this key to change, and

the third is the new data. Default = NIL.

- :recurse-simple-data. T or NIL to indicate whether to recursively

instantiate a recursive-assoc-list in place of data that appears to be a

simple assoc-list (i.e. a 2-element list). If NIL, the data of 2-element

lists whose second element is a number or a symbol will be ignored,

therefore remaining as a list. For example, this data would normally

result in a recursive call: (y ((2 23) (7 28) (18 2))).

T = recurse. Default = T.

RETURN VALUE:

A rthm-seq-map object.

EXAMPLE:

;;; Straightforward usage

(make-rthm-seq-map ’rsm-test

’((1 ((vn (1 2 3 4))

(va (2 3 4 1))

(vc (3 4 1 2))))

(2 ((vn (4 5 6))

(va (5 6 4))

(vc (6 4 5))))

(3 ((vn (7 8 9 1 2))

(va (8 9 1 2 7))

(vc (9 1 2 7 8))))))

=>

RTHM-SEQ-MAP: num-players: 3

players: (VA VC VN)

SC-MAP: palette id: NIL

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 9

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found NIL

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

20 SC/NAMED-OBJECT 617

NAMED-OBJECT: id: RSM-TEST, tag: NIL,

data: (

[...]

;;; An example using the :replacements argument and binding directly to a

;;; specified rthm-seq-palette object.

(make-rthm-seq-map ’rsm-test

’((1 ((vn (1 2 3 4))

(va (2 3 4 1))

(vc (3 4 1 2))))

(2 ((vn (4 5 6))

(va (5 6 4))

(vc (6 4 5))))

(3 ((vn (7 8 9 1 2))

(va (8 9 1 2 7))

(vc (9 1 2 7 8)))))

:palette (make-rsp

’rs-pal

’((rs1 ((((2 4) q e s s))))

(rs2 ((((2 4) e s s q))))

(rs3 ((((2 4) s s q e))))))

:replacements ’(((1 vn) 2 7)

((2 va) 1 1)

((3 vc) 1 0)))

=>

RTHM-SEQ-MAP: num-players: 3

players: (VA VC VN)

SC-MAP: palette id: RS-PAL

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 9

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found NIL

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: RSM-TEST, tag: NIL,

data: (

[...]

SYNOPSIS:

(defun make-rthm-seq-map (id rsm &key (palette nil) (warn-not-found nil)

(replacements nil)

(recurse-simple-data t))

20 SC/NAMED-OBJECT 618

20.2.307 rthm-seq-map/rsm-count-notes

[rthm-seq-map] [Functions]

DESCRIPTION:

Returns the number of notes in the given rthm-seq-map object for the

specified player and rthm-seq-palette.

ARGUMENTS:

- A rthm-seq-map object.

- The ID of the player whose notes are to be counted.

- The rthm-seq-palette object whose rthm-seq object IDs are referred to by

the given rthm-seq-map object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to count just the number of notes that need

new events (i.e., not counting tied notes; also not counting chords,

since chords need only one event) or the total number of notes in that

player’s part in the score. T = count just attacked notes. Default = T.

RETURN VALUE:

Returns an integer that is the number of notes counted.

EXAMPLE:

(let ((rsmt (make-rthm-seq-map

’rsm-test

’((sec1 ((vn (rs1 rs3 rs2))

(va (rs2 rs3 rs1))

(vc (rs3 rs1 rs2))))

(sec2 ((vn (rs1 rs2 rs1))

(va (rs2 rs1 rs3))

(vc (rs1 rs3 rs3))))

(sec3 ((vn (rs1 rs1 rs3))

(va (rs1 rs3 rs2))

(vc (rs3 rs2 rs3)))))))

(rspt (make-rsp

’rs-pal

’((rs1 ((((2 4) q (e) s s))))

(rs2 ((((2 4) e +s (s) q))))

(rs3 ((((2 4) (s) s +q e))))))))

20 SC/NAMED-OBJECT 619

(print (rsm-count-notes rsmt ’vn rspt))

(print (rsm-count-notes rsmt ’va rspt nil)))

=>

23

27

SYNOPSIS:

(defun rsm-count-notes (rthm-seq-map player palette &optional (just-attacks t))

20.2.308 rthm-seq-map/rthm-chain

[rthm-seq-map] [Classes]

NAME:

rthm-chain

File: rthm-chain.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

sc-map -> rthm-seq-map -> rthm-chain

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Algorithmic generation of rthm-seqs that include

slower-moving counterpoint and a means to control

activity development through curves. Here we generate a

rthm-seq-map and its associated palette algorithmically.

Say we have 9 irregular 1 beat duration patterns; these

would enter in the sequence defined by (procession x 9)

where x would be the number of patterns to generate.

Rests are inserted at regular but changing intervals e.g

3x every 2 beats (6)

2x every 3 beats (6)

3x every 5 beats (15)

2x every 8 beats (16)

20 SC/NAMED-OBJECT 620

e, q, and q. rests are used by default, in a sequence

determined by a recurring-event instance.

In order to make music that ’progresses’ we have curves

with y values from 1-10 indicating how much activity

there should be: 1 would mean only 1 in 10 beats would

have notes in/on them, 10 would indicate that all do. We

use the patterns given in

activity-levels::initialize-instance, where 1 means

’play’, 0 means ’rest’. There are three examples of each

level so that if we stick on one level of activity for

some time we won’t always get the same pattern: these

will instead be cycled through.

A slower moving (bass) line is also added that is made up

of 2 or 3 beat groups---if the activity curve indicates a

rest, then the whole 2-3 beat group is omitted.

There are also ’sticking points’ where a rhythm will be

repeated a certain number of times (either s, e, e., or q

by default). Sticking happens after rests. This can be

controlled with an activity envelope too, also indicating

one of the 10 patterns above (but also including 0). A 0

or 1 unit here would refer to a certain number of repeats

(1) or none (0). How many repeats could be determined by

something like: (procession 34 ’(2 3 5 8 13) :peak 1

:expt 3) There’s always a slower group to accompany the

sticking points: simply the next in the sequence,

repeated for as long as we stick

The harmonic-rthm curve specifies how many slower-rthms

will be combined into a rthm-seq (each rthm-seq has a

single harmony). The default is 2 bars (slower-rthms)

per rthm-seq.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 4th February 2010

$$ Last modified: 18:22:20 Fri Aug 29 2014 BST

SVN ID: $Id: rthm-chain.lsp 5048 2014-10-20 17:10:38Z medward2 $

20 SC/NAMED-OBJECT 621

20.2.309 rthm-chain/add-voice

[rthm-chain] [Methods]

DESCRIPTION:

Add a new voice to an existing rthm-chain object based on the rhythmic

material and slot values already contained in that object.

The main rthm-chain algorithm generates only two voices. Rather than

generate further voices in the same fashion by which the first two were

created, this method uses the already created rthm-seqs in the given

rthm-chain object to create a new voice.

The challenge here is that each rthm-seq potentially has its own time

signature structure: There could be a 2/4 bar followed by 5/4 then 3/16,

for example, or any other combination of any meter. So the method first

analyses the time-signature structure of the existing rthm-seqs and saves

those with the same bar/meter structure together in the order in which they

occur. When creating the extra voice then, the method actually starts ahead

of the main voice by choosing <offset> number of similar rthm-seqs in

advance. NB Your data might well produce only one rthm-seq with a

particular metric structure, which might mean that calling this method

produces rhythmic doubling instead of an independent part. In that case

you might try adding more rhythmic fragments and regenerating your piece.

ARGUMENTS:

- A rthm-chain object.

- The reference (key path) of the player within the given rthm-chain object

whose rthm-seq-map is to serve as the ’parent voice’, e.g. ’(1 cl).

- A symbol that will be the ID of the new player.

OPTIONAL ARGUMENTS:

- An integer that indicates an offset into the group of similar rthm-seq

objects from which the new voice is to begin. (The generated voice will

thus be ahead of the main voice). Default = 1.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((rch

20 SC/NAMED-OBJECT 622

(make-rthm-chain

’test-rch 150

’((((e) e) ; 4 in total

(- s (s) (s) s -)

({ 3 (te) - te te - })

((e.) s))

(({ 3 (te) te (te) }) ; what we transition to

({ 3 - te (te) te - })

({ 3 (te) - te te - })

({ 3 (te) (te) te })))

’((((q q) ; the 2/4 bars: 5 total

((q) q)

((q) q)

((q) (s) e.)

(- e e - (e) e))

(({ 3 te+te te+te te+te }) ; what we transition to

(q - s e. -)

(q (s) e.)

(q (s) - s e -)

({ 3 te+te te+te - te te - })))

((((e.) s (e) e (s) e.) ; the 3/4 bars: 4 total

(- e e - (e) e (q))

(- e. s - - +e e - (q))

(q (e.) s (q)))

(({ 3 (te) (te) te+te te+te } (q)) ; what we transition to

(- e. s - (q) (s) - s e -)

({ 3 te+te te } (q) q)

({ 3 - te te te - } (e) e { 3 (te) (te) te }))))

:players ’(fl cl))))

(add-voice rch ’(1 cl) ’ob))

SYNOPSIS:

(defmethod add-voice ((rc rthm-chain) parent new-player &optional (offset 1))

20.2.310 rthm-chain/hash-least-used

[rthm-chain] [Functions]

DESCRIPTION:

Return the least used key in a hash table. This may be used to retrieve the

number of times the keys have been used as indices, for example.

ARGUMENTS:

20 SC/NAMED-OBJECT 623

- A hash table. This must be a lisp hash table object whose keys are all

integers and whose values are all numbers.

OPTIONAL ARGUMENTS:

keyword arguments:

- :start. The lowest key value we’ll test. Default = 0.

- :end. The highest key value we’ll test. Default = number of items in the

hash table.

- :ignore. A list of keys to ignore when processing. NIL = process all

keys. Default = NIL.

- :auto-inc. T or NIL to determine whether the function will automatically

increment the count of the returned key. T = automatically increment.

Default = T.

RETURN VALUE:

The hash least used.

EXAMPLE:

(let ((h (make-hash-table)))

(loop for i below 100 do

(setf (gethash i h) 10000))

(setf (gethash 10 h) 5

(gethash 11 h) 4

(gethash 12 h) 3

(gethash 13 h) 2)

(print (hash-least-used h :auto-inc nil))

(print (hash-least-used h :auto-inc t))

(print (hash-least-used h :auto-inc t))

(print (hash-least-used h :auto-inc nil :start 12))

(setf (gethash 2 h) 0)

(print (hash-least-used h :auto-inc nil :start 3 :end 11))

(print (hash-least-used h :auto-inc nil :end 11))

(print (hash-least-used h :auto-inc nil :ignore ’(2))))

=>

13

13

12

13

11

2

13

20 SC/NAMED-OBJECT 624

SYNOPSIS:

(defun hash-least-used (hash &key (start 0) end ignore (auto-inc t))

20.2.311 rthm-chain/make-rthm-chain

[rthm-chain] [Functions]

DESCRIPTION:

Create an instance of a rthm-chain object. The rthm-chain class enables the

algorithmic generation of a rthm-seq-map (with just one section) and its

associated rthm-seq-palette, which consists in turn of algorithmically

generated rthm-seq objects.

The rhythm-seq objects are made up of both faster material based on 1-beat

groups and slower-moving counterpoint based on 2- or 3-beat groups.

The rthm-chain class also allows for control of the degree of activity in

the parts over time through user-specified envelopes.

Rests are automatically inserted at regular but changing intervals.

Specified ’sticking points’ cause individual rhythms to be repeated a

certain number of times. Sticking happens after rests and can also be

controlled with an activity envelope.

NB: Because this method uses the procession method internally, each

collection of 1-beat-rthms and slower-rthms defined must contain at

least four items.

NB: Since this method automatically inserts rests into the chains, the user

may like to implement the various tie-over-rests post-generation

editing methods. If this is done, the handle-ties method may also be

recommended, as the tie-over-rests methods only affect printed output

and not MIDI output.

ARGUMENTS:

- A number, symbol, or string that is to be the ID of the new rthm-chain

object.

- An integer that is the number of beats to be generated prior to adding

additional material created from sticking points and the automatic

addition of rests. For generating a whole piece this will generally be

in the hundreds, not dozens. Lower numbers might create very limited

20 SC/NAMED-OBJECT 625

results or make the use of the add-voice method next to useless.

- A list with sublists of rhythms that are to be the 1-beat rhythms used to

construct the faster-moving material of the rthm-seq-palette. Each

sublist represents the repertoire of rhythms that will be used by the

procession method. Each sublist must contain the same number of rthms but

their number and the number of sublists is open. A transition will be

made from one group of rhythms to the next over the whole output

(i.e. not one unit to another within e.g. the 1-beat rhythms) according

to a fibonacci-transition method. NB Here and below, at least two lists

are required: what we start with, and what we transition to. If no

transition is required you could of course just duplicate the rhythms via

a let variable: (list rhythms rhythms).

- A list with sublists of 2-beat and 3-beat full bars of rhythms used to

construct the slower-moving counterpoint material of the

rthm-seq-palette. This will be turned into a rthm-chain-slow object, and

will therefore remain as lists of unparsed rhythms. Each sublist must

contain the same number of rthms but their number and the number of

sublists is open. A transition will be made from one group of rhythms to

the next over the whole output (i.e. not one unit to another within

e.g. the 1-beat rhythms) according to a fibonacci-transition method.

NB: The rhythm units of slower-rthms must be expressed in single beats;

e.g., a 2/4 bar must consist of q+q rather than h. The consolidate-notes

method can be called afterwards if desired.

OPTIONAL ARGUMENTS:

keyword arguments:

- :players. A list of two player IDs. When used in conjunction with a

slippery-chicken object (which is the standard usage), these must be IDs

as they are defined in that object’s ENSEMBLE slot. The first player will

play the 1-beat rhythms, the second the slower rhythms.

Default = ’(player1 player2).

- :section-id. An integer that will be used as the ID of the rthm-seq-map

created. NB: rthm-chain only creates rthm-seq-maps with one section,

making it possible to create several different rthm-seq-map objects for

different sections in the given piece, and requiring that these be

manually assigned IDs. Additionally, any ID given here must match an

existing ID within the other maps. Default = 1.

- :activity-curve. A list of break-point pairs with y values from 1 to 10

indicating the amount of activity there should be over the course of the

piece. A value of 1 indicates that only 1 in 10 beats will have notes

in/on them, and a value of 10 indicates that all beats will have

notes. This process uses the patterns given in

activity-levels::initialize-instance, where 1 means ’play’ and 0 means

’rest’. There are three templates for each level, so that if the curve

remains on one level of activity for some time it won’t always return the

20 SC/NAMED-OBJECT 626

same pattern; these will be rotated instead. If the activity curve

indicates a rest for one of the slower-rhythms groups, the whole 2-3 beat

group is omitted. Default = ’(0 10 100 10).

- :do-rests. T or NIL to indicate whether to apply the automatic

rest-insertion algorithm. T = use. Default = T.

- :rests. A list of rhythmic duration units from which the durations will

be drawn when using the automatic rest-insertion algorithm. The specified

rests are used in a sequence determined by a recurring-event

object. Default = ’(e q q. w). NB: Each of these values must not resolve

to less than one-quarter of the beat basis, either alone or in

combination, as this could result in an attempt to create meters from

fractional beats (e.g. 3.25). An error message will be printed in such

cases.

- :rest-cycle. A list of 2-item lists that indicate the pattern by which

rests of specific rhythmic durations will be selected from the RESTS slot

for automatic insertion. The first number of each pair is a 0-based

position referring to the list of rests in the RESTS slot, and the second

number is the number of times the rest at that particular position should

be inserted. (This number does not mean that the selected rest will be

inserted that many times at once, but rather that each consecutive time

the rest algorithm selects one rest to be inserted, it will insert that

specific rest, for the specified number of consecutive times.) For

example, (0 3) indicates that for the next three times that the rest

algorithm selects one rest to insert, it will select the rest located at

position 0 in the list of rests in the RESTS slot (e by default).

Default =’((0 3) (1 1) (0 2) (2 1) (1 1) (3 1)).

- :rest-re. A list of 2-item lists that indicate the pattern by which rests

will be automatically inserted. The first number of each pair determines

how many events occur before inserting a rest, and the second number of

each pair determines how many times that period will be repeated. For

example, (2 3) indicates that a rest will be inserted every two events,

three times in a row. The list passed here will be treated as data for a

recurring-event object that will be repeatedly cycled through.

Default = ’((2 3) (3 2) (2 2) (5 1) (3 3) (8 1)).

- :do-rests-curve. A list of break-point pairs with y values of either 0 or

1 indicating whether the do-rests algorithm is active or disabled. These

values are interpolated between each pair, with all values 0.5 and higher

being rounded up to 1 and all below 0.5 rounded to 0. Default = NIL.

- :do-sticking. T or NIL to indicate whether the method should apply the

sticking algorithm. T = apply. Default = T.

- :sticking-rthms. A list of rhythmic units that will serve as the rhythms

employed by the sticking algorithm. These are generated at initialization

if not specified here. NB: This list is used to create a list using the

procession algorithm at initialization, so it is best to apply something

similar to the default if not accepting the default. If a circular-sclist

object is provided here, it will be used instead of the default

20 SC/NAMED-OBJECT 627

procession. Default = ’(e e e. q e s).

- :sticking-repeats. A list of integers to indicate the number of

repetitions applied in sticking segments. When the values of this list

have been exhausted, the method cycles to the beginning and continues

drawing from the head of the list again. NB: This list is made into a

circular-sclist object when the given rthm-chain object is initialized

unless a circular-sclist object is explicitly provided.

Default = ’(3 5 3 5 8 13 21).

- :sticking-curve. A list of break-point pairs that acts as an activity

envelope to control the sticking, which always occurs after rests. As

with the activity curve, this curve can take y values up to 10, but also

allows 0. A y value of 0 or 1 here refers to either a specific number of

repeats (1) or none (0). The number of repeats may be determined, for

example, by use of the procession method, such as

(procession 34 ’(2 3 5 8 13) :peak 1 :expt 3). Every sticking point is

accompanied by a slower group, which is simply chosen in sequence and

repeated for the duration of the sticking period.

Default = ’(0 2 100 2).

- :do-sticking-curve. A list of break-point pairs that can be used,

alternatively, to control whether the sticking algorithm is being applied

or not at any given point over the course of the piece. The y values for

this curve should be between 0 and 1, and the decimal fractions achieved

from interpolation will be rounded. The 1 values resulting from this

curve will only be actively applied to if do-sticking is set to T.

Default = NIL.

- :harmonic-rthm-curve. A list of break-point pairs that indicates how many

slower-rthms will be combined into one rthm-seq (each rthm-seq has a

single harmony). The default is 2 bars (slower-rthms) per rthm-seq,

i.e. ’(0 2 100 2).

- :split-data. NIL or a two-item list of integers that are the minimum and

maximum beat duration of bars generated. If NIL, the bars will not be

split. These values are targets only; the method may create bars of

different lengths if the data generated cannot be otherwise split.

NB: The values given here will apply to a different beat basis depending

on time signature of each individual bar, rather than on a consistent

beat basis, such as quarters or eighths. Since this method produces bars

of different lengths with time signatures of differing beat bases

(e.g. 16, 8, 4 etc.) before it applies the split algorithm, a minimum

value of 4, for example, can result in bars of 4/16, 4/8, 4/4 etc.

Default = ’(2 5)

- :1-beat-fibonacci. T or NIL to indicate whether the sequence of 1-beat

rhythms is to be generated using the fibonacci-transitions method or the

processions method. T = use fibonacci-transitions method. Default = NIL.

- :slow-fibonacci. T or NIL to indicate whether the sequence of the slow

rhythms will be generated using the fibonacci-transitions method or the

processions method. This affects the order in which each 2- or 3-beat

20 SC/NAMED-OBJECT 628

unit is used when necessary, not the order in which each 2- or 3-beat

unit is selected; the latter is decided by the next element in the DATA

slot of the rthm-chain-slow object, which simply cycles through

’(2 3 2 2 3 2 2 3 3 3). T = use fibonacci-transitions method.

Default = NIL.

RETURN VALUE:

A rthm-chain object.

EXAMPLE:

;; An example using a number of the keyword arguments.

(make-rthm-chain

’test-rch 23

’((((e) e) ; 4 in total

(- s (s) (s) s -)

({ 3 (te) - te te - })

((e.) s))

(({ 3 (te) te (te) }) ; what we transition to

({ 3 - te (te) te - })

({ 3 (te) - te te - })

({ 3 (te) (te) te })))

’((((q q) ; the 2/4 bars: 5 total

((q) q)

((q) q)

((q) (s) e.)

(- e e - (e) e))

(({ 3 te+te te+te te+te }) ; what we transition to

(q - s e. -)

(q (s) e.)

(q (s) - s e -)

({ 3 te+te te+te - te te - })))

((((e.) s (e) e (s) e.) ; the 3/4 bars: 4 total

(- e e - (e) e (q))

(- e. s - - +e e - (q))

(q (e.) s (q)))

(({ 3 (te) (te) te+te te+te } (q)) ; what we transition to

(- e. s - (q) (s) - s e -)

({ 3 te+te te } (q) q)

({ 3 - te te te - } (e) e { 3 (te) (te) te }))))

:players ’(fl cl)

:slow-fibonacci t

:activity-curve ’(0 1 100 10)

:harmonic-rthm-curve ’(0 1 100 3)

:do-sticking t

20 SC/NAMED-OBJECT 629

:do-sticking-curve ’(0 1 25 0 50 1 75 0 100 1)

:sticking-curve ’(0 0 100 10)

:sticking-repeats ’(3 5 7 11 2 7 5 3 13)

:sticking-rthms ’(e s. 32 e.)

:split-data ’(4 7))

=>

RTHM-CHAIN: 1-beat-rthms: (((E E) (S S S S) (TE TE TE) (E. S))

((TE TE TE) (TE TE TE) (TE TE TE) (TE TE TE)))

slower-rthms: ((((Q Q) ((Q) Q) ((Q) Q) ((Q) (S) E.)

(- E E - (E) E))

(({ 3 TE+TE TE+TE TE+TE }) (Q - S E. -) (Q (S) E.)

(Q (S) - S E -) ({ 3 TE+TE TE+TE - TE TE - })))

((((E.) S (E) E (S) E.) (- E E - (E) E (Q))

(- E. S - - +E E - (Q)) (Q (E.) S (Q)))

(({ 3 (TE) (TE) TE+TE TE+TE } (Q))

(- E. S - (Q) (S) - S E -) ({ 3 TE+TE TE } (Q) Q)

({ 3 - TE TE TE - } (E) E { 3 (TE) (TE) TE }))))

1-beat-fibonacci: NIL

num-beats: 23

slow-fibonacci: T

num-1-beat-rthms: 4

num-1-beat-groups: 2

sticking-curve: (0.0 0 22 10)

harmonic-rthm-curve: (0.0 1 22 3)

beat: 4

do-sticking: T

do-rests: T

do-sticking-curve: (0.0 1 5.5 0 11.0 1 16.5 0 22 1)

do-rests-curve: NIL

sticking-al: (not printed for brevity’s sake)

sticking-rthms: (E S. E S. 32 E 32 E E E. S. 32 S. E. S. 32 S. 32

E. E)

sticking-repeats: (3 5 3 5 7 3 7 3 3 11 5 7 5 11 5 7 5 7 11 3 7 3 3

11 5 7 5 11 3 7 3 7 11 5 7 5 5 11 3 11 3 2 11 2

11 2 7 2 7 2 2 5 5 3 5)

activity-curve: (0.0 1 22 10)

main-al: (not printed for brevity’s sake)

slower-al: (not printed for brevity’s sake)

num-slower-bars: 22

rcs: (not printed for brevity’s sake)

rests: (E Q Q. W)

rest-re: (not printed for brevity’s sake)

rest-cycle: ((0 3) (1 1) (0 2) (2 1) (1 1) (3 1))

num-rthm-seqs: 19

section-id: 1

20 SC/NAMED-OBJECT 630

split-data: (4 7)

RTHM-SEQ-MAP: num-players: 2

players: (FL CL)

SC-MAP: palette id: RTHM-CHAIN-RSP

[...]

SYNOPSIS:

(defun make-rthm-chain (id num-beats 1-beat-rthms slower-rthms &key

(1-beat-fibonacci nil)

(slow-fibonacci nil)

(players ’(player1 player2))

(section-id 1)

(rests ’(e q q. w))

(do-rests t)

(do-rests-curve nil)

(rest-re ’((2 3) (3 2) (2 2) (5 1) (3 3) (8 1)))

(rest-cycle ’((0 3) (1 1) (0 2) (2 1) (1 1) (3 1)))

(activity-curve ’(0 10 100 10))

(sticking-curve ’(0 2 100 2))

(harmonic-rthm-curve ’(0 2 100 2))

(do-sticking t)

(do-sticking-curve nil)

(sticking-repeats ’(3 5 3 5 8 13 21))

(sticking-rthms ’(e e e. q e s))

(split-data ’(2 5)))

20.2.312 rthm-chain/procession

[rthm-chain] [Functions]

DATE:

26-Jan-2010

DESCRIPTION:

Generate a list of a specified length consisting of items extrapolated from

a specified starting list. All elements of the resulting list will be

members of the original list.

The method generates the new list by starting with the first 3 elements of

the initial list and successively adding consecutive elements from the

initial list until all elements have been added.

ARGUMENTS:

20 SC/NAMED-OBJECT 631

- An integer that is the number of items in the list to be generated.

- A list of at least 4 starting items or an integer >=4. If an integer is

given rather than a list, the method will process a list of consecutive

numbers from 1 to the specified integer.

OPTIONAL ARGUMENTS:

keyword arguments:

- :peak. A decimal number >0.0 and <=1.0. This number indicates the target

location in the new list at which the last element is to finally occur,

whereby e.g. 0.7 = ~70% of the way through the resulting list. This is an

approximate value only. The last element may occur earlier or later

depending on the values of the other arguments. In particular, initial

lists with a low number of items are likely to result in new lists in

which the final element occurs quite early on, perhaps even nowhere near

the specified peak value. Default = 0.7.

- :expt. An exponent (floating point number) to indicate the "curve" that

determines the intervals at which each successive element of the initial

list is introduced to the new list. A higher number indicates a steeper

exponential curve. Default = 1.3.

- :orders. The patterns by which the elements are added. The method

cyclically applies these orders, the numbers 1, 2, and 3 representing the

three least used elements at each pass. These orders must therefore

contain all of the numbers 1, 2, and 3, and those numbers only.

Default = ’((1 2 1 2 3) (1 2 1 1 3) (1 2 1 3)).

RETURN VALUE:

Returns two values, the first being the new list, with a secondary value

that is a list of 2-item lists that show the distribution of each element

in the new list.

EXAMPLE:

(procession 300 30 :peak 0.1)

=>

(1 2 1 2 3 4 5 4 4 6 7 8 7 9 10 11 10 11 12 13 14 13 13 15 16 17 16 18 19 20 19

20 21 22 23 22 22 24 25 26 25 27 28 29 28 29 30 3 5 3 3 6 8 9 8 12 14 15 14

15 17 18 21 18 18 23 24 26 24 27 1 2 1 2 30 5 6 5 5 7 9 10 9 11 12 16 12 16

17 19 20 19 19 21 23 25 23 26 27 28 27 28 29 4 6 4 4 30 7 8 7 10 11 13 11 13

14 15 17 15 15 20 21 22 21 24 25 26 25 26 29 1 2 1 1 30 3 6 3 8 9 10 9 10 12

14 16 14 14 17 18 20 18 22 23 24 23 24 27 28 29 28 28 30 2 5 2 6 7 8 7 8 11

12 13 12 12 16 17 19 17 20 21 22 21 22 25 26 27 26 26 29 3 4 3 30 5 6 5 6 9

10 11 10 10 13 15 16 15 18 19 20 19 20 23 24 25 24 24 27 1 29 1 30 2 4 2 4 7

20 SC/NAMED-OBJECT 632

8 9 8 8 11 13 14 13 16 17 18 17 18 21 22 23 22 22 25 27 28 27 29 3 5 3 5 30

6 7 6 6 9 11 12 11 14 15 16 15 16 19 20 21 20 20 23 25 26 25 28 1 29 1 29 30

2 4 2 2 7 9 10 9 12 13 14 13 14 17 18), ((2 12) (20 11) (14 11) (13 11)

(9 11) (6 11) (1 11) (29 10) (25 10) (22 10) (18 10) (17 10) (16 10) (15 10)

(12 10) (11 10) (10 10) (8 10) (7 10) (5 10) (4 10) (3 10) (30 9) (28 9)

(27 9) (26 9) (24 9) (23 9) (21 9) (19 9))

(procession 300 30 :peak 0.9)

=>

(1 2 1 2 3 1 3 1 1 4 2 3 2 4 3 4 3 4 5 2 4 2 2 5 1 3 1 5 3 4 3 4 5 1 5 1 1 6 2

5 2 6 4 5 4 5 6 3 6 3 3 7 5 6 5 7 2 6 2 6 7 6 7 6 6 8 4 7 4 8 7 8 7 8 9 7 8

7 7 9 8 9 8 10 8 9 8 9 10 8 9 8 8 10 9 10 9 11 9 10 9 10 11 10 11 10 10 12

10 11 10 12 11 12 11 12 13 11 12 11 11 13 12 13 12 14 12 13 12 13 14 13 14

13 13 15 13 14 13 15 11 14 11 14 15 14 15 14 14 16 15 16 15 17 15 16 15 16

17 16 17 16 16 18 16 17 16 18 17 18 17 18 19 17 18 17 17 19 18 19 18 20 18

19 18 19 20 19 20 19 19 21 15 20 15 21 20 21 20 21 22 20 21 20 20 22 21 22

21 23 21 22 21 22 23 22 23 22 22 24 23 24 23 25 23 24 23 24 25 24 25 24 24

26 23 25 23 26 25 26 25 26 27 26 27 26 26 28 25 27 25 28 27 28 27 28 29 27

28 27 27 29 28 29 28 30 24 29 24 29 30 26 29 26 26 30 28 29 28 30 19 29 19

29 30 22 25 22 22 30 12 27 12 30 14 16 14 16 30 17), ((8 12) (22 11)

(16 11) (14 11) (12 11) (11 11) (10 11) (4 11) (3 11) (2 11) (26 10)

(19 10) (17 10) (15 10) (13 10) (9 10) (7 10) (6 10) (5 10) (1 10)

(29 9) (28 9) (27 9) (25 9) (24 9) (23 9) (21 9) (20 9) (18 9) (30 8))

SYNOPSIS:

(defun procession (num-results items

&key

;; what proportion of the way through should we aim to reach

;; the max number of items? NB This is approximate only:

;; you may find the first occurrence of the highest element

;; earlier or later depending on the values of the other

;; arguments. In particular, with a low number of items the

;; highest element will be hit very early on, perhaps

;; nowhere near the peak argument.

(peak 0.7)

;; for an exponential curve going from 3 to num <items>

(expt 1.3)

;; these are the orders we’ll use at the beginning

;; (cyclically). They will then be used when we’ve gone

;; beyond 3 items by always using the 3 least used items.

;; NB This must contain the numbers 1, 2, and 3 only but

;; there can be 1 or any number of sublists.

(orders ’((1 2 1 2 3) (1 2 1 1 3) (1 2 1 3))))

20 SC/NAMED-OBJECT 633

20.2.313 rthm-chain/procession-mirror

[rthm-chain] [Functions]

DESCRIPTION:

Perform the same operation as the procession function, but instead of just

progressing upwards, go backwards to return to the beginning also.

ARGUMENTS:

The same as for procession.

RETURN VALUE:

A list of the procession. Note that at the mirror point there is no

repetition, and we don’t include the first element at the end. Note also

that we don’t return statistics as we do with procession.

EXAMPLE:

(procession-mirror 33 ’(1 2 3 4 5 6 7))

--> (1 2 1 2 3 3 4 3 3 5 4 6 4 7 5 6 5 6 6 5 7 4 6 4 5 3 3 4 3 3 2 1 2)

SYNOPSIS:

(defun procession-mirror (&rest args)

20.2.314 rthm-chain/reset

[rthm-chain] [Methods]

DESCRIPTION:

Reset the various circular-sclist objects within the given rthm-chain

object to their initial state.

ARGUMENTS:

- A rthm-chain object.

OPTIONAL ARGUMENTS:

(- :where. This argument is ignored by the method as it is only present due

to inheritance.)

20 SC/NAMED-OBJECT 634

RETURN VALUE:

Returns T.

EXAMPLE:

;;; Print the results of applying get-next to the STICKING-RTHMS slot of the

;;; given rthm-chain object, repeat, reset, and print again to see that the

;;; get-next now begins at the beginning of the slot again.

(let ((rch

(make-rthm-chain

’test-rch 150

’((((e) e) ; 4 in total

(- s (s) (s) s -)

({ 3 (te) - te te - })

((e.) s))

(({ 3 (te) te (te) }) ; what we transition to

({ 3 - te (te) te - })

({ 3 (te) - te te - })

({ 3 (te) (te) te })))

’((((q q) ; the 2/4 bars: 5 total

((q) q)

((q) q)

((q) (s) e.)

(- e e - (e) e))

(({ 3 te+te te+te te+te }) ; what we transition to

(q - s e. -)

(q (s) e.)

(q (s) - s e -)

({ 3 te+te te+te - te te - })))

((((e.) s (e) e (s) e.) ; the 3/4 bars: 4 total

(- e e - (e) e (q))

(- e. s - - +e e - (q))

(q (e.) s (q)))

(({ 3 (te) (te) te+te te+te } (q)) ; what we transition to

(- e. s - (q) (s) - s e -)

({ 3 te+te te } (q) q)

({ 3 - te te te - } (e) e { 3 (te) (te) te })))))))

(print

(loop repeat 19

collect (data (get-next (sticking-rthms rch)))))

(print

(loop repeat 19

collect (data (get-next (sticking-rthms rch)))))

(reset rch)

20 SC/NAMED-OBJECT 635

(print

(loop repeat 19

collect (data (get-next (sticking-rthms rch))))))

=>

(E E E E E. E E. E E Q E E. E Q E. Q E. Q E)

(E E E E E E. E E. E E Q E E. E Q E. Q E. Q)

(E E E E E. E E. E E Q E E. E Q E. Q E. Q E)

SYNOPSIS:

(defmethod reset ((rc rthm-chain) &optional ignore1 ignore2)

20.2.315 rthm-chain/rthm-chain-gen

[rthm-chain] [Methods]

DESCRIPTION:

Generate a chain of rhythms using the procession function (internally).

The basic algorithm for generating a rthm-chain object of two parts is as

follows: The user provides an arbitrary number of 1-beat rthms (e.g. s s

(e)) and 2-3 beat slower-moving counterpoints. The method generates a

sequence from these using the procession function. Next the activity curve

is applied to this, and after that the insertion of rests. Then the

’sticking points’ are generated: These come after the rests, and the

activity curves applied to these count inserted rests not seqs or beats.

NB: Rests are put into the given rthm-seq object mid-sequence, so sticking

points won’t come directly after the rests, rather, at the end of the

seq.

The activity curves that turn notes into rests will be queried every beat,

so if an activity level is changed, the method won’t wait until the end of

the previous level’s ten beats.

NB: This method is not generally called by the user (though it can be of

course); rather, it’s called by the init function.

ARGUMENTS:

- A rthm-chain object.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 636

keyword arguments:

- :rests. T or NIL to indicate whether rests are to be automatically

inserted. T = automatically insert. Default = T.

- :stick. T or NIL to indicate whether to generate the sticking points. T =

generate sticking points. Default = T.

- :num-beats. NIL or an integer to indicate how many beats are to be used

for the algorithm. NB: The method will generate considerably more beats

if also generating sticking points and inserting rests; this number

merely refers to the number of standard 1-beat rhythms to be generated.

If NIL, the method will obtain the number of beats from the NUM-BEATS

slot of the rthm-chain instance. Default = NIL.

- :use-fibonacci. T or NIL to indicate whether to use the

fibonacci-transitions method when generating the sequence from the 1-beat

rhythms (in which case these will be repeated) or the procession

algorithm (in which case they’ll be alternated). T = use the

fibonacci-transitions method. Default = T.

- :section-id. An integer that is the section ID of the rthm-chain object

to be generated. This will determine the section of the rthm-seq-map into

which the references will be placed. The rthm-seq objects themselves will

also be parcelled up into an object with this ID, so ID conflicts can be

avoided if combining two or more sections generated by separate

rthm-chain objects. Default = 1.

- :wrap. An integer or NIL to determine the position within the list of

1-beat rhythms and slow rhythms from which the generated rhythm chain

will begin. NIL = begin at the beginning. Default = NIL.

- :split. T or NIL to indicate whether to split up longer generated bars

(e.g. 7/4) into smaller bars. If this is a two-element list it represents

the min/max number of beats in a bar (where a 6/8 bar is two compound

beats). Default = ’(2 5).

RETURN VALUE:

the number of rthm-seqs we’ve generated

SYNOPSIS:

(defmethod rthm-chain-gen ((rc rthm-chain)

&key

(use-fibonacci t)

(rests t)

(stick t)

(section-id 1)

num-beats

wrap)

20 SC/NAMED-OBJECT 637

20.2.316 rthm-chain/split

[rthm-chain] [Methods]

DATE:

29-Jan-2011

DESCRIPTION:

Split the longer generated bars into smaller ones where possible.

ARGUMENTS:

- A rthm-chain object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :min-beats. An integer that is the minimum number of beats in the

resulting bars. This is a target-length only, and may not be adhered to

strictly if durations do not allow. Default = 2.

- :max-beats. An integer that is the maximum number of beats in the

resulting bars. This is a target-length only, and may not be adhered to

strictly if durations do not allow. Default = 5.

- :warn. T or NIL to indicate whether to print a warning to the listener if

the current bar cannot be split. T = print. Default = NIL.

- :clone. T or NIL to indicate whether the rthm-seq of the given rthm-chain

object should be changed in place or changes should be made to a copy of

that object. T = create a copy to be changed. Default = T.

RETURN VALUE:

Returns T.

EXAMPLE:

;;; Make a rthm-chain object using make-rthm-chain with the :split-data

;;; argument set to NIL and print the number of bars in each resulting rthm-seq

;;; object. Apply the split method and print the number of bars again to see

;;; the change.

(let* ((rch

(make-rthm-chain

’test-rch 150

20 SC/NAMED-OBJECT 638

’((((e) e) ; 4 in total

(- s (s) (s) s -)

({ 3 (te) - te te - })

((e.) s))

(({ 3 (te) te (te) }) ; what we transition to

({ 3 - te (te) te - })

({ 3 (te) - te te - })

({ 3 (te) (te) te })))

’((((q q) ; the 2/4 bars: 5 total

((q) q)

((q) q)

((q) (s) e.)

(- e e - (e) e))

(({ 3 te+te te+te te+te }) ; what we transition to

(q - s e. -)

(q (s) e.)

(q (s) - s e -)

({ 3 te+te te+te - te te - })))

((((e.) s (e) e (s) e.) ; the 3/4 bars: 4 total

(- e e - (e) e (q))

(- e. s - - +e e - (q))

(q (e.) s (q)))

(({ 3 (te) (te) te+te te+te } (q)) ; what we transition to

(- e. s - (q) (s) - s e -)

({ 3 te+te te } (q) q)

({ 3 - te te te - } (e) e { 3 (te) (te) te }))))

:split-data nil)))

(print

(loop for rs in (data (get-data-data 1 (palette rch)))

collect (num-bars rs)))

(split rch :min-beats 1 :max-beats 3 :clone nil)

(print

(loop for rs in (data (get-data-data 1 (palette rch)))

collect (num-bars rs))))

=>

(1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 1 1 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2

2 2)

(1 1 4 4 2 7 4 4 3 3 4 4 2 9 7 7 2 5 5 5 2 6 1 1 2 13 3 3 4 4 5 5 2 7 5 5

7 7 9 9 2 7 2 9 3 3 2 9 1 1 5 5 9 9 3 3 2 7 5 5 4 4 2 11 1 1 2 10 2 9 2 6

7 7 7 7)

SYNOPSIS:

(defmethod split ((rc rthm-chain) &key

20 SC/NAMED-OBJECT 639

(min-beats 2) (max-beats 5) warn (clone t))

20.2.317 rthm-seq-map/set-map-refs

[rthm-seq-map] [Methods]

DATE:

30-Dec-2010

DESCRIPTION:

Change the reference IDs of the specified rthm-seq objects in the given

rthm-seq-map object.

ARGUMENTS:

- A rthm-seq-map object.

- The ID of the section in which references are to be set.

- The ID of the player for whom the references are to be set.

- A list of the new rthm-seq IDs (references)

RETURN VALUE:

Returns the modified named object whose ID is the specified player.

EXAMPLE:

(let ((rsmt (make-rthm-seq-map

’rsm-test-5

’((sec1 ((vn (rs1 rs3 rs2))

(va (rs2 rs3 rs1))

(vc (rs3 rs1 rs2))))

(sec2 ((vn (rs1 rs2 rs1))

(va (rs2 rs1 rs3))

(vc (rs1 rs3 rs3))))

(sec3 ((vn (rs1 rs1 rs3))

(va (rs1 rs3 rs2))

(vc (rs3 rs2 rs3)))))

:palette (make-rsp

’rs-pal

’((rs1 ((((2 4) q e s s))))

(rs2 ((((2 4) e s s q))))

(rs3 ((((2 4) s s q e)))))))))

(set-map-refs rsmt ’sec2 ’vc ’(rs2 rs3 rs2)))

20 SC/NAMED-OBJECT 640

=>

NAMED-OBJECT: id: VC, tag: NIL,

data: (RS2 RS3 RS2)

SYNOPSIS:

(defmethod set-map-refs ((rsm rthm-seq-map) section player new-refs)

20.2.318 sc-map/set-map

[sc-map] [Classes]

NAME:

set-map

File: set-map.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->

sc-map -> set-map

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the set-map class for mapping sets for

a piece.

Author: Michael Edwards: m@michael-edwards.org

Creation date: March 11th 2010

$$ Last modified: 20:10:09 Fri Mar 19 2010 GMT

SVN ID: $Id: set-map.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.319 set-map/gen-midi-chord-seq

[set-map] [Methods]

DESCRIPTION:

Write a midi file with each set in the set-map played as a chord at 1

second intervals.

20 SC/NAMED-OBJECT 641

ARGUMENTS:

- A set-map object.

- The path+file-name for the midi file to be written.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((c3 e3 g3 a3 c4 d4 g4 a4 b4 e5))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4)))))

:rthm-seq-map ’((1 ((vn (1 1 1))))))))

(gen-midi-chord-seq (set-map mini) "/tmp/mchsq.mid"))

=> T

SYNOPSIS:

(defmethod gen-midi-chord-seq ((sm set-map) midi-file)

20.2.320 recursive-assoc-list/set-data

[recursive-assoc-list] [Methods]

DESCRIPTION:

Replace the named-object associated with a specified key within a given

recursive-assoc-list object. This method replaces the whole named-object,

not just the data of that object.

ARGUMENTS:

- A key present within the given recursive-assoc-list object. This must be

a list that is the FULL-REF (path of keys) if replacing a nested

named-object. If replacing a named-object at the top level, the

key can be given either as a single-item list or an individual symbol.

- A key/data pair as a list.

- The recursive-assoc-list object in which to find and replace the

named-object associated with the specified key.

20 SC/NAMED-OBJECT 642

RETURN VALUE:

Returns the new named-object.

Returns NIL when the specified key is not found within the given

recursive-assoc-list object.

EXAMPLE:

;;; Replace a named-object at the top level using a single symbol

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(set-data ’wild ’(makers mark) ral))

=>

NAMED-OBJECT: id: MAKERS, tag: NIL,

data: MARK

;; The same can be done stating the top-level key as a single-item list. Apply

;; the get-all-refs method in this example to see the change

(let ((ral (make-ral ’mixed-bag

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(set-data ’(wild) ’(makers mark) ral)

(get-all-refs ral))

=> ((JIM) (MAKERS) (FOUR ROSES) (FOUR VIOLETS BLUE) (FOUR VIOLETS RED DRAGON)

(FOUR VIOLETS RED VIPER) (FOUR VIOLETS RED FOX) (FOUR VIOLETS WHITE))

;; Replace a nested named-object using a list that is the FULL-REF to that

;; object. Print the application of the method as well as the results from

;; applying the get-all-refs method in this example to see the effects

(let ((ral (make-ral ’mixed-bag

20 SC/NAMED-OBJECT 643

’((jim beam)

(wild turkey)

(four ((roses red)

(violets ((blue velvet)

(red ((dragon den)

(viper nest)

(fox hole)))

(white ribbon)))))))))

(print (set-data ’(four violets red fox) ’(bee hive) ral))

(print (get-all-refs ral)))

=>

NAMED-OBJECT: id: BEE, tag: NIL,

data: HIVE

((JIM) (WILD) (FOUR ROSES) (FOUR VIOLETS BLUE) (FOUR VIOLETS RED DRAGON)

(FOUR VIOLETS RED VIPER) (FOUR VIOLETS RED BEE) (FOUR VIOLETS WHITE))

SYNOPSIS:

(defmethod set-data (key new-value (ral recursive-assoc-list))

20.2.321 assoc-list/replace-data

[assoc-list] [Methods]

DESCRIPTION:

A convenience method that’s essentially the same as set-data but without

having to pass the new ID in a list along with the new value.

ARGUMENTS:

- The key (number, symbol, string) to the existing data.

- The new value to be associated with this key (any data).

- The assoc-list object

RETURN VALUE:

The named-object for the datum.

SYNOPSIS:

(defmethod replace-data (key new-value (al assoc-list))

20 SC/NAMED-OBJECT 644

20.2.322 assoc-list/set-data

[assoc-list] [Methods]

DESCRIPTION:

Replace the named-object associated with a specified key within a given

assoc-list object. This method replaces the whole named-object, not just

the data of that object.

ARGUMENTS:

- A key present within the given assoc-list object.

- A key/data pair as a list.

- The assoc-list object in which to find and replace the named-object

associated with the specified key.

RETURN VALUE:

Returns the new named-object.

Returns NIL when the given key is not present within the given assoc-list.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((cat felix)

(dog fido)

(cow bessie)))))

(set-data ’dog ’(dog spot) al))

=>

NAMED-OBJECT: id: DOG, tag: NIL,

data: SPOT

(let ((al (make-assoc-list ’test ’((cat felix)

(dog fido)

(cow bessie)))))

(set-data ’pig ’(pig wilbur) al))

=> NIL

WARNING:

assoc-list::set-data: Could not find data with key PIG in assoc-list with id

TEST

(let ((al (make-assoc-list ’test ’((cat felix)

(dog fido)

20 SC/NAMED-OBJECT 645

(cow bessie)))))

(set-data ’dog ’(pig wilbur) al))

=>

NAMED-OBJECT: id: PIG, tag: NIL,

data: WILBUR

SYNOPSIS:

(defmethod set-data (key new-value (al assoc-list))

20.2.323 assoc-list/set-nth-of-data

[assoc-list] [Methods]

DESCRIPTION:

Replace a given member of a given data list within a given assoc-list.

ARGUMENTS:

- The key (named-object id) associated with the data to be changed.

- The zero-based integer index of the member of the list to be changed.

- The new value.

- The assoc-list in which the change is to be made.

The data to be modified must already be in the form of a list.

The index integer given must be less than the length of the data list to be

modified.

RETURN VALUE:

Returns the new value only.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((cat felix)

(dog (fido spot rover))

(cow bessie)))))

(set-nth-of-data ’dog 0 ’snoopy al))

=> SNOOPY

(let ((al (make-assoc-list ’test ’((cat felix)

20 SC/NAMED-OBJECT 646

(dog (fido spot rover))

(cow bessie)))))

(set-nth-of-data ’dog 0 ’snoopy al)

(get-data ’dog al))

=>

NAMED-OBJECT: id: DOG, tag: NIL,

data: (SNOOPY SPOT ROVER)

SYNOPSIS:

(defmethod set-nth-of-data (key nth new-value (al assoc-list))

20.2.324 circular-sclist/at-start

[circular-sclist] [Methods]

DESCRIPTION:

Determines whether the pointer for the given circular-sclist object is at

the head of its list.

ARGUMENTS:

- A circular-sclist object.

RETURN VALUE: EXAMPLE:

;; At creation the pointer is located at the start of the list

(let ((cscl (make-cscl ’(0 1 2 3 4))))

(at-start cscl))

=> T

;; Retrieve a number of the items using get-next, then determine whether the

;; pointer is located at the start of the list

(let ((cscl (make-cscl ’(0 1 2 3 4))))

(loop repeat 7 do (get-next cscl))

(at-start cscl))

=> NIL

SYNOPSIS:

(defmethod at-start ((cscl circular-sclist))

20 SC/NAMED-OBJECT 647

20.2.325 circular-sclist/cycle-repeats

[circular-sclist] [Classes]

NAME:

rthm-chain

File: cycle-repeats.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> cycle-repeats

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: class used in rthm-chain

Author: Michael Edwards: m@michael-edwards.org

Creation date: 4th February 2010

$$ Last modified: 12:51:09 Sat Apr 28 2012 BST

SVN ID: $Id: cycle-repeats.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.326 circular-sclist/get-last

[circular-sclist] [Methods]

DESCRIPTION:

Return the the most recent item retrieved in a circular-sclist object.

ARGUMENTS:

- A circular-sclist object.

RETURN VALUE:

An item from the given circular-sclist object.

EXAMPLE:

20 SC/NAMED-OBJECT 648

;; Retrieves the final item in the list at creation

(let ((cscl (make-cscl ’(0 1 2 3 4))))

(get-last cscl))

=> 4

;; Get and print a number of items from the list using get-next, then return

;; the most recent item retrieved using get-last

(let ((cscl (make-cscl ’(0 1 2 3 4))))

(loop repeat 7 do (print (get-next cscl)))

(get-last cscl))

=> 1

SYNOPSIS:

(defmethod get-last ((cscl circular-sclist))

20.2.327 circular-sclist/get-next

[circular-sclist] [Methods]

DESCRIPTION:

Get the next item in a given circular-sclist object. The class

automatically keeps track of the last item retrieved. If the final item of

the given circular-sclist object was the last item retrieved, the method

begins again at the beginning of the list.

ARGUMENTS:

- A circular-sclist object.

RETURN VALUE:

An item from the given circular-sclist object.

EXAMPLE:

;; Repeatedly calling get-next retrieves each subsequent item from the

;; given circular-sclist object. When the list has been exhausted, retrieval

;; begins again from the head of the list.

(let ((cscl (make-cscl ’(0 1 2 3 4))))

(loop repeat 10

do (print (get-next cscl))))

20 SC/NAMED-OBJECT 649

=>

0

1

2

3

4

0

1

2

3

4

SYNOPSIS:

(defmethod get-next ((cscl circular-sclist))

20.2.328 circular-sclist/make-cscl

[circular-sclist] [Functions]

DESCRIPTION:

Create a circular-sclist object from a specified list of items. The items

themselves may also be lists.

ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

keyword arguments:

- :id. A symbol that will be used as the ID for the created circular-sclist

object. Default = NIL.

- :bounds-alert. T or NIL to indicate whether or not to print a warning if

when an attempt is made to access the object using an out-of-bounds index

number (i.e., not enough elements in the list). T = print a

warning. Default = T.

- :copy. T or NIL to indicate whether the given data list should be copied

(any slippery-chicken class instances will be cloned), with subsequent

modifications being applied to the copy. T = copy. Default = T.

RETURN VALUE:

20 SC/NAMED-OBJECT 650

A circular-sclist object.

EXAMPLE:

;; Returns a circular-sclist object with ID of NIL, bounds-alert=T and copy=T

;; by default

(make-cscl ’(1 2 3 4))

=>

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 4, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (1 2 3 4)

;; Can be created using nested lists

(let ((cscl (make-cscl ’((1 (4 5 6))

(2 (7 8 9))

(3 (10 11 12))))))

(data cscl))

=> ((1 (4 5 6)) (2 (7 8 9)) (3 (10 11 12)))

;; Setting the ID

(make-cscl ’(1 2 3 4) :id ’test-cscl)

=>

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 4, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: TEST-CSCL, tag: NIL,

data: (1 2 3 4)

;; By default, attempts to access the object with an out-of-bounds index result

;; in a warning being printed

(let ((cscl (make-cscl ’(1 2 3 4))))

(get-nth 11 cscl))

=>

NIL

WARNING: sclist::sclist-check-bounds: Illegal list reference: 11

(length = 4) (sclist id = NIL)

;; This can be suppressed by creating the object with :bounds-alert set to NIL

(let ((cscl (make-cscl ’(1 2 3 4) :bounds-alert nil)))

(get-nth 11 cscl))

20 SC/NAMED-OBJECT 651

=> NIL

SYNOPSIS:

(defun make-cscl (list &key (id nil) (bounds-alert t) (copy t))

20.2.329 circular-sclist/popcorn

[circular-sclist] [Classes]

NAME:

assoc-list

File: popcorn.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> popcorn

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Inspired by popping popcorn, generate a series of values

ranging between > 0.0 and <= 1.0 by (optionally fixed)

random selection. Given 1 or more starting values (not

zero) we generate tendentially increasing new values

until we reach 1.0. This is not a linear process,

rather, we get spike values that increase the average

value and thus increase the chance of further spikes.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 3rd February 2011 (Ko Lanta, Thailand)

$$ Last modified: 17:33:40 Thu Dec 26 2013 WIT

SVN ID: $Id: popcorn.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.330 popcorn/fit-to-length

[popcorn] [Methods]

DESCRIPTION:

20 SC/NAMED-OBJECT 652

Change the length of the list of kernels contained in a given popcorn

object by adding or removing items at regular intervals. If adding items,

linear interpolation will be used.

NB: The new length must be between 1 and 1 less than double the original

length.

ARGUMENTS:

- A popcorn object.

- An integer that is the new length of the list of the KERNELS slot of the

given popcorn object.

RETURN VALUE:

Returns the integer that is the new length of the KERNELS slot.

EXAMPLE:

(let ((ppcn (make-popcorn ’(0.01 0.02) :min-spike 3.0 :max-spike 5.0)))

(fit-to-length ppcn 100))

=> 100

SYNOPSIS:

(defmethod fit-to-length ((pc popcorn) length)

20.2.331 popcorn/get-kernel

[popcorn] [Methods]

DESCRIPTION:

Generate the next value for the KERNELS slot of a given popcorn object and

change the internal state, with the help of the get-kernel-aux method.

This method is called automatically from within the heat method.

ARGUMENTS:

- A popcorn object.

RETURN VALUE:

20 SC/NAMED-OBJECT 653

The next value for the given popcorn object’s KERNEL slot.

Returns NIL when the kernel value is > 1.0.

SYNOPSIS:

(defmethod get-kernel ((pc popcorn))

20.2.332 popcorn/heat

[popcorn] [Methods]

DESCRIPTION:

Generate a series of values for the KERNELS slot of a popcorn object,

ranging between >0.0 and <= 1.0, by (optionally fixed) random selection.

If calling heat explicitly on a previously heated object, all kernels and

associated data will be deleted before being regenerated.

Taking the one or more starting values of the popcorn object, the method

generates tendentially increasing new values until it reaches 1.0. This is

not a linear process; rather, the method produces spike values based on the

min-spike and max-spike values of the given popcorn object that increase

the average value and thus increase the chance of further spikes.

NB: This method is called within the initialize-instance for the popcorn

object, and as such is not necessarily needed to be accessed directly

by the user.

ARGUMENTS:

- An popcorn object.

RETURN VALUE:

Returns the popcorn object with a newly generated list of ’kernel’ values.

EXAMPLE:

(let ((ppcn (make-popcorn ’(0.01 0.02) :min-spike 3.0 :max-spike 5.0)))

(print ppcn)

(setf (min-spike ppcn) 4.0)

(heat ppcn))

=>

POPCORN: kernels: (0.01 0.02 0.016648924 0.018915312 0.016573396

0.017766343 0.018711153 0.017729789 0.017080924

20 SC/NAMED-OBJECT 654

0.018266398 0.018132625 0.019022772 0.017662765

[...]

POPCORN: kernels: (0.01 0.02 0.015828498 0.015408514 0.015781755 0.01670348

0.019892192 0.017849509 0.016623463 0.019682804 0.017869182

0.019521425 0.017451862 0.017689057 0.01758664 0.01863435

[...]

SYNOPSIS:

(defmethod heat ((pc popcorn))

20.2.333 popcorn/make-popcorn

[popcorn] [Functions]

DESCRIPTION:

Make a popcorn object. This method uses the heat method internally to

generate a series of decimal values (’kernels’), ranging between >0.0 and

<= 1.0, by (optionally fixed) random selection.

Taking the one or more starting values, the method generates tendentially

increasing new values until it reaches 1.0. This is not a linear process;

rather, the method produces spike values based on the min-spike and

max-spike values specified, which increase the average value of the kernels

generated so far and thus increase the chance of further spikes.

ARGUMENTS:

- A list of at least two decimal numbers from which the ’kernel’ values

will be generated. These values must be >0.0 and <1.0.

OPTIONAL ARGUMENTS:

keyword arguments:

- :id. An optional ID for the popcorn object to be created. Default = NIL.

- :fixed-random. T or NIL to indicate whether the ’kernel’ values generated

by the subsequent heat method are to be based on a fixed random seed.

T = fixed random. Default = T.

- :max-spike. A decimal number that is the highest possible ’spike’ value

that the heat method may produce when generating the ’kernel’

values. This is a sudden high value that will itself not be present in

the final data, but will go towards skewing the mean, thus increasing the

kernel values more rapidly and increasing the chance of more spikes

occurring. Default = 4.0.

20 SC/NAMED-OBJECT 655

- :min-spike. A decimal number that is the lowest possible ’spike’ value

that the heat method may produce when generating the ’kernel’

values. This is a sudden high value that will itself not be present in

the final data, but will go towards skewing the mean, thus increasing the

kernel values more rapidly and increasing the chance of more spikes

occurring. Default = 2.0.

RETURN VALUE:

- A popcorn object.

EXAMPLE:

(make-popcorn ’(0.02 0.03) :max-spike 4.2 :min-spike 3.7)

=>

POPCORN: kernels: (0.02 0.03 0.025828497 0.02540851 0.02578175 0.026703479

0.029892191 0.027849507 0.026623461 0.029682804 0.02786918

0.029521424 0.02745186 0.027689056 0.02758664 0.028634349

0.028176062 0.028434621 0.028410202 0.02834666 0.027676953

0.027972711 0.027877634 0.028453272 0.027664827 0.029336458

0.028315568 0.029327389 0.10877271 0.032779325 0.095442966

0.10383448 0.03631042 0.054371007 0.0775562 0.057371408

0.05496178 0.10499479 0.048501145 0.09311144 0.07531821

0.08538791 0.05866453 0.06692247 0.052130517 0.09605096

0.102914646 0.061326876 0.09510137 0.0927515 0.08405721

0.09921508 0.1054862 0.09474778 0.07701611 0.069283865

0.082345024 0.090727165 0.081423506 0.0918279 0.06942183

0.09431985 0.0790893 0.07795428 0.061114937 0.21615848

0.17666964 0.09314137 0.11025161 0.1909036 0.23906681

0.17467138 0.22562174 0.1757016 0.16630511 0.23570478

0.18461326 0.2358803 0.14396386 0.121555254 0.082086496

0.094552115 0.08456006 0.10379071 0.113467366 0.12590313

0.2211197 0.2096048 0.19645368 0.17204309 0.18469864

0.14422922 0.20209482 0.11207011 0.1176545 0.22522071

0.23593009 0.13767788 0.1589861 0.23501754 0.14337942

0.14403008 0.3852736 0.19077776 0.15493082 0.15311162

0.31107113 0.10612649 0.36018372 0.31991273 0.17881061

0.2653634 0.26506728 0.31478146 0.31331018 0.33569553

0.3001081 0.1574295 0.4698523 0.12513468 0.2010088

0.17438973 0.24960503 0.27139995 0.31985858 0.14607468

0.34586 0.52092844 0.5461051 0.33965456 0.24476483

0.45786726 0.23932996 0.18096672 0.5287333 0.45701692

0.58791053 0.5219719 0.39459002 0.56624746 0.37368405

0.21688993 0.3374743 0.6648663 0.44353223 0.16596928

0.3590309 0.17943183 0.673855 0.6455428 0.21892962

20 SC/NAMED-OBJECT 656

0.31195784 0.37920266 0.73120433 0.713979 0.5987564

0.29621923 0.5414667 0.64287895 0.56254905 0.514681

0.3153673 0.52838445 0.71745664 0.8074915 0.47637874

0.409207 0.49155992 0.777411 0.6339724 0.3673042 0.5411029

0.6993387 0.3566729 0.49429625 0.89963627 0.36773333

0.575006 0.74177176 0.53539884 0.4392826 0.45671058

0.2824728 0.60876155 0.2798523 0.47930354)

total: 44.67911, numk: 186, mink: 0.02, maxk: 0.89963627

min-spike: 3.7, max-spike: 4.2, fixed-random: T, mean: 0.24021028

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (0.02 0.03)

SYNOPSIS:

(defun make-popcorn (starting-values &key (id nil) (fixed-random t)

(max-spike 4.0) (min-spike 2.0))

20.2.334 popcorn/plot

[popcorn] [Methods]

DESCRIPTION:

Create text and data files suitable for plotting with gnuplot. The file

name should be given without extension, as the method will create a .txt

and a .data file, for the command and data files respectively.

The user must then call gnuplot in a terminal, in a manner such as "gnuplot

popcorn.txt; open popcorn.ps".

The method will create files that draw data points connected by lines by

default.

ARGUMENTS:

- A popcorn object.

- A string that is the directory path and base file name (without

extension) of the files to create.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to connect points by lines. T = draw

lines. Default = T.

20 SC/NAMED-OBJECT 657

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((ppcn (make-popcorn ’(0.01 0.02) :min-spike 3.0 :max-spike 5.0)))

(fit-to-length ppcn 100)

(plot ppcn "/tmp/ppcn"))

then in a terminal:

gnuplot ppcn.txt

this will create the postscript file ppcn.ps

SYNOPSIS:

(defmethod plot ((pc popcorn) file &optional (lines t))

20.2.335 popcorn/scale

[popcorn] [Methods]

DESCRIPTION:

Scale the list of number values in the KERNEL slot of a given popcorn

object to a new range using specified maximum value and optional minimum

value.

NB: This method does not change the internal state of the given popcorn

object except for the KERNELS slot.

ARGUMENTS:

- A popcorn object.

- A number that is the new maximum value for the scaled list.

OPTIONAL ARGUMENTS:

- A number that is the new minimum value for the scaled list.

RETURN VALUE:

The new contents of the given popcorn object’s KERNELS slot after scaling.

20 SC/NAMED-OBJECT 658

EXAMPLE:

;; Specifying a new maximum value only

(let ((ppcn (make-popcorn ’(0.01 0.02) :min-spike 3.0 :max-spike 5.0)))

(scale ppcn 10.0))

=> (0.0 0.10578585 0.061657257 0.057214428 0.061162785 0.070913345 0.10464539

0.08303669 0.07006687 0.102430366 0.08324481 0.1007232 0.07883015

0.08133934 0.0802559 0.09133919 0.08649117 0.08922634 0.08896804 0.08829583

0.081211284 0.084339984 0.08333421 0.089423634 0.08108301 0.09876652

0.08796693 0.09867058 0.6236897 0.1155461 0.5345579 0.59066933 0.13915743

0.2599228 0.4149548 0.27998555 0.2638731 0.59842795 0.22067288 0.51896775

0.39999005 0.467323 0.28863218 0.3438505 0.24494135 0.5386234 0.58451873

0.30643454 0.53227377 0.516561 0.458425 0.55978096 0.60171384 0.52990943

0.41134343 0.35964036 0.44697618 0.5030249 0.4408143 0.51038516 0.36056283

0.527048 0.42520615 0.41761667 0.30501738 1.2049319 0.9747751 0.48793882

0.5876642 1.0577364 0.3861802 0.8744062 1.1359217 0.87969404 0.8314643

1.1876756 0.92543525 1.1885763 0.7167921 0.60177433 0.39919102 0.46317393

0.4118872 0.5105933 0.56026125 0.62409085 1.112814 1.0537107 0.98620933

0.86091584 0.92587364 0.71815413 1.0151639 0.5530894 0.5817527 1.1338633

1.1888319 0.68452775 0.79389757 1.1841481 0.7137923 0.717132 2.3223429

1.0770427 0.8475252 0.83587736 1.847246 0.53504527 2.1616995 1.9038564

1.0004206 1.5545927 1.552697 1.8710022 1.861582 2.004909 1.7770531

0.86352354 1.5642304 0.63962364 1.0099988 0.8800593 1.2472185 1.353609

1.5901572 0.7418409 1.7170814 3.3055406 3.700319 2.1952631 1.5035022

3.057052 1.4638814 1.0384043 1.1837897 3.0469408 2.803617 3.2614107

2.4135168 3.556123 2.27436 1.2306889 2.0333362 4.5721135 2.941492 0.8966192

2.3189502 0.9958008 4.344239 4.3671365 1.2785082 1.952021 2.438866

4.3924103 4.46023 3.7118216 1.746746 3.3397071 3.9984121 3.4766433 3.165725

1.8711188 3.2547336 4.482818 3.3188024 2.6877654 2.3054938 2.7741609

3.796511 3.5835814 2.064381 3.0545063 3.9559705 2.0038147 2.7878509

3.4762452 1.9495757 2.9715302 3.7937658 2.7762475 2.3023481 2.3882763

1.5292001 3.1379611 1.5162798 2.4996707 4.362247 3.1643825 2.902113

1.5552855 3.569274 3.6554635 3.8193665 3.2386634 5.418084 1.488541

4.5816646 4.1958213 2.411787 2.6187074 3.1729605 2.959683 2.3334894

5.325289 3.2408857 4.67207 3.0460484 6.0358443 6.879726 3.3280933 5.5901675

1.8741251 3.5842674 4.855096 6.005389 1.7205821 3.8116035 3.439082 5.024595

2.205073 4.140361 1.8645307 2.511795 5.744685 2.0451677 2.311025 6.787981

6.533982 3.840785 2.2128632 6.444055 2.7525501 8.19589 7.3742037 2.5753407

8.9812355 3.0030684 5.501138 6.7223954 4.8878922 3.2250557 2.3134975

8.762646 3.072827 7.0158014 7.426256 5.388799 10.0 7.367759 7.078608

8.373905 9.210589 7.072851 2.7709346 7.233898)

;; Using both a new maximum and new minimum value

(let ((ppcn (make-popcorn ’(0.01 0.02) :min-spike 3.0 :max-spike 5.0)))

20 SC/NAMED-OBJECT 659

(scale ppcn 8.0 5.0))

=> (5.0 5.031736 5.018497 5.017164 5.0183487 5.021274 5.0313935 5.024911

5.02102 5.0307293 5.0249734 5.030217 5.023649 5.0244017 5.024077 5.027402

5.0259476 5.0267677 5.0266905 5.026489 5.0243635 5.025302 5.025 5.026827

5.024325 5.02963 5.02639 5.029601 5.187107 5.0346637 5.1603675 5.177201

5.041747 5.0779767 5.1244864 5.083996 5.079162 5.179528 5.0662017 5.15569

5.119997 5.140197 5.08659 5.103155 5.0734825 5.161587 5.1753554 5.0919304

5.1596823 5.1549683 5.1375275 5.1679344 5.1805143 5.1589727 5.123403

5.107892 5.134093 5.1509075 5.132244 5.1531157 5.108169 5.1581144 5.127562

5.125285 5.091505 5.3614798 5.292433 5.146382 5.176299 5.317321 5.1158543

5.262322 5.3407764 5.2639084 5.2494392 5.3563027 5.277631 5.356573 5.215038

5.1805325 5.119757 5.1389523 5.123566 5.153178 5.1680784 5.1872272 5.333844

5.3161135 5.2958627 5.2582746 5.277762 5.2154465 5.304549 5.165927

5.1745257 5.340159 5.3566494 5.2053585 5.238169 5.3552446 5.2141376

5.2151394 5.696703 5.323113 5.2542577 5.2507634 5.554174 5.1605134 5.64851

5.571157 5.300126 5.4663777 5.465809 5.5613008 5.5584745 5.601473 5.533116

5.259057 5.4692693 5.191887 5.3029995 5.2640176 5.3741655 5.4060826

5.477047 5.2225523 5.5151243 5.991662 6.110096 5.658579 5.4510508 5.9171157

5.4391646 5.3115215 5.355137 5.9140825 5.8410854 5.978423 5.7240553

6.066837 5.682308 5.369207 5.610001 6.3716345 5.8824477 5.2689857 5.6956854

5.2987404 6.303272 6.310141 5.3835526 5.5856066 5.73166 6.3177233 6.338069

6.1135464 5.524024 6.001912 6.199524 6.042993 5.9497175 5.5613356 5.9764204

6.3448453 5.9956408 5.8063297 5.691648 5.832248 6.138953 6.075074 5.619314

5.916352 6.1867914 5.6011443 5.836355 6.0428734 5.5848727 5.891459

6.1381297 5.8328743 5.6907043 5.716483 5.4587603 5.9413886 5.454884

5.7499013 6.3086743 5.9493146 5.870634 5.4665856 6.070782 6.096639 6.14581

5.971599 6.6254253 5.4465623 6.3744993 6.258746 5.723536 5.785612 5.951888

5.887905 5.700047 6.5975866 5.9722657 6.401621 5.9138145 6.8107533 7.063918

5.998428 6.6770506 5.5622377 6.07528 6.4565287 6.8016167 5.516175 6.1434813

6.0317245 6.5073786 5.661522 6.2421083 5.559359 5.7535386 6.723406 5.61355

5.6933074 7.0363946 6.9601946 6.1522355 5.663859 6.9332166 5.825765

7.4587674 7.212261 5.772602 7.694371 5.9009204 6.6503415 7.016719 6.4663677

5.967517 5.6940494 7.6287937 5.9218483 7.1047406 7.227877 6.61664 8.0

7.210328 7.123583 7.5121717 7.763177 7.1218557 5.8312807 7.17017)

SYNOPSIS:

(defmethod scale ((pc popcorn) max &optional (min 0.0) ignore1 ignore2)

20.2.336 circular-sclist/recurring-event

[circular-sclist] [Classes]

NAME:

20 SC/NAMED-OBJECT 660

rthm-chain

File: recurring-event.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> recurring-event

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: class used in rthm-chain

This class allows for the periodic/cyclic return of given

data. It is intended for situations where you want to

do/collect something every several events, but the cycle

period changes. E.g. (the data slot is) something like

’((2 3) (3 2) (5 3) (8 2)) which means every two events

three times, then every 3 events twice, every 5 events

thrice etc.

If you want to return specific data on these cycle

points, provide it in the return-data slot, with the

indices into this data in the return-data-cycle slot.

simple example, without return-data

(let* ((re (make-re ’((2 3) (3 2) (5 3) (8 2))

:return-data nil

:return-data-cycle nil)))

(loop repeat 100 collect (on-it re)))

=> (NIL NIL T NIL T NIL T NIL NIL T NIL NIL T NIL NIL NIL

NIL T NIL NIL NIL NIL T NIL NIL NIL NIL T NIL NIL NIL

NIL NIL NIL NIL T NIL NIL NIL NIL NIL NIL NIL T NIL T

NIL T NIL T NIL NIL T NIL NIL T NIL NIL NIL NIL T NIL

NIL NIL NIL T NIL NIL NIL NIL T NIL NIL NIL NIL NIL

NIL NIL T NIL NIL NIL NIL NIL NIL NIL T NIL T NIL T

NIL T NIL NIL T NIL NIL T NIL)

(let* ((re (make-re ’((2 3) (3 2) (5 3) (8 2))

;; the data about to be collected

:return-data ’(a b c d)

;; the indices into the data; this

;; means we’ll return A (nth 0)

;; thrice, D (nth 3) twice, C once,

;; and B 5x

:return-data-cycle

20 SC/NAMED-OBJECT 661

’((0 3) (3 2) (2 1) (1 5)))))

(loop repeat 100 collect (get-it re)))

=> (NIL NIL A NIL A NIL A NIL NIL D NIL NIL D NIL NIL NIL

NIL C NIL NIL NIL NIL B NIL NIL NIL NIL B NIL NIL NIL

NIL NIL NIL NIL B NIL NIL NIL NIL NIL NIL NIL B NIL B

NIL A NIL A NIL NIL A NIL NIL D NIL NIL NIL NIL D NIL

NIL NIL NIL C NIL NIL NIL NIL B NIL NIL NIL NIL NIL

NIL NIL B NIL NIL NIL NIL NIL NIL NIL B NIL B NIL B

NIL A NIL NIL A NIL NIL A NIL)

Author: Michael Edwards: m@michael-edwards.org

Creation date: 4th February 2010

$$ Last modified: 11:19:54 Mon Dec 17 2012 ICT

SVN ID: $Id: recurring-event.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.337 recurring-event/get-it

[recurring-event] [Methods]

DESCRIPTION:

Get the next element from the return-data. This method is most effective

when called repeatedly (e.g. within a loop) when the return-data and

return-data-cycle slots have been set. In those cases the return-data-cycle

element will be used as look-up into return-data. If no return-data has

been specified, then the element itself will be returned.

ARGUMENTS:

- A recurring-event object.

RETURN VALUE:

Data from the return-data slot (or the return-data-cycle element) when

we’re on a boundary, otherwise NIL.

EXAMPLE:

;;; Used together with return-data

(let ((re (make-re ’((2 3) (3 2) (5 3) (8 2))

:return-data ’(a b c d)

20 SC/NAMED-OBJECT 662

:return-data-cycle ’((0 3) (3 2) (2 1) (1 5)))))

(loop repeat 50 collect (get-it re)))

=> (NIL NIL A NIL A NIL A NIL NIL D NIL NIL D NIL NIL NIL NIL C NIL NIL NIL NIL

B NIL NIL NIL NIL B NIL NIL NIL NIL NIL NIL NIL B NIL NIL NIL NIL NIL NIL

NIL B NIL B NIL A NIL A)

;;; Used without return-data

(let ((re (make-re ’((2 3) (3 2) (5 3) (8 2))

:return-data-cycle ’((0 3) (3 2) (2 1) (1 5)))))

(loop repeat 50 collect (get-it re)))

=> (NIL NIL 0 NIL 0 NIL 0 NIL NIL 3 NIL NIL 3 NIL NIL NIL NIL 2 NIL NIL NIL NIL

1 NIL NIL NIL NIL 1 NIL NIL NIL NIL NIL NIL NIL 1 NIL NIL NIL NIL NIL NIL

NIL 1 NIL 1 NIL 0 NIL 0)

SYNOPSIS:

(defmethod get-it ((re recurring-event))

20.2.338 recurring-event/make-re

[recurring-event] [Functions]

DESCRIPTION:

Make an instance of a recurring-event object, which allows for the

periodic/cyclic return of given data. The recurring-event object is

intended for situations in which the user would like to perform an action

or collect data every several events, but with a varying cycle period.

ARGUMENTS:

- A list of two-item lists that indicate the period pattern by which the

action or data collection is to be performed. For example, a value such

as ’((2 3) (3 2) (5 3) (8 2)) will result in the action being performed

every 2 events three times, then every 3 events twice, every 5 events

thrice etc.

OPTIONAL ARGUMENTS:

keyword arguments:

- :return-data. If the recurring-event object is to be used to collect

data, that data can be specified in this slot, with the indices into this

data in the return-data-cycle slot. The return-data and return-data-cycle

20 SC/NAMED-OBJECT 663

slots must be used together.

- :return-data-cycle. If data is specified using :return-data, the indices

into that data must be specified here. For example, the value

’((0 3) (3 2) (2 1) (1 5)) will the data item at (nth 0) thrice, that at

(nth 3) twice, that at (nth 2) once, and that at (nth 1) five times.

- :id. An optional ID can also be specified for the recurring-event object

created.

RETURN VALUE:

A recurring-event object.

EXAMPLE:

;;; Simple usage with no specified data

(make-re ’((2 3) (3 2) (5 3) (8 2)))

=>

RECURRING-EVENT: current-period: 2, current-repeats: 3

pcount: -1, rcount: 0

return-data: NIL, return-data-cycle: NIL

CIRCULAR-SCLIST: current 1

SCLIST: sclist-length: 4, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: ((2 3) (3 2) (5 3) (8 2))

;;; Usage with specified :return-data and :return-data-cycle

(make-re ’((2 3) (3 2) (5 3) (8 2))

:return-data ’(a b c d)

:return-data-cycle ’((0 3) (3 2) (2 1) (1 5)))

=>

RECURRING-EVENT: current-period: 2, current-repeats: 3

pcount: -1, rcount: 0

return-data: (A B C D), return-data-cycle:

CYCLE-REPEATS: folded: ((0 3) (3 2) (2 1) (1 5))

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 11, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (0 0 0 3 3 2 1 1 1 1 1)

CIRCULAR-SCLIST: current 1

SCLIST: sclist-length: 4, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

20 SC/NAMED-OBJECT 664

NAMED-OBJECT: id: NIL, tag: NIL,

data: ((2 3) (3 2) (5 3) (8 2))

SYNOPSIS:

(defun make-re (data &key return-data return-data-cycle id)

20.2.339 recurring-event/on-it

[recurring-event] [Methods]

DESCRIPTION:

Test to determine whether the method is currently at a period boundary. The

object keeps track of its own internal state and position counter. This

method is most effective when called repeatedly in a loop.

ARGUMENTS:

- A recurring-event object.

RETURN VALUE:

T or NIL.

EXAMPLE:

;;; Straightforward usage

(let ((re (make-re ’((2 3) (3 2) (5 3) (8 2))

:return-data ’(a b c d)

:return-data-cycle ’((0 3) (3 2) (2 1) (1 5)))))

(loop repeat 50 collect (on-it re)))

=> (NIL NIL T NIL T NIL T NIL NIL T NIL NIL T NIL NIL NIL NIL T NIL NIL NIL NIL

T NIL NIL NIL NIL T NIL NIL NIL NIL NIL NIL NIL T NIL NIL NIL NIL NIL NIL

NIL T NIL T NIL T NIL T)

SYNOPSIS:

(defmethod on-it ((re recurring-event))

20.2.340 circular-sclist/reset

[circular-sclist] [Methods]

DESCRIPTION:

20 SC/NAMED-OBJECT 665

Reset the pointer of a given circular-sclist object. The pointer is reset

to 0 by default, but the desired index may be specified using the optional

argument.

NB: An immediately subsequent get-next call will retrieve the item at the

index to which the pointer is reset. An immediately subsequent

get-last call will retrieve the item at the index one-less

than the value to which the pointer is set.

ARGUMENTS:

- A circular-sclist object.

OPTIONAL ARGUMENTS:

- An index integer to which the pointer for the given circular-sclist

object should be reset.

RETURN VALUE:

Returns T.

EXAMPLE:

;; Resets to 0 by default. Here: Get a number of items using get-next, reset

;; the pointer, and apply get-next again.

(let ((cscl (make-cscl ’(0 1 2 3 4))))

(loop repeat 8 do (print (get-next cscl)))

(reset cscl)

(get-next cscl))

=> 0

;; Reset to a specified index

(let ((cscl (make-cscl ’(0 1 2 3 4))))

(loop repeat 8 do (print (get-next cscl)))

(reset cscl 3)

(get-next cscl))

=> 3

;; By default, get-last will then retrieve the item at index one less than the

;; reset value

(let ((cscl (make-cscl ’(0 1 2 3 4))))

(loop repeat 8 do (print (get-next cscl)))

20 SC/NAMED-OBJECT 666

(reset cscl 3)

(get-last cscl))

=> 2

SYNOPSIS:

(defmethod reset ((cscl circular-sclist) &optional where (warn t))

20.2.341 circular-sclist/rthm-chain-slow

[circular-sclist] [Classes]

NAME:

rthm-chain

File: rthm-chain-slow.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> rthm-chain-slow

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: class used in rthm-chain

Author: Michael Edwards: m@michael-edwards.org

Creation date: 4th February 2010

$$ Last modified: 11:20:15 Mon Dec 17 2012 ICT

SVN ID: $Id: rthm-chain-slow.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.342 sclist/combine

[sclist] [Methods]

DESCRIPTION:

Combine the contents of two given sclist objects into one list. NB This

changes the data list of a clone of the first argument by appending a

copy of the data list of the second argument i.e. it creates a wholly new

sclist object which it then returns.

20 SC/NAMED-OBJECT 667

ARGUMENTS:

- A first sclist object.

- A second sclist object.

RETURN VALUE:

Returns an sclist object.

EXAMPLE:

;; Combine the contents of two sclist objects to make a new one

(let ((scl1 (make-sclist ’(0 1 2 3 4)))

(scl2 (make-sclist ’(5 6 7 8 9))))

(combine scl1 scl2))

=>

SCLIST: sclist-length: 10, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (0 1 2 3 4 5 6 7 8 9)

SYNOPSIS:

(defmethod combine ((scl1 sclist) (scl2 sclist))

20.2.343 sclist/get-nth

[sclist] [Methods]

DESCRIPTION:

Get the nth element (zero-based) of data in a given sclist object.

ARGUMENTS:

- An index integer.

- An sclist object.

RETURN VALUE:

Returns the item at index n within the given sclist object.

Returns NIL and prints a warning if the specified index is greater than the

number of items in the given list (minus 1).

20 SC/NAMED-OBJECT 668

EXAMPLE:

;; Get the 3th item from the given sclist object

(let ((scl (make-sclist ’(cat dog cow pig sheep))))

(get-nth 3 scl))

=> PIG

;; Returns NIL and prints a warning when the specified index is beyond the

;; bounds of the given list

(let ((scl (make-sclist ’(cat dog cow pig sheep))))

(get-nth 31 scl))

=>

NIL

WARNING: sclist::sclist-check-bounds: Illegal list reference: 31

(length = 5) (sclist id = NIL)

SYNOPSIS:

(defmethod get-nth (index (i sclist))

20.2.344 sclist/intervals-mapper

[sclist] [Classes]

NAME:

intervals-mapper

File: intervals-mapper.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

intervals-mapper

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of a scale object that can initialize its

complete pitch list from the interval structure of a

given list of notes. Given the scale, it’s a cinch to

generate note sequences based on note offset patterns

e.g.

(let ((s (make-intervals-mapper ’c0 ’(d e gs as d ef g a

20 SC/NAMED-OBJECT 669

bf cs d ef gf)))

(pat ’(-1 2 4 3 6 -2 -1 2 6 7 3 6 2)))

(loop for p in pat collect

(data (intervals-mapper-note s p 4))))

-> (A3 EF4 F4 E4 BF4 F3 A3 EF4 BF4 D5 E4 BF4 EF4)

Author: Michael Edwards: m@michael-edwards.org

Creation date: August 3rd 2010 Edinburgh

$$ Last modified: 16:49:52 Mon Jun 18 2012 BST

SVN ID: $Id: intervals-mapper.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.345 intervals-mapper/get-pitch-symbols

[intervals-mapper] [Methods]

DESCRIPTION:

Get the pitches contained in a given intervals-mapper object returned as a

list of note-name symbols.

ARGUMENTS:

- An intervals-mapper object.

RETURN VALUE:

A list of note-name pitch symbols.

EXAMPLE:

(let ((im (make-intervals-mapper ’c0 ’(d e gs as d ef g a bf cs d ef gf))))

(get-pitch-symbols im))

=> (C0 D0 FS0 AF0 C1 CS1 F1 G1 AF1 B1 C2 CS2 E2 FS2 BF2 C3 E3 F3 A3 B3 C4 EF4

E4 F4 AF4 BF4 D5 E5 AF5 A5 CS6 EF6 E6 G6 AF6 A6 C7 D7 FS7 AF7 C8 CS8 F8 G8

AF8 B8 C9 CS9 E9 FS9)

SYNOPSIS:

(defmethod get-pitch-symbols ((im intervals-mapper) &optional ignore)

20 SC/NAMED-OBJECT 670

20.2.346 intervals-mapper/get-scale

[intervals-mapper] [Methods]

DESCRIPTION:

Create a scale (sequence of pitches) beginning with the specified starting

note and extending up to MIDI note 127 by cycling through the interval

structure of the STEPS slot.

The scale will only repeat at octaves if the interval structure of the list

of pitches passed at initialisation creates that result.

NB: This method is usually only called automatically at initialisation.

ARGUMENTS:

- An intervals mapper object.

- A note-name pitch symbol (e.g. ’c0) that is the pitch on which to begin

the scale, and which is to be stored in the TONIC slot.

RETURN VALUE:

A list of the pitch objects in the new scale. These are also stored in the

SCALE-PITCHES slot.

EXAMPLE:

(let ((im (make-intervals-mapper ’c0 ’(d e gs as d ef g a bf cs d ef gf))))

(pitch-list-to-symbols (get-scale im ’d4)))

=> (D4 E4 AF4 BF4 D5 EF5 G5 A5 BF5 CS6 D6 EF6 FS6 AF6 C7 D7 FS7 G7 B7 CS8 D8 F8

FS8 G8 BF8 C9 E9 FS9)

SYNOPSIS:

(defmethod get-scale ((im intervals-mapper) start-note)

20.2.347 intervals-mapper/get-steps

[intervals-mapper] [Methods]

DESCRIPTION:

Extract the interval structure of the list of note-name pitch symbols

20 SC/NAMED-OBJECT 671

passed as the data to the instance of the intervals-mapper object upon

initialization. The interval structure is returned as a list of semitone

values.

ARGUMENTS:

- An intervals-mapper object.

RETURN VALUE:

A list of integers that are the numbers of semitones between each

consecutive pitch in the original data list.

EXAMPLE:

(let ((im (make-intervals-mapper ’c0 ’(d e gs as d ef g a bf cs d ef gf))))

(get-steps im))

=> (2 4 2 4 1 4 2 1 3 1 1 3)

SYNOPSIS:

(defmethod get-steps ((im intervals-mapper))

20.2.348 intervals-mapper/intervals-mapper-degree

[intervals-mapper] [Methods]

DATE:

14-Aug-2010

DESCRIPTION:

Return the scale degree number of a specified pitch class in relation to a

specified octave within the given intervals-mapper object.

To determine the scale degree number, this method begins at the first pitch

>= C in the specified octave and passes consecutively through each

subsequent pitch in the interval-mapper object’s full scale, counting each

step until it first encounters the pitch class of the specified pitch.

If there are no more instances of the specified pitch class, the method

returns NIL.

20 SC/NAMED-OBJECT 672

The method takes as its pitch class a pitch object, which includes an

octave indicator. For the purposes of this method, solely the pitch-class

name is extracted from the pitch object.

ARGUMENTS:

- An intervals-mapper object.

- An instance of a pitch object whose pitch class is being sought.

- An integer that is the octave in relationship to which the scale degree

is sought.

OPTIONAL ARGUMENTS:

- T or NIL to indication whether to return the position of the found pitch

object within the complete scale list of the given intervals-mapper

object rather than the scale degree. T = return the position.

Default = NIL.

RETURN VALUE:

Returns an integer that is either the scale degree of the specified pitch

class in relation to the specified octave, counting from 1, or the position

of the found pitch object within the interval-mapper object’s complete

scale.

Returns NIL if no instances of the specified pitch class are found.

EXAMPLE:

;;; The desired pitch class BF is found within the specified octave

(let ((im (make-intervals-mapper ’c0 ’(d e gs as d ef g a bf cs d ef gf))))

(intervals-mapper-degree im (make-pitch ’bf4) 4))

=> 6

;;; The desired pitch class B is found outside of the specified octave

(let ((im (make-intervals-mapper ’c0 ’(d e gs as d ef g a bf cs d ef gf))))

(intervals-mapper-degree im (make-pitch ’b4) 5))

=> 20

;;; Return the position instead

(let ((im (make-intervals-mapper ’c0 ’(d e gs as d ef g a bf cs d ef gf))))

(intervals-mapper-degree im (make-pitch ’b4) 5 t))

20 SC/NAMED-OBJECT 673

=> 45

;;; The desired pitch class BF is not present in any of the octaves beginning

;;; including and above the specified octave

(let ((im (make-intervals-mapper ’c0 ’(d e gs as d ef g a bf cs d ef gf))))

(intervals-mapper-degree im (make-pitch ’bf4) 5))

=> NIL

SYNOPSIS:

(defmethod intervals-mapper-degree ((im intervals-mapper) pitch octave

&optional return-nth)

20.2.349 intervals-mapper/intervals-mapper-note

[intervals-mapper] [Methods]

DESCRIPTION:

Get the pitch object that constitutes the specified scale degree of the

specified octave within an intervals-mapper object; or, if keyword argument

<nth> is set to T, get the position of this pitch object within the full

range of the intervals-mapper object’s complete scale.

As there is no concept of a tonic that repeats at octaves, degree 1 in any

given octave is simply the first note >= the C in that octave.

If a note-name pitch symbol is given for the keyword argument <tonic>, the

given intervals-mapper object’s TONIC slot will be changed, and its

scale-pitches will be recalculated accordingly before getting the pitch.

ARGUMENTS:

- An intervals-mapper object.

- An integer that is the scale degree (1-based) of the desired pitch within

the specified octave, counting from the first note of the scale above or

on the C in that octave. If this number is higher than the number of

pitches in the span of an octave, a pitch from a higher octave will

accordingly be returned. Similarly, a negative number can also be given

here to indicate that the pitch is to be collected from that many degrees

below the specified octave.

- An integer that indicates the octave from which the pitch is to be

20 SC/NAMED-OBJECT 674

returned (e.g. 4 for the octave starting on middle C, 5 for the octave

starting on the C above that etc.)

OPTIONAL ARGUMENTS:

keyword arguments

- :tonic. NIL or a note-name pitch symbol that is the new starting note for

above which the intervals-mapper scale is to be re-mapped before the

pitch is returned. This will usually be the lowest pitch on which the

scale should start. If NIL, no changes will be made to the object’s

existing scale pitches before returning the desired pitch. Default = NIL.

- :nth. T or NIL to indicate whether instead of returning the pitch object

itself, the method should return an integer that is the position of that

pitch within the full span of the interval-mapper object’s complete

scale. T = return the position. Default = NIL.

RETURN VALUE:

A pitch object by default, or its position in the scale list if the :nth

argument is set to T.

EXAMPLE:

;;; Returns a pitch object by default

(let ((im (make-intervals-mapper ’c0 ’(d e gs as d ef g a bf cs d ef gf))))

(intervals-mapper-note im 3 4))

=>

PITCH: frequency: 329.628, midi-note: 64, midi-channel: 0

pitch-bend: 0.0

degree: 128, data-consistent: T, white-note: E4

nearest-chromatic: E4

src: 1.2599211, src-ref-pitch: C4, score-note: E4

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 4, c5ths: 0, no-8ve: E, no-8ve-no-acc: E

show-accidental: T, white-degree: 30,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: E4, tag: NIL,

data: E4

;;; Used with negative degree numbers

20 SC/NAMED-OBJECT 675

(let ((im (make-intervals-mapper ’c0 ’(d e gs as d ef g a bf cs d ef gf))))

(data (intervals-mapper-note im -3 2)))

=> F1

;;; Use with a new tonic and setting nth to T to return the position

(let ((im (make-intervals-mapper ’c0 ’(d e gs as d ef g a bf cs d ef gf))))

(intervals-mapper-note im 11 5 :tonic ’d1 :nth t))

=> 29

SYNOPSIS:

(defmethod intervals-mapper-note ((im intervals-mapper) degree octave

&key tonic nth)

20.2.350 intervals-mapper/make-intervals-mapper

[intervals-mapper] [Functions]

DESCRIPTION:

Returns an intervals-mapper object starting with the specified pitch

(’tonic’) and using the interval structure of the specified list of

pitches, creating a complete pitch list from the interval structure of list

of pitches.

NB The pitches specified aren’t necessarily used in the resulting complete

pitch list; rather, their interval structure is mapped above the

specified starting pitch and repeated upwards until the method reaches

MIDI note 127.

NB The scale will only repeat at octaves if that is the interval structure

of the list of pitches it is passed.

ARGUMENTS:

- A note-name pitch symbol that is the starting pitch, (e.g. ’c0).

- A list of note-name pitch symbols that provides the interval structure

for the resulting scale.

RETURN VALUE:

An intervals-mapper object.

EXAMPLE:

20 SC/NAMED-OBJECT 676

;;; A scale without repeating octaves:

(make-intervals-mapper ’c0 ’(d e gs as d ef g a bf cs d ef gf))

=>

INTERVALS-MAPPER: steps: (2 4 2 4 1 4 2 1 3 1 1 3),

scale-pitches (pitch objects): (C0 D0 FS0 AF0 C1 CS1 F1 G1 AF1 B1 C2 CS2 E2 FS2

BF2 C3 E3 F3 A3 B3 C4 EF4 E4 F4 AF4 BF4 D5 E5

AF5 A5 CS6 EF6 E6 G6 AF6 A6 C7 D7 FS7 AF7 C8

CS8 F8 G8 AF8 B8 C9 CS9 E9 FS9)

tonic: C0

SCLIST: sclist-length: -1, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (D E GS AS D EF G A BF CS D EF GF)

SYNOPSIS:

(defun make-intervals-mapper (tonic notes)

20.2.351 sclist/make-sclist

[sclist] [Functions]

DESCRIPTION:

Create an sclist object with the specified list.

ARGUMENTS:

- A list of numbers or symbols.

OPTIONAL ARGUMENTS:

keyword arguments:

- :id. A symbol that will be the ID of the given sclist object.

Default = NIL.

- :bounds-alert. T or NIL to indicate whether a warning should be issued

when a request is given to set or get an out-of-bounds element (i.e. not

enough elements in list). T = print warning. Default = NIL.

- :copy. T or NIL to indicate whether the data in the list should be copied

(any slippery-chicken class instances will be cloned), with subsequent

modifications being applied to the copy. T = copy. Default = T.

RETURN VALUE:

20 SC/NAMED-OBJECT 677

Returns an sclist object.

EXAMPLE:

;; Create a simple object with just a list of numbers

(make-sclist ’(1 2 3 4 5 6 7))

=>

SCLIST: sclist-length: 7, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (1 2 3 4 5 6 7)

;; Create the same object and assign an ID to it

(make-sclist ’(1 2 3 4 5 6 7) :id ’number-list)

=>

SCLIST: sclist-length: 7, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NUMBER-LIST, tag: NIL,

data: (1 2 3 4 5 6 7)

SYNOPSIS:

(defun make-sclist (list &key (id nil) (bounds-alert t) (copy t))

20.2.352 sclist/pitch-seq

[sclist] [Classes]

NAME:

pitch-seq

File: pitch-seq.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

pitch-seq

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the pitch-seq class. This describes

the pitch curves for a given rhythmic sequence. These

20 SC/NAMED-OBJECT 678

are normally simple lists of notes indicating pitch

height (and later mapped onto sets); chords are indicated

by placing a number in parentheses.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 19th February 2001

$$ Last modified: 11:22:06 Sat Nov 9 2013 GMT

SVN ID: $Id: pitch-seq.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.353 pitch-seq/get-notes

[pitch-seq] [Methods]

DESCRIPTION:

This gets notes from the sets, limiting the notes used to the range of the

instrument and any other ranges defined in the slippery-chicken class. If

either the instrument or set are missing it just gets the relative pitches

we use to display a pitch sequence.

limit-high and limit-low are pitch objects. They are extra range definers

that are given to the slippery-chicken object to control the pitch curve of

an instrument over the duration of the whole piece. They always refer to

sounding pitches.

The order of operations for selecting pitches are as follows:

1) Limit the set object to the instrument’s range.

2) Remove the notes that have already been selected for other instruments.

This is where the slippery-chicken slot :instrument-hierarchy plays an

important role. This can be skipped if the <avoid-used-notes> argument

is nil.

3) If there is a subset with the same ID as the subset-id slot for this

instrument, use only those pitches common to that subset and those in

step 2.

4) If the ratio between the number of pitches now available and the number

of different numbers in the pitch-seq is less than the slippery-chicken

slot pitch-seq-index-scaler-min*, add notes from those used by other

instruments until there are enough; the lowest number in the pitch-seq

will now select the lowest pitch in the set that is in the instrument’s

20 SC/NAMED-OBJECT 679

range.

If however there are enough pitches without adding pitches already used

by other instruments, then where in the available pitches the lowest

number of the pitch-seq will be placed depends on whether the

prefers-notes slot of the instrument has been set to be high or low. If

high, then the highest number in the pitch-seq will result in the

highest pitch in the available pitches that is in the instrument’s

range. If low, then the lowest number in the pitch-seq will result in

the lowest pitch in the available pitches that is in the instrument’s

range. If the user hasn’t set this slot, then the range of the pitch-seq

will correspond to the middle of the available pitches.

There are two caveats here if the instrument’s prefers-notes slot is

NIL: 1) If the lowest number in the pitch-seq is 5 or higher, this will

have the same effect as the prefers-notes slot being high. Similarly, if

the lowest number is 1, it will have the same effect as the

prefers-notes slot being low. These two numbers (5 and 1) are actually

global slippery chicken configuration data: (get-sc-config

pitch-seq-lowest-equals-prefers-high) and (get-sc-config

pitch-seq-lowest-equals-prefers-low) so can be set using the

set-sc-config function.

* The question as to how many pitches are enough pitches before adding

used notes is determined by the pitch-seq-index-scaler-min argument,

which is by default 0.5 (in the slippery-chicken slot that’s usually

used and passed to this method). As the pitch-seq notes must be offset

and scaled before they can be used as indices, there’s a minimum scaler

that’s considered acceptable; anything below this would result in more

notes being added.

5) If at this point there are no available pitches, the function will

trigger an error and exit. This could happen if the value of set-limits,

both high and low, took the available pitches outside of the

instrument’s range, for instance.

6) The pitch-seq numbers are now offset and scaled, then rounded in order

to use them as indices into the pitch list. If a number is in

parentheses then this is where the instrument’s chord function would be

called. As notes are selected, the set marks them as used for the next

time around. Also, there’s an attempt to avoid melodic octaves on

adjacent notes; however, if the set is full of octaves this won’t be

possible; in that case a warning will be issued and the octave will be

used.

ARGUMENTS:

20 SC/NAMED-OBJECT 680

- A pitch-seq object.

- An instrument object.

- An sc-set object.

- A hint pitch (ignored for now).

- A pitch-object defining the highest possible note.

- A pitch-object defining the lowest possible note.

- The sequence number (for diagnostics).

- The last note of the previous sequence, as a pitch object.

- The lowest scaler that will be accepted before adding notes from those

used; i.e., if the pitch-seq needs 6 notes and only 3 are available,

there would be note repetition, but as this would create a scaler of 0.5,

that would be acceptable

- Whether to avoid lines jumping an octave in either direction (passed by

the slippery chicken slot).

- Whether to remove notes already chosen for other instruments before

selecting notes for this one.

RETURN VALUE:

Returns a list of pitch objects.

SYNOPSIS:

(defmethod get-notes ((ps pitch-seq) instrument set hint-pitch limit-high

limit-low seq-num last-note-previous-seq

pitch-seq-index-scaler-min avoid-melodic-octaves

avoid-used-notes)

20.2.354 pitch-seq/invert

[pitch-seq] [Methods]

DESCRIPTION:

Invert the pitch sequence contour attached to a given pitch-seq object. The

inversion uses only the same numbers from the original pitch contour list.

ARGUMENTS:

- A pitch-seq object.

RETURN VALUE:

A pitch-seq object.

20 SC/NAMED-OBJECT 681

EXAMPLE:

(let ((ps (make-pitch-seq ’(pseq1 (1 2 1 3 4 7)))))

(data (invert ps)))

=> (7 4 7 3 2 1)

SYNOPSIS:

(defmethod invert ((ps pitch-seq))

20.2.355 pitch-seq/make-pitch-seq

[pitch-seq] [Functions]

DESCRIPTION:

Create a pitch-seq object.

This function can be either called with one argument, consisting of a

two-item list, in which the first item is the pitch-seq ID and the second

is a list of numbers representing the pitch curve of the intended pitch

sequence; or it can be created with two arguments, the first of which being

the list of numbers representing the pitch curve and the second being the

pitch-seq’s ID.

NB We can assign a pitch-seq exclusively to particular instruments in the

ensemble simply by passing their names as symbols along with the curve

data. See below for an example.

ARGUMENTS:

- A two-item list, of which the first item is a symbol to be used as the

object’s ID, and the second is a list of integers representing the general

contour of the pitch sequence.

OPTIONAL ARGUMENTS:

- If the optional argument format is used, the first argument is to be

a list of numbers representing the general contour of the pitch sequence,

and the second is to be a symbol for the pitch-seq object’s ID.

RETURN VALUE:

- A pitch-seq object.

20 SC/NAMED-OBJECT 682

EXAMPLE:

;; The first creation option is using one argument that is a two-item list,

;; whereby the first item is a symbol to be used as the pitch-seq object’s ID

;; and the second is a list of numbers representing the general contour of the

;; pitch sequence.

(make-pitch-seq ’(pseq1 (1 2 1 1 3)))

=>

PITCH-SEQ: notes: NIL

highest: 3

lowest: 1

original-data: (1 2 1 1 3)

user-id: T

instruments: NIL

relative-notes: (not printed for sake of brevity)

relative-notes-length: 25

SCLIST: sclist-length: 5, bounds-alert: T, copy: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: PSEQ1, tag: NIL,

data: (1 2 1 1 3)

;; The second creation option uses two arguments, the first of which is a list

;; of numbers representing the general contour of the pitch sequence, the

;; second of which is a symbol which will be used as the pith-seq object’s ID.

(make-pitch-seq ’(2 1 1 3 1) ’pseq2)

=>

PITCH-SEQ: notes: NIL

highest: 3

lowest: 1

original-data: (2 1 1 3 1)

user-id: NIL

instruments: NIL

relative-notes: (not printed for sake of brevity)

relative-notes-length: 25

SCLIST: sclist-length: 5, bounds-alert: T, copy: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: PSEQ2, tag: NIL,

data: (2 1 1 3 1)

;; An example assigning a pitch-seq only to specific instruments:

(make-pitch-seq ’((1 2 1 1 3) violin flute) ’ps1))

SYNOPSIS:

20 SC/NAMED-OBJECT 683

(defun make-pitch-seq (id-data &optional (id nil))

20.2.356 sclist/rthm-seq

[sclist] [Classes]

NAME:

rthm-seq

File: rthm-seq.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist -> rthm-seq

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the rthm-seq class which holds the bars

and rhythms of a sequence (multiple bars). This will

generally be stored in a rthm-seq-palette and referenced

later in the rthm-seq-map.

The data used to create such an object will look

something like:

(rthm1 ((((2 4) q (q))

(s x 4 (e) e)

((3 8) (e) e (e)))

:pitch-seq-palette ’((psp1 (1 2 1 2 3 2 1))

(psp2 (3 2 4 6 1 5 7))

(psp3 (2 3 4 1 3 4 5)))))

Author: Michael Edwards: m@michael-edwards.org

Creation date: 14th February 2001

$$ Last modified: 12:33:08 Mon Nov 18 2013 GMT

SVN ID: $Id: rthm-seq.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.357 rthm-seq/add-bar

[rthm-seq] [Methods]

DESCRIPTION:

20 SC/NAMED-OBJECT 684

Add a rthm-seq-bar object to the end of a given rthm-seq object.

NB: If the rthm-seq-bar object is added without specifying a

pitch-seq-palette, the method automatically adds data to the existing

pitch-seq-palette.

ARGUMENTS:

- A rhtm-seq object.

- A rthm-seq-bar object.

OPTIONAL ARGUMENTS:

- A pitch-seq-palette.

RETURN VALUE:

Returns the new value of the DURATION slot of the given rthm-seq object.

EXAMPLE:

;; Returns the new value of the DURATION slot

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 1 1 2 3 4))))))

(add-bar rs (make-rthm-seq-bar ’((5 8) e e+32 s. +q))))

=> 10.5

;; Apply the method and print the rhythms objects of the given rthm-seq object

;; to see the changes

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 1 1 2 3 4))))))

(add-bar rs (make-rthm-seq-bar ’((5 8) e e+32 s. +q)))

(print-simple rs))

=>

rthm-seq NIL

(2 4): note Q, note E, note S, note S,

(2 4): rest E, note Q, rest E,

(3 8): note S, note S, note E., note S,

(5 8): note E, note E, note 32, note S., note Q,

20 SC/NAMED-OBJECT 685

;; Apply the method and print the DATA slot of the updated PITCH-SEQ-PALETTE

;; slot to see the new notes that have been automatically added

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 1 1 2 3 4))))))

(add-bar rs (make-rthm-seq-bar ’((5 8) e e+32 s. +q)))

(data (first (data (pitch-seq-palette rs)))))

=> (1 2 3 1 1 2 3 4 3 4 3)

SYNOPSIS:

(defmethod add-bar ((rs rthm-seq) (rsb rthm-seq-bar) &optional psp)

20.2.358 rthm-seq/chop

[rthm-seq] [Methods]

DESCRIPTION:

Applies the chop method to each rthm-seq-bar object contained in the given

rthm-seq object (see rthm-seq-bar::chop for details), returning a list of

rthm-seq objects, each of which contains just one of the rthm-seq-bar

objects created with chop.

The chop method is the basis for slippery-chicken’s feature of

intra-phrasal looping.

NB: Since the chop method functions by comparing each beat of a given

rthm-seq-bar object to the specified <chop-points> pattern for

segmenting that beat, all rthm-seq-bar objects in the given rthm-seq

object must be evenly divisible by the beat for which the pattern is

defined. For example, if the <chop-points> argument defines a

quarter-note, all bars in the given rthm-seq object must be evenly

divisible by a quarter-note, and a rthm-seq object consisting of a 2/4,

a 3/4 and a 3/8 bar would fail at the 3/8 bar with an error.

NB: The <unit> argument must be a duplet rhythmic value (i.e. 32, ’s, ’e

etc.) and cannot be a tuplet value (i.e. ’te ’fe etc.).

NB: In order for the resulting chopped rhythms to be parsable by LilyPond

and CMN, there can be no tuplets (triplets etc.) among the rhythms to

be chopped. Such rhythms will result in LilyPond and CMN errors. This

20 SC/NAMED-OBJECT 686

has only minimal bearing on any MIDI files produced, however, and these

can potentially be imported into notation software.

ARGUMENTS:

- A rthm-seq object.

OPTIONAL ARGUMENTS:

- <chop-points>. A list of integer pairs, each of which delineates a

segment of the beat of the given rthm-seq-bar object measured in the

rhythmic unit specified by the <unit> argument. See the documentation for

rthm-seq-bar::chop for more details.

- <unit>. The rhythmic duration that serves as the unit of measurement for

the chop points. Default = ’s.

- <number-bars-first>. T or NIL. This argument helps in naming (and

therefore debugging) the newly-created bars. If T, the bars in the

original rthm-seq will be renumbered, starting from 1, and this will be

reflected in the tag of the new bars. E.g. if T, a new bar’s tag may be

new-bar-from-rs1-b3-time-range-1.750-to-2.000, if NIL this would be

new-bar-from-rs1-time-range-1.750-to-2.000. Default = T.

RETURN VALUE:

A list of rthm-seq objects.

EXAMPLE:

;; Create a rthm-seq with three bars, all having a quarter-note beat basis,

;; apply chop, and print-simple the resulting list of new rthm-seq-bar

;; objects. The rthm-seq numbers printed with this are the IDs of the rthm-seq

;; objects, not the bar-nums of the individual rthm-seq-bar objects.

(let* ((rs (make-rthm-seq ’(seq1 ((((2 4) q e s s)

((e) q (e))

(s s (e) e. s))

:pitch-seq-palette ((1 2 3 4 5 6 7 8 9)

(9 8 7 6 5 4 3 2 1))))))

(ch (chop rs

’((1 1) (1 2) (1 3) (1 4) (2 2) (2 3) (2 4) (3 3) (3 4) (4 4))

’s)))

(loop for rs-obj in ch do (print-simple rs-obj)))

=>

rthm-seq 1

(1 16): NIL S,

20 SC/NAMED-OBJECT 687

rthm-seq 2

(1 8): NIL E,

rthm-seq 3

(3 16): NIL E.,

rthm-seq 4

(1 4): NIL Q,

rthm-seq 5

(1 16): rest 16,

rthm-seq 6

(1 8): rest 8,

rthm-seq 7

(3 16): rest 16/3,

rthm-seq 8

(1 16): rest 16,

rthm-seq 9

(1 8): rest 8,

rthm-seq 10

(1 16): rest 16,

rthm-seq 11

(1 16): NIL S,

rthm-seq 12

(1 8): NIL E,

rthm-seq 13

(3 16): NIL E, NIL S,

rthm-seq 14

(1 4): NIL E, NIL S, NIL S,

rthm-seq 15

(1 16): rest 16,

rthm-seq 16

(1 8): rest S, NIL S,

rthm-seq 17

(3 16): rest S, NIL S, NIL S,

rthm-seq 18

(1 16): NIL S,

rthm-seq 19

(1 8): NIL S, NIL S,

rthm-seq 20

(1 16): NIL S,

rthm-seq 21

(1 16): rest 16,

rthm-seq 22

(1 8): rest 8,

rthm-seq 23

(3 16): rest E, NIL S,

rthm-seq 24

(1 4): rest E, NIL E,

20 SC/NAMED-OBJECT 688

rthm-seq 25

(1 16): rest 16,

rthm-seq 26

(1 8): rest S, NIL S,

rthm-seq 27

(3 16): rest S, NIL E,

rthm-seq 28

(1 16): NIL S,

rthm-seq 29

(1 8): NIL E,

rthm-seq 30

(1 16): rest 16,

rthm-seq 31

(1 16): rest 16,

rthm-seq 32

(1 8): rest 8,

rthm-seq 33

(3 16): rest 16/3,

rthm-seq 34

(1 4): rest 4,

rthm-seq 35

(1 16): rest 16,

rthm-seq 36

(1 8): rest 8,

rthm-seq 37

(3 16): rest 16/3,

rthm-seq 38

(1 16): rest 16,

rthm-seq 39

(1 8): rest 8,

rthm-seq 40

(1 16): rest 16,

rthm-seq 41

(1 16): NIL S,

rthm-seq 42

(1 8): NIL S, NIL S,

rthm-seq 43

(3 16): NIL S, NIL S, rest S,

rthm-seq 44

(1 4): NIL S, NIL S, rest E,

rthm-seq 45

(1 16): NIL S,

rthm-seq 46

(1 8): NIL S, rest S,

rthm-seq 47

(3 16): NIL S, rest E,

20 SC/NAMED-OBJECT 689

rthm-seq 48

(1 16): rest 16,

rthm-seq 49

(1 8): rest 8,

rthm-seq 50

(1 16): rest 16,

rthm-seq 51

(1 16): NIL S,

rthm-seq 52

(1 8): NIL E,

rthm-seq 53

(3 16): NIL E.,

rthm-seq 54

(1 4): NIL E., NIL S,

rthm-seq 55

(1 16): rest 16,

rthm-seq 56

(1 8): rest 8,

rthm-seq 57

(3 16): rest E, NIL S,

rthm-seq 58

(1 16): rest 16,

rthm-seq 59

(1 8): rest S, NIL S,

rthm-seq 60

(1 16): NIL S,

;; Attempting to apply the method to a rthm-seq object in which not all bars

;; have time-signatures that are divisible by the beat defined in the

;; <chop-points> argument will result in dropping into the debugger with an

;; error

(let* ((rs (make-rthm-seq ’(seq1 ((((2 4) q e s s)

((e) q (e))

((3 8) (e) e. s))

:pitch-seq-palette ((1 2 3 4 5 6 7)

(9 8 7 6 5 4 3))))))

(ch (chop rs

’((1 1) (1 2) (1 3) (1 4) (2 2) (2 3) (2 4) (3 3) (3 4) (4 4))

’s)))

(loop for rs-obj in ch do (print-simple rs-obj)))

=>

rthm-seq-bar::get-beats: Can’t find an exact beat of rhythms

(dur: 0.75 beat-dur: 0.5)!

[Condition of type SIMPLE-ERROR]

20 SC/NAMED-OBJECT 690

SYNOPSIS:

(defmethod chop ((rs rthm-seq) &optional chop-points (unit ’s)

(number-bars-first t))

20.2.359 rthm-seq/clear-ties-beg-end

[rthm-seq] [Methods]

DESCRIPTION:

Deletes ties to the first rhythm(s) of a rthm-seq, making them rests

instead of tied notes. Also makes sure the last rhythm is not tied from

(into another sequence). Useful if you’re making rthm-seqs from other

(larger) rthm-seqs or algorithmically.

ARGUMENTS:

- the rthm-seq object

RETURN VALUE:

T if any ties were cleared, NIL otherwise.

SYNOPSIS:

(defmethod clear-ties-beg-end ((rs rthm-seq))

20.2.360 rthm-seq/combine

[rthm-seq] [Methods]

DESCRIPTION:

Combine two rthm-seqs into one, updating slots for the new object, which is

a clone.

NB: The MARKS slot is ignored for now (it is as of yet

NB: This method sets the values of the individual slots but leaves the DATA

slot untouched (for cases in which the user might want to see where the

new data originated from, or otherwise use the old data somehow, such

as in a new rthm-seq object).

ARGUMENTS:

20 SC/NAMED-OBJECT 691

- A first rthm-seq object.

- A second rthm-seq object.

RETURN VALUE:

- A rthm-seq object.

EXAMPLE:

;; The method returns a rthm-seq object

(let ((rs1 (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 1 1 2 3 4)))))

(rs2 (make-rthm-seq ’((((4 4) h+e (e) { 3 te te te })

((5 8) e e+32 s. +q)

((3 4) (q) q q))

:pitch-seq-palette ((1 2 3 4 1 2 3 1 2))))))

(combine rs1 rs2))

=>

RTHM-SEQ: num-bars: 6

num-rhythms: 25

num-notes: 17

num-score-notes: 21

num-rests: 4

duration: 15.0

psp-inversions: NIL

marks: NIL

time-sigs-tag: NIL

handled-first-note-tie: NIL

(for brevity’s sake, slots pitch-seq-palette and bars are not printed)

SCLIST: sclist-length: 6, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "NIL-NIL", tag: NIL,

data: ((((2 4) Q+E S S) ((E) Q (E)) ((3 8) S S E. S)) PITCH-SEQ-PALETTE

((1 2 3 1 1 2 3 4))

(((4 4) H+E (E) { 3 TE TE TE }) ((5 8) E E+32 S. +Q) ((3 4) (Q) Q Q))

PITCH-SEQ-PALETTE ((1 2 3 4 1 2 3 1 2)))

;; With the same combine call, print the collected contents of the BARS slot

;; and the PITCH-SEQ-PALETTE slot of the new rthm-seq object

(let* ((rs1 (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 1 1 2 3 4)))))

20 SC/NAMED-OBJECT 692

(rs2 (make-rthm-seq ’((((4 4) h+e (e) { 3 te te te })

((5 8) e e+32 s. +q)

((3 4) (q) q q))

:pitch-seq-palette ((1 2 3 4 1 2 3 1 2)))))

(crs (combine rs1 rs2)))

(print-simple crs)

(print (data (get-first (pitch-seq-palette crs)))))

=>

rthm-seq NIL-NIL

(2 4): note Q, note E, note S, note S,

(2 4): rest E, note Q, rest E,

(3 8): note S, note S, note E., note S,

(4 4): note H, note E, rest E, note TE, note TE, note TE,

(5 8): note E, note E, note 32, note S., note Q,

(3 4): rest 4, note Q, note Q,

(1 2 3 1 1 2 3 4 1 2 3 4 1 2 3 1 2)

SYNOPSIS:

(defmethod combine ((rs1 rthm-seq) (rs2 rthm-seq))

20.2.361 rthm-seq/delete-marks

[rthm-seq] [Methods]

DESCRIPTION:

Delete all marks from the MARKS slot of the specified rthm-seq object and

replace them with NIL.

ARGUMENTS:

- A rthm-seq object

RETURN VALUE:

NIL

EXAMPLE:

(let ((mrs (make-rthm-seq ’(seq1 ((((2 4) q e (s) s))

:pitch-seq-palette ((1 2 3))

:marks (ff 1 a 1 pizz 1 ppp 2 s 2))))))

(print (marks mrs))

20 SC/NAMED-OBJECT 693

(delete-marks mrs)

(print (marks mrs)))

=>

((FF 1) (A 1) (PIZZ 1) (PPP 2) (S 2))

NIL

SYNOPSIS:

(defmethod delete-marks ((rs rthm-seq))

20.2.362 rthm-seq/get-bar

[rthm-seq] [Methods]

DESCRIPTION:

Get a specified rthm-seq-bar object from within a rthm-seq object.

ARGUMENTS:

- A rthm-seq object.

- An integer that is the 1-based number of the desired bar to return from

within the given rthm-seq object.

RETURN VALUE:

Returns a rthm-seq-bar object.

EXAMPLE:

;;; Returns a rthm-seq-bar object

(let ((rs (make-rthm-seq ’(seq1 ((((2 4) q e s s)

((e) q (e))

((3 8) s s e. s)))))))

(get-bar rs 2))

=>

RTHM-SEQ-BAR: time-sig: 0 (2 4), time-sig-given: NIL, bar-num: -1,

old-bar-nums: NIL, write-bar-num: NIL, start-time: -1.000,

start-time-qtrs: -1.0, is-rest-bar: NIL, multi-bar-rest: NIL,

show-rest: T, notes-needed: 1,

tuplets: NIL, nudge-factor: 0.35, beams: NIL,

current-time-sig: 6, write-time-sig: NIL, num-rests: 2,

num-rhythms: 3, num-score-notes: 1, parent-start-end: NIL,

20 SC/NAMED-OBJECT 694

missing-duration: NIL, bar-line-type: 0,

player-section-ref: NIL, nth-seq: NIL, nth-bar: NIL,

rehearsal-letter: NIL, all-time-sigs: (too long to print)

sounding-duration: NIL,

rhythms: (

[...]

(let ((rs (make-rthm-seq ’(seq1 ((((2 4) q e s s)

((e) q (e))

((3 8) s s e. s)))))))

(print-simple (get-bar rs 2)))

=> (2 4): rest E, note Q, rest E,

SYNOPSIS:

(defmethod get-bar ((rs rthm-seq) bar-num &optional ignore)

20.2.363 rthm-seq/get-first

[rthm-seq] [Methods]

DESCRIPTION:

Return the first rhythm/event object in the specified rthm-seq object.

ARGUMENTS:

- A rthm-seq object.

RETURN VALUE:

A rhythm/event object.

EXAMPLE:

(let ((mrs (make-rthm-seq ’(seq1 ((((2 4) q e (s) s))

:pitch-seq-palette ((1 2 3))

:marks (ff 1 a 1 pizz 1 ppp 2 s 2))))))

(get-first mrs))

=>

RHYTHM: value: 4.000, duration: 1.000, rq: 1, is-rest: NIL,

is-whole-bar-rest: NIL,

score-rthm: 4.0, undotted-value: 4, num-flags: 0, num-dots: 0,

20 SC/NAMED-OBJECT 695

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 1.000,

is-grace-note: NIL, needs-new-note: T, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: (PIZZ A FF), marks-in-part: NIL,

letter-value: 4, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: Q, tag: NIL,

data: Q

SYNOPSIS:

(defmethod get-first ((rs rthm-seq))

20.2.364 rthm-seq/get-last

[rthm-seq] [Methods]

DESCRIPTION:

Return the last rhythm/event object in the specified rthm-seq object.

ARGUMENTS:

- A rthm-seq object.

RETURN VALUE:

A rhythm/event object.

EXAMPLE:

(let ((mrs (make-rthm-seq ’(seq1 ((((2 4) q e (s) s))

:pitch-seq-palette ((1 2 3))

:marks (ff 1 a 1 pizz 1 ppp 2 s 2))))))

(get-last mrs))

=>

RHYTHM: value: 16.000, duration: 0.250, rq: 1/4, is-rest: NIL,

is-whole-bar-rest: NIL,

score-rthm: 16.0, undotted-value: 16, num-flags: 2, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 0.250,

is-grace-note: NIL, needs-new-note: T, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 16, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: S, tag: NIL,

data: S

20 SC/NAMED-OBJECT 696

SYNOPSIS:

(defmethod get-last ((rs rthm-seq))

20.2.365 rthm-seq/get-last-attack

[rthm-seq] [Methods]

DESCRIPTION:

Gets the rhythm object for the last note that needs an attack (i.e. not a

rest and not a tied note) in a given rthm-seq object.

ARGUMENTS:

- A rthm-seq object.

OPTIONAL ARGUMENTS:

- T or NIL indicating whether to print a warning message if the given index

(minus 1) is greater than the number of attacks in the rthm-seq object

(default = T). This is a carry-over argument from the get-nth-attack

method called within the get-last-attack method and not likely to be

needed for use with get-last-attack.

RETURN VALUE:

A rhythm object.

EXAMPLE:

;; Returns a rhythm object

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(get-last-attack rs))

=>

RHYTHM: value: 16.000, duration: 0.250, rq: 1/4, is-rest: NIL,

score-rthm: 16.0f0, undotted-value: 16, num-flags: 2, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 0.250,

is-grace-note: NIL, needs-new-note: T, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 16, tuplet-scaler: 1, grace-note-duration: 0.05

20 SC/NAMED-OBJECT 697

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: S, tag: NIL,

data: S

SYNOPSIS:

(defmethod get-last-attack ((rs rthm-seq) &optional (warn t))

20.2.366 rthm-seq/get-last-bar

[rthm-seq] [Methods]

DESCRIPTION:

Get the last rthm-seq-bar object of a given rthm-seq object.

ARGUMENTS:

- A rthm-seq object.

RETURN VALUE:

A rthm-seq-bar object.

EXAMPLE:

;;; The method returns a rthm-seq-bar object

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(get-last-bar rs))

=>

RTHM-SEQ-BAR: time-sig: 6 (3 8), time-sig-given: T, bar-num: -1,

[...]

data: ((3 8) S S E. S)

SYNOPSIS:

(defmethod get-last-bar ((rs rthm-seq))

20 SC/NAMED-OBJECT 698

20.2.367 rthm-seq/get-last-event

[rthm-seq] [Methods]

DESCRIPTION:

Get the last event object (or rhythm object) of a given rthm-seq-bar

object.

ARGUMENTS:

- A rthm-seq object.

RETURN VALUE:

Returns an event (or rhythm) object.

EXAMPLE:

;; The last event is a rhythm object

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(get-last-event rs))

=>

RHYTHM: value: 16.000, duration: 0.250, rq: 1/4, is-rest: NIL,

score-rthm: 16.0f0, undotted-value: 16, num-flags: 2, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 0.250,

is-grace-note: NIL, needs-new-note: T, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 16, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: S, tag: NIL,

data: S

;; The last event is an event object

(let ((rs (make-rthm-seq ‘((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. ,(make-event ’c4 ’s)))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(get-last-event rs))

=>

EVENT: start-time: NIL, end-time: NIL,

20 SC/NAMED-OBJECT 699

[...]

PITCH: frequency: 261.6255569458008, midi-note: 60, midi-channel: NIL

[...]

RHYTHM: value: 16.000, duration: 0.250, rq: 1/4, is-rest: NIL,

[...]

NAMED-OBJECT: id: S, tag: NIL,

data: S

SYNOPSIS:

(defmethod get-last-event ((rs rthm-seq))

20.2.368 rthm-seq/get-multipliers

[rthm-seq] [Methods]

DESCRIPTION:

Get a list of factors by which a specified rhythmic unit must be multiplied

in order to create the rhythms of a given rthm-seq object.

NB: The get-multipliers method determines durations in the source rhythmic

material based on attacked notes only, so beginning ties will be

ignored and rests following an attack will count the same as if the

attacked note were tied to another note with the same duration as the

rest. For this reason, the results returned by the method when applied

to a rthm-seq object that contains multiple bars may differ from

applying the method to multiple rthm-seqs with single bars, albeit with

the same rhythms when seen as a group (see example below).

ARGUMENTS:

- A rthm-seq object.

- A rhythm unit, either as a number or a shorthand symbol (i.e. ’s)

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to round the results. T = round.

Default = NIL. NB: Lisp always rounds to even numbers, meaning x.5 may

sometimes round up and sometimes round down; thus (round 1.5) => 2, and

(round 2.5) => 2.

RETURN VALUE:

A list of numbers.

20 SC/NAMED-OBJECT 700

EXAMPLE:

;;; By default the method returns the list of multipliers un-rounded

(let ((rs (make-rthm-seq ’(seq1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4)))))))

(get-multipliers rs ’e))

=> (2.0 1.0 0.5 0.5)

;; Setting the optional argument to T rounds the results before returning

(let ((rs (make-rthm-seq ’(seq1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4)))))))

(get-multipliers rs ’e t))

=> (2 1 0 0)

;;; Applying the method to the a multiple-bar rthm-seq object may return

;;; different results than applying the method to each of the bars contained

;;; within that rthm-seq object as individual one-bar rthm-seq objects, as the

;;; method measures the distances between attacked notes, regardless of ties

;;; and rests.

(let ((rs1 (make-rthm-seq ’(seq1 ((((2 4) q +e. s))

:pitch-seq-palette ((1 2))))))

(rs2 (make-rthm-seq ’(seq2 ((((2 4) (s) e (s) q))

:pitch-seq-palette ((1 2))))))

(rs3 (make-rthm-seq ’(seq3 ((((2 4) +e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3))))))

(rs4 (make-rthm-seq ’(seq4 ((((2 4) q +e. s)

((s) e (s) q)

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3 4 5 6 7)))))))

(print (get-multipliers rs1 ’e))

(print (get-multipliers rs2 ’e))

(print (get-multipliers rs3 ’e))

(print (get-multipliers rs4 ’e)))

=>

(3.5 0.5)

(1.5 2.0)

(1.1666666666666665 0.6666666666666666 0.6666666666666666)

(3.5 1.0 1.5 3.5 1.1666666666666665 0.6666666666666666 0.6666666666666666)

SYNOPSIS:

(defmethod get-multipliers ((rs rthm-seq) rthm &optional round ignore)

20 SC/NAMED-OBJECT 701

20.2.369 rthm-seq/get-nth-attack

[rthm-seq] [Methods]

DESCRIPTION:

Gets the rhythm object for the nth note in a given rthm-seq object that

needs an attack, i.e. not a rest and not tied.

ARGUMENTS:

- The zero-based index number indicating which attack is sought.

- The given rthm-seq object in which to search.

OPTIONAL ARGUMENTS:

- T or NIL indicating whether to print an error message if the given index

is greater than the number of attacks (minus 1) in the rthm-seq object

(default = T).

RETURN VALUE:

A rhythm object.

EXAMPLE:

;; The method returns a rhythm object when successful

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(get-nth-attack 4 rs))

=>

RHYTHM: value: 16.000, duration: 0.250, rq: 1/4, is-rest: NIL,

score-rthm: 16.0f0, undotted-value: 16, num-flags: 2, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 0.250,

is-grace-note: NIL, needs-new-note: T, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 16, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: S, tag: NIL,

data: S

;; By default, the method drops into the debugger with an error when the

20 SC/NAMED-OBJECT 702

;; specified index is greater than the number of items in the given rthm-seq

;; object.

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(get-nth-attack 11 rs))

=>

rthm-seq::get-nth-attack: Couldn’t get attack with index 11

[Condition of type SIMPLE-ERROR]

;; This error can be suppressed, simply returning NIL, by setting the optional

;; argument to NIL.

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(get-nth-attack 11 rs nil))

=> NIL, 0, NIL

SYNOPSIS:

(defmethod get-nth-attack (index (rs rthm-seq)

&optional (error t))

20.2.370 rthm-seq/get-nth-bar

[rthm-seq] [Methods]

DESCRIPTION:

Get the nth rthm-seq-bar object from a given rthm-seq object.

ARGUMENTS:

- A rthm-seq object.

- An index number (zero-based).

RETURN VALUE:

Returns a rthm-seq-bar object if successful.

Returns NIL and prints a warning if the specified index number is greater

20 SC/NAMED-OBJECT 703

than the number of rthm-seq-bar objects (minus one) in the given rthm-seq

object.

EXAMPLE:

;;; The method returns a rhtm-seq-bar object when successful

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(get-nth-bar 1 rs))

=>

RTHM-SEQ-BAR: time-sig: 0 (2 4), time-sig-given: NIL, bar-num: -1,

[...]

NAMED-OBJECT: id: "NIL-bar2", tag: NIL,

data: ((E) Q (E))

;; Returns a warning and prints NIL when the specified index number is greater

;; than the number of rthm-seq-bar objects in the given rthm-seq object

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(get-nth-bar 11 rs))

=> NIL

WARNING: rthm-seq::rthm-seq-check-bounds: Illegal list reference: 11

SYNOPSIS:

(defmethod get-nth-bar (nth (rs rthm-seq))

20.2.371 rthm-seq/get-nth-non-rest-rhythm

[rthm-seq] [Methods]

DESCRIPTION:

Get the nth non-rest rhythm object stored in the given rthm-seq object.

ARGUMENTS:

- The zero-based index number indicating which non-rest-rhythm is sought.

- The given rthm-seq object in which to search.

20 SC/NAMED-OBJECT 704

OPTIONAL ARGUMENTS:

- T or NIL indicating whether to print an error message if the given index

is greater than the number of non-rest rhythms (minus 1) in given

rthm-seq object. (Default = T.)

RETURN VALUE:

A rhythm object.

Returns NIL if the given index is higher than the highest possible index of

non-rest rhythms in the given rthm-seq-bar object.

EXAMPLE:

;; The method returns a rhythm object when successful

(let ((rs (make-rthm-seq ’((((2 4) q e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3 4))))))

(get-nth-non-rest-rhythm 4 rs))

=>

RHYTHM: value: 4.000, duration: 1.000, rq: 1, is-rest: NIL,

score-rthm: 4.0f0, undotted-value: 4, num-flags: 0, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 1.000,

is-grace-note: NIL, needs-new-note: T, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 4, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: Q, tag: NIL,

data: Q

;; By default, the method drops into the debugger with an error when the

;; specified index is greater than the number of items in the given rthm-seq

;; object.

(let ((rs (make-rthm-seq ’((((2 4) q e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3 4))))))

(get-nth-non-rest-rhythm 11 rs))

=>

rthm-seq::get-nth-non-rest-rhythm: Couldn’t get non-rest rhythm with index 11

[Condition of type SIMPLE-ERROR]

20 SC/NAMED-OBJECT 705

;; This error can be suppressed, simply returning NIL, by setting the optional

;; argument to NIL.

(let ((rs (make-rthm-seq ’((((2 4) q e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3 4))))))

(get-nth-non-rest-rhythm 11 rs nil))

=> NIL

SYNOPSIS:

(defmethod get-nth-non-rest-rhythm (index (rs rthm-seq)

&optional (error t))

20.2.372 rthm-seq/get-nth-rhythm

[rthm-seq] [Methods]

DESCRIPTION:

Gets the rhythm (or event) object for the nth note in a given rthm-seq

object.

ARGUMENTS:

- The zero-based index number indicating which attack is sought.

- The given rthm-seq object in which to search.

OPTIONAL ARGUMENTS:

- T or NIL indicating whether to print an error message if the given index

is greater than the number of attacks (minus 1) in the rthm-seq object

(default = T).

RETURN VALUE:

A rhythm or event object.

EXAMPLE:

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

20 SC/NAMED-OBJECT 706

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(get-nth-rhythm 4 rs))

=>

RHYTHM: value: 8.000, duration: 0.500, rq: 1/2, is-rest: T,

score-rthm: 8.0f0, undotted-value: 8, num-flags: 1, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 0.500,

is-grace-note: NIL, needs-new-note: NIL, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 8, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: E, tag: NIL,

data: E

SYNOPSIS:

(defmethod get-nth-rhythm (index (rs rthm-seq) &optional (error t))

20.2.373 rthm-seq/get-rhythms

[rthm-seq] [Methods]

DESCRIPTION:

Get the rhythm objects in a given rthm-seq object, contained in a list.

ARGUMENTS:

- A rthm-seq object.

RETURN VALUE:

A list.

EXAMPLE:

;; Returns a list of rhythm objects

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 1 1 2 3 4))))))

(get-rhythms rs))

20 SC/NAMED-OBJECT 707

=>

(

RHYTHM: value: 4.000, duration: 1.000, rq: 1, is-rest: NIL,

[...]

RHYTHM: value: 8.000, duration: 0.500, rq: 1/2, is-rest: NIL,

[...]

RHYTHM: value: 16.000, duration: 0.250, rq: 1/4, is-rest: NIL,

[...]

RHYTHM: value: 16.000, duration: 0.250, rq: 1/4, is-rest: NIL,

[...]

RHYTHM: value: 8.000, duration: 0.500, rq: 1/2, is-rest: T,

[...]

RHYTHM: value: 4.000, duration: 1.000, rq: 1, is-rest: NIL,

[...]

RHYTHM: value: 8.000, duration: 0.500, rq: 1/2, is-rest: T,

[...]

RHYTHM: value: 16.000, duration: 0.250, rq: 1/4, is-rest: NIL,

[...]

RHYTHM: value: 16.000, duration: 0.250, rq: 1/4, is-rest: NIL,

[...]

RHYTHM: value: 5.333, duration: 0.750, rq: 3/4, is-rest: NIL,

[...]

RHYTHM: value: 16.000, duration: 0.250, rq: 1/4, is-rest: NIL,

[...]

)

;; Get just the rhythm labels from the same rthm-seq object

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 1 1 2 3 4))))))

(loop for r in (get-rhythms rs) collect (data r)))

=> ("Q" "E" S S E Q E S S E. S)

SYNOPSIS:

(defmethod get-rhythms ((rs rthm-seq))

20.2.374 rthm-seq/get-time-sigs

[rthm-seq] [Methods]

DESCRIPTION:

20 SC/NAMED-OBJECT 708

Return a list of time-sig objects for each of the rthm-seq-bar objects in a

given rthm-seq object.

One time signature is returned for each rthm-seq-bar object, even if two or

more consecutive objects have the same time signature.

Optionally, this method can return a list of time signatures in list form

(e.g. ((2 4) (3 4)) etc.) rather than a list of time-sig objects.

ARGUMENTS:

- A rthm-seq object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to return the time signatures as time-sig

objects or a list of two-item lists. T = time-sig objects. Default = T.

RETURN VALUE:

Returns a list of time-sig objects by default. Optionally a list of time

signatures as two-item lists can be returned instead.

EXAMPLE:

;; Return a list of time-sig objects, one for each rthm-seq-bar object even if

;; consecutive rthm-seq-bar objects have the same time signature

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 1 1 2 3 4))))))

(get-time-sigs rs))

=> (

TIME-SIG: num: 2, denom: 4, duration: 2.0, compound: NIL, midi-clocks: 24, num-beats: 2

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "0204", tag: NIL,

data: (2 4)

TIME-SIG: num: 2, denom: 4, duration: 2.0, compound: NIL, midi-clocks: 24, num-beats: 2

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

20 SC/NAMED-OBJECT 709

NAMED-OBJECT: id: "0204", tag: NIL,

data: (2 4)

TIME-SIG: num: 3, denom: 8, duration: 1.5, compound: T, midi-clocks: 24, num-beats: 1

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "0308", tag: NIL,

data: (3 8)

)

;; Return the same as a list of two-item lists instead

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 1 1 2 3 4))))))

(get-time-sigs rs t))

=> ((2 4) (2 4) (3 8))

SYNOPSIS:

(defmethod get-time-sigs ((rs rthm-seq) &optional as-list)

20.2.375 rthm-seq/insert-bar

[rthm-seq] [Methods]

DESCRIPTION:

Insert a rthm-seq-bar object into the given rthm-seq object and

re-initialize it. If there’s a pitch-seq/pitch-seq-palette given (list of

numbers, or list of lists), splice this in at the appropriate location.

NB: This method sets the values of the individual slots but leaves the DATA

slot untouched (for cases in which the user might want to see where the

new data originated from, or otherwise use the old data somehow, such

as in a new rthm-seq object).

ARGUMENTS:

- A rthm-seq object.

- A rthm-seq-bar object.

20 SC/NAMED-OBJECT 710

- A bar number (integer). This argument is the bar number of the bar to be

inserted, relative to the rthm-seq and 1-based; e.g., if 3, then it will

come before the present third bar.

OPTIONAL ARGUMENTS:

- A pitch-seq object.

- (three ignore arguments for sc-internal use only)

RETURN VALUE:

Returns T if successful.

Drops into the debugger with an error if the specified bar-number argument

is greater than the number of rthm-seq-bar objects in the given rthm-seq.

EXAMPLE:

;; The method returns T when successful

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(insert-bar rs (make-rthm-seq-bar ’((3 4) q. e e s s)) 3))

=> T

;; Create a rthm-seq object with three rthm-seq-bars and print the contents of

;; the NUM-BARS slot to confirm that it contains 3 objects. Insert a bar before

;; the third item and print the value of the NUM-BARS slot again to confirm

;; that there are now 4 objects. Use print-simple and get-nth-bar to confirm

;; that the 3rd object (with a zero-based index of 2) is indeed the one

;; inserted.

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(print (num-bars rs))

(insert-bar rs (make-rthm-seq-bar ’((3 4) q. e e s s)) 3)

(print (num-bars rs))

(print-simple (get-nth-bar 2 rs)))

=>

3

20 SC/NAMED-OBJECT 711

4

(3 4): note Q., note E, note E, note S, note S,

;; Attempting to insert a bar with an index number greater than the number of

;; objects currently in the rthm-seq object drops into the debugger with an

;; error

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(insert-bar rs (make-rthm-seq-bar ’((3 4) q. e e s s)) 11))

=>

rthm-seq::insert-bar: only 3 bars in rthm-seq!

[Condition of type SIMPLE-ERROR]

;; Inserting a rthm-seq-bar using the optional pitch-seq argument splices the

;; specified value of that argument into the existing pitch-seq-palette

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 1 1 2 3 4))))))

(insert-bar rs (make-rthm-seq-bar ’((3 4) q. e e s s)) 3 ’((1 2 3 4 5)))

(data (get-first (pitch-seq-palette rs))))

=> (1 2 3 1 1 2 3 4 5 1 2 3 4)

SYNOPSIS:

(defmethod insert-bar ((rs rthm-seq) (rsb rthm-seq-bar) bar-num

&optional pitch-seq ignore1 ignore2 ignore3)

20.2.376 rthm-seq/make-rhythms

[rthm-seq] [Functions]

DATE:

11 Feb 2010

DESCRIPTION:

Initialize a group of rhythms, taking advantage of rthm-seq’s ability to

add tuplet and beaming info.

ARGUMENTS:

20 SC/NAMED-OBJECT 712

- A list of rhythms equalling one full bar

- The time signature of that bar as a list (e.g (2 4))

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to divide the resulting list into sublists,

each of which are the equivalent of one beat long. Default = NIL.

RETURN VALUE:

- A list

EXAMPLE:

;; Apply the function and test that the result is a list

(let ((rs (make-rhythms ’(q e s s) ’(2 4))))

(listp rs))

=> T

;; Apply the function and see that we’ve created a list with 4 elements

(let ((rs (make-rhythms ’(q e s s) ’(2 4))))

(length rs))

=> 4

;; Apply the function with the optional split-into-beats argument set to T and

;; see that we now have two lists, each equalling one beat in combined

;; length. Print the data of the contents.

(let ((rs (make-rhythms ’(q e s s) ’(2 4) t)))

(print (length rs))

(print (loop for b in rs collect (length b)))

(print (loop for b in rs

collect (loop for r in b

collect (data r)))))

=>

2

(1 3)

((Q) (E S S))

;; Apply the function using beam indications then print the BEAM slots of the

;; individual rhythm objects contained in the result

(let ((rs (make-rhythms ’(q - e s s -) ’(2 4))))

(loop for r in rs collect (beam r)))

20 SC/NAMED-OBJECT 713

=> (NIL 1 NIL 0)

;; Apply the function using tuplet indications then print the BRACKET slots of

;; the individual rhythms objects contained in the result

(let ((rs (make-rhythms ’({ 3 te te te } - e s s -) ’(2 4))))

(loop for r in rs collect (bracket r)))

=> (((1 3)) (-1) (1) NIL NIL NIL)

SYNOPSIS:

(defun make-rhythms (bar time-sig &optional split-into-beats)

20.2.377 rthm-seq/make-rthm-seq

[rthm-seq] [Functions]

DESCRIPTION:

Creates a rthm-seq object from a list of at least bars and generally also a

list of pitch sequences.

ARGUMENTS:

- A list with the following items:

- A symbol that will be used as the ID of the seq

- Another list, containing two items:

- A list of rthm-seq-bars and

- A list of pitch-seqs attached to the :pitch-seq-palette accessor

OPTIONAL ARGUMENTS:

keyword argument

- :psp-inversions. T or NIL to indicate whether to also automatically

generate and add inverted forms of the specified pitch-seq objects.

T = generate and add. Default = NIL.

RETURN VALUE:

Returns a rthm-seq object.

EXAMPLE:

20 SC/NAMED-OBJECT 714

;; Make a rthm-seq object with the ID seq1 that contains one 2/4 bar of

;; rhythms and one pitch sequence in the pitch-seq-palette

(make-rthm-seq ’(seq1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4)))))

=>

RTHM-SEQ: num-bars: 1

num-rhythms: 4

num-notes: 4

num-score-notes: 4

num-rests: 0

duration: 2.0

psp-inversions: NIL

marks: NIL

time-sigs-tag: NIL

handled-first-note-tie: NIL

(for brevity’s sake, slots pitch-seq-palette and bars are not printed)

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: SEQ1, tag: NIL,

data: ((((2 4) Q E S S)) PITCH-SEQ-PALETTE (1 2 3 4))

;; A rthm-seq object with two bars of rhythms and two pitch-seqs in the

;; pitch-seq-palette. There must be as many items in each pitch-seq list as

;; there are rhythms in each rthm-seq-bar.

(make-rthm-seq ’(seq1 ((((2 4) q e s s)

((e) q (e)))

:pitch-seq-palette ((1 2 3 4 5)

(2 4 6 8 10)))))

=>

RTHM-SEQ: num-bars: 2

num-rhythms: 7

num-notes: 5

num-score-notes: 5

num-rests: 2

duration: 4.0

psp-inversions: NIL

marks: NIL

time-sigs-tag: NIL

handled-first-note-tie: NIL

(for brevity’s sake, slots pitch-seq-palette and bars are not printed)

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: SEQ1, tag: NIL,

data: ((((2 4) Q E S S) ((E) Q (E))) PITCH-SEQ-PALETTE

20 SC/NAMED-OBJECT 715

((1 2 3 4 5) (2 4 6 8 10)))

;; The pitch-seq-palette may be omitted, and time signatures may be changed

(make-rthm-seq ’(seq1 ((((2 4) q e s s)

((e) q (e))

((3 8) s s e. s)))))

=>

RTHM-SEQ: num-bars: 3

num-rhythms: 11

num-notes: 9

num-score-notes: 9

num-rests: 2

duration: 5.5

psp-inversions: NIL

marks: NIL

time-sigs-tag: NIL

handled-first-note-tie: NIL

(for brevity’s sake, slots pitch-seq-palette and bars are not printed)

SCLIST: sclist-length: 1, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: SEQ1, tag: NIL,

data: ((((2 4) Q E S S) ((E) Q (E)) ((3 8) S S E. S)))

;;; With :psp-inversions set to T, the inverted forms of the specified

;;; pitch-seq are automatically generated and added

(let ((mrs

(make-rthm-seq ’(seq1 ((((2 4) q e s s))

:pitch-seq-palette ((1 2 3 4))))

:psp-inversions t)))

(data (pitch-seq-palette mrs)))

=> (

PITCH-SEQ: notes: NIL

highest: 4

lowest: 1

original-data: (1 2 3 4)

user-id: NIL

instruments: NIL

relative-notes: (not printed for sake of brevity)

relative-notes-length: 25

SCLIST: sclist-length: 4, bounds-alert: T, copy: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "rthm-seq-SEQ1-pitch-seq-palette-ps-1", tag: NIL,

data: (1 2 3 4)

20 SC/NAMED-OBJECT 716

PITCH-SEQ: notes: NIL

highest: 4

lowest: 1

original-data: (4 3 2 1)

user-id: NIL

instruments: NIL

relative-notes: (not printed for sake of brevity)

relative-notes-length: 25

SCLIST: sclist-length: 4, bounds-alert: T, copy: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "rthm-seq-SEQ1-pitch-seq-palette-ps-1-inverted", tag: NIL,

data: (4 3 2 1)

)

SYNOPSIS:

(defun make-rthm-seq (rs &key (psp-inversions nil))

20.2.378 rthm-seq/make-rthm-seq-from-fragments

[rthm-seq] [Functions]

DATE:

Jan-2010

DESCRIPTION:

Make a rthm-seq object from a predefined list of rhythm fragments.

NB: No pitch-seqs can be passed as yet.

ARGUMENTS:

- The ID of the rthm-seq object to be made.

- A list of rhythm lists (fragments) paired with key IDs. The rhythm lists

take the form of rthm-seq-bar definitions without the time signatures.

- A list of lists containing any combination of the key IDs from the list

of fragments. These will be collated to create the resulting rthm-seq

object. Each element will make up one whole bar.

- A list of meters. These can be given either as single numerators, whereby

the optional <default-beat> argument will then be the denominator) or

20 SC/NAMED-OBJECT 717

two-item lists consisting of (num denom). There must be one meter for each

item in the list of references, and the meters must correspond to the

number of beats in the corresponding item from the list of references.

RETURN VALUE:

A rthm-seq object.

EXAMPLE:

(let ((frags ’((1 (- s s - (e)))

(2 (s (s) (s) s))

(3 ((s) - s e -))

(4 (- s s (s) s -))

(5 ((e) - s s -))

(6 ((q))))))

(make-rthm-seq-from-fragments

’test-rs frags

’((1 2 3) (1 4) (6 1) (5 6))

’((3 4) (2 4) (2 4) (2 4))))

=>

RTHM-SEQ: num-bars: 4

num-rhythms: 25

num-notes: 15

num-score-notes: 15

num-rests: 10

duration: 9.0

psp-inversions: NIL

marks: NIL

time-sigs-tag: NIL

handled-first-note-tie: NIL

(for brevity’s sake, slots pitch-seq-palette and bars are not printed)

SCLIST: sclist-length: 1, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: TEST-RS, tag: NIL,

data: ((((3 4) - S S - (E) S (S) (S) S (S) - S E -)

((2 4) - S S - (E) - S S (S) S -) ((Q) - S S - (E)) ((E) - S S - (Q))))

SYNOPSIS:

(defun make-rthm-seq-from-fragments (id fragments references meters

&optional (default-beat 4))

20 SC/NAMED-OBJECT 718

20.2.379 rthm-seq/make-rthm-seq-from-unit-multipliers

[rthm-seq] [Functions]

DESCRIPTION:

Given a rhythmic unit, e.g. 32, a list of multipliers (e.g. ’(7 9 16)),

and a time signature (e.g. ’(4 4)), return a rthm-seq object made up of

bars whose rhythms are multiples of the specified unit by the numbers in

the multipliers list.

At this point the unit should be a whole number divisor of the beat in the

time signature, i.e. quintuple eighths won’t work in 4/4.

NB: Setting the auto-beam keyword argument to T can result in errors if

creating durations longer than 1 beat, as auto-beam will call

get-beats. :auto-beam is therefore set to NIL by default.

ARGUMENTS:

- A rhythmic duration unit.

- A list of multipliers.

- A time signature.

OPTIONAL ARGUMENTS:

keyword arguments:

- :tag. A symbol that is another name, description etc. for the given

object. The tag may be used for identification but not for searching

purposes. Default = NIL.

- :auto-beam. T or NIL. When T, the function will attempt to automatically

set beaming indicators among the resulting rthm-seq-bar objects. This can

result in errors if the resulting rhythms have a duration of more than 1

beat. Default = NIL.

- :id. A symbol that will be the ID of the given object.

Default = "from-multipliers".

- :tuplet. An integer or NIL. If an integer, the function will

automatically place tuplet brackets of that value above beats consisting

of tuplet rhythms. NB: This function will only place the same value over

all tuplets. Default = NIL.

RETURN VALUE:

Returns a rthm-seq object.

EXAMPLE:

20 SC/NAMED-OBJECT 719

;; Make a rthm-seq object using the rhythmic unit of a 16th-note, rhythms that

;; are 4, 2, 2, 4 and 4 16th-notes long, and a time signature of 2/4; then

;; print-simple the object returned to see the results.

(let ((rs (make-rthm-seq-from-unit-multipliers ’s ’(4 2 2 4 4) ’(2 4))))

(print-simple rs))

=>

rthm-seq from-multipliers

(2 4): note Q, note E, note E,

(2 4): note Q, note Q,

;; Make a rthm-seq object using the rhythmic unit of a 32nd note, combinations

;; of irregular duration, and a time signature of 4/4; then print-simple the

;; returned object to see the results.

(let ((rs (make-rthm-seq-from-unit-multipliers 32 ’(7 9 16) ’(4 4))))

(print-simple rs))

=>

rthm-seq from-multipliers

(4 4): note E.., note 32, note Q, note H

;; The print-simple output of the above example disregards the ties. We can

;; check to make sure that there are only three attacked rhythms in the result

;; by reading the values of the IS-TIED-FROM and IS-TIED-TO slots, which show

;; that the 32 is tied to the Q

(let ((rs (make-rthm-seq-from-unit-multipliers 32 ’(7 9 16) ’(4 4))))

(loop for b in (bars rs)

collect (loop for r in (rhythms b) collect (is-tied-from r))

collect (loop for r in (rhythms b) collect (is-tied-to r))))

=> ((NIL T NIL NIL) (NIL NIL T NIL))

;;; Using with a tuplet rhythm (’te) and setting the :tuplet option to 3 so

;;; that triplet brackets are automatically placed.

(let ((rs (make-rthm-seq-from-unit-multipliers ’te ’(7 9 16) ’(4 4)

:tuplet 3)))

(loop for b in (bars rs)

collect (loop for r in (rhythms b) collect (bracket r))))

=> ((NIL NIL ((1 3)) (1) NIL) (NIL ((1 3)) (1) NIL NIL)

(NIL NIL ((1 3)) (1) NIL))

SYNOPSIS:

(defun make-rthm-seq-from-unit-multipliers (unit multipliers time-sig

&key

20 SC/NAMED-OBJECT 720

;; a number for brackets over

;; each beat.

(tuplet nil)

(tag nil)

(auto-beam nil) ; see above

(id "from-multipliers"))

20.2.380 rthm-seq/rs-subseq

[rthm-seq] [Methods]

DATE:

30th September 2013

DESCRIPTION:

Extract a new rthm-seq object from the bars of an existing rthm-seq.

NB other -subseq methods are more like Lisp’s subseq but as this is for the

end user it’s a little different in the use of its indices.

ARGUMENTS:

- the original rthm-seq object

- the start bar (1-based)

OPTIONAL ARGUMENTS:

- the end bar (1-based and (unlike Lisp’s subseq function) inclusive). If

NIL, we’ll use the original end bar. Default = NIL.

RETURN VALUE:

A new rthm-seq object.

EXAMPLE: SYNOPSIS:

(defmethod rs-subseq ((rs rthm-seq) start &optional end)

20.2.381 rthm-seq/scale

[rthm-seq] [Methods]

DESCRIPTION:

20 SC/NAMED-OBJECT 721

Scale the durations of the rhythm objects in a given rthm-seq object by the

specified factor.

NB: As is evident in the examples below, this method does not replace the

original data in the rthm-seq object’s DATA slot.

ARGUMENTS:

- A rthm-seq object.

- A real number that is the scaling factor.

RETURN VALUE:

Returns a rthm-seq object.

EXAMPLE:

;; The method returns a rthm-seq object.

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 1 1 2 3 4))))))

(scale rs 3))

=>

RTHM-SEQ: num-bars: 3

num-rhythms: 11

num-notes: 8

num-score-notes: 9

num-rests: 2

duration: 16.5

psp-inversions: NIL

marks: NIL

time-sigs-tag: NIL

handled-first-note-tie: NIL

(for brevity’s sake, slots pitch-seq-palette and bars are not printed)

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: ((((2 4) Q+E S S) ((E) Q (E)) ((3 8) S S E. S)) PITCH-SEQ-PALETTE

((1 2 3 1 1 2 3 4)))

;; Create a rthm-seq object, scale the durations by 3 times using the scale

;; method, and print-simple the corresponding slots to see the results

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

20 SC/NAMED-OBJECT 722

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 1 1 2 3 4))))))

(print-simple (scale rs 3)))

=>

rthm-seq NIL

(6 4): note H., note Q., note E., note E.,

(6 4): rest Q., note H., rest Q.,

(9 8): note E., note E., note E., note E.,

SYNOPSIS:

(defmethod scale ((rs rthm-seq) scaler

&optional ignore1 ignore2 ignore3)

20.2.382 rthm-seq/set-nth-attack

[rthm-seq] [Methods]

DESCRIPTION:

Sets the value of the nth rhythm object of a given rthm-seq object that

needs an attack; i.e., not a rest and not a tied note.

NB: This method does not check to ensure that the resulting rthm-seq bars

contain the right number of beats.

ARGUMENTS:

- A zero-based index number for the attacked note to change.

- An event.

- A rthm-seq object.

OPTIONAL ARGUMENTS:

- T or NIL indicating whether to print an error message if the given index

is greater than the number of attacks (minus 1) in the rthm-seq object

(default = T).

RETURN VALUE:

- An event object.

EXAMPLE:

20 SC/NAMED-OBJECT 723

;; The method returns an event object

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(set-nth-attack 2 (make-event ’c4 ’q) rs))

=>

EVENT: start-time: NIL, end-time: NIL,

[...]

pitch-or-chord:

PITCH: frequency: 261.6255569458008, midi-note: 60, midi-channel: NIL

[...]

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: C4, tag: NIL,

data: C4

[...]

written-pitch-or-chord: NIL

RHYTHM: value: 4.000, duration: 1.000, rq: 1, is-rest: NIL,

[...]

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: Q, tag: NIL,

data: Q

;; Create a rthm-seq object, apply set-nth-attack, print the corresponding

;; slots to see the change

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(set-nth-attack 2 (make-event ’c4 ’q) rs)

(print-simple rs))

=>

rthm-seq NIL

(2 4): note Q, note E, note S, C4 Q,

(2 4): rest E, note Q, rest E,

(3 8): note S, note S, note E., note S,

;; By default, the method drops into the debugger with an error when the

;; specified index is greater than the number of items in the given rthm-seq

;; object.

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

20 SC/NAMED-OBJECT 724

(set-nth-attack 11 (make-event ’c4 ’q) rs))

=>

rthm-seq::set-nth-attack: Can’t set attack 11 as only 8 notes in the rthm-seq

[Condition of type SIMPLE-ERROR]

;; This error can be suppressed, simply returning NIL, by setting the optional

;; argument to NIL.

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(set-nth-attack 11 (make-event ’c4 ’q) rs nil))

=> NIL

SYNOPSIS:

(defmethod set-nth-attack (index (e event) (rs rthm-seq)

&optional (error t))

20.2.383 rthm-seq/set-nth-bar

[rthm-seq] [Methods]

DESCRIPTION:

Change the contents of the nth rthm-seq-bar object in the given rthm-seq.

ARGUMENTS:

- A zero-based index number for the bar to change.

- A rthm-seq-bar object containing the new bar.

- A rthm-seq object.

RETURN VALUE:

A rthm-seq-bar object.

EXAMPLE:

;; The method returns what is passed to it as the new-bar argument (generally a

;; rthm-seq-bar object.

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

20 SC/NAMED-OBJECT 725

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(set-nth-bar 1 (make-rthm-seq-bar ’((2 4) (s) e (s) q)) rs))

=>

RTHM-SEQ-BAR: time-sig: 0 (2 4), time-sig-given: T, bar-num: -1,

[...]

data: ((2 4) (S) E (S) Q)

;; Create a rthm-seq object, change the second bar (index 1) using the

;; set-nth-bar method, and print the contents of the rhythms data to see the

;; changes.

(let ((rs (make-rthm-seq ’((((2 4) q+e s s)

((e) q (e))

((3 8) s s e. s))

:pitch-seq-palette ((1 2 3 4 1 1 2 3))))))

(set-nth-bar 1 (make-rthm-seq-bar ’((2 4) (s) e (s) q)) rs)

(print-simple rs))

=>

rthm-seq NIL

(2 4): note Q, note E, note S, note S,

(2 4): rest S, note E, rest S, note Q,

(3 8): note S, note S, note E., note S,

SYNOPSIS:

(defmethod set-nth-bar (index new-bar (rs rthm-seq))

20.2.384 rthm-seq/split

[rthm-seq] [Methods]

DATE:

27 Jan 2011

DESCRIPTION:

Splits the rthm-seq-bar objects of a given rthm-seq object into multiple

smaller rthm-seq-bar objects, creating a new rthm-seq object with a greater

number of bars than the original. This will only work if the given

rthm-seq-bar objects can be split into whole beats; e.g., a 4/4 bar will

not be split into 5/8 + 3/8.

20 SC/NAMED-OBJECT 726

The keyword arguments :min-beats and :max-beats serve as guidelines rather

than strict cut-offs. In some cases, the method may only be able to

effectively split the given rthm-seq-bar by dividing it into segments that

slightly exceed the length stipulated by these arguments (see example

below).

Depending on the min-beats/max-beats arguments stipulated by the user or

the rhythmic structure of the given rthm-seq-bar objects, the given

rthm-seq-bar or rthm-seq objects may not be splittable, in which case NIL

is returned. If the keyword argument :warn is set to T, a warning will be

also printed in such cases.

NB: This method sets the values of the individual slots but leaves the DATA

slot untouched (for cases in which the user might want to see where the new

data originated from, or otherwise use the old data somehow, such as in a

new rthm-seq object).

ARGUMENTS:

- A rthm-seq object.

OPTIONAL ARGUMENTS:

keyword arguments

- :min-beats. This argument takes an integer value to indicate the minimum

number of beats in any of the new rthm-seq-bar objects created. This

serves as a guideline only and may occasionally be exceeded in value by

the method. Default value = 2.

- :max-beats. This argument takes an integer value to indicate the maximum

number of beats in any of the new rthm-seq-bar objects created. This

serves as a guideline only and may occasionally be exceeded in value by

the method. Default value = 5.

- :warn. Indicates whether to print a warning if the rthm-seq-bar object is

unsplittable. Value T = print a warning. Defaults to NIL.

RETURN VALUE:

A rthm-seq object.

EXAMPLE:

;; The method returns a new rthm-seq object

(let ((rs (make-rthm-seq ’((((4 4) q e s s (e) e e (e))

((3 4) s s e s e s e. s)

((5 4) h q. e e s s))

20 SC/NAMED-OBJECT 727

:pitch-seq-palette ((1 2 3 4 5 6 1 2 3 4 5 6 7 8 1 2

3 4 5 6))))))

(split rs))

=>

RTHM-SEQ: num-bars: 5

num-rhythms: 22

num-notes: 20

num-score-notes: 20

num-rests: 2

duration: 12.0

psp-inversions: NIL

marks: NIL

time-sigs-tag: NIL

handled-first-note-tie: NIL

(for brevity’s sake, slots pitch-seq-palette and bars are not printed)

SCLIST: sclist-length: 3, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: ((((4 4) Q E S S (E) E E (E)) ((3 4) S S E S E S E. S)

((5 4) H Q. E E S S))

PITCH-SEQ-PALETTE ((1 2 3 4 5 6 1 2 3 4 5 6 7 8 1 2 3 4 5 6)))

;; Without setting the :min-beats and :max-beats arguments, the following

;; rthm-seq object is broken down from 3 to 5 rthm-seq-bar objects

(let* ((rs (make-rthm-seq ’((((4 4) q e s s (e) e e (e))

((3 4) s s e s e s e. s)

((5 4) h q. e e s s))

:pitch-seq-palette ((1 2 3 4 5 6 1 2 3 4 5 6 7 8 1 2

3 4 5 6)))))

(rssplt (split rs)))

(print-simple rssplt))

=>

rthm-seq NIL

(2 4): note Q, note E, note S, note S,

(2 4): rest E, note E, note E, rest E,

(3 4): note S, note S, note E, note S, note E, note S, note E., note S,

(2 4): note H,

(3 4): note Q., note E, note E, note S, note S,

;; Setting :min-beats to 4 affects the resulting subdivisions to larger bars

(let* ((rs (make-rthm-seq ’((((4 4) q e s s (e) e e (e))

((3 4) s s e s e s e. s)

((5 4) h q. e e s s))

20 SC/NAMED-OBJECT 728

:pitch-seq-palette ((1 2 3 4 5 6 1 2 3 4 5 6 7 8 1 2

3 4 5 6)))))

(rssplt (split rs :min-beats 4)))

(print-simple rssplt))

=>

rthm-seq NIL

(4 4): note Q, note E, note S, note S, rest E, note E, note E, rest E,

(3 4): note S, note S, note E, note S, note E, note S, note E., note S,

(5 4): note H, note Q., note E, note E, note S, note S,

;; Even though :max-beats is set to 2, an occasional 3/4 bar is constructed

(let* ((rs (make-rthm-seq ’((((4 4) q e s s (e) e e (e))

((3 4) s s e s e s e. s)

((5 4) h q. e e s s))

:pitch-seq-palette ((1 2 3 4 5 6 1 2 3 4 5 6 7 8 1 2

3 4 5 6)))))

(rssplt (split rs :max-beats 2)))

(print-simple rssplt))

=>

rthm-seq NIL

(2 4): note Q, note E, note S, note S,

(2 4): rest E, note E, note E, rest E,

(3 4): note S, note S, note E, note S, note E, note S, note E., note S,

(2 4): note H,

(3 4): note Q., note E, note E, note S, note S,

SYNOPSIS:

(defmethod split ((rs rthm-seq)

&key (min-beats 2) (max-beats 5) warn (clone t))

20.2.385 rthm-seq/split-into-single-bars

[rthm-seq] [Methods]

DESCRIPTION:

Split a rthm-seq into single bar rthm-seqs. The pitch-seq-palette will be

used to set the pitch-seqs of the new rthm-seqs.

ARGUMENTS:

- a rthm-seq object

20 SC/NAMED-OBJECT 729

OPTIONAL ARGUMENTS:

- whether to clone each bar or just the original. Default = T = clone.

RETURN VALUE:

a list of rthm-seq objects

SYNOPSIS:

(defmethod split-into-single-bars ((rs rthm-seq) &optional (clone t))

20.2.386 sclist/rthm-seq-bar

[sclist] [Classes]

NAME:

rthm-seq-bar

File: rthm-seq-bar.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

rthm-seq-bar

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the rthm-seq-bar class, objects of

which make up the individual bars that reside in a

rhythmic sequence. This class is responsible for parsing

lists containing rhythms and time signatures (but not

parsing these things themselves--that is done by separate

classes).

Author: Michael Edwards: m@michael-edwards.org

Creation date: 13th February 2001

$$ Last modified: 20:40:55 Thu Sep 11 2014 BST

SVN ID: $Id: rthm-seq-bar.lsp 5048 2014-10-20 17:10:38Z medward2 $

20 SC/NAMED-OBJECT 730

20.2.387 rthm-seq-bar/all-rests?

[rthm-seq-bar] [Methods]

DESCRIPTION:

Test whether all rhythms in a rthm-seq-bar object are rests.

ARGUMENTS:

- A rthm-seq-bar object.

RETURN VALUE:

T if all rhythms are rests, otherwise NIL

EXAMPLE:

(let ((rsb (make-rthm-seq-bar ’((2 4) (q) (e) (s) (s)))))

(all-rests? rsb))

=> T

(let ((rsb (make-rthm-seq-bar ’((2 4) q e s s))))

(all-rests? rsb))

=> NIL

SYNOPSIS:

(defmethod all-rests? ((rsb rthm-seq-bar))

20.2.388 rthm-seq-bar/auto-beam

[rthm-seq-bar] [Methods]

DESCRIPTION:

Automatically add beaming indications to the rhythm objects of the given

rthm-seq-bar object. This will only set one beam group per beat.

NB: This method does not modify the DATA slot of the rthm-seq-bar object

itself. Instead, it modifies the BEAM value for the individual RHYTHMs.

ARGUMENTS:

20 SC/NAMED-OBJECT 731

- A rthm-seq-bar object.

OPTIONAL ARGUMENTS:

- The beat basis for the given rthm-seq-bar. This will affect which notes

get beamed together. This value can be either numeric (4, 8 16 etc.) or

alphabetic (q, e, s etc). If no beat is given, the method defaults this

value to NIL and takes the beat from the current time signature.

- Check-dur. This argument can be set to T or NIL. If T, the method will

make sure there is a complete beat of rhythms for each beat of the bar.

Default = T.

RETURN VALUE:

Returns the rthm-seq-bar-object

EXAMPLE:

(let ((rsb (make-rthm-seq-bar ’((2 4) e e s s s s))))

(auto-beam rsb))

=> NIL

(let ((rsb (make-rthm-seq-bar ’((2 4) e e s s s s))))

(auto-beam rsb)

(loop for r in (rhythms rsb) collect (beam r)))

=> (1 0 1 NIL NIL 0)

(let ((rsb (make-rthm-seq-bar ’((2 4) e e s s s s))))

(auto-beam rsb 8)

(loop for r in (rhythms rsb) collect (beam r)))

=> (NIL NIL 1 0 1 0)

(let ((rsb (make-rthm-seq-bar ’((2 4) e e s s s s))))

(auto-beam rsb 8 t)

(loop for r in (rhythms rsb) collect (beam r)))

=> (NIL NIL 1 0 1 0)

(let ((rsb (make-rthm-seq-bar ’((2 4) e e s s s s))))

(auto-beam rsb 8 nil)

(loop for r in (rhythms rsb) collect (beam r)))

=> (NIL NIL 1 0 1 0)

20 SC/NAMED-OBJECT 732

SYNOPSIS:

(defmethod auto-beam ((rsb rthm-seq-bar) &optional (beat nil) (check-dur t))

20.2.389 rthm-seq-bar/auto-put-tuplet-bracket-on-beats

[rthm-seq-bar] [Methods]

DESCRIPTION:

Given a rthm-seq-bar object with tuplet rhythms and an indication of which

tuplet value to place, this method will automatically add the appropriate

tuplet bracket to the beats of the bar in the printed score output. If

the TUPLET argument is set to NIL, the method will proceed on the basis of

best-guessing rules.

NB: This method may produce results that encapsulate an entire beat when

applying brackets to a portion of that beat. Thus bracketing the rhythm

(e ts ts ts) will return

{ 3 e. ts ts ts } rather than

(e { 3 ts ts ts })

ARGUMENTS:

- A rthm-seq-bar object

- An integer indicating the tuplet value (e.g. 3 for triplets, 5 for

quintuplets etc.)

RETURN VALUE:

Returns T.

OPTIONAL ARGUMENTS:

- An integer indicating beat basis for the bar, or NIL. If NIL (default),

the beat is taken from the time signature.

- An integer indicating the beat number within the bar to look for

tuplets, or T. If T (default), all beats in the bar will be examined for

possible tuplets.

- T or NIL to indicate whether to delete the tuplet bracket indicators

already present in the given rthm-seq-bar object. T = delete.

Default = T.

EXAMPLE:

20 SC/NAMED-OBJECT 733

(let ((rsb (make-rthm-seq-bar ’((2 4) te te te q))))

(tuplets rsb))

=> NIL

(let ((rsb (make-rthm-seq-bar ’((2 4) te te te q))))

(loop for r in (rhythms rsb) collect (bracket r))

=> (NIL NIL NIL NIL)

(let ((rsb (make-rthm-seq-bar ’((2 4) te te te q))))

(auto-put-tuplet-bracket-on-beats rsb 3))

=> T

(let ((rsb (make-rthm-seq-bar ’((2 4) te te te q))))

(auto-put-tuplet-bracket-on-beats rsb 3)

(print (tuplets rsb))

(print (loop for r in (rhythms rsb) collect (bracket r))))

=>

((3 0 2))

(((1 3)) (-1) (1) NIL)

(let ((rsb (make-rthm-seq-bar ’((2 4) te te te q))))

(auto-put-tuplet-bracket-on-beats rsb nil)

(tuplets rsb))

=> ((3 0 2))

;;; The method may bracket the entire beat, returning ((3 1 4)) rather than

;;; ((3 2 4))

(let ((rsb (make-rthm-seq-bar ’((2 4) q e ts ts ts))))

(auto-put-tuplet-bracket-on-beats rsb 3)

(tuplets rsb))

=> ((3 1 4))

SYNOPSIS:

(defmethod auto-put-tuplet-bracket-on-beats ((rsb rthm-seq-bar) tuplet

&optional

(beat nil)

;; can be a beat number or t for

;; all

(beat-number t)

20 SC/NAMED-OBJECT 734

;; delete the tuplets already

;; there?

(delete t))

20.2.390 rthm-seq-bar/auto-tuplets

[rthm-seq-bar] [Methods]

DESCRIPTION:

Automatically place the data necessary for tuplet brackets in rthm-seq-bar

objects that contain tuplet rhythms.

ARGUMENTS:

- A rthm-seq-bar object.

OPTIONAL ARGUMENTS:

- A function to be performed on fail. Default = #’error.

RETURN VALUE:

Returns T if successful.

EXAMPLE:

;;; Make a rthm-seq-bar object and print the values of the BRACKET slots for

;;; the rhythm objects it contains. Then apply auto-brackets and print the same

;;; again to see the change.

(let ((rsb (make-rthm-seq-bar ’((4 4) tq tq tq +q fs fs fs fs fs))))

(print (loop for r in (rhythms rsb) collect (bracket r)))

(auto-tuplets rsb)

(print (loop for r in (rhythms rsb) collect (bracket r))))

=>

(NIL NIL NIL NIL NIL NIL NIL NIL NIL)

(((1 3)) (-1) (1) NIL ((2 5)) (-2) (-2) (-2) (2))

SYNOPSIS:

(defmethod auto-tuplets ((rsb rthm-seq-bar) &optional (on-fail #’error))

20 SC/NAMED-OBJECT 735

20.2.391 rthm-seq-bar/check-beams

[rthm-seq-bar] [Methods]

DESCRIPTION:

Check the BEAM slots of the event objects within a specified rthm-seq-bar

object to ensure that every beginning beam indication (slot value of 1) is

coupled with a corresponding closing beam indication (slot value of 0), and

print a warning and return NIL if this is not the case.

ARGUMENTS:

- A rthm-seq-bar object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :auto-beam. T or NIL to indicate the method should apply the auto-beam

algorithm to the given bar after the check has determined that the

beaming is wrong (and :on-fail is not NIL). T = auto-beam. Default = NIL.

- :print. T or NIL to indicate whether the method should print feedback of

the checking process to the Lisp listener. T = print feedback. Default =

NIL.

- :on-fail. The function that should be applied when the check does not

pass. May be NIL for no warning/error or #’error if processing should

stop. Default = #’warn.

RETURN VALUE:

T if the check passes, otherwise NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax ((alto-sax tenor-sax) :midi-channel 1))))

:instrument-change-map ’((1 ((sax ((1 alto-sax) (3 tenor-sax)))))

(2 ((sax ((2 alto-sax) (5 tenor-sax)))))

(3 ((sax ((3 alto-sax) (4 tenor-sax))))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

20 SC/NAMED-OBJECT 736

:rthm-seq-palette ’((1 ((((4 4) h e (s) (s) e+s+s))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))))

(2 ((sax (1 1 1 1 1))))

(3 ((sax (1 1 1 1 1))))))))

(check-beams (get-bar mini 1 ’sax)))

=> T

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax ((alto-sax tenor-sax) :midi-channel 1))))

:instrument-change-map ’((1 ((sax ((1 alto-sax) (3 tenor-sax)))))

(2 ((sax ((2 alto-sax) (5 tenor-sax)))))

(3 ((sax ((3 alto-sax) (4 tenor-sax))))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h e (s) (s) e+s+s))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))))

(2 ((sax (1 1 1 1 1))))

(3 ((sax (1 1 1 1 1))))))))

(setf (beam (nth 1 (rhythms (get-bar mini 1 ’sax)))) 1)

(check-beams (get-bar mini 1 ’sax)))

=> NIL

SYNOPSIS:

(defmethod check-beams ((rsb rthm-seq-bar) &key auto-beam print

(on-fail #’warn))

20.2.392 rthm-seq-bar/check-tuplets

[rthm-seq-bar] [Methods]

DESCRIPTION:

Check the qualities of the tuplets brackets in a given rthm-seq-bar

object to make sure they are all formatted properly (i.e. each starting

tuplet bracket has a closing tuplet bracket etc.). If an error is found,

the method will try to fix it, then re-check, and only issue an error then

if another is found.

20 SC/NAMED-OBJECT 737

ARGUMENTS:

- A rthm-seq-bar object.

OPTIONAL ARGUMENTS:

- The function to use if something is not ok with the tuplets. This

defaults to #’error, but could also be #’warn for example

RETURN VALUE:

T if all tuplets brackets are ok, otherwise performs the on-fail function

and returns NIL.

EXAMPLE:

(let ((rsb (make-rthm-seq-bar ’((4 4) { 3 te te te } q q q))))

(setf (bracket (get-nth-event 2 rsb)) nil)

(check-tuplets rsb #’warn))

=> rthm-seq-bar::check-tuplets: got a nil bracket when brackets still open.

SYNOPSIS:

(defmethod check-tuplets ((rsb rthm-seq-bar) &optional (on-fail #’error))

20.2.393 rthm-seq-bar/chop

[rthm-seq-bar] [Methods]

DESCRIPTION:

Creates a list of new rthm-seq-bar objects, with new time signatures, which

are formed by systematically chopping the bar represented by the current

rthm-seq-bar into segments.

The method creates these segments based on chop-point pairs specified in

the <chop-points> argument, which is a list of 2-element lists, each of

which specifies the start and end points of a rhythmic span within the

bounds of a given beat, measured in the unit specified by the <unit>

argument.

The chop points specified are used to individually process each beat in the

given rthm-seq-bar object; thus, chop-points specified for the subdivisions

of a quarter-note will not work if applied to a 5/8 bar.

20 SC/NAMED-OBJECT 738

The method fills each newly created rthm-seq-bar object with one rhythmic

duration that is equal to the length of the bar. If the beginning of the

given chop segment coincides with an attack in the original bar, the result

is a sounding note; if not, the result is a rest. NB: In this abstraction

of the class for the sake of this documentation, sounding notes will appear

as NIL.

The chop method is the basis for slippery-chicken’s feature of

intra-phrasal looping.

NB: The <unit> argument must be a duplet rhythmic value (i.e. 32, ’s, ’e

etc.) and cannot be a tuplet value (i.e. ’te ’fe etc.).

NB: In order for the resulting chopped rhythms to be parsable by LilyPond

and CMN, there can be no tuplets (triplets etc.) among the rhythms to

be chopped. Such rhythms will result in LilyPond and CMN errors. This

has only minimal bearing on any MIDI files produced, however, and these

can potentially be imported into notation software.

ARGUMENTS:

- A rthm-seq-bar object.

OPTIONAL ARGUMENTS:

- <chop-points> A list of integer pairs, each of which delineates a segment

of the beat of the given rthm-seq-bar object measured in the rhythmic

unit specified by the <unit> argument. Thus, if all possible spans of

sixteenth-notes within a quarter-note, starting from the first sixteenth,

were delineated, they would span from 1 to 4 (the full quarter), 1 to 3

(the first dotted 8th of the quarter), 1 to 2 (the first 8th) and 1 to 1

(the first 16th of the quarter); the process could continue then with all

rhythmic durations contained within the bounds of the same quarter

starting on the second 16th, etc. The default chop-points for a quarter

are ’((1 4) (1 3) (1 2) (2 4) (2 3) (3 4) (1 1) (2 2) (3 3) (4 4)).

- <unit>. The rhythmic duration that serves as the unit of measurement for

the chop points. Default = ’s.

- <rthm-seq-id>. A symbol that will be the ID for the list created.

RETURN VALUE:

A list of rthm-seq-bar objects.

EXAMPLE:

20 SC/NAMED-OBJECT 739

;; Systematically subdivide each quarter-note of a 2/4 bar containing two ;

;; quarter-notes into all possible segments whose durations are multiples of a ;

;; sixteenth-note unit, and print-simple the resulting list. The quarter-note ;

;; subdivision is re-specified here sightly differently to the default for the ;

;; sake of systematic clarity. Only those segments whose start point coincide ;

;; with an attack in the original bar, i.e. those that begin on the first ;

;; sixteenth of each beat, will be assigned a NIL (which will later become ;

;; a sounding note); all others are assigned a rest. ;

(let* ((rsb (make-rthm-seq-bar ’((2 4) q q)))

(ch (chop rsb

’((1 4) (1 3) (1 2) (1 1)

(2 4) (2 3) (2 2)

(3 4) (3 3)

(4 4))

’s)))

(loop for b in ch do (print-simple b)))

=>

(1 4): NIL Q,

(3 16): NIL E.,

(1 8): NIL E,

(1 16): NIL S,

(3 16): rest 16/3,

(1 8): rest 8,

(1 16): rest 16,

(1 8): rest 8,

(1 16): rest 16,

(1 16): rest 16,

(1 4): NIL Q,

(3 16): NIL E.,

(1 8): NIL E,

(1 16): NIL S,

(3 16): rest 16/3,

(1 8): rest 8,

(1 16): rest 16,

(1 8): rest 8,

(1 16): rest 16,

(1 16): rest 16,

;; The same thing, but returning all possible segments within the bounds of a ;

;; quarter-note whose durations that are multiple of an 8th-note unit ;

(let* ((rsb (make-rthm-seq-bar ’((2 4) q q)))

(choprsb (chop rsb

’((1 2) (1 1) (2 2))

’e)))

20 SC/NAMED-OBJECT 740

(loop for b in choprsb do (print-simple b)))

=>

(1 4): NIL Q,

(1 8): NIL E,

(1 8): rest 8,

(1 4): NIL Q,

(1 8): NIL E,

(1 8): rest 8,

;; Adapt the 16th-note example above to a starting rthm-seq-bar object with ;

;; more complex rhythmic content. Note here, too, that the rthm-seq-bar object ;

;; being segmented contains rhythmic durations smaller than the <unit> ;

;; argument. ;

(let* ((rsb (make-rthm-seq-bar ’((4 4) - (s) (32) 32 (s) s - - +s+32 (32) (e) -

(q) (s) s (e))))

(choprsb (chop rsb

’((1 4) (1 3) (1 2) (1 1)

(2 4) (2 3) (2 2)

(3 4) (3 3)

(4 4))

’s)))

(loop for b in choprsb do (print-simple b)))

=>

(1 4): rest S, rest 32, NIL 32, rest S, NIL S,

(3 16): rest S, rest 32, NIL 32, rest S,

(1 8): rest S, rest 32, NIL 32,

(1 16): rest 16,

(3 16): rest 32, NIL 32, rest S, NIL S,

(1 8): rest 32, NIL 32, rest S,

(1 16): rest 32, NIL 32,

(1 8): rest S, NIL S,

(1 16): rest 16,

(1 16): NIL S,

(1 4): rest 4,

(3 16): rest 16/3,

(1 8): rest 8,

(1 16): rest 16,

(3 16): rest 16/3,

(1 8): rest 8,

(1 16): rest 16,

(1 8): rest 8,

(1 16): rest 16,

(1 16): rest 16,

(1 4): rest 4,

20 SC/NAMED-OBJECT 741

(3 16): rest 16/3,

(1 8): rest 8,

(1 16): rest 16,

(3 16): rest 16/3,

(1 8): rest 8,

(1 16): rest 16,

(1 8): rest 8,

(1 16): rest 16,

(1 16): rest 16,

(1 4): rest S, NIL S, rest E,

(3 16): rest S, NIL S, rest S,

(1 8): rest S, NIL S,

(1 16): rest 16,

(3 16): NIL S, rest E,

(1 8): NIL S, rest S,

(1 16): NIL S,

(1 8): rest 8,

(1 16): rest 16,

(1 16): rest 16,

;; The same again with a <unit> of eighths ;

(let* ((rsb (make-rthm-seq-bar ’((4 4) - (s) (32) 32 (s) s - - +s+32 (32) (e) -

(q) (s) s (e))))

(choprsb (chop rsb

’((1 2) (1 1) (2 2))

’e)))

(loop for b in choprsb do (print-simple b)))

=>

(1 4): rest S, rest 32, NIL 32, rest S, NIL S,

(1 8): rest S, rest 32, NIL 32,

(1 8): rest S, NIL S,

(1 4): rest 4,

(1 8): rest 8,

(1 8): rest 8,

(1 4): rest 4,

(1 8): rest 8,

(1 8): rest 8,

(1 4): rest S, NIL S, rest E,

(1 8): rest S, NIL S,

(1 8): rest 8,

SYNOPSIS:

(defmethod chop ((rsb rthm-seq-bar)

&optional chop-points (unit ’s) rthm-seq-id)

20 SC/NAMED-OBJECT 742

20.2.394 rthm-seq-bar/consolidate-notes

[rthm-seq-bar] [Methods]

DESCRIPTION:

Combine consecutive tied notes into one (or a few) notes of a longer

rhythmic duration.

NB: This method is the core method that is called for rthm-seq objects or

slippery-chicken objects, at which point it takes ties (and perhaps

another couple of things) into consideration, after the tie slots

etc. have been updated. As such, though it will

work to a certain degree when called directly on a rthm-seq-bar object,

it should primarily be used when getting a rthm-seq-bar from within a

rthm-seq object or slippery-chicken object.

ARGUMENTS:

- A rthm-seq-bar object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the method sure make sure that an exact

beat’s worth of rhythms is handled. T = check durations. Default = NIL.

RETURN VALUE:

The rthm-seq-bar object.

EXAMPLE:

;;; Create a slippery-chicken object, print-simple a bar from that object,

;;; apply the consolidate-notes method to that bar, and print-simple that bar

;;; again to see the changes.

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((gs4 af4 bf4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e +e +e +e e +s +s +s e.))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 1 1))))))))

20 SC/NAMED-OBJECT 743

(print-simple (get-bar mini 2 ’vn))

(consolidate-notes (get-bar mini 2 ’vn))

(print-simple (get-bar mini 2 ’vn)))

=>

(4 4): GS4 E+, +GS4 E+, +GS4 E+, +GS4 E, AF4 E+, +AF4 S+, +AF4 S+, +AF4 S,

BF4 E.,

(4 4): GS4 H, AF4 Q+, +AF4 S, BF4 E.,

SYNOPSIS:

(defmethod consolidate-notes ((rsb rthm-seq-bar)

;; MDE Wed Nov 28 11:40:59 2012 -- added auto-beam

&optional check-dur beat (auto-beam t))

20.2.395 rthm-seq-bar/consolidate-rests

[rthm-seq-bar] [Methods]

DESCRIPTION:

Consolidate two or more consecutive rests into one longer rhythmic

unit. This method works on the basis of beats, striving to consolidate into

beats first.

NB: The user may find it helpful to adjust the :beat and :min values, and

even to call the method more than once consecutively. For multiple

calls, the method consolidate-rests-max may also be useful.

ARGUMENTS:

- A rthm-seq-bar object.

OPTIONAL ARGUMENTS:

keyword arguments

- :beat. The beat basis into which rests are to be consolidated. If no

value is given for this option, the method will take the beat from the

time signature.

- :min. A seldom-used argument that will only make a difference when there

are a number of rests of the same duration followed by a note. This is

then the minimum duration that such rests may have if they are to be

consolidated. Default = NIL.

- :warn. T or NIL to indicate whether the method should print a warning to

the Lisp listener if it is mathematically unable to consolidate the

rests. T = print warning. Default = NIL.

20 SC/NAMED-OBJECT 744

RETURN VALUE:

The rthm-seq-bar object

EXAMPLE:

;;; Returns a list of rhythm/event objects

(let ((rsb (make-rthm-seq-bar ’((4 4) (e) (e) (e) (e) (e) (s) (s) (s) e.))))

(consolidate-rests rsb))

=>

(

EVENT: start-time: NIL, end-time: NIL,

[...]

data: 4

[...]

EVENT: start-time: NIL, end-time: NIL,

[...]

data: 4

[...]

EVENT: start-time: NIL, end-time: NIL,

[...]

data: 4

[...]

RHYTHM: value: 16.000, duration: 0.250, rq: 1/4, is-rest: T,

[...]

data: S

[...]

RHYTHM: value: 5.333, duration: 0.750, rq: 3/4, is-rest: NIL,

[...]

data: E.

)

;;; Consolidating on the basis of the time-signature’s beat by default

(let ((rsb (make-rthm-seq-bar ’((4 4) (e) (e) (e) (e) (e) (s) (s) (s) e.))))

(consolidate-rests rsb)

(loop for r in (rhythms rsb) collect (data r)))

=> (4 4 4 S E.)

;; Changing the :beat may effect the outcome

(let ((rsb (make-rthm-seq-bar ’((4 4) (e) (e) (e) (e) (e) (s) (s) (s) e.))))

(consolidate-rests rsb :beat 2)

(loop for r in (rhythms rsb) collect (data r)))

=> (2 E E S E.)

20 SC/NAMED-OBJECT 745

;; Calling multiple times may further consolidate the results

(let ((rsb (make-rthm-seq-bar ’((2 2) (e) (e) (e) (e) (e) (s) (s) (s) e.))))

(consolidate-rests rsb)

(print (loop for r in (rhythms rsb) collect (data r)))

(consolidate-rests rsb)

(print (loop for r in (rhythms rsb) collect (data r))))

=>

(2 E E S E.)

(2 Q S E.)

SYNOPSIS:

(defmethod consolidate-rests ((rsb rthm-seq-bar) &key beat min warn)

20.2.396 rthm-seq-bar/consolidate-rests-max

[rthm-seq-bar] [Methods]

DESCRIPTION:

Similar to consolidate-rests, but calls that method repeatedly until no

more changes can be made to the given rthm-seq-bar object.

NB This will still only reduce rests down to a maximum of a beat. If you

need e.g. two quarter rests reduced to a single half rest in a 4/4 bar,

specify :beat 2

ARGUMENTS:

- A rthm-seq-bar object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :beat. The beat basis into which rests are to be consolidated. If no

value is given for this option, the method will take the beat from the

time signature.

- :min. A seldom-used argument that will only make a difference when there

are a number of rests of the same duration followed by a note. This is

then the minimum duration that such rests may have if they are to be

consolidated. Default = NIL.

- :warn. T or NIL to indicate whether the method should print a warning to

the Lisp listener if it is mathematically unable to consolidate the

rests. T = print warning. Default = NIL.

20 SC/NAMED-OBJECT 746

RETURN VALUE:

The rthm-seq-bar-object

EXAMPLE:

;;; Two examples with the same result; the first calling consolidate-rests

;;; twice, the second calling consolidate-rests-max

(let ((rsb (make-rthm-seq-bar ’((2 2) (e) (e) (e) (e) (e) (s) (s) (s) e.))))

(consolidate-rests rsb)

(consolidate-rests rsb)

(loop for r in (rhythms rsb) collect (data r)))

=> (2 Q S E.)

(let ((rsb (make-rthm-seq-bar ’((2 2) (e) (e) (e) (e) (e) (s) (s) (s) e.))))

(consolidate-rests-max rsb)

(loop for r in (rhythms rsb) collect (data r)))

=> (2 Q S E.)

SYNOPSIS:

(defmethod consolidate-rests-max ((rsb rthm-seq-bar) &key beat min warn)

20.2.397 rthm-seq-bar/delete-beams

[rthm-seq-bar] [Methods]

DESCRIPTION:

Remove any beaming indications from the rthm-seq-bar object.

NB: This method changes the data for the rthm-seq-bar object’s BEAMS slot

and the individual BEAM slots of the RHYTHMs contained within the

rthm-seq-bar’s RHYTHMS slot. It does not change the value of the

rthm-seq-bar’s DATA slot.

NB: Neither the presence nor absence of beams are not reflected in the

output of the print-simple method.

ARGUMENTS:

- A rthm-seq-bar object.

20 SC/NAMED-OBJECT 747

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((rsb (make-rthm-seq-bar ’((2 4) - s s - s - s s s - s s))))

(delete-beams rsb))

=> T

(let ((rbs (make-rthm-seq-bar ’((2 4) - s s - s - s s s - s s))))

(delete-beams rsb)

(beams rsb))

=> NIL

(let ((rsb (make-rthm-seq-bar ’((2 4) - s s - s - s s s - s s))))

(delete-beams rsb)

(loop for r in (rhythms rbs) collect (beam r)))

=> (NIL NIL NIL NIL NIL NIL NIL NIL)

(let ((rbs (make-rthm-seq-bar ’((2 4) - s s - s - s s s - s s))))

(delete-beams rsb)

(print rsb))

=>

RTHM-SEQ-BAR: time-sig: 1 (2 4)

time-sig-given: T

bar-num: -1

old-bar-nums: NIL

write-bar-num: NIL

start-time: -1.0

start-time-qtrs: -1.0

is-rest-bar: NIL

multi-bar-rest: NIL

show-rest: T

notes-needed: 8

tuplets: NIL

nudge-factor: 0.35

beams: NIL

[...]

NAMED-OBJECT: id: NIL, tag: NIL,

data: ((2 4) - S S - S - S S S - S S)

20 SC/NAMED-OBJECT 748

SYNOPSIS:

(defmethod delete-beams ((rsb rthm-seq-bar))

20.2.398 rthm-seq-bar/delete-marks

[rthm-seq-bar] [Methods]

DESCRIPTION:

Delete all marks from the rhythm (or event) objects contained within a given

rthm-seq-bar object.

ARGUMENT

- A rthm-seq-bar object.

RETURN VALUE:

Always returns NIL.

EXAMPLE:

;; Create a rthm-seq-bar object and print the contents of the MARKS slots of

;; the contained event objects to see they’re set to NIL by default. Fill them

;; each with a ’s (staccato) mark and print the results. Apply the delete-marks

;; method and print the results again to see that the values have been reset to

;; NIL.

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

(print (loop for e in (rhythms rsb) collect (marks e)))

(loop for e in (rhythms rsb) do (add-mark-once e ’s))

(print (loop for e in (rhythms rsb) collect (marks e)))

(delete-marks rsb)

(print (loop for e in (rhythms rsb) collect (marks e))))

=>

(NIL NIL NIL)

((S) (S) (S))

(NIL NIL NIL)

SYNOPSIS:

(defmethod delete-marks ((rsb rthm-seq-bar))

20 SC/NAMED-OBJECT 749

20.2.399 rthm-seq-bar/delete-tuplets

[rthm-seq-bar] [Methods]

DESCRIPTION:

Removes all indications for tuplet brackets from a given rthm-seq-bar

object.

NB: This method does not alter the tuplet rhythmic durations; it only

removes the tuplet bracket from the score.

ARGUMENTS:

- A rthm-seq-bar.

RETURN VALUE:

NIL

EXAMPLE:

(let ((rsb (make-rthm-seq-bar ’((2 4) { 3 te te te } q))))

(tuplets rsb))

=> ((3 0 2))

(let ((rsb (make-rthm-seq-bar ’((2 4) { 3 te te te } q))))

(delete-tuplets rsb))

=> NIL

(let ((rsb (make-rthm-seq-bar ’((2 4) { 3 te te te } q))))

(delete-tuplets rsb)

(tuplets rsb))

=> NIL

(let ((rsb (make-rthm-seq-bar ’((2 4) { 3 te te te } q))))

(loop for r in (rhythms rsb) collect (bracket r)))

=> (((1 3)) (-1) (1) NIL)

(let ((rsb (make-rthm-seq-bar ’((2 4) { 3 te te te } q))))

(delete-tuplets rsb)

(loop for r in (rhythms rsb) collect (bracket r)))

20 SC/NAMED-OBJECT 750

=> (NIL NIL NIL NIL)

SYNOPSIS:

(defmethod delete-tuplets ((rsb rthm-seq-bar))

20.2.400 rthm-seq-bar/delete-written

[rthm-seq-bar] [Methods]

DESCRIPTION:

Delete the contents of the WRITTEN-PITCH-OR-CHORD slot of a pitch object

within a given event object and reset to NIL.

ARGUMENTS:

- A rthm-seq-bar object.

RETURN VALUE:

Always returns NIL.

EXAMPLE:

;; Create a rthm-seq-bar object consisting of events and print the contents of ;

;; the WRITTEN-PITCH-OR-CHORD slots to see they’re set to NIL. Apply the ;

;; set-written method with a value of -2 and print the contents of the ;

;; WRITTEN-PITCH-OR-CHORD slots to see the data of the newly created pitch ;

;; objects. Apply the delete-written method and print the contents of the ;

;; WRITTEN-PITCH-OR-CHORD slots to see they’re empty. ;

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

(print (loop for p in (rhythms rsb)

collect (written-pitch-or-chord p)))

(set-written rsb -2)

(print (loop for p in (rhythms rsb)

collect (get-pitch-symbol p)))

(delete-written rsb)

(print (loop for p in (rhythms rsb)

20 SC/NAMED-OBJECT 751

collect (written-pitch-or-chord p))))

=>

(NIL NIL NIL)

(B3 B3 B3)

(NIL NIL NIL)

SYNOPSIS:

(defmethod delete-written ((rsb rthm-seq-bar))

20.2.401 rthm-seq-bar/enharmonic

[rthm-seq-bar] [Methods]

DESCRIPTION:

Change the pitches of the events within a given rthm-seq-bar object to

their enharmonic equivalents.

In its default form, this method only applies to note names that already

contain an indication for an accidental (such as DF4 or BS3), while

"white-key" note names (such as B3 or C4) will not produce an enharmonic

equivalent. In order to change white-key pitches to their enharmonic

equivalents, set the :force-naturals argument to T.

ARGUMENTS:

- A rthm-seq-bar object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :written. T or NIL to indicate whether the test is to handle the

written or sounding pitch in the event. T = written.

Default = NIL.

- :force-naturals. T or NIL to indicate whether to force "natural"

note names that contain no F or S in their name to convert to

their enharmonic equivalent (e.g. B3 = CF4). Default = NIL.

- :pitches. All sharp/flat pitches are changed by default but if a

list of pitch objects or symbols is given, then only those

pitches will be changed. Note that if written is T, then this

pitch list should be the written not sounding pitches.

Default = NIL.

RETURN VALUE:

20 SC/NAMED-OBJECT 752

Always returns T.

EXAMPLE:

;; The method returns T.

(let ((rsb (make-rthm-seq-bar

(list ’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

(enharmonic rsb))

=> T

;; Create a rthm-seq-bar object with events, apply the enharmonic method, and

;; print the corresponding slots to see the changes ;

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

(enharmonic rsb)

(loop for p in (rhythms rsb)

collect (get-pitch-symbol p)))

=> (DF4 DF4 DF4)

;; By default, the method will not change white-key pitches

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’c4 ’e)

(make-event ’c4 ’e)

(make-event ’c4 ’e)))))

(enharmonic rsb)

(loop for p in (rhythms rsb)

collect (get-pitch-symbol p)))

=> (C4 C4 C4)

;; This can be forced by setting the :force-naturals argument to T

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’c4 ’e)

20 SC/NAMED-OBJECT 753

(make-event ’c4 ’e)

(make-event ’c4 ’e)))))

(enharmonic rsb :force-naturals t)

(loop for p in (rhythms rsb)

collect (get-pitch-symbol p)))

=> (BS3 BS3 BS3)

;; Apply the set-written method to fill the WRITTEN-PITCH-OR-CHORD slot, print

;; its contents, apply the enharmonic method with the :written keyword argument

;; set to T, then print the pitch data of the same slot again to see the

;; change.

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

(set-written rsb -3)

(print (loop for p in (rhythms rsb)

collect (get-pitch-symbol p)))

(enharmonic rsb :written t)

(print (loop for p in (rhythms rsb)

collect (get-pitch-symbol p))))

=>

(BF3 BF3 BF3)

(AS3 AS3 AS3)

SYNOPSIS:

(defmethod enharmonic ((rsb rthm-seq-bar) &key written force-naturals

;; MDE Wed Apr 18 11:34:01 2012

pitches)

20.2.402 rthm-seq-bar/fill-with-rhythms

[rthm-seq-bar] [Methods]

DESCRIPTION:

Any rhythms (or event objects) in the existing rthm-seq-bar object will be

deleted, and then rhythm (or event) objects will be taken one by one from

the <rhythms> argument until the bar is full.

20 SC/NAMED-OBJECT 754

If too few rhythm or event objects are given, a warning will be printed

that there are too few beats in the bar.

If there are too many and the last rhythm or event object to be placed in

the bar fills out the bar evenly, no warning is printed and the remaining

rhythm or event objects are discarded. If the last rhythm or event object

that the method attempts to place in the bar is too long to fit evenly into

the bar, the method will drop into the debugger with an error.

The :transposition, :midi-channel, and :microtones-midi-channel arguments

can only be used in conjunction with event objects.

The number of rhythms (or event objects) used is returned.

NB: This method does not change the DATA slot of the rthm-seq-bar object

itself to reflect the new rhythms. Instead, it changes the contents of

the RHYTHMS slot within that object and changes the DATA of the

rthm-seq-bar object to NIL. It also assigns the ID of the named-object

to "rhythms-inserted-by-fill-with-rhythms".

ARGUMENTS:

- A rthm-seq-bar object.

- A list of rhythm objects or event objects.

OPTIONAL ARGUMENTS:

keyword arguments:

- :transposition. An integer or NIL to indicate the transposition in

semitones for written pitches of any event objects passed. If NIL, no

written-pitches will be created. Default = NIL.

- :midi-channel. An integer that will be used to set the MIDI-CHANNEL slot

of any event objects passed. Default = 0.

- :microtones-midi-channel. An integer that is the MIDI channel that will

be assigned to event objects for microtonal MIDI pitches. NB: This value

is only set when attached to event objects within a slippery-chicken

object. Default = 0. NB: See player.lsp/make-player for details on

microtones in MIDI output.

- :new-id. An optional ID for new rhythm or event objects added.

Default = "rhythms-inserted-by-fill-with-rhythms".

- :warn. T or NIL to indicate whether a warning should be printed if there

are not enough rhythms to create a full bar. T = warn. Default = T.

- :is-full-error. T or NIL to indicate whether the last rhythm or event

object that the method attempts to add to the bar is too long to fit

evenly into the bar. T = drop into the debugger with an error if this is

the case. Default = T.

20 SC/NAMED-OBJECT 755

RETURN VALUE:

The number of rhythm or event objects used.

EXAMPLE:

(let ((rsb (make-rthm-seq-bar ’((3 4) q q q))))

(fill-with-rhythms rsb (loop for r in ’(e e e e e e)

collect (make-rhythm r))))

=> 6

(let ((rsb (make-rthm-seq-bar ’((3 4) q q q))))

(fill-with-rhythms rsb (loop for r in ’(e e e e e e)

collect (make-rhythm r)))

(print-simple rsb))

=> NIL

(3 4): note E, note E, note E, note E, note E, note E,

(let ((rsb (make-rthm-seq-bar ’((3 4) q q q))))

(fill-with-rhythms rsb (loop for r in ’(e e e e e e)

collect (make-rhythm r)))

(print rsb))

=>

RTHM-SEQ-BAR: time-sig: 0 (3 4)

time-sig-given: T

bar-num: -1

old-bar-nums: NIL

write-bar-num: NIL

start-time: -1.0

start-time-qtrs: -1.0

is-rest-bar: NIL

multi-bar-rest: NIL

show-rest: T

notes-needed: 6

tuplets: NIL

nudge-factor: 0.35

beams: NIL

current-time-sig: 0

write-time-sig: T

num-rests: 0

num-rhythms: 6

num-score-notes: 6

rhythms: (

20 SC/NAMED-OBJECT 756

RHYTHM: value: 8.0, duration: 0.5, rq: 1/2, is-rest: NIL, score-rthm: 8.0,

undotted-value: 8, num-flags: 1, num-dots: 0, is-tied-to: NIL,

is-tied-from: NIL, compound-duration: 0.5, is-grace-note: NIL,

needs-new-note: T, beam: NIL, bracket: NIL, rqq-note: NIL,

rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 8,

tuplet-scaler: 1, grace-note-duration: 0.05,

LINKED-NAMED-OBJECT: previous: NIL

this: NIL

next: NIL

NAMED-OBJECT: id: E, tag: NIL,

data: E

[...]

NAMED-OBJECT: id: "rhythms-inserted-by-fill-with-rhythms", tag: NIL,

data: NIL

;;; Using the :transpositions and :midi-channel arguments

(let ((rsb (make-rthm-seq-bar ’((4 4) q q q q))))

(fill-with-rhythms rsb (loop for r in ’(h q e s s)

for p in ’(c4 dqs4 e4 gqf4 a4)

collect (make-event p r))

:microtones-midi-channel 12

:transposition -14

:midi-channel 11)

(print

(loop for e in (rhythms rsb)

collect (data (pitch-or-chord e))))

(print

(loop for e in (rhythms rsb)

collect (data (written-pitch-or-chord e))))

(print

(loop for e in (rhythms rsb)

collect (midi-channel (pitch-or-chord e)))))

=>

(C4 DQS4 E4 GQF4 A4)

(D5 EQS5 FS5 AQF5 B5)

(11 12 11 12 11)

SYNOPSIS:

(defmethod fill-with-rhythms ((rsb rthm-seq-bar) rhythms

&key

;; 24.3.11 add this too to make sure written

;; pitch is set--this is the instrument

;; transposition e.g. -14 for bass clarinet

transposition

20 SC/NAMED-OBJECT 757

(midi-channel 0)

(microtones-midi-channel 0)

(new-id "rhythms-inserted-by-fill-with-rhythms")

(warn t)

(is-full-error t))

20.2.403 rthm-seq-bar/force-rest-bar

[rthm-seq-bar] [Methods]

DESCRIPTION:

Force all rhythms of a rthm-seq-bar object to be replaced by rest.

NB: This method changes the value of the RHYTHMS slot of the rthm-seq-bar

but not the value of the rthm-seq-bar DATA slot.

ARGUMENTS:

- A rthm-seq-bar object.

RETURN VALUE:

Returns a rthm-seq-bar object.

EXAMPLE:

(let ((rsb (make-rthm-seq-bar ’((2 4) q e s s))))

(force-rest-bar rsb))

=>

RTHM-SEQ-BAR: time-sig: 1 (2 4)

time-sig-given: T

bar-num: -1

old-bar-nums: NIL

write-bar-num: NIL

start-time: -1.0

start-time-qtrs: -1.0

is-rest-bar: T

[...]

RHYTHM: value: 2.0, duration: 2.0, rq: 2, is-rest: T,

[...]

NAMED-OBJECT: id: NIL, tag: NIL,

data: ((2 4) Q E S S)

20 SC/NAMED-OBJECT 758

(let ((rsb (make-rthm-seq-bar ’((2 4) q e s s))))

(force-rest-bar rsb)

(print-simple rsb))

=>

(2 4): rest 2,

SYNOPSIS:

(defmethod force-rest-bar ((rsb rthm-seq-bar))

20.2.404 rthm-seq-bar/get-last-attack

[rthm-seq-bar] [Methods]

DESCRIPTION:

Gets the rhythm object for the last note that needs an attack (i.e. not a

rest and not a tied note) in a given rthm-seq-bar object.

ARGUMENTS:

- The given rthm-seq-bar object.

OPTIONAL ARGUMENTS:

- T or NIL indicating whether to print a warning message if the given index

(minus one) is greater than the number of attacks in the RHYTHMS list

(default = T). This is a carry-over argument from the get-nth-attack

method called within the get-last-attack method and not likely to be

needed for use with get-last-attack.

RETURN VALUE:

A rhythm object.

Returns NIL if the given index is higher than the highest possible index of

attacks in the given rthm-seq-bar object.

Get the rhythm object of the last

EXAMPLE:

(let ((rsb (make-rthm-seq-bar ’((3 4) q+e (e) s (s) e))))

(get-last-attack rsb))

20 SC/NAMED-OBJECT 759

=>

RHYTHM: value: 8.0, duration: 0.5, rq: 1/2, is-rest: NIL, score-rthm: 8.0,

undotted-value: 8, num-flags: 1, num-dots: 0, is-tied-to: NIL,

is-tied-from: NIL, compound-duration: 0.5, is-grace-note: NIL,

needs-new-note: T, beam: NIL, bracket: NIL, rqq-note: NIL,

rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 8,

tuplet-scaler: 1, grace-note-duration: 0.05,

LINKED-NAMED-OBJECT: previous: NIL

this: NIL

next: NIL

NAMED-OBJECT: id: E, tag: NIL,

data: E

SYNOPSIS:

(defmethod get-last-attack ((rsb rthm-seq-bar) &optional (warn t))

20.2.405 rthm-seq-bar/get-last-event

[rthm-seq-bar] [Methods]

DESCRIPTION:

Get the last event object (or rhythm object) of a given rthm-seq-bar

object.

ARGUMENTS:

- A rthm-seq-bar object.

RETURN VALUE:

Returns a rhythm object.

EXAMPLE:

;; Returns a rhythm object.

(let ((rsb (make-rthm-seq-bar ’((2 4) s s e q))))

(get-last-event rsb))

=>

RHYTHM: value: 4.000, duration: 1.000, rq: 1, is-rest: NIL,

score-rthm: 4.0f0, undotted-value: 4, num-flags: 0, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 1.000,

20 SC/NAMED-OBJECT 760

is-grace-note: NIL, needs-new-note: T, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 4, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: Q, tag: NIL,

data: Q

SYNOPSIS:

(defmethod get-last-event ((rsb rthm-seq-bar))

20.2.406 rthm-seq-bar/get-nth-attack

[rthm-seq-bar] [Methods]

DESCRIPTION:

Gets the rhythm object for the nth note in a given rthm-seq-bar that needs

an attack, i.e. not a rest and not tied.

ARGUMENTS:

- The zero-based index number indicating which attack is sought.

- The given rthm-seq-bar object in which to search.

OPTIONAL ARGUMENTS:

- T or NIL indicating whether to print a warning message if the given index

is greater than the number of attacks in the RHYTHMS list (minus one to

compensate for the zero-based indexing) (default = T).

RETURN VALUE:

A rhythm object.

Returns NIL if the given index is higher than the highest possible index of

attacks in the given rthm-seq-bar object.

EXAMPLE:

;; The method returns a rhythm object when successful ;

(let ((rsb (make-rthm-seq-bar ’((3 4) q+e (e) s (s) e))))

(get-nth-attack 0 rsb))

20 SC/NAMED-OBJECT 761

=>

RHYTHM: value: 4.0, duration: 1.0, rq: 1, is-rest: NIL, score-rthm: 4.0,

undotted-value: 4, num-flags: 0, num-dots: 0, is-tied-to: NIL,

is-tied-from: NIL, compound-duration: 1.0, is-grace-note: NIL,

needs-new-note: T, beam: NIL, bracket: NIL, rqq-note: NIL,

rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 4,

tuplet-scaler: 1, grace-note-duration: 0.05,

LINKED-NAMED-OBJECT: previous: NIL

this: NIL

next: NIL

NAMED-OBJECT: id: "Q", tag: NIL,

data: Q

(let ((rsb (make-rthm-seq-bar ’((3 4) q+e (e) s (s) e))))

(data (get-nth-attack 1 rsb)))

=> S

(Let ((rsb (make-rthm-seq-bar ’((3 4) q+e (e) s (s) e))))

(get-nth-attack 3 rsb))

=> NIL

WARNING: rthm-seq-bar::get-nth-attack: index (3) < 0 or >= notes-needed (3)

(Let ((rsb (make-rthm-seq-bar ’((3 4) q+e (e) s (s) e))))

(get-nth-attack 3 rsb nil))

=> NIL

SYNOPSIS:

(defmethod get-nth-attack (index (rsb rthm-seq-bar) &optional (warn t))

20.2.407 rthm-seq-bar/get-nth-event

[rthm-seq-bar] [Methods]

DESCRIPTION:

Get the nth event (rhythm) in the given rthm-seq-bar object. This is a

zero-based index.

The method defaults to interrupting with an error if the n-value is greater

than the number of items in the rthm-seq-bar. This can be disabled using

the optional argument.

20 SC/NAMED-OBJECT 762

ARGUMENTS:

- A rthm-seq-bar object.

- An index number.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to interrupt and drop into the debugger with

an error. Default = T.

RETURN VALUE:

A rhythm object when successful.

Returns NIL when the specified index number is greater than the number of

events in the rthm-seq-bar object. Also prints an error in this case by

default, which can be suppressed by setting the optional argument to NIL.

EXAMPLE:

;; Zero-based indexing. Returns a rhythm object when successful. ;

(let ((rsb (make-rthm-seq-bar ’((2 4) q e s s))))

(get-nth-event 0 rsb))

=>

RHYTHM: value: 4.000, duration: 1.000, rq: 1, is-rest: NIL,

score-rthm: 4.0f0, undotted-value: 4, num-flags: 0, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 1.000,

is-grace-note: NIL, needs-new-note: T, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 4, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: Q, tag: NIL,

data: Q

;; Interrupts with an error and drops into the debugger by default if the ;

;; specified index number is greater than the number of events in the ;

;; rthm-seq-bar. ;

(let ((rsb (make-rthm-seq-bar ’((2 4) q e s s))))

(get-nth-event 4 rsb))

=>

rthm-seq-bar::get-nth-event: Couldn’t get event with index 4

[Condition of type SIMPLE-ERROR]

20 SC/NAMED-OBJECT 763

;; The error can be suppressed by setting the optional argument to NIL ;

(let ((rsb (make-rthm-seq-bar ’((2 4) q e s s))))

(get-nth-event 4 rsb nil))

=> NIL

SYNOPSIS:

(defmethod get-nth-event (index (rsb rthm-seq-bar)

&optional (error t))

20.2.408 rthm-seq-bar/get-nth-non-rest-rhythm

[rthm-seq-bar] [Methods]

DESCRIPTION:

Get the nth non-rest rhythm object stored in the given rthm-seq-bar.

ARGUMENTS:

- The zero-based index number indicating which non-rest-rhythm is sought.

- The given rthm-seq-bar object in which to search.

OPTIONAL ARGUMENTS:

- T or NIL indicating whether to print an error message if the given index

is greater than the number of non-rest rhythms in the RHYTHMS list (minus

one to compensate for the zero-based indexing). (Default = T).

RETURN VALUE:

A rhythm object.

Returns NIL if the given index is higher than the highest possible index of

non-rest rhythms in the given rthm-seq-bar object.

EXAMPLE:

;; The method returns a rhythm object when successful ;

(let ((rsb (make-rthm-seq-bar ’((2 4) e (e) s s (s) s))))

(get-nth-non-rest-rhythm 0 rsb))

=>

20 SC/NAMED-OBJECT 764

RHYTHM: value: 8.0, duration: 0.5, rq: 1/2, is-rest: NIL, score-rthm: 8.0,

undotted-value: 8, num-flags: 1, num-dots: 0, is-tied-to: NIL,

is-tied-from: NIL, compound-duration: 0.5, is-grace-note: NIL,

needs-new-note: T, beam: NIL, bracket: NIL, rqq-note: NIL,

rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 8,

tuplet-scaler: 1, grace-note-duration: 0.05,

LINKED-NAMED-OBJECT: previous: NIL

this: NIL

next: NIL

NAMED-OBJECT: id: E, tag: NIL,

data: E

(let ((rsb (make-rthm-seq-bar ’((2 4) e (e) s s (s) s))))

(data (get-nth-non-rest-rhythm 1 rsb)))

=> S

(let ((rsb (make-rthm-seq-bar ’((2 4) e (e) s s (s) s))))

(data (get-nth-non-rest-rhythm 4 rsb)))

=>

Evaluation aborted on #<SIMPLE-ERROR>

rthm-seq-bar::get-nth-non-rest-rhythm: Couldn’t get non-rest rhythm with index

4 for bar number -1

[Condition of type SIMPLE-ERROR]

(let ((rsb (make-rthm-seq-bar ’((2 4) e (e) s s (s) s))))

(get-nth-non-rest-rhythm 4 rsb nil))

=> NIL

SYNOPSIS:

(defmethod get-nth-non-rest-rhythm (index (rsb rthm-seq-bar)

&optional (error t))

20.2.409 rthm-seq-bar/get-nth-rest

[rthm-seq-bar] [Methods]

DESCRIPTION:

Gets the rhythm object of the nth rest in a given rthm-seq-bar.

ARGUMENTS:

20 SC/NAMED-OBJECT 765

- The zero-based index number indicating which rest is sought.

- The given rthm-seq-bar object in which to search.

OPTIONAL ARGUMENTS:

- T or NIL indicating whether to print an error message if the given index

is greater than the number of rests in the RHYTHMS list (minus one to

compensate for the zero-based indexing) (default = T).

RETURN VALUE:

A rhythm object.

Returns NIL if the given index is higher than the highest possible index of

rests in the given rthm-seq-bar object.

EXAMPLE:

(let ((rsb (make-rthm-seq-bar ’((3 4) e (e) s s (s) s (q)))))

(get-nth-rest 0 rsb))

=>

RHYTHM: value: 8.0, duration: 0.5, rq: 1/2, is-rest: T, score-rthm: 8.0,

undotted-value: 8, num-flags: 1, num-dots: 0, is-tied-to: NIL,

is-tied-from: NIL, compound-duration: 0.5, is-grace-note: NIL,

needs-new-note: NIL, beam: NIL, bracket: NIL, rqq-note: NIL,

rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 8,

tuplet-scaler: 1, grace-note-duration: 0.05,

LINKED-NAMED-OBJECT: previous: NIL

this: NIL

next: NIL

NAMED-OBJECT: id: E, tag: NIL,

data: E

(let ((rsb (make-rthm-seq-bar ’((3 4) e (e) s s (s) s (q)))))

(data (get-nth-rest 2 rsb)))

=> Q

(let ((rsb (make-rthm-seq-bar ’((3 4) e (e) s s (s) s (q)))))

(get-nth-rest 3 rsb t))

Evaluation aborted on #<SIMPLE-ERROR>

rthm-seq-bar::get-nth-rest: Couldn’t get rest with index 3

[Condition of type SIMPLE-ERROR]

20 SC/NAMED-OBJECT 766

(let ((rsb (make-rthm-seq-bar ’((3 4) e (e) s s (s) s (q)))))

(get-nth-rest 3 rsb nil))

=> NIL

SYNOPSIS:

(defmethod get-nth-rest (index (rsb rthm-seq-bar)

&optional (error t))

20.2.410 rthm-seq-bar/get-pitch-symbols

[rthm-seq-bar] [Methods]

DESCRIPTION:

Return a list of the pitch symbols for the events in the bar.

ARGUMENTS:

- a rthm-seq-bar object

RETURN VALUE:

A list of pitch symbols

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((gs4 bf4 c4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 1 2 1 1 3 1)))))

:rthm-seq-map ’((1 ((vn (1 1 1))))))))

(get-pitch-symbols (get-bar mini 1 ’vn)))

=>

(C4 GS4 C4 GS4 C4 C4 BF4 C4)

SYNOPSIS:

(defmethod get-pitch-symbols ((rsb rthm-seq-bar) &optional written)

20 SC/NAMED-OBJECT 767

20.2.411 rthm-seq-bar/get-rhythm-symbols

[rthm-seq-bar] [Methods]

DATE:

01-May-2012

DESCRIPTION:

Return the rhythms of a given rthm-seq-bar object as a list of rhythm

symbols.

ARGUMENTS:

- A rthm-seq-bar object.

RETURN VALUE:

- A list of rhythm symbols.

EXAMPLE:

(let ((rsb (make-rthm-seq-bar ’((4 4) q e s s q. e))))

(get-rhythm-symbols rsb))

=> (Q E S S Q. E)

SYNOPSIS:

(defmethod get-rhythm-symbols ((rsb rthm-seq-bar))

20.2.412 rthm-seq-bar/get-time-sig

[rthm-seq-bar] [Methods]

DESCRIPTION:

Return the time-sig object for the given rthm-seq-bar object.

ARGUMENTS:

- A rthm-seq-bar object.

RETURN VALUE:

20 SC/NAMED-OBJECT 768

A time-sig object.

EXAMPLE:

(let ((rsb (make-rthm-seq-bar ’((2 4) q e s s))))

(get-time-sig rsb))

=>

TIME-SIG: num: 2, denom: 4, duration: 2.0, compound: NIL, midi-clocks: 24,

num-beats: 2

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "0204", tag: NIL,

data: (2 4)

SYNOPSIS:

(defmethod get-time-sig ((rsb rthm-seq-bar) &optional ignore)

20.2.413 rthm-seq-bar/get-time-sig-as-list

[rthm-seq-bar] [Methods]

DESCRIPTION:

Get the time signature for a given rthm-seq-bar object in list form.

ARGUMENTS:

- A rthm-seq-bar object.

RETURN VALUE:

A list.

EXAMPLE:

(let ((rsb (make-rthm-seq-bar ’((2 4) q e s s))))

(get-time-sig-as-list rsb))

=> (2 4)

SYNOPSIS:

(defmethod get-time-sig-as-list ((rsb rthm-seq-bar))

20 SC/NAMED-OBJECT 769

20.2.414 rthm-seq-bar/make-rest-bar

[rthm-seq-bar] [Functions]

DESCRIPTION:

Make a rthm-seq-bar object that consists of a bar of rest.

ARGUMENTS:

- The time signature of the rthm-seq-bar object to be made, as a quoted

list.

- T or NIL instruction on whether to print the time signature in score

output.

OPTIONAL ARGUMENTS:

- show-rest. This argument indicates whether or not to print the rest in

the printed score output (CMN/LilyPond). Default = T.

The remaining optional arguments are set internally by the

slippery-chicken class, but can be read by the user for debugging.

- missing-duration: Indicates whether the bar is missing a duration.

- player-section-ref: The current player and section of the given

rthm-seq-bar object.

- nth-seq: The current sequenz (with a "z") of the given rthm-seq-bar

object.

- nth-bar: The current bar number of the given rthm-seq-bar object.

RETURN VALUE:

A rthm-seq-bar object.

EXAMPLE:

(let ((rsb-rb (make-rest-bar ’(2 4) nil t)))

(format t "~%time-sig: ~a~%is-rest-bar: ~a~%write-time-sig: ~

~a~%show-rest: ~a~%"

(data (get-time-sig rsb-rb))

(is-rest-bar rsb-rb)

(write-time-sig rsb-rb)

(show-rest rsb-rb))

(print-simple rsb-rb)

rsb-rb)

20 SC/NAMED-OBJECT 770

=>

RTHM-SEQ-BAR: time-sig: 0 (2 4), time-sig-given: T, bar-num: -1,

[...]

time-sig: (2 4)

is-rest-bar: T

write-time-sig: NIL

show-rest: T

(2 4): rest 2,

SYNOPSIS:

(defun make-rest-bar (time-sig write-time-sig &optional

(show-rest t)

missing-duration

player-section-ref nth-seq

nth-bar)

20.2.415 rthm-seq-bar/make-rthm-seq-bar

[rthm-seq-bar] [Functions]

DESCRIPTION:

Public interface for creating a rthm-seq-bar object, each instance of which

which holds one of the individual bars that reside in a rhythmic

sequence.

This class is responsible for parsing lists containing rhythms and time

signatures, but not for parsing these things themselves--that is done by

separate classes.

A { followed by a number means that all the notes from now to the } will be

enclosed in a bracket with the number inside. This may be nested. A -

indicates beaming: the first - indicates the start of a beam, the second

the end of that beam.

ARGUMENTS:

- A list of rhythmic durations, which may include ties and dots. Durations

may be written as numeric (integer) values or may use the CM/CMN/SCORE

alphabetic shorthand s=16, e=8, q=4, h=2, w=1. NB: Repeating rhythms can

be indicated using a shorthand notation consisting of a multiplication

symbol (’x’), e.g.: (make-rthm-seq-bar ’((4 4) s x 16)).

20 SC/NAMED-OBJECT 771

make-rthm-seq-bar requires a time signature. If no time signature is

provided, the most recently defined time signature will be used. If one is

provided, it must be included as the first element of the data list. The

time signature is formulated as a list containing two integers, the first

being the number of beats in the bar and the second being the beat unit for

the bar.

OPTIONAL ARGUMENTS:

- A name (symbol) for the object ID.

RETURN VALUE:

Returns a rthm-seq-bar.

EXAMPLE:

(make-rthm-seq-bar ’((2 4) q e s s))

=>

RTHM-SEQ-BAR:

[...]

NAMED-OBJECT: id: NIL, tag: NIL,

data: ((2 4) Q E S S)

(make-rthm-seq-bar ’((2 4) q e s s) ’test)

=>

RTHM-SEQ-BAR:

[...]

NAMED-OBJECT: id: TEST, tag: NIL,

data: ((2 4) Q E S S)

(make-rthm-seq-bar ’((2 4) q \+16\.+32 e))

=>

RTHM-SEQ-BAR:

[...]

NAMED-OBJECT: id: NIL, tag: NIL,

data: ((2 4) Q +16.+32 E)

(make-rthm-seq-bar ’((2 4) { 3 te te te } q))

=>

RTHM-SEQ-BAR:

[...]

NAMED-OBJECT: id: NIL, tag: NIL,

data: ((2 4) { 3 TE TE TE } Q)

20 SC/NAMED-OBJECT 772

SYNOPSIS:

(defun make-rthm-seq-bar (rhythms &optional name)

20.2.416 rthm-seq-bar/reset-8va

[rthm-seq-bar] [Methods]

DATE:

22 Sep 2011

DESCRIPTION:

Reset the 8VA slots of all event objects within a given rthm-seq-object to

0 (no ottava/ottava bassa transposition).

ARGUMENTS:

- A rthm-seq-bar object

RETURN VALUE:

Always returns NIL.

EXAMPLE:

;; Create a rthm-seq-bar object consisting of event objects, print the default ;

;; value of the 8VA slots for those events. Set the 8VA slots to 1 and print ;

;; the value of those slots to see the change. Apply the reset-8va method to ;

;; remove any values and reset the slots to NIL, and print the results. ;

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

(print (loop for e in (rhythms rsb) collect (8va e)))

(set-8va rsb 1)

(print (loop for e in (rhythms rsb) collect (8va e)))

(reset-8va rsb)

(print (loop for e in (rhythms rsb) collect (8va e))))

=>

20 SC/NAMED-OBJECT 773

(0 0 0)

(1 1 1)

(0 0 0)

SYNOPSIS:

(defmethod reset-8va ((rsb rthm-seq-bar))

20.2.417 rthm-seq-bar/respell-bar

[rthm-seq-bar] [Methods]

DESCRIPTION:

Scan the specified rthm-seq-bar object for enharmonically equivalent

pitches and unify their spelling. This method won’t generally be called by

the user directly, rather, it’s called by the respell-bars method in the

slippery-chicken class.

Clearly, this method will not work if the rthm-seq-bar only contains rhythm

objects: it’s made to be called when these have been promoted to event

objects during the initialization of a slippery-chicken object.

NB: Although this method focuses on just one rthm-seq-bar object, the

parent slippery-chicken object and player ID are needed in order to

determine ties that may exist into the next bar from the present bar.

NB: The slippery-chicken class version of the method of this name uses

pitches from previous bars as well when respelling a given rthm-seq-bar

object, so different results are normal. Users should generally call

the slippery-chicken method rather than calling this one directly on

individual bars.

ARGUMENTS:

- A rthm-seq-bar object.

- A slippery-chicken object.

- A player ID (symbol).

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to process only written or only sounding

pitches. T = only written. Default = NIL.

- The last attack (event object) of the previous bar. This is usually

supplied by the calling method. Default = NIL.

20 SC/NAMED-OBJECT 774

RETURN VALUE:

Returns the rthm-seq-bar object it was passed.

EXAMPLE:

;;; Create a slippery-chicken object using pitches GS4 and AF4, print the ;

;;; pitches of a specified bar within that object. Apply respell-bar and print ;

;;; the same pitches again to see the difference. ;

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((gs4 af4 bf4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 1 1 1 1 1 1)))))

:rthm-seq-map ’((1 ((vn (1 1 1))))))))

(print (loop for r in (rhythms (get-bar mini 2 ’vn))

collect (get-pitch-symbol r)))

(respell-bar (get-bar mini 2 ’vn) mini ’vn)

(print (loop for r in (rhythms (get-bar mini 2 ’vn))

collect (get-pitch-symbol r))))

=>

(GS4 AF4 GS4 GS4 GS4 GS4 GS4 GS4)

(GS4 GS4 GS4 GS4 GS4 GS4 GS4 GS4)

SYNOPSIS:

(defmethod respell-bar ((rsb rthm-seq-bar) sc player

&optional written last-attack-previous-bar)

20.2.418 rthm-seq-bar/scale

[rthm-seq-bar] [Methods]

DESCRIPTION:

Change the values of a rthm-seq-bar objects rhythm durations by a specified

scaling factor.

This method always returns a new rthm-seq-bar object, recreating scaled

rhythms with beams etc. where appropriate. See time-sig::scale for details

on how the new meter is created.

20 SC/NAMED-OBJECT 775

ARGUMENTS:

- A rthm-seq-bar object.

- A number that is the scaling factor.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to preserve the original meter (duple,

triple, quadruple etc.)

- (two ignore arguments for internal use only)

RETURN VALUE:

Returns a rthm-seq-bar object

EXAMPLE:

;;; Create a rthm-seq-bar object and scale its durations by a fact of ;

;;; 2. Returns a rthm-seq-bar object. ;

(let ((rsb (make-rthm-seq-bar ’((2 4) q e s s))))

(scale rsb 2))

=>

RTHM-SEQ-BAR: time-sig: 19 (2 2), time-sig-given: T, bar-num: -1,

[...]

RHYTHM: value: 2.000, duration: 2.000, rq: 2, is-rest: NIL,

[...]

data: H

[...]

RHYTHM: value: 4.000, duration: 1.000, rq: 1, is-rest: NIL,

[...]

data: Q

[...]

RHYTHM: value: 8.000, duration: 0.500, rq: 1/2, is-rest: NIL,

[...]

data: E

[...]

RHYTHM: value: 8.000, duration: 0.500, rq: 1/2, is-rest: NIL,

[...]

data: E

[...]

;;; Use the print-simple method to see formatted results

(let ((rsb (make-rthm-seq-bar ’((2 4) q e s s))))

(print-simple (scale rsb .5)))

20 SC/NAMED-OBJECT 776

=>

(2 8): note E, note S, note 32, note 32,

;;; Set the optional <preserve-meter> argument to NIL to allow the method to

;;; return results in a different metric quality (this returns a quadruple

;;; meter rather than a duple)

(let ((rsb (make-rthm-seq-bar ’((6 8) q e q s s))))

(print-simple (scale rsb 2 nil)))

=>

(12 8): note H, note Q, note H, note E, note E,

SYNOPSIS:

(defmethod scale ((rsb rthm-seq-bar) scaler

&optional (preserve-meter t) ignore1 ignore2)

20.2.419 rthm-seq-bar/set-8va

[rthm-seq-bar] [Methods]

DATE:

23-Sep-2011

DESCRIPTION:

Set the 8VA (ottava) slots of the event objects within a given rthm-seq-bar

object. This number can be positive or negative. Only the values 1, 0 and

-1 are valid for the number of octaves to be transposed.

ARGUMENTS:

- A rthm-seq-bar object.

- A number indicating the number of octaves to be transposed in either

direction (ottava/ottava bassa).

RETURN VALUE:

Always returns NIL.

EXAMPLE:

20 SC/NAMED-OBJECT 777

;; The method returns NIL

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

(set-8va rsb 1))

=> NIL

;; Create a rthm-seq-bar object with event objects, set the 8va slot to 1, and

;; access and print it to see it’s new value.

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

(set-8va rsb 1)

(loop for e in (rhythms rsb) collect (8va e)))

=> (1 1 1)

SYNOPSIS:

(defmethod set-8va ((rsb rthm-seq-bar) 8va)

20.2.420 rthm-seq-bar/set-amplitudes

[rthm-seq-bar] [Methods]

DESCRIPTION:

Add a specified amplitude (between 0.0 and 1.0) to all non-rest event

objects in a specified rthm-seq-bar object.

ARGUMENTS:

- A rthm-seq-bar object.

- A number that is an amplitude value between 0.0 and 1.0.

RETURN VALUE:

20 SC/NAMED-OBJECT 778

Returns the amplitude value set.

EXAMPLE:

(let* ((mini

(make-slippery-chicken

’+sc-object+

:ensemble ’(((va (viola :midi-channel 2))))

:set-palette ’((1 ((c3 d3 e3 f3 g3 a3 b3 c4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e (e) e (e) (e) e e e))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((va (1 1 1))))))))

(set-amplitudes (get-bar mini 2 ’va) 0.9)

(cmn-display mini))

SYNOPSIS:

(defmethod set-amplitudes ((rsb rthm-seq-bar) amp)

20.2.421 rthm-seq-bar/set-dynamics

[rthm-seq-bar] [Methods]

DESCRIPTION:

Add a specified dynamic mark to all attacked event objects (i.e. not rests

and not notes that are tied to) in a specified rthm-seq-bar-object. This

method was created mainly to make it easy to set amplitudes for a range of

notes (e.g. with map-over-bars), so that they are, for example, reflected

in MIDI velocities. If used over many notes the score will probably then be

littered with extraneous dynamic marks. These can then be removed, if so

desired, with the slippery-chicken class remove-extraneous-dynamics method.

ARGUMENTS:

- A rthm-seq-bar object.

- A dynamic mark.

RETURN VALUE:

The specified dynamic mark

EXAMPLE:

20 SC/NAMED-OBJECT 779

(let* ((mini

(make-slippery-chicken

’+sc-object+

:ensemble ’(((va (viola :midi-channel 2))))

:set-palette ’((1 ((c3 d3 e3 f3 g3 a3 b3 c4))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e (e) e (e) (e) e e e))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((va (1 1 1))))))))

(set-dynamics (get-bar mini 2 ’va) ’ppp))

=> PPP

SYNOPSIS:

(defmethod set-dynamics ((rsb rthm-seq-bar) dynamic)

20.2.422 rthm-seq-bar/set-midi-channel

[rthm-seq-bar] [Methods]

DESCRIPTION:

Set the MIDI-channel and microtonal MIDI-channel for the pitch object

of an event object within a given rthm-seq-bar object. Sets the

MIDI-CHANNEL slot of all event objects contained in the rthm-seq-bar object

to the same channel.

ARGUMENTS:

- A rthm-seq-bar object.

- A whole number indicating the MIDI channel to be used for the

equal-tempered pitch material of the given rthm-seq-bar object.

- A whole number indicating the MIDI channel to be used for microtonal

pitch material of the given rthm-seq-bar object.

RETURN VALUE:

Always returns NIL.

EXAMPLE:

;; Create a rthm-seq-bar using event objects and check the MIDI-CHANNEL slots ;

;; of those event objects to see that they are NIL by default. ;

(let ((rsb (make-rthm-seq-bar

20 SC/NAMED-OBJECT 780

(list

’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

(loop for p in (rhythms rsb)

collect (midi-channel (pitch-or-chord p))))

=> (NIL NIL NIL)

;; Apply the set-midi-channel method to the rthm-seq-bar object and read and ;

;; print the MIDI-CHANNEL slots of each of the individual events to see that ;

;; they’ve been set. ;

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

(set-midi-channel rsb 13 14)

(loop for p in (rhythms rsb)

collect (midi-channel (pitch-or-chord p))))

=> (13 13 13)

SYNOPSIS:

(defmethod set-midi-channel ((rsb rthm-seq-bar) midi-channel

microtonal-midi-channel)

20.2.423 rthm-seq-bar/set-nth-attack

[rthm-seq-bar] [Methods]

DESCRIPTION:

Sets the value of the nth rhythm object of a given rthm-seq-bar that needs

an attack; i.e., not a rest and not a tied note.

NB: This method does not check to ensure that the resulting rthm-seq-bar

contains the right number of beats.

ARGUMENTS:

- A zero-based index number for the attacked note to change.

20 SC/NAMED-OBJECT 781

- An event.

- A rthm-seq-bar object.

OPTIONAL ARGUMENTS:

- T or NIL indicating whether to print a warning message if the given index

(minus one) is greater than the number of attacks in the RHYTHMS

list. Default = T.

RETURN VALUE:

An event object.

EXAMPLE:

(let ((rsb (make-rthm-seq-bar ’((2 4) q+e s s))))

(set-nth-attack 1 (make-event ’e4 ’q) rsb))

=>

EVENT: start-time: NIL, end-time: NIL,

[...]

PITCH: frequency: 329.6275526703903d0, midi-note: 64, midi-channel: NIL

[...]

NAMED-OBJECT: id: E4, tag: NIL,

data: E4

[...]

RHYTHM: value: 4.0, duration: 1.0, rq: 1, is-rest: NIL, score-rthm: 4.0,

[...]

NAMED-OBJECT: id: Q, tag: NIL,

data: Q

(let ((rsb (make-rthm-seq-bar ’((2 4) q+e s s))))

(set-nth-attack 2 (make-event ’e4 ’q) rsb)

(loop for r in (rhythms rsb) collect (data r)))

=> ("Q" "E" S Q)

(let ((rsb (make-rthm-seq-bar ’((2 4) q+e s s))))

(set-nth-attack 3 (make-event ’e4 ’q) rsb))

=> NIL

rthm-seq-bar::set-nth-attack: index (3) < 0 or >= notes-needed (3)

(let ((rsb (make-rthm-seq-bar ’((2 4) q+e s s))))

(set-nth-attack 3 (make-event ’e4 ’q) rsb nil))

20 SC/NAMED-OBJECT 782

=> NIL

SYNOPSIS:

(defmethod set-nth-attack (index (e event) (rsb rthm-seq-bar)

&optional (warn t))

20.2.424 rthm-seq-bar/set-written

[rthm-seq-bar] [Methods]

DATE:

20 Jul 2011 (Pula)

DESCRIPTION:

Set the written pitch (as opposed to sounding; i.e., for transposing

instruments) of an event object within a given rthm-seq-bar object. The

sounding pitch remains unchanged as a pitch object in the PITCH-OR-CHORD

slot, while the written pitch is added as a pitch object to the

WRITTEN-PITCH-OR-CHORD slot.

ARGUMENTS:

- A rthm-seq-bar-object

- A number (positive or negative) indicating the transposition by

semitones. See this method in the event class for more information and

examples.

RETURN VALUE:

Always returns T.

EXAMPLE:

;; The method returns NIL

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

20 SC/NAMED-OBJECT 783

(set-written rsb -2))

=> T

;; Set the written pitch transposition to 2 semitones lower, then check the

;; data of the WRITTEN-PITCH-OR-CHORD slot of each event to see the

;; corresponding pitches

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

(set-written rsb -2)

(loop for p in (rhythms rsb)

collect (get-pitch-symbol p)))

=> (B3 B3 B3)

SYNOPSIS:

(defmethod set-written ((rsb rthm-seq-bar) transposition)

20.2.425 rthm-seq-bar/split

[rthm-seq-bar] [Methods]

DATE:

27 Jan 2011

DESCRIPTION:

Splits a given rthm-seq-bar into multiple smaller rthm-seq-bar

objects. This will only work if the given rthm-seq-bar object can be split

into whole beats; e.g. a 4/4 bar will not be split into 5/8 + 3/8.

The keyword arguments :min-beats and :max-beats serve as guidelines rather

than strict cut-offs. In some cases, the method may only be able to

effectively split the given rthm-seq-bar by dividing it into segments that

exceed the length stipulated by these arguments (see example below).

Depending on the min-beats/max-beats arguments stipulated by the user or

the rhythmic structure of the given rthm-seq-bar object, the given

rthm-seq-bar may not be splittable, in which case NIL is returned. If the

20 SC/NAMED-OBJECT 784

keyword argument :warn is set to T, a warning will be also be printed in

such cases.

NB The method does not copy over and update bar start-times (this is meant

to be done at the rthm-seq stage, not once the whole piece has been

generated).

ARGUMENTS:

- A rthm-seq-bar object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :min-beats. This argument takes an integer value to indicate the minimum

number of beats in any of the new rthm-seq-bar objects created. This

serves as a guideline only and may occasionally be exceeded in value by

the method. Default value = 2.

- :max-beats. This argument takes an integer value to indicate the maximum

number of beats in any of the new rthm-seq-bar objects created. This

serves as a guideline only and may occasionally be exceeded in value by

the method. Default value = 5.

- :warn. Indicates whether to print a warning if the rthm-seq-bar object is

unsplittable. Value T = print a warning. Defaults to NIL.

RETURN VALUE:

Returns a list of rthm-seq-bar objects if successful, NIL if not.

EXAMPLE:

(let* ((rsb (make-rthm-seq-bar ’((7 4) h. e e +e. e. e q)))

(rsb-splt (split rsb)))

(loop for i in rsb-splt collect

(loop for r in (rhythms i) collect (data r))))

=> ((H.) (E E "E." E. E Q))

(let* ((rsb (make-rthm-seq-bar ’((7 4) h. e e +e. e. e q)))

(rsb-splt (split rsb)))

(loop for i in rsb-splt do (print-simple i)))

=>

(3 4): note H.,

(4 4): note E, note E, note E., note E., note E, note Q,

20 SC/NAMED-OBJECT 785

(let* ((rsb (make-rthm-seq-bar ’((7 4) h. e e +e. e. e q)))

(rsb-splt (split rsb :min-beats 1 :max-beats 3)))

(loop for i in rsb-splt do (print-simple i)))

=>

(3 4): note H.,

(1 4): note E, note E,

(2 4): note E., note E., note E,

(1 4): note Q,

(let ((rsb (make-rthm-seq-bar ’((7 4) h. e e +e. e. e q))))

(split rsb :max-beats 1 :warn t))

=> NIL

WARNING: rthm-seq-bar::split: couldn’t split bar:

SYNOPSIS:

(defmethod split ((rsb rthm-seq-bar) &key

(min-beats 2) (max-beats 5) warn ignore)

20.2.426 rthm-seq-bar/time-sig-equal

[rthm-seq-bar] [Methods]

DESCRIPTION:

Check to see if two given rthm-seq-bar objects have the same time signature.

ARGUMENTS:

- Two rthm-seq-bar objects.

RETURN VALUE:

T if the given rthm-seq-bar objects have the same time signature.

NIL if the given rthm-seq-bar objects have different times signatures.

EXAMPLE:

(let ((rsb1 (make-rthm-seq-bar ’((2 4) q e s s)))

(rsb2 (make-rthm-seq-bar ’((2 4) s s e q))))

(time-sig-equal rsb1 rsb2))

20 SC/NAMED-OBJECT 786

=> T

(let ((rsb1 (make-rthm-seq-bar ’((2 4) q e s s)))

(rsb2 (make-rthm-seq-bar ’((3 4) q+e e s s s s))))

(time-sig-equal rsb1 rsb2))

=> NIL

SYNOPSIS:

(defmethod time-sig-equal ((rsb1 rthm-seq-bar) (rsb2 rthm-seq-bar))

20.2.427 rthm-seq-bar/transpose

[rthm-seq-bar] [Methods]

DESCRIPTION:

Transpose the pitches of event objects stored in a rthm-seq-bar object by a

specified number of semitones (positive for up, negative for down).

ARGUMENTS:

- A rthm-seq-bar object.

- A whole number (positive or negative).

OPTIONAL ARGUMENTS:

keyword arguments:

- :destructively. Set to T or NIL to indicate whether the slot values of

the original rthm-seq-bar object should be changed or not (even though

the method always returns a clone). T = change the originals.

Default = NIL.

- :chord-function. A function to be used for the transposition of

chords. Default = #’transpose.

- :pitch-function. A function to be used for the transposition of

pitches. Default = #’transpose.

RETURN VALUE:

This method returns a clone of the rthm-seq-bar object whether the keyword

argument :destructively is set to T or NIL. It does change the

corresponding slot values of the original when set to T even though it

returns the clone.

20 SC/NAMED-OBJECT 787

EXAMPLE:

;; Create a rthm-seq-bar object using make-event, transpose the contained ;

;; pitches destructively, and read the values of the corresponding slots to see ;

;; the change. ;

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

(transpose rsb 3 :destructively 3)

(loop for p in (rhythms rsb)

collect (data (pitch-or-chord p))))

=> (EF4 EF4 EF4)

;; Do the same thing without the :destructively keyword being set to T ;

(let ((rsb (make-rthm-seq-bar

(list

’(3 8)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)

(make-event ’cs4 ’e)))))

(transpose rsb 3)

(loop for p in (rhythms rsb)

collect (data (pitch-or-chord p))))

=> (C4 C4 C4)

SYNOPSIS:

(defmethod transpose ((rsb rthm-seq-bar) semitones

&key

;; when t, then the events will be replaced by the

;; transposition.

(destructively nil)

;; the default functions are the class methods for pitch

;; or chord.

(chord-function #’transpose)

(pitch-function #’transpose))

20.2.428 sclist/sc-nthcdr

[sclist] [Methods]

20 SC/NAMED-OBJECT 788

DESCRIPTION:

Get the tail (rest) of a given sclist object beginning with and including

the specified zero-based index number.

NB: This method is destructive and replaces the contents of the given list

with the sublist returned by the method.

ARGUMENTS:

- An index number.

- An sclist object

RETURN VALUE:

Returns a list.

Returns NIL if the specified index is greater (minus 1) than the number of

items in the given list.

EXAMPLE:

;; Create an sclist object and get the tail of the list starting at place

;; 4. The subset returned replaces the data of the original.

(let ((scl (make-sclist ’(0 1 2 3 4 5 6 7 8 9))))

(sc-nthcdr 4 scl)

(data scl))

=> (4 5 6 7 8 9)

(let ((scl (make-sclist ’(0 1 2 3 4 5 6 7 8 9))))

(sc-nthcdr 14 scl))

=> NIL

SYNOPSIS:

(defmethod sc-nthcdr (nth (scl sclist))

20.2.429 sclist/sc-set

[sclist] [Classes]

NAME:

20 SC/NAMED-OBJECT 789

player

File: sc-set.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist -> sc-set

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the sc-set class which holds pitch set

information for harmonic and pitch manipulation.

Author: Michael Edwards: m@michael-edwards.org

Creation date: August 10th 2001

$$ Last modified: 14:35:06 Sat Jul 12 2014 BST

SVN ID: $Id: sc-set.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.430 sc-set/add

[sc-set] [Methods]

DESCRIPTION:

Create a new sc-set object from the data of two other specified sc-set

objects.

NB: Any subsets contained in the original sc-set objects are lost in the

process.

ARGUMENTS:

- A first sc-set object.

- A second sc-set object.

OPTIONAL ARGUMENTS:

(- optional argument <ignore> is internal only)

RETURN VALUE: EXAMPLE:

(let ((mscs1 (make-sc-set ’(d2 a2 e3 b3 gf4 df5 af5)))

20 SC/NAMED-OBJECT 790

(mscs2 (make-sc-set ’(f2 c3 g3 d4 bf4 f5 c6))))

(add mscs1 mscs2))

=>

SC-SET: auto-sort: T, used-notes:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 0

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 0, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: USED-NOTES, tag: NIL,

data: NIL

**** N.B. All pitches printed as symbols only, internally they are all

pitch-objects.

subsets:

related-sets:

SCLIST: sclist-length: 14, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (D2 F2 A2 C3 E3 G3 B3 D4 GF4 BF4 DF5 F5 AF5 C6)

SYNOPSIS:

(defmethod add ((s1 sc-set) (s2 sc-set) &optional ignore)

20.2.431 sc-set/add-harmonics

[sc-set] [Methods]

DESCRIPTION:

Adds pitches to the set which are harmonically related to the existing

pitches. The keywords are the same as for the get-harmonics function. NB

This will automatically sort all pitches from high to low (irrespective of

the auto-sort slot).

ARGUMENTS:

- an sc-set object

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 791

keyword arguments:

see get-harmonics function

RETURN VALUE:

the same set object as the first argument but with new pitches added.

EXAMPLE:

;;; treat the existing pitches as fundamentals

(let ((s (make-sc-set ’(c4 e4) :id ’test)))

(add-harmonics s :start-partial 3 :max-results 3))

=>

SC-SET: auto-sort: T, rm-dups: T, warn-dups: T used-notes:

[...]

data: (C4 E4 G5 B5 C6 E6 E6 AF6)

;;; treat the existing pitches as partials and add the fundamentals and

;;; harmonics

(let ((s (make-sc-set ’(c4 e4) :id ’test)))

(add-harmonics s :start-freq-is-partial 3 :max-results 3))

SC-SET: auto-sort: T, rm-dups: T, warn-dups: T used-notes:

[...]

data: (F2 A2 F3 A3 C4 E4)

SYNOPSIS:

(defmethod add-harmonics ((s sc-set) &rest keywords)

20.2.432 sc-set/contains-pitches

[sc-set] [Methods]

DESCRIPTION:

Check to see if a given sc-set object contains pitch objects for all of the

specified note-names. The method returns NIL if any one of the specified

pitches is not found in the given sc-set object.

ARGUMENTS:

- An sc-set object.

- A list of note-name symbols. NB: If checking for only one pitch, that

pitch must be passed as a single-item list.

20 SC/NAMED-OBJECT 792

RETURN VALUE:

T or NIL.

EXAMPLE:

;; Returns T when all specified pitches are contained in the given sc-set

;; object

(let ((mscs (make-sc-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6))))

(contains-pitches mscs ’(d2 e3 gf4 af5)))

=> T

;; Returns NIL if any one of the specified pitches is not contained in the

;; given sc-set object.

(let ((mscs (make-sc-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6))))

(contains-pitches mscs ’(d2 e3 gf4 b4 af5)))

=> NIL

SYNOPSIS:

(defmethod contains-pitches ((s sc-set) pitches)

20.2.433 sc-set/create-chord

[sc-set] [Methods]

DESCRIPTION:

Create a chord object from the pitches of the given sc-set object.

ARGUMENTS:

- An sc-set object.

RETURN VALUE:

A chord object.

EXAMPLE:

(let ((mscs (make-sc-set ’(d2 c3 d4 df5 c6))))

(create-chord mscs))

20 SC/NAMED-OBJECT 793

=>

CHORD: auto-sort: T, marks: NIL, micro-tone: NIL

SCLIST: sclist-length: 5, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (

PITCH: frequency: 73.416, midi-note: 38, midi-channel: 0

[...]

)

SYNOPSIS:

(defmethod create-chord ((s sc-set))

20.2.434 sc-set/create-event

[sc-set] [Methods]

DESCRIPTION:

Create an event object (that is a chord) from a given sc-set object,

specifying a rhythmic value and a start-time (in seconds).

ARGUMENTS:

- An sc-set object.

- A rhythmic unit, either as a numerical value (32, 16 etc) or a symbol

that is an alphabetic shorthand (’e, ’s etc).

- A number that is the start time in seconds.

OPTIONAL ARGUMENTS:

- A number that is the start-time in quarter-notes rather than seconds (see

event class documentation for more details)

RETURN VALUE:

An event object.

EXAMPLE:

;; Create an event from the specified sc-set object that is a quarter-note

;; chord starting at 0.0 seconds

20 SC/NAMED-OBJECT 794

(let ((mscs (make-sc-set ’(d2 c3 d4 df5 c6))))

(create-event mscs ’q 0.0))

=>

EVENT: start-time: 0.000, end-time: NIL,

duration-in-tempo: 0.000,

compound-duration-in-tempo: 0.000,

amplitude: 0.700

bar-num: -1, marks-before: NIL,

tempo-change: NIL

instrument-change: NIL

display-tempo: NIL, start-time-qtrs: 0.000,

midi-time-sig: NIL, midi-program-changes: NIL,

8va: 0

pitch-or-chord:

CHORD: auto-sort: T, marks: NIL, micro-tone: NIL

SCLIST: sclist-length: 5, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (

PITCH: frequency: 73.416, midi-note: 38, midi-channel: 0

[...]

RHYTHM: value: 4.000, duration: 1.000, rq: 1, is-rest: NIL,

score-rthm: 4.0f0, undotted-value: 4, num-flags: 0, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 1.000,

is-grace-note: NIL, needs-new-note: T, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 4, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: Q, tag: NIL,

data: Q

SYNOPSIS:

(defmethod create-event ((s sc-set) rhythm start-time &optional start-time-qtrs)

20.2.435 sc-set/force-micro-tone

[sc-set] [Methods]

DESCRIPTION:

Change the value of the MICRO-TONE slot of all pitch objects in a given

sc-set object to the specified <value>.

20 SC/NAMED-OBJECT 795

NB: Although the MICRO-TONE slot is generally used as a boolean, this

method allows the user to force-set it to any value.

ARGUMENTS:

- An sc-set object.

OPTIONAL ARGUMENTS:

- An item of any type that is to be the new value of the MICRO-TONE slot of

all pitch objects in the given sc-set object (generally T or

NIL). Default = NIL.

RETURN VALUE:

Always returns NIL.

EXAMPLE:

;; Create an sc-set object that contains micro-tones and print the MICRO-TONE

;; slot of all of the contained pitch objects to see their values:

(let ((mscs (make-sc-set ’(d2 cqs3 fs3 cs4 e4 c5 aqf5 ef6))))

(loop for p in (data mscs) do (print (micro-tone p))))

=>

NIL

T

NIL

NIL

NIL

NIL

T

NIL

;; Now apply the force-micro-tone method to the same set using the default

;; value of NIL and print the results

(let ((mscs (make-sc-set ’(d2 cqs3 fs3 cs4 e4 c5 aqf5 ef6))))

(force-micro-tone mscs)

(loop for p in (data mscs) do (print (micro-tone p))))

=>

NIL

NIL

NIL

20 SC/NAMED-OBJECT 796

NIL

NIL

NIL

NIL

NIL

;; Using the same sc-set, force all the values to T

(let ((mscs (make-sc-set ’(d2 cqs3 fs3 cs4 e4 c5 aqf5 ef6))))

(force-micro-tone mscs ’t)

(loop for p in (data mscs) do (print (micro-tone p))))

=>

T

T

T

T

T

T

T

T

SYNOPSIS:

(defmethod force-micro-tone ((s sc-set) &optional value)

20.2.436 sc-set/get-chromatic

[sc-set] [Methods]

DESCRIPTION:

Return those notes of a given sc-set object that are normal chromatic notes

(i.e. no microtones).

If a number is given for the <octave> argument, the method will transpose

all returned pitches into the specified octave, in which case any duplicate

pitches are removed.

ARGUMENTS:

- An sc-set object.

OPTIONAL ARGUMENTS:

keyword arguments:

20 SC/NAMED-OBJECT 797

- :octave. NIL or an integer that is the octave designator to which all

resulting pitches are to be transposed (i.e. the "4" in "C4" etc.)

Default = NIL.

- :remove-duplicates. T or NIL to indicate whether any duplicate pitches

within an octave that are created by use of the :octave keyword argument

are to be removed. T = remove duplicates. Default = NIL.

- :as-symbols. T or NIL to indicate whether to return the results of the

method as a list of note-name symbols rather than a list of pitch

objects. T = return as note-name symbols. Default = NIL.

- :package. The package in which the pitches are to be handled.

Default = :sc.

- :invert. Get the micro-tone pitches instead.

RETURN VALUE:

Returns a list of pitch objects by default.

When the :as-symbols argument is set to T, a list of note-name symbols is

returned instead.

EXAMPLE:

;;; Returns a list of pitch objects by default

(let ((mscs (make-sc-set ’(d2 cqs3 fs3 gqf3 cs4 e4 fqs4 c5 af5 bqf5 d6))))

(get-chromatic mscs))

=>

(

PITCH: frequency: 73.416, midi-note: 38, midi-channel: 0

pitch-bend: 0.0

degree: 76, data-consistent: T, white-note: D2

nearest-chromatic: D2

src: 0.28061550855636597, src-ref-pitch: C4, score-note: D2

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 2, c5ths: 0, no-8ve: D, no-8ve-no-acc: D

show-accidental: T, white-degree: 15,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: D2, tag: NIL,

data: D2

PITCH: frequency: 184.997, midi-note: 54, midi-channel: 0

[...]

20 SC/NAMED-OBJECT 798

)

;; Setting the :as-symbols argument to T returns a list of note-name symbols

;; instead

(let ((mscs (make-sc-set ’(d2 cqs3 fs3 gqf3 cs4 e4 fqs4 c5 af5 bqf5 d6))))

(get-chromatic mscs

:as-symbols t))

=> (D2 FS3 CS4 E4 C5 AF5 D6)

;; Giving an integer as the :octave argument transposes all returned pitches

;; to the specified octave, removing any duplicates by default.

(let ((mscs (make-sc-set ’(d2 cqs3 fs3 gqf3 cs4 e4 fqs4 c5 af5 bqf5 d6))))

(get-chromatic mscs

:as-symbols t

:octave 4))

=> (FS4 CS4 E4 C4 AF4 D4)

;; Setting the :invert argument to T returns the non-chromatic elements of the

;; given sc-set object instead

(let ((mscs (make-sc-set ’(d2 cqs3 fs3 gqf3 cs4 e4 fqs4 c5 af5 bqf5 d6))))

(get-chromatic mscs

:as-symbols t

:invert t))

=> (CQS3 GQF3 FQS4 BQF5)

SYNOPSIS:

(defmethod get-chromatic ((s sc-set)

&key

(octave nil)

(remove-duplicates t) ;; only if octave!

(as-symbols nil)

(package :sc)

(invert nil))

20.2.437 sc-set/get-degrees

[sc-set] [Methods]

DESCRIPTION:

Return the pitches contained in the given sc-set object as a list of

DEGREES (which default to quarter-tones in slippery chicken).

20 SC/NAMED-OBJECT 799

ARGUMENTS:

- An sc-set object.

RETURN VALUE:

A list of integers.

EXAMPLE:

(let ((mscs (make-sc-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6))))

(get-degrees mscs))

=> (76 82 90 96 104 110 118 124 132 140 146 154 160 168)

SYNOPSIS:

(defmethod get-degrees ((s sc-set))

20.2.438 sc-set/get-freqs

[sc-set] [Methods]

DESCRIPTION:

Return the pitches of a given sc-set object as a list of Hz frequencies

ARGUMENTS:

- An sc-set object.

RETURN VALUE:

A list of numbers

EXAMPLE:

(let ((mscs (make-sc-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6))))

(get-freqs mscs))

=> (73.41618871368837 87.30705289160142 109.99999810639679 130.8127784729004

164.81377633519514 195.99771591817216 246.94163930037348 293.6647548547535

369.99440456398133 466.1637395092839 554.3652698843016 698.4564231328113

830.6093584209975 1046.5022277832031)

SYNOPSIS:

(defmethod get-freqs ((s sc-set))

20 SC/NAMED-OBJECT 800

20.2.439 sc-set/get-interval-structure

[sc-set] [Methods]

DESCRIPTION:

Get the distances between each pitch in a given sc-set object and the

lowest pitch in that object in DEGREES (which default to quarter-tones in

slippery chicken). This method assumes that the given sc-set object is

sorted from low to high, which is the default action for sc-set objects.

ARGUMENTS:

- An sc-set object.

OPTIONAL

- T or NIL indicating whether to return values in semitones or default of

degrees. Special case: if this argument is ’frequencies, then the

interval structure will be returned as frequency differences. T =

semitones. Default = NIL.

RETURN VALUE:

A list of integers.

EXAMPLE:

;;; Returns the distances in degrees (which are quarter-tones by default

;;; in slippery chicken--use (in-scale :chromatic) at the top of your code to

;;; set to the chromatic scale):

(let ((mscs (make-sc-set ’(c4 e4 g4))))

(get-interval-structure mscs))

=> (8 14)

;;; Return semitones

(let ((mscs (make-sc-set ’(c4 e4 g4))))

(get-interval-structure mscs t))

=> (4 7)

SYNOPSIS:

(defmethod get-interval-structure ((s sc-set) &optional in-semitones ignore)

20 SC/NAMED-OBJECT 801

20.2.440 sc-set/get-midi

[sc-set] [Methods]

DESCRIPTION:

Return the pitches of a given sc-set object as a list of their equivalent

MIDI note numbers.

ARGUMENTS:

- An sc-set object.

RETURN VALUE:

A list of numbers

EXAMPLE:

(let ((mscs (make-sc-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6))))

(get-midi mscs))

=> (38 41 45 48 52 55 59 62 66 70 73 77 80 84)

SYNOPSIS:

(defmethod get-midi ((s sc-set))

20.2.441 sc-set/get-non-chromatic

[sc-set] [Methods]

DESCRIPTION:

Return those notes of a given sc-set object that are microtones (i.e. no

"normal" chromatic notes).

If a number is given for the <octave> argument, the method will transpose

all returned pitches into the specified octave, in which case any duplicate

pitches are removed.

ARGUMENTS:

- An sc-set object.

20 SC/NAMED-OBJECT 802

OPTIONAL ARGUMENTS:

keyword arguments:

- :octave. NIL or an integer that is the octave designator to which all

resulting pitches are to be transposed (i.e. the "4" in "C4" etc.)

Default = NIL.

:as-symbols. T or NIL to indicate whether to return the results of the

method as a list of note-name symbols rather than a list of pitch

objects. T = return as note-name symbols. Default = NIL.

- :package. The package in which the pitches are to be handled.

Default = :sc.

RETURN VALUE:

Returns a list of pitch objects by default.

When the :as-symbols argument is set to T, a list of note-name symbols is

returned instead.

EXAMPLE:

;; Returns a list of pitch objects by default

(let ((mscs (make-sc-set ’(d2 cqs3 fs3 gqf3 cs4 e4 fqs4 c5 af5 bqf5 d6))))

(get-non-chromatic mscs))

=>

=> (

PITCH: frequency: 134.646, midi-note: 48, midi-channel: 0

pitch-bend: 0.5

degree: 97, data-consistent: T, white-note: C3

nearest-chromatic: C3

src: 0.5146511197090149, src-ref-pitch: C4, score-note: CS3

qtr-sharp: 1, qtr-flat: NIL, qtr-tone: 1,

micro-tone: T,

sharp: NIL, flat: NIL, natural: NIL,

octave: 3, c5ths: 0, no-8ve: CQS, no-8ve-no-acc: C

show-accidental: T, white-degree: 21,

accidental: QS,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: CQS3, tag: NIL,

data: CQS3

PITCH: frequency: 190.418, midi-note: 54, midi-channel: 0

[...]

20 SC/NAMED-OBJECT 803

)

;; Setting :as-symbols to T returns a list of note-names instead

(let ((mscs (make-sc-set ’(d2 cqs3 fs3 gqf3 cs4 e4 fqs4 c5 af5 bqf5 d6))))

(get-non-chromatic mscs

:as-symbols t))

=> (CQS3 GQF3 FQS4 BQF5)

;; Giving an integer as the :octave argument transposes all returned pitches

;; to the specified octave, removing any duplicates

(let ((mscs (make-sc-set ’(d2 cqs3 fs3 gqf3 cs4 e4 fqs4 c5 af5 bqf5 cqs6 d6))))

(get-non-chromatic mscs

:as-symbols t

:octave 4))

=> (GQF4 FQS4 BQF4 CQS4)

SYNOPSIS:

(defmethod get-non-chromatic ((s sc-set)

&key

(octave nil)

(as-symbols nil)

(package :sc))

20.2.442 sc-set/get-semitones

[sc-set] [Methods]

DESCRIPTION:

Get the distances in semitones of each pitch in a given sc-set

object to a static reference pitch.

Though this method can be used in other contexts, it was devised

as an aid for transposing audio samples (sound files), and the

reference pitch is therefore generally the perceived fundamental

pitch of the audio sample to be transposed.

ARGUMENTS:

- An sc-set object.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 804

- An optional note-name symbol sets the value of the <reference-pitch>,

which is the basis pitch to which the resulting number of semitones

refer. This will generally be the perceived fundamental pitch of the

sample (sound file) being modified ("transposed").

- The optional <offset> argument takes a number that is the number of

semitones to add to the pitch of the given set prior to determining its

distance in semitones from the reference pitch.

RETURN VALUE:

A list of positive and negative numbers.

EXAMPLE:

;; Chromatic example

(let ((mscs (make-sc-set ’(d2 fs3 cs4 c5 af5 d6))))

(get-semitones mscs))

=> (-22.0 -6.0 1.0 12.0 20.0 26.0)

;; Quarter-tone example; results can be decimal fractions of semitone

(let ((mscs (make-sc-set ’(d2 cqs3 fs3 gqf3 cs4 fqs4 c5 af5 bqf5 cqs6 d6))))

(get-semitones mscs))

=> (-22.0 -11.5 -6.0 -5.5 1.0 5.5 12.0 20.0 22.5 24.5 26.0)

SYNOPSIS:

(defmethod get-semitones ((s sc-set) &optional

(reference-pitch ’c4)

(offset 0))

20.2.443 sc-set/get-semitones-from-middle-note

[sc-set] [Methods]

DESCRIPTION:

Return a list of numbers that are the distances in semitones of each pitch

in a given sc-set object from the middle note of that object.

NB: If the given sc-object contains an even number of pitch objects, the

middle note is determined to be the first note of the second half of

the set.

ARGUMENTS:

20 SC/NAMED-OBJECT 805

- An sc-set object.

OPTIONAL ARGUMENTS:

- A symbol that is the key of one of the key/data pairs contained in the

SUBSETS slot of the given sc-set object.

RETURN VALUE:

A list of positive and negative numbers.

EXAMPLE:

;; With an odd number of items in the sc-set object, the method returns the

;; same number of positive and negative numbers (non-zero)

(let ((mscs (make-sc-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5))))

(get-semitones-from-middle-note mscs))

=> (-21.0 -18.0 -14.0 -11.0 -7.0 -4.0 0.0 3.0 7.0 11.0 14.0 18.0 21.0)

;; With an even number of items in the sc-set object, the middle note is

;; considered to be the first note of the second half of the set

(let ((mscs (make-sc-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6))))

(get-semitones-from-middle-note mscs))

=> (-24.0 -21.0 -17.0 -14.0 -10.0 -7.0 -3.0 0.0 4.0 8.0 11.0 15.0 18.0 22.0)

;; Setting the optional <subset> argument to a symbol that is the key of a

;; given key/data pair in the sc-object’s SUBSETS slot applies the method to

;; that subset only

(let ((mscs (make-sc-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6)

:subsets ’((fl (df5 f5 af5 c6))

(va (c3 e3 g3 b3 d4 gf4))))))

(get-semitones-from-middle-note mscs ’fl))

=> (-7.0 -3.0 0.0 4.0)

SYNOPSIS:

(defmethod get-semitones-from-middle-note ((s sc-set) &optional subset)

20.2.444 sc-set/get-srts

[sc-set] [Methods]

DESCRIPTION:

20 SC/NAMED-OBJECT 806

Get the sampling-rate conversion factors for the given sc-set object,

whereby 1.0 = unison, 2.0 = one octave higher and 0.5 = one octave lower

etc.

ARGUMENTS:

- An sc-set object.

OPTIONAL ARGUMENTS:

- An optional note-name symbol sets the value of the <reference-pitch>,

which is the basis pitch to which the resulting factors refer. This will

generally be the perceived fundamental pitch of the sample (sound file)

being modified ("transposed").

- The optional <offset> argument takes a number that is the number of

semitones to add to the pitch of the given set prior to determining the

sampling-rate conversion factors.

RETURN VALUE:

Returns a list of numbers.

EXAMPLE:

;; Returns a list of factors that are the sampling-rate conversion factor

;; compared to a ’C4 by default:

(let ((mscs (make-sc-set ’(d2 fs3 cs4 c5 af5 d6))))

(get-srts mscs))

=> (0.28061550855636597 0.7071067690849304 1.0594631433486938 2.0

3.17480206489563 4.4898481369018555)

;; Comparing the same set against a higher reference-pitch will return lower

;; values

(let ((mscs (make-sc-set ’(d2 fs3 cs4 c5 af5 d6))))

(get-srts mscs ’d4))

=> (0.25 0.6299605220704482 0.9438743681693953 1.781797458637491

2.8284271254540463 4.0)

;; Conversely, comparing the same set against the default reference-pitch but

;; with a positive offset will return higher values

(let ((mscs (make-sc-set ’(d2 fs3 cs4 c5 af5 d6))))

(get-srts mscs ’c4 2))

20 SC/NAMED-OBJECT 807

=> (0.3149802585215549 0.7937005124004939 1.1892071699914617 2.244924096618746

3.563594828739576 5.039684136344879)

SYNOPSIS:

(defmethod get-srts ((s sc-set) &optional

(reference-pitch ’c4)

(offset 0))

20.2.445 sc-set/make-sc-set

[sc-set] [Functions]

DESCRIPTION:

Create an sc-set object, which holds pitch-set information for harmonic and

pitch manipulation.

ARGUMENTS:

- A list of note-name symbols that is to be the set (pitch-set) for the

given sc-set object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :id. A symbol that is to be the ID of the given sc-set object.

- :subsets. An assoc-list of key/data pairs, in which the data is a list of

note-name symbols that are a subset of the main set. One use for this

keyword argument might be to create subsets that particular instruments

can play; these could for instance be selected in the chord-function

passed to the instrument object. In any case, if the instrument has a

subset-id slot, and the current set contains a subset with that ID, the

pitches the instrument may play are limited to that subset.

- :related-sets. An assoc-list of key/data pairs, similar to :subsets, only

that the pitches given here do not have to be part of the main set. This

can be used, for example, for pitches missing from the main set.

- :auto-sort. T or NIL to indicate whether the specified pitches (note-name

symbols) are to be automatically sorted from lowest to highest.

T = sort. Default = T.

RETURN VALUE:

An sc-set object.

20 SC/NAMED-OBJECT 808

EXAMPLE:

;; Simplest usage, with no keyword arguments; returns an sc-set object

(make-sc-set ’(d2 cs3 fs3 cs4 e4 c5 af5 ef6))

=>

SC-SET: auto-sort: T, used-notes:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 0

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 0, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: USED-NOTES, tag: NIL,

data: NIL

N.B. All pitches printed as symbols only, internally they are all

pitch-objects.

subsets:

related-sets:

SCLIST: sclist-length: 8, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (D2 CS3 FS3 CS4 E4 C5 AF5 EF6)

;; With keyword arguments

(make-sc-set ’(d2 cs3 fs3 cs4 e4 c5 af5 ef6)

:id ’scs1

:subsets ’((violin (e4 c5 af5 ef6))

(viola (cs4 e4)))

:related-sets ’((missing (ds2 e2 b3 cs6 d6))))

=>

SC-SET: auto-sort: T, used-notes:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 0

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 0, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: USED-NOTES, tag: NIL,

20 SC/NAMED-OBJECT 809

data: NIL

N.B. All pitches printed as symbols only, internally they are all

pitch-objects.

subsets:

VIOLIN: (E4 C5 AF5 EF6)

VIOLA: (CS4 E4)

related-sets:

MISSING: (DS2 E2 B3 CS6 D6)

SCLIST: sclist-length: 8, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: SCS1, tag: NIL,

data: (D2 CS3 FS3 CS4 E4 C5 AF5 EF6)

SYNOPSIS:

(defun make-sc-set (sc-set &key id subsets related-sets (auto-sort t) (rm-dups t))

20.2.446 sc-set/pitch-symbols

[sc-set] [Methods]

DESCRIPTION:

Return the pitches of a given sc-set object as a list of note-name

symbols.

ARGUMENTS:

- An sc-set object.

RETURN VALUE:

A list of note-name symbols.

EXAMPLE:

(let ((mscs (make-sc-set ’(d2 c3 d4 df5 c6))))

(pitch-symbols mscs))

=> (D2 C3 D4 DF5 C6)

SYNOPSIS:

(defmethod pitch-symbols ((s sc-set))

20 SC/NAMED-OBJECT 810

20.2.447 sc-set/round-inflections

[sc-set] [Methods]

DESCRIPTION:

Get the microtones of a given sc-set object, rounded to the nearest

chromatic note.

This method returns only the rounded microtones, and not any of the pitches

of the original sc-set that are already chromatic.

By default, this method only gets those microtones that are less than a

quarter-tone. This behavior can be changed by setting the :qtr-tones-also

argument to T.

An optional argument allows for all pitches to be moved to a specified

octave, in which case any duplicate pitches are removed.

ARGUMENTS:

- An sc-set object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :qtr-tones-also. T or NIL to indicate whether quarter-tones are also to

be rounded to the nearest chromatic pitch and returned. T = round and

return. Default = NIL.

- :octave. NIL or an integer that is the octave designator to which all

resulting pitches are to be transposed (i.e. the "4" in "C4" etc.)

Default = NIL.

- :remove-duplicates. T or NIL to indicate whether any duplicate pitches

within an octave that are created by use of the :octave keyword argument

are to be removed. T = remove duplicates. Default = NIL.

- :as-symbols. T or NIL to indicate whether to return the results of the

method as a list of note-name symbols rather than a list of pitch

objects. T = return as note-name symbols. Default = NIL.

- :package. The package in which the pitches are to be handled.

Default = :sc.

RETURN VALUE:

A list of pitch objects.

EXAMPLE:

20 SC/NAMED-OBJECT 811

;; First set the *scale* environment of CM (which is used by slippery chicken)

;; to twelfth-tones

(setf cm::*scale* (cm::find-object ’twelfth-tone))

=> #<tuning "twelfth-tone">

;; By default the method returns a list of pitch objects.

(let ((mscs (make-sc-set ’(c4 cts4 css4 cqs4 cssf4 cstf4 cs4))))

(round-inflections mscs))

=>

(

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 0

[...]

data: C4

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 0

[...]

data: C4

[...]

PITCH: frequency: 277.183, midi-note: 61, midi-channel: 0

[...]

data: CS4

[...]

PITCH: frequency: 277.183, midi-note: 61, midi-channel: 0

[...]

data: CS4

)

;; Setting the :as-symbols argument to T returns a list of note-name symbols

;; instead

(let ((mscs (make-sc-set ’(c4 cts4 css4 cqs4 cssf4 cstf4 cs4))))

(round-inflections mscs :as-symbols t))

=> (C4 C4 CS4 CS4)

;; Setting the :qtr-tones-also argument to T returns causes quarter-tones to be

;; rounded and returned as well.

(let ((mscs (make-sc-set ’(c4 cts4 css4 cqs4 cssf4 cstf4 cs4))))

(round-inflections mscs

:qtr-tones-also T

:as-symbols t))

=> (C4 C4 C4 CS4 CS4)

;; Specifying an octave transposes all returned pitches to that octave,

;; removing any duplicates by default

20 SC/NAMED-OBJECT 812

(let ((mscs (make-sc-set ’(c2 cts3 css4 cqs5 cssf6 cstf7 cs8))))

(round-inflections mscs

:qtr-tones-also T

:octave 4

:as-symbols t))

=> (C4 CS4)

;; The removal of the duplicates can be turned off by setting the

;; :remove-duplicates argument to NIL

(let ((mscs (make-sc-set ’(c2 cts3 css4 cqs5 cssf6 cstf7 cs8))))

(round-inflections mscs

:qtr-tones-also T

:octave 4

:remove-duplicates NIL

:as-symbols t))

=> (C4 C4 C4 CS4 CS4)

SYNOPSIS:

(defmethod round-inflections ((s sc-set)

&key

qtr-tones-also

octave

(remove-duplicates t) ;; only if octave!

(as-symbols nil)

(package :sc))

20.2.448 sc-set/set-position

[sc-set] [Methods]

DESCRIPTION:

Get the position (zero-index) of a specified pitch object within a given

sc-set object.

ARGUMENTS:

- A pitch object.

- An sc-set object.

RETURN VALUE:

An integer.

20 SC/NAMED-OBJECT 813

EXAMPLE:

(let ((mscs (make-sc-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6))))

(set-position (make-pitch ’e3) mscs))

=> 4

SYNOPSIS:

(defmethod set-position ((p pitch) (s sc-set))

20.2.449 sc-set/stack

[sc-set] [Methods]

DESCRIPTION:

Extend the pitch content of a given sc-set object by adding new pitch

objects which have the same interval structure as the original set.

The method analyzes the interval structure of the original set from the

bottom note to the top and adds new sets to the top and bottom of the

original set symmetrically; i.e., with the identical interval structure

above the original set and inverted interval structure below.

The optional <num-stacks> argument indicates how many new sets are to be

added to both ends.

NB: The method assumes that the pitch content of the original sc-set object

is sorted from low to high.

See also: the make-stack method in the complete-set class to make a stack

from a simple list of note-name symbols.

ARGUMENTS:

- An sc-set object.

- An integer that is the number of new sets to be added to each end of the

original set.

OPTIONAL ARGUMENTS:

keyword arguments:

- :id. A symbol that will be the ID of the new sc-set object. Default NIL.

20 SC/NAMED-OBJECT 814

- :by-freq. If T then use frequencies when calculating the interval

structure instead of degrees (semitones if default scale is chromatic).

In this case the frequencies of pitches will be retained but their

symbolic value will be rounded to the nearest note in the current scale

(and pitch bends will be set accordingly). Default NIL.

- :up. Apply the process upwards in pitch space. Default = T.

- :down. Apply the process downwards in pitch space. Default = T.

RETURN VALUE:

An sc-set object.

EXAMPLE:

;; Extends the original set with new sets that have the identical interval

;; structure upwards and inverted interval structure downwards.

(let ((set (make-sc-set ’(c4 e4 g4))))

(stack set 3))

=>

SC-SET: auto-sort: T, used-notes:

[...]

data: (EF2 GF2 BF2 DF3 F3 AF3 C4 E4 G4 B4 D5 GF5 A5 DF6 E6)

;;; or by calling the make-stack function, which returns a complete-set object

;;; (subclass of tl-set and sc-set). Called with (in-scale :chromatic):

(make-stack ’test ’(430 441 889 270) 1 :by-freq t)

=>

COMPLETE-SET: complete: NIL

[...]

data: (G2 A2 CS4 A4 A4 A5 C6 C6 FS6)

SYNOPSIS:

(defmethod stack ((s sc-set) num-stacks &key id by-freq (up t) (down t))

20.2.450 sc-set/subset-get-srts

[sc-set] [Methods]

DESCRIPTION:

Get the sampling-rate conversion factors for the specified subset of a

given sc-set object, whereby 1.0 = unison, 2.0 = one octave higher and 0.5

= one octave lower etc.

ARGUMENTS:

20 SC/NAMED-OBJECT 815

- An sc-set object.

- A symbol that is the key of one of the key/data pairs stored in the

SUBSETS slot of the given sc-set object.

OPTIONAL ARGUMENTS:

- The optional <reference-pitch> is the basis pitch to which the resulting

factors refer. This will generally be the perceived fundamental pitch of

the sample (sound file) being modified ("transposed").

- The optional <offset> argument is the number of semitones to add to the

pitch of the given set prior to determining the sampling-rate conversion

factors.

RETURN VALUE: EXAMPLE:

;;; Create an sc-set object with two subsets named ’FL and ’VA, then get the

;;; sampling-rate conversion factors for the ’FL subset

(let ((mscs (make-sc-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6)

:subsets ’((fl (df5 f5 af5 c6))

(va (c3 e3 g3 b3 d4 gf4))))))

(subset-get-srts mscs ’fl))

=> (2.1189262866973877 2.669679641723633 3.17480206489563 4.0)

SYNOPSIS:

(defmethod subset-get-srts ((s sc-set) subset &optional

(reference-pitch ’c4)

(offset 0))

20.2.451 sc-set/tl-set

[sc-set] [Classes]

NAME:

tl-set

File: tl-set.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist -> sc-set

-> tl-set

Version: 1.0.5

20 SC/NAMED-OBJECT 816

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the tl-set class that extends

set to incorporate transposition and limiting to

certain pitch ranges. NB As of yet, once a set is

transposed or limited, it can’t be retransposed from its

original pitches, only from the current set, i.e these

methods are destructive!

Author: Michael Edwards: m@michael-edwards.org

Creation date: 13th August 2001

$$ Last modified: 14:31:57 Sat Jul 12 2014 BST

SVN ID: $Id: tl-set.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.452 tl-set/complete-set

[tl-set] [Classes]

NAME:

complete-set

File: complete-set.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist -> sc-set ->

tl-set -> complete-set

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the complete-set class which as an

extension of the tl-set class allows checking for full

sets: ones in which every note of the current scale is

present.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 10th August 2001

$$ Last modified: 11:30:10 Tue Dec 31 2013 WIT

SVN ID: $Id: complete-set.lsp 5048 2014-10-20 17:10:38Z medward2 $

20 SC/NAMED-OBJECT 817

20.2.453 complete-set/make-complete-set

[complete-set] [Functions]

DESCRIPTION:

Create a complete-set object, which as an extension of the tl-set class

allows checking for full sets: ones in which every note of *standard-scale*

is present.

ARGUMENTS:

- A set of pitches. This can either take the form of a list of note-name

symbols or a complete-set, tl-set or sc-set object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :id. An number, symbol or string that is to be the ID of the given

complete-set object (see doc for sc-set).

- :tag. A number, symbol or string that is secondary name, description, tag

etc. for the given complete-set object. The :tag serves for

identification but not searching purposes (see doc for named-object).

- :subsets. An assoc-list of key/data pairs, in which the data is a list of

note-name symbols that are a subset of the main set. One use for this

keyword argument might be to create subsets that particular instruments

can play; these would then be selected in the chord-function passed to

the instrument object (see doc for sc-set).

- :related-sets. An assoc-list of key/data pairs, similar to :subsets, only

that the pitches given here do not have to be part of the main set. This

can be used, for example, for pitches missing from the main set (see doc

for sc-set).

- :auto-sort. T or NIL to indicate whether the specified pitches (note-name

symbols) are to be automatically sorted from lowest to highest.

T = sort. Default = T. (see doc for sc-set)

- :transposition. A number that is the number of semitones by which the

pitches of the new complete-set are to be transposed when the object is

created. Default = 0. (see doc for tl-set)

- :limit-upper. A note-name symbol or a pitch object to indicate the

highest possible pitch in the given complete-set object to be

created. (see doc for tl-set)

- :limit-lower. A note-name symbol or a pitch object to indicate the

lowest possible pitch in the complete-set object to be created. (see doc

for tl-set)

- :complete. T, NIL, or ’CHROMATIC. This argument can be given at init, and

if the set is not complete in the sense of T or ’CHROMATIC (all

20 SC/NAMED-OBJECT 818

chromatic, equally-tempered notes are present in the set), a warning is

printed. If the set is neither T nor ’CHROMATIC at init, then no warning

will be issued. In both cases the COMPLETE slot of the given complete-set

object will be set after checking the set.

RETURN VALUE:

A complete-set object.

EXAMPLE:

;; Create a complete set using a list of note-name symbols and the default

;; values for the keyword arguments

(make-complete-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6))

=>

COMPLETE-SET: complete: NIL

num-missing-non-chromatic: 12

num-missing-chromatic: 1

missing-non-chromatic: (BQS BQF AQS AQF GQS GQF FQS EQS EQF DQS

DQF CQS)

missing-chromatic: (EF)

TL-SET: transposition: 0

limit-upper: NIL

limit-lower: NIL

SC-SET: auto-sort: T, used-notes:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 0

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 0, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: USED-NOTES, tag: NIL,

data: NIL

N.B. All pitches printed as symbols only, internally they are all

pitch-objects.

subsets:

related-sets:

SCLIST: sclist-length: 14, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (D2 F2 A2 C3 E3 G3 B3 D4 GF4 BF4 DF5 F5 AF5 C6)

20 SC/NAMED-OBJECT 819

;; A new complete-set object can be created from tl-set and sc-set objects

(let ((mcs (make-complete-set

(make-tl-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5)))))

(pitch-symbols mcs))

=> (D2 F2 A2 C3 E3 G3 B3 D4 GF4 BF4 DF5 F5 AF5)

(let ((mcs (make-complete-set

(make-sc-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5)))))

(pitch-symbols mcs))

=> (D2 F2 A2 C3 E3 G3 B3 D4 GF4 BF4 DF5 F5 AF5)

;; Using the other keyword arguments

(make-complete-set ’(d2 f2 a2 e3 g3 b3 d4 gf4 bf4 df5 f5 af5)

:id ’csset

:subsets ’((low (d2 f2 a2))

(mid (b3 d4)))

:related-sets ’((not-playable (dqs2 eqf3)))

:transposition 3

:limit-upper ’g5

:limit-lower ’e2)

=>

COMPLETE-SET: complete: NIL

num-missing-non-chromatic: 12

num-missing-chromatic: 3

missing-non-chromatic: (BQS BQF AQS AQF GQS GQF FQS EQS EQF DQS

DQF CQS)

missing-chromatic: (B FS EF)

TL-SET: transposition: 3

limit-upper:

PITCH: frequency: 783.991, midi-note: 79, midi-channel: 0

[...]

data: G5

limit-lower:

PITCH: frequency: 82.407, midi-note: 40, midi-channel: 0

[...]

data: E2

SC-SET: auto-sort: T, used-notes:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

[...]

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 0, bounds-alert: T, copy: T

20 SC/NAMED-OBJECT 820

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: USED-NOTES, tag: NIL,

data: NIL

N.B. All pitches printed as symbols only, internally they are all

pitch-objects.

subsets:

LOW: (F2 AF2 C3)

MID: (D4 F4)

related-sets:

NOT-PLAYABLE: (DQS2 EQF3)

SCLIST: sclist-length: 12, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: CSSET, tag: NIL,

data: (F2 AF2 C3 G3 BF3 D4 F4 A4 CS5 E5)

SYNOPSIS:

(defun make-complete-set (set &key id tag subsets related-sets

(transposition 0) (auto-sort t) (warn-dups t)

(rm-dups t) limit-upper limit-lower complete)

20.2.454 complete-set/make-stack

[complete-set] [Functions]

DESCRIPTION:

Make a complete-set containing stacks based on the given notes. See

documentation for the stack method in the sc-set class for details of

what this algorithm does.

ARGUMENTS:

- an ID for the set to be created (symbol, string, number)

- a list of notes as either symbols or pitch objects

- the number of stacks to create

OPTIONAL ARGUMENTS:

keyword arguments:

- :by-freq. Use the frequencies of the pitches to create the stack instead of

the interval structure. Default = NIL.

- :up. Apply the process upwards in pitch space. Default = T.

- :down. Apply the process downwards in pitch space. Default = T.

20 SC/NAMED-OBJECT 821

RETURN VALUE:

a complete-set object

SYNOPSIS:

(defun make-stack (id notes num-stacks &key by-freq (up t) (down t))

20.2.455 tl-set/limit

[tl-set] [Methods]

DESCRIPTION:

Remove pitch objects from a given tl-set whose pitch content is higher or

lower than the pitches specified. Any pitch objects whose pitch content is

equal to the limit pitches specified will be retained.

NB: C0 and B10 are the highest and lowest possible pitches of the

quarter-tone scale defined in scale.lsp (16.35 and 31608.55 Hz

respectively).

NB: The keyword arguments for which the lower and upper limits are to be

specified are optional arguments, but are required in order for any

effect to be had.

ARGUMENTS:

- A tl-set object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :upper. A note-name symbol that is the upper limit for the limiting

process.

- :lower. A note-name symbol that is the lower limit for the limiting

process.

- :do-related-sets. T or NIL to indicate whether the RELATED-SETS slot of

the given tl-set object is to be transposed as well or left unhandled. T

= transpose. Default = NIL.

RETURN VALUE:

A tl-set object.

20 SC/NAMED-OBJECT 822

EXAMPLE:

;;; By default the method does not transpose the pitches of the RELATED-SETS

;;; slot

(let ((mtls (make-tl-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6)

:subsets ’((fl (df5 f5 af5))

(vla (e3 g3 b3)))

:related-sets ’((missing (fs2 b5))))))

(limit mtls :upper ’df5 :lower ’c3))

=>

TL-SET: transposition: 0

limit-upper:

PITCH: frequency: 554.365, midi-note: 73, midi-channel: 0

[...]

subsets:

FL: (DF5)

VLA: (E3 G3 B3)

related-sets:

MISSING: (FS2 B5)

SCLIST: sclist-length: 14, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (C3 E3 G3 B3 D4 GF4 BF4 DF5)

;; Setting the :do-related-sets argument to T results in any RELATED-SETS pitch

;; content being transposed as well

(let ((mtls (make-tl-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6)

:subsets ’((fl (df5 f5 af5))

(vla (e3 g3 b3)))

:related-sets ’((missing (fs2 b5))))))

(limit mtls :upper ’c6 :lower ’c3 :do-related-sets t))

=>

[...]

subsets:

FL: (DF5 F5 AF5)

VLA: (E3 G3 B3)

related-sets:

MISSING: (B5)

SCLIST: sclist-length: 14, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (C3 E3 G3 B3 D4 GF4 BF4 DF5 F5 AF5 C6)

SYNOPSIS:

20 SC/NAMED-OBJECT 823

(defmethod limit ((tls tl-set) &key upper lower do-related-sets)

20.2.456 tl-set/limit-for-instrument

[tl-set] [Methods]

DESCRIPTION:

Remove any pitch objects from the given tl-set object which are outside of

the range of the specified instrument object.

The pitch objects returned after that operation can then be reduced again

by applying further limits specified by the :upper and :lower keyword

arguments.

NB: This method returns a list of pitch objects, not a tl-set object,

though it does destructively alter the data of the given tl-set object

accordingly.

NB: This method will return NIL if the pitch objects of the given tl-set

object are microtonal while the given instrument object is set to be a

non-microtonal instrument (see example).

ARGUMENTS:

- A tl-set object.

- An instrument object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :upper. A pitch object or note-name symbol that is the uppermost possible

pitch (inclusive) of the pitch objects returned, as a further limitation

after the range of the instrument object has been applied.

- :lower. A pitch object or note-name symbol that is the lowermost possible

pitch (inclusive) of the pitch objects returned, as a further limitation

after the range of the instrument object has been applied.

- :do-related-sets. T or NIL to indicate whether to apply the specified

range restrictions to the RELATED-SETS slot of the given tl-set object as

well. NB: These will be modified within the original tl-set object but

not returned as part of the resulting list. T = apply to RELATED-SETS as

well. Default = NIL.

RETURN VALUE:

A list of pitch objects.

20 SC/NAMED-OBJECT 824

EXAMPLE:

;;; Returns a list of pitch objects, limited only by the range of the given

;;; instrument object by default

(let ((mtls (make-tl-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6)

:related-sets ’((other-notes (b4 e5 fs5 c6)))))

(mi (make-instrument ’flute

:staff-name "Flute" :staff-short-name "Fl."

:lowest-written ’c4 :highest-written ’d7

:starting-clef ’treble :midi-program 74 :chords nil

:microtones t :missing-notes ’(cqs4 dqf4))))

(limit-for-instrument mtls mi))

=>

(

PITCH: frequency: 293.665, midi-note: 62, midi-channel: 0

[...]

data: D4

[...]

PITCH: frequency: 369.994, midi-note: 66, midi-channel: 0

[...]

data: GF4

[...]

PITCH: frequency: 466.164, midi-note: 70, midi-channel: 0

[...]

data: BF4

[...]

PITCH: frequency: 554.365, midi-note: 73, midi-channel: 0

[...]

data: DF5

[...]

PITCH: frequency: 698.456, midi-note: 77, midi-channel: 0

[...]

data: F5

[...]

PITCH: frequency: 830.609, midi-note: 80, midi-channel: 0

[...]

data: AF5

[...]

PITCH: frequency: 1046.502, midi-note: 84, midi-channel: 0

[...]

data: C6

)

;;; Further restrict the pitches returned by setting values for the :upper and

;;; :lower keyword arguments and print the new pitch content of the given

20 SC/NAMED-OBJECT 825

;;; tl-set object to see the destructive modification

(let ((mtls (make-tl-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6)

:related-sets ’((other-notes (b4 e5 fs5 c6)))))

(mi (make-instrument ’flute

:staff-name "Flute" :staff-short-name "Fl."

:lowest-written ’c4 :highest-written ’d7

:starting-clef ’treble :midi-program 74 :chords nil

:microtones t :missing-notes ’(cqs4 dqf4))))

(limit-for-instrument mtls mi :upper ’b5 :lower ’c5)

(pitch-symbols mtls))

=> (DF5 F5 AF5)

;;; By default the RELATED-SETS slot of the given tl-set object is not affected

(let ((mtls (make-tl-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6)

:related-sets ’((other-notes (b4 e5 fs5 c6)))))

(mi (make-instrument ’flute

:staff-name "Flute" :staff-short-name "Fl."

:lowest-written ’c4 :highest-written ’d7

:starting-clef ’treble :midi-program 74 :chords nil

:microtones t :missing-notes ’(cqs4 dqf4))))

(limit-for-instrument mtls mi :upper ’b5 :lower ’c5)

(loop for nobj in (data (related-sets mtls))

collect (loop for p in (data nobj)

collect (data p))))

=> ((B4 E5 FS5 C6))

;;; Setting the :do-related-sets argument to T will cause the method to be

;;; applied to the RELATED-SETS slot as well.

(let ((mtls (make-tl-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6)

:related-sets ’((other-notes (b4 e5 fs5 c6)))))

(mi (make-instrument ’flute

:staff-name "Flute" :staff-short-name "Fl."

:lowest-written ’c4 :highest-written ’d7

:starting-clef ’treble :midi-program 74 :chords nil

:microtones t :missing-notes ’(cqs4 dqf4))))

(limit-for-instrument mtls mi :upper ’b5 :lower ’c5 :do-related-sets t)

(print (pitch-symbols mtls))

(print (loop for nobj in (data (related-sets mtls))

collect (loop for p in (data nobj)

collect (data p)))))

=>

(DF5 F5 AF5)

20 SC/NAMED-OBJECT 826

((E5 FS5))

;;; The method will return NIL if a set of only microtonal pitches (which

;;; e.g. ring-mod might return) is given in combination with an instrument

;;; object which is not microtone-capable (such as the ’piano object of the

;;; +slippery-chicken-standard-instrument-palette+

(let ((mtls (make-tl-set ’(dqs2 fqs2 aqf2 gqs3 bqf3 gqf4 bqf4 dqf5 fqs5)))

(pno (get-data ’piano

+slippery-chicken-standard-instrument-palette+)))

(limit-for-instrument mtls pno :lower ’e5 :upper ’d6))

=> NIL

SYNOPSIS:

(defmethod limit-for-instrument ((tls tl-set) (ins instrument)

&key upper lower do-related-sets)

20.2.457 tl-set/make-tl-set

[tl-set] [Functions]

DESCRIPTION:

Create a tl-set object, which extends the sc-set class by incorporating

transposition and limiting to certain pitch ranges.

NB: As of yet, once a set is transposed or limited, it can’t be

re-transposed from its original pitches, only from the current set; i.e

these methods are destructive!

ARGUMENTS:

- A list of note-name symbols that is to be the set (pitch-set) for the

given tl-set object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :id. A symbol that is to be the ID of the given tl-set object.

- :subsets. An assoc-list of key/data pairs, in which the data is a list of

note-name symbols that are a subset of the main set. One use for this

keyword argument might be to create subsets that particular instruments

can play; these would then be selected in the chord-function passed to

the instrument object.

20 SC/NAMED-OBJECT 827

- :related-sets. An assoc-list of key/data pairs, similar to :subsets, only

that the pitches given here do not have to be part of the main set. This

can be used, for example, for pitches missing from the main set.

- :limit-upper. A note-name symbol or a pitch object to indicate the

highest possible pitch in the tl-set object to be created.

- :limit-lower. A note-name symbol or a pitch object to indicate the

lowest possible pitch in the tl-set object to be created.

- :transposition. A number that is the number of semitones by which the

pitches of the new tl-set are to be transposed when the object is

created. Default = 0.

- :auto-sort. T or NIL to indicate whether the specified pitches (note-name

symbols) are to be automatically sorted from lowest to highest. T =

sort. Default = T.

RETURN VALUE:

A tl-set object.

EXAMPLE:

;; Simple usage with default values for keyword arguments

(make-tl-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6))

=>

TL-SET: transposition: 0

limit-upper: NIL

limit-lower: NIL

SC-SET: auto-sort: T, used-notes:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

num-data: 0

linked: NIL

full-ref: NIL

ASSOC-LIST: warn-not-found T

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 0, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: USED-NOTES, tag: NIL,

data: NIL

N.B. All pitches printed as symbols only, internally they are all

pitch-objects.

subsets:

related-sets:

SCLIST: sclist-length: 14, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

20 SC/NAMED-OBJECT 828

NAMED-OBJECT: id: NIL, tag: NIL,

data: (D2 F2 A2 C3 E3 G3 B3 D4 GF4 BF4 DF5 F5 AF5 C6)

;; Adding subsets and related-sets

(make-tl-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6)

:subsets ’((fl (df5 f5 af5))

(vla (e3 g3 b3)))

:related-sets ’((missing (fs2 b5))))

=>

TL-SET: transposition: 0

[...]

subsets:

FL: (DF5 F5 AF5)

VLA: (E3 G3 B3)

related-sets:

MISSING: (FS2 B5)

SCLIST: sclist-length: 14, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (D2 F2 A2 C3 E3 G3 B3 D4 GF4 BF4 DF5 F5 AF5 C6)

;; Limiting the pitch range of the tl-set object, once using a note-name

;; symbol and once using a pitch object

(make-tl-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6)

:limit-upper ’g5

:limit-lower (make-pitch ’d3))

=>

TL-SET: transposition: 0

limit-upper:

PITCH: frequency: 783.991, midi-note: 79, midi-channel: 0

[...]

limit-lower:

PITCH: frequency: 146.832, midi-note: 50, midi-channel: 0

[...]

data: (E3 G3 B3 D4 GF4 BF4 DF5 F5)

;; Applying a transposition by semitones

(make-tl-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6)

:transposition 3)

=>

TL-SET: transposition: 3

[...]

data: (F2 AF2 C3 EF3 G3 BF3 D4 F4 A4 CS5 E5 AF5 B5 EF6)

20 SC/NAMED-OBJECT 829

SYNOPSIS:

(defun make-tl-set (set &key id subsets related-sets

limit-upper limit-lower

(rm-dups t)

(transposition 0)

(auto-sort t))

20.2.458 tl-set/stack

[tl-set] [Methods]

DESCRIPTION:

Extend the pitch content of a given sc-set object by adding new pitch

objects which have the same interval structure as the original set.

NB: See documentation for the stack method in the sc-set class for usage.

SYNOPSIS:

(defmethod stack ((tls tl-set) num-stacks &key id by-freq)

20.2.459 tl-set/transpose

[tl-set] [Methods]

DESCRIPTION:

Transpose the pitches of a given tl-set by a specified number of

semitones.

The contents of the SUBSETS slot are automatically transposed as well, but

the RELATED-SETS slot is left untransposed by default. An optional argument

allows for RELATED-SETS slot to be transposed as well.

ARGUMENTS:

- A tl-set object.

- A positive or negative integer that is the number of semitones by which

the pitch content of the given tl-set object is to be transposed.

OPTIONAL ARGUMENTS:

20 SC/NAMED-OBJECT 830

keyword arguments:

- :do-related-sets. T or NIL to indicate whether to transpose any contents

of the RELATED-SETS slot as well. T = transpose. Default = NIL.

(- additional <ignore> arguments are for internal use only)

RETURN VALUE:

A tl-set object.

EXAMPLE:

;; By default the RELATED-SETS are left untransposed

(let ((mtls (make-tl-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6)

:subsets ’((fl (df5 f5 af5))

(vla (e3 g3 b3)))

:related-sets ’((missing (fs2 b5))))))

(transpose mtls 3))

=>

TL-SET: transposition: 3

limit-upper: NIL

limit-lower: NIL

SC-SET: auto-sort: T, used-notes:

[...]

subsets:

FL: (E5 AF5 B5)

VLA: (G3 BF3 D4)

related-sets:

MISSING: (FS2 B5)

SCLIST: sclist-length: 14, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (F2 AF2 C3 EF3 G3 BF3 D4 F4 A4 CS5 E5 AF5 B5 EF6)

;; Set the <do-related-sets> argument to T for the RELATED-SETS contents to be

;; transposed as well

(let ((mtls (make-tl-set ’(d2 f2 a2 c3 e3 g3 b3 d4 gf4 bf4 df5 f5 af5 c6)

:subsets ’((fl (df5 f5 af5))

(vla (e3 g3 b3)))

:related-sets ’((missing (fs2 b5))))))

(transpose mtls 3 :do-related-sets t))

=>

TL-SET: transposition: 3

limit-upper: NIL

limit-lower: NIL

20 SC/NAMED-OBJECT 831

SC-SET: auto-sort: T, used-notes:

[...]

subsets:

FL: (E5 AF5 B5)

VLA: (G3 BF3 D4)

related-sets:

MISSING: (A2 D6)

SCLIST: sclist-length: 14, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (F2 AF2 C3 EF3 G3 BF3 D4 F4 A4 CS5 E5 AF5 B5 EF6)

SYNOPSIS:

(defmethod transpose ((tls tl-set) semitones

&key do-related-sets

ignore1 ignore2)

20.2.460 sclist/sc-subseq

[sclist] [Methods]

DESCRIPTION:

Return a subsequence from a given sclist based on starting and finishing

indices.

NB: This method uses Common Lisp’s subseq function and thus inherits its

attributes, whereby the START argument indicates the zero-based index of

the first list item to be returned and the FINISH argument indicates the

zero-based index of the first list item after that NOT to be returned.

ARGUMENTS:

- An sclist object.

- An integer indicating the zero-based index of the first list item to be

returned.

- An integer indicating the zero-based index of the first list item after

the START item to not be returned.

OPTIONAL ARGUMENTS:

- (fun #’error). By default an error will be signalled if the requested

subseq is out of bounds. If you prefer, this could be a warning instead by

passing #’warn, or nothing at all if NIL.

20 SC/NAMED-OBJECT 832

RETURN VALUE:

A list.

An error is returned if the user attempts to apply the method with START

and FINISH arguments that are beyond the bounds of the given sclist

object.

EXAMPLE:

;; Returns a sublist from the given list. The START argument indicates the

;; zero-based index of the first item in the given list to be returned and the

;; FINISH argument indicates the zero-based index of the first item after that

;; to NOT be returned.

(let ((scl (make-sclist ’(1 2 3 4 5 6 7 8 9))))

(sc-subseq scl 2 7))

=> (3 4 5 6 7)

;; Drops into the debugger with an error if one of the indexing arguments is

;; beyond the bounds of the given sclist object

(let ((scl (make-sclist ’(1 2 3 4 5 6 7 8 9))))

(sc-subseq scl 0 15))

=>

sclist::sc-subseq: Illegal indices for above list: 0 15 (length = 9)

[Condition of type SIMPLE-ERROR]

(let ((scl (make-sclist ’(1 2 3 4 5 6 7 8 9))))

(sc-subseq scl 0 15 NIL))

=>

NIL

SYNOPSIS:

(defmethod sc-subseq ((scl sclist) start finish &optional (fun #’error))

20.2.461 sclist/sclist-econs

[sclist] [Methods]

DESCRIPTION:

Add a single item to the end of a given sclist object.

20 SC/NAMED-OBJECT 833

NB: This method destructively modifies the list.

NB: This method adds any element specified as a single item. For combining

two lists into one see sclist/combine.

NB: Though related to Lisp’s cons function, remember that the order of

arguments here is the other way round i.e. element after list, not

before.

ARGUMENTS:

- An sclist object.

- An item to add to the end of the given sclist object.

RETURN VALUE:

- The new value (list) of the given sclist object.

EXAMPLE:

;; Add a single integer to the end of a list of integers

(let ((scl (make-sclist ’(0 1 2 3 4))))

(sclist-econs scl 5))

=> (0 1 2 3 4 5)

SYNOPSIS:

(defmethod sclist-econs ((scl sclist) element)

20.2.462 sclist/sclist-remove-elements

[sclist] [Methods]

DESCRIPTION:

Remove a specified number of consecutive items from a given sclist object.

NB: This is a destructive method and replaces the data of the given sclist

object with the newly created sublist.

ARGUMENTS:

- An sclist object.

- The index integer within the given list with which to start (inclusive

and zero-based).

- An integer that is the number of items to remove.

20 SC/NAMED-OBJECT 834

RETURN VALUE:

Returns

EXAMPLE:

;;; Returns an sclist object.

(let ((scl (make-sclist ’(0 1 2 3 4 5 6 7 8 9))))

(sclist-remove-elements scl 3 4))

=>

SCLIST: sclist-length: 6, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: (0 1 2 7 8 9)

;; Drops into the debugger with an error if the given sclist object has fewer

;; items than specified for the START or HOW-MANY arguments

(let ((scl (make-sclist ’(0 1 2 3 4 5 6 7 8 9))))

(data (sclist-remove-elements scl 3 41)))

=>

remove-elements: arguments 2 and 3 must be integers < the length of argument 1:

3 41 10

[Condition of type SIMPLE-ERROR]

SYNOPSIS:

(defmethod sclist-remove-elements ((scl sclist) start how-many)

20.2.463 sclist/set-nth

[sclist] [Methods]

DESCRIPTION:

Set the nth element (zero-based) of a given sclist object.

NB: This doesn’t auto-grow the list.

ARGUMENTS:

- An index integer.

- An sclist object.

20 SC/NAMED-OBJECT 835

RETURN VALUE:

Returns the item added if successful.

Returns NIL and prints a warning if the specified index number is greater

than the number of items in the list (minus 1)

EXAMPLE:

;; Returns the item added

(let ((scl (make-sclist ’(cat dog cow pig sheep))))

(set-nth 3 ’horse scl))

=> HORSE

;; Access the DATA slot to see the change

(let ((scl (make-sclist ’(cat dog cow pig sheep))))

(set-nth 3 ’horse scl)

(data scl))

=> (CAT DOG COW HORSE SHEEP)

;; Returns NIL and prints a warning if the index number is beyond the bounds of

;; the list

(let ((scl (make-sclist ’(cat dog cow pig sheep))))

(set-nth 31 ’horse scl))

=> NIL

WARNING: sclist::sclist-check-bounds: Illegal list reference: 31

(length = 5) (sclist id = NIL)

SYNOPSIS:

(defmethod set-nth (index new-element (i sclist))

20.2.464 linked-named-object/sndfile

[linked-named-object] [Classes]

NAME:

sndfile

File: sndfile.lsp

20 SC/NAMED-OBJECT 836

Class Hierarchy: named-object -> linked-named-object -> sndfile

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the sndfile class that holds

information about a sound file as well as specifying

desired parameters

Author: Michael Edwards: m@michael-edwards.org

Creation date: March 21st 2001

$$ Last modified: 18:59:06 Wed Dec 26 2012 ICT

SVN ID: $Id: sndfile.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.465 sndfile/make-sndfile

[sndfile] [Functions]

DESCRIPTION:

Create a sndfile object to hold data about an existing sound file,

specifying at least the path and file name of that sound file. Optional

arguments allow for the specification of segments within the given sound

file and its perceived fundamental frequency (for src-based

transposition).

If the first argument ("path") is a list, then this sndfile object has been

created from within a sndfile-palette object. In this case, the first item

in the list will be the full path to the sound file, as defined in the

sndfile-palette object; the second item in the list is the list given by

the user containing the data slots to be used, whereby the first item of

that list must be the ID of the object.

NB: This function creates an object of the class sndfile, which is contains

data concerning an existing sound file. It does not create an actual

sound file.

ARGUMENTS:

- A path and file name of an existing sound file; or a list as explained

above.

20 SC/NAMED-OBJECT 837

OPTIONAL ARGUMENTS:

keyword arguments:

- :id. An ID for the sndfile. Will be set automatically if created from

within a sndfile-palette. Default nil.

- :data. The given file name, including path and extension, usually set

automatically to be the given path if nil. Default nil.

- :duration. A number in seconds which is the duration of the segment of

the specified sound file which the user would like to use. This should

not be specified if :end has been specified. Default nil.

- :end. A number in seconds which is the end time within the source sound

file for the segment of the file which the user would like to use. This

should not be specified if :duration has been specified. Default nil.

- :start. A number in seconds which is the start time within the source

sound file for the segment of the file which the user would like to

use. Defaults to 0.0.

- :frequency. A number or note-name symbol. This frequency will serve as

the reference pitch for any src transpositions of this file. This can be

any value, but will most likely be specified if the source sound file has

a perceptible fundamental pitch. If given as a number, this number will

be handled as a frequency in Hertz. Default = ’C4.

- :amplitude. An number that is the amplitude which the user would like to

designate for this sound file. This number may be of any value, as

slippery chicken normalizes all sound file events; however, standard

practice would suggest that this should fall between 0.0 and 1.0.

Default = 1.0

RETURN VALUE:

A sndfile object.

EXAMPLE:

;; Example specifying the full path, a start and end time, and a base frequency

(make-sndfile "/path/to/sndfile-1.aiff"

:start 0.3

:end 1.1

:frequency 654)

=>

SNDFILE: path: /path/to/sndfile-1.aiff,

snd-duration: 3.011043, channels: 1, frequency: 654

start: 0.3, end: 1.1, amplitude: 1.0, duration 0.8

will-be-used: 0, has-been-used: 0

20 SC/NAMED-OBJECT 838

data-consistent: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: /path/to/sndfile-1.aiff

;; Example using the sndfile-palette list as the first argument

(make-sndfile ’("/path/to/sndfile-1.aiff"

(nil :start 0.3 :end 1.1)))

=>

SNDFILE: path: /path/to/sndfile-1.aiff,

snd-duration: 3.011043, channels: 1, frequency: 261.62555

start: 0.3, end: 1.1, amplitude: 1.0, duration 0.8

will-be-used: 0, has-been-used: 0

data-consistent: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "/Volumes/JIMMY/SlipperyChicken/sndfile-2.aiff", tag: NIL,

data: /path/to/sndfile-1.aiff

SYNOPSIS:

(defun make-sndfile (path &key id data duration end (start 0.0)

(frequency ’c4)

(amplitude 1.0))

20.2.466 sndfile/reset-usage

[sndfile] [Methods]

DESCRIPTION:

Reset the WILL-BE-USED and HAS-BEEN-USED slots of the given sndfile object

to 0. These slots keep track of how many times a sound will be used and has

been used, which is useful for purposes such as incrementing

start-time. These slots are set internally and are not intended to be set by

the user.

ARGUMENTS:

- A sndfile object.

RETURN VALUE:

Returns 0.

20 SC/NAMED-OBJECT 839

EXAMPLE:

;; First set the values of the WILL-BE-USED and HAS-BEEN-USED slots, as these

;; are 0 when a new sndfile object is created using make-sndfile. Set the

;; values, print them; reset both using reset-usage, and print again to see

;; the change.

(let ((sf-1 (make-sndfile "/path/to/sndfile-1.aiff"))))

(setf (will-be-used sf-1) 11)

(setf (has-been-used sf-1) 13)

(print (will-be-used sf-1))

(print (has-been-used sf-1))

(reset-usage sf-1)

(print (will-be-used sf-1))

(print (has-been-used sf-1)))

=>

11

13

0

0

SYNOPSIS:

(defmethod reset-usage ((sf sndfile))

20.2.467 sndfile/sndfile-ext

[sndfile] [Classes]

NAME:

sndfile-ext

File: sndfile-ext.lsp

Class Hierarchy: named-object -> linked-named-object -> sndfile ->

sndfile-ext

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Extension of the sndfile class to hold further properties

which quantify the character of the sound file, and

specifies sound files which can follow the current one.

20 SC/NAMED-OBJECT 840

Specifically created to interface with the sndfilenet

project in MaxMSP via OSC (see osc.lsp and osc-sc.lsp).

Author: Michael Edwards: m@michael-edwards.org

Creation date: 16th December 2012, Koh Mak, Thailand

$$ Last modified: 12:27:59 Fri Jan 4 2013 GMT

SVN ID: $Id: sndfile-ext.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.468 sndfile-ext/get-next

[sndfile-ext] [Methods]

DESCRIPTION:

Get the next sound file from the <followers> slot.

ARGUMENTS:

- A sndfile-ext object.

RETURN VALUE:

A sndfile-ext object.

SYNOPSIS:

(defmethod get-next ((sfe sndfile-ext))

20.2.469 sndfile-ext/make-sndfile-ext

[sndfile-ext] [Functions]

DESCRIPTION:

Make a sndfile-ext (extension of sndfile) object which holds the usual

sndfile data as well as a host of others to do with the characteristics of

the sound file. In addition, the followers slot specifies sound files

which can follow the current one. The bitrate, srate, num-frames, and

bytes slots will be filled automatically if the path to an existing sound

file is given.

ARGUMENTS:

20 SC/NAMED-OBJECT 841

See defclass slot descriptions

RETURN VALUE:

A sndfile-ext object.

SYNOPSIS:

(defun make-sndfile-ext (path &key id data duration end (start 0.0)

(frequency ’c4) (amplitude 1.0) (cue-num -1)

(use t) (pitch -1) (pitch-curve -1) (bandwidth -1)

(bandwidth-curve -1) (continuity -1)

(continuity-curve -1) (weight -1) (weight-curve -1)

(energy -1) (energy-curve -1) (harmonicity -1)

(harmonicity-curve -1) (volume -1) (volume-curve -1)

(loop-it nil) (bitrate -1) (srate -1) (num-frames -1)

(bytes -1) followers group-id)

20.2.470 sndfile-ext/max-cue

[sndfile-ext] [Methods]

DESCRIPTION:

Generate the data necessary to preload the sound file in a MaxMSP sflist~

object.

ARGUMENTS:

- The sndfile-ext object.

OPTIONAL ARGUMENTS:

- Whether to issue an error if the cue-num slot has not been set to a value

above 1. Default = #’error. Could also be #’warn and NIL.

RETURN VALUE:

A list of data suitable to be passed via OSC to the sflist~ object.

EXAMPLE:

(let* ((sf1 (make-sndfile-ext

(concatenate ’string

20 SC/NAMED-OBJECT 842

cl-user::+slippery-chicken-home-dir+

"test-suite/sndfile-1.aiff")

:cue-num 2 :start 0.3 :end 1.1 :frequency 653)))

(max-cue sf1))

=>

("preload" 2 "/Users/medward2/lisp/sc/test-suite/sndfile-1.aiff" 300.0 1100.0)

SYNOPSIS:

(defmethod max-cue ((sfe sndfile-ext) &optional (on-fail #’error))

20.2.471 sndfile-ext/max-play

[sndfile-ext] [Methods]

DESCRIPTION:

Generate the data necessary for MaxMSP to play the sndfile using the

sflist~ and sfplay~.

NB fade-dur could be 0 (= no fade)

ARGUMENTS:

- The sndfile-ext object.

- The fade (in/out) duration in seconds.

- The maximum loop duration in seconds.

- The time to trigger the next file, as a percentage of the current

sndfile-ext’s duration.

RETURN VALUE:

A list of values to be passed via OSC to sndfilenet-aux.maxpath:

cue-number number-of-channels loop speed fade-dururation

fade-out-start-time delay-to-next-snfile-start amplitude

EXAMPLE:

(let* ((sf1 (make-sndfile-ext

(concatenate ’string

cl-user::+slippery-chicken-home-dir+

"test-suite/sndfile-1.aiff")

:start 0.3 :end 1.1 :frequency 653)))

(max-play sf1 20))

20 SC/NAMED-OBJECT 843

=>

(-1 1 0 1.0 0.32000002 0.48)

SYNOPSIS:

(defmethod max-play ((sfe sndfile-ext) fade-dur max-loop start-next

&optional ignore)

20.2.472 sndfile-ext/proximity

[sndfile-ext] [Methods]

DESCRIPTION:

In terms of the characteristics expressed in the various class slots,

evaluate the proximity of one sndfile-ext object to another. The closer

they are in character, the closer to 0 the returned value will be. The

order of the two sndfile-ext objects passed to the method is unimportant as

the return value is always >= 0.0. The more slots match, the lower

(closer) the result will be, i.e., slots are only compared if they have a

value >= 0 (they default to -1), so it could be that in one comparison 5/6

slots match exactly, and in another 2/3 match; in both cases the

non-matching slots is off by 1; in that case the first comparison will

return a lower value: 0.067 vs 0.233.

ARGUMENTS:

- first sndile-ext object

- second sndile-ext object

RETURN VALUE:

A floating point number >= 0.0 where 0.0 indicates an exact match.

EXAMPLE:

(let ((sf3 (make-sndfile-ext

nil :pitch 3 :pitch-curve 4 :bandwidth 10 :energy 2

:harmonicity-curve 0))

(sf4 (make-sndfile-ext

nil :pitch 3 :pitch-curve 4 :bandwidth 10 :energy 2

:harmonicity-curve 1)))

;; harmonicity-curve is slightly different so we get a result > 0

(print (proximity sf3 sf4))

20 SC/NAMED-OBJECT 844

(set-characteristic sf4 ’harmonicity-curve 0)

;; now they’re the same so we get 0.0

(proximity sf3 sf4))

=>

0.12857144

0.0

SYNOPSIS:

(defmethod proximity ((sfe1 sndfile-ext) (sfe2 sndfile-ext))

20.2.473 sndfile-ext/reset

[sndfile-ext] [Methods]

DESCRIPTION:

Reset the <followers> circular list to the first or any other following

sound file.

ARGUMENTS:

A sndfile-ext object.

OPTIONAL ARGUMENTS:

The position (index) to reset to (will default to 0 i.e. the beginning of

the list). NB This position may be higher than the number of followers

attached to any given sndfile-ext object as it will wrap around.

RETURN VALUE:

T

SYNOPSIS:

(defmethod reset ((sfe sndfile-ext) &optional where (warn t))

20.2.474 sndfile-ext/set-characteristic

[sndfile-ext] [Methods]

DESCRIPTION:

20 SC/NAMED-OBJECT 845

Set the chracteristic of a sndfile-ext object to a given value. The value

for the slot is first checked to correspond to an accepted range; if not an

error (default) or warning (or nothing) will be issued.

ARGUMENTS:

- a sndfile-ext object.

- the characteristic, i.e. one of the class slot names, as a symbol.

- the new value, as an accepted integer (see characteristics slot for

accepted range).

OPTIONAL ARGUMENTS:

- the function to call if the given value is out of range. Default =

#’error but could also be #’warn, or NIL (if no error message should be

issued).

RETURN VALUE:

NIL on fail otherwise <value>

EXAMPLE:

(let ((sf4 (make-sndfile-ext

nil :pitch 3 :pitch-curve 4 :bandwidth 10 :energy 2

:harmonicity-curve 1)))

;; out of range but no error/warning

(print (set-characteristic sf4 ’harmonicity-curve 15 nil))

;; out of range and warn

(print (set-characteristic sf4 ’harmonicity-curve -1 #’warn))

;; in range

(set-characteristic sf4 ’harmonicity-curve 0))

=>

NIL

WARNING:

sndfile-ext::set-characteristic: No such characteristic: HARMONICITY-CURVE -1

NIL

0

SYNOPSIS:

(defmethod set-characteristic ((sfe sndfile-ext) characteristic value

&optional (on-fail #’error))

20 SC/NAMED-OBJECT 846

20.2.475 sndfile/stereo

[sndfile] [Methods]

DESCRIPTION:

Test whether the CHANNELS slot of a given sndfile object is set to 2.

ARGUMENTS:

- A sndfile object.

RETURN VALUE:

Returns T if the CHANNELS slot is set to 2, otherwise returns NIL.

EXAMPLE:

;; The method make-sndfile creates a sndfile object with the CHANNELS slot set

;; to NIL. Make a sndfile object, test to see whether the value of the CHANNELS

;; slot is 2; set the CHANNELS slot to 2 and test again.

(let ((sf-1 (make-sndfile "/path/to/sndfile-1.aiff")))

(print (stereo sf-1))

(setf (channels sf-1) 2)

(print (stereo sf-1)))

=>

NIL

T

SYNOPSIS:

(defmethod stereo ((sf sndfile))

20.2.476 linked-named-object/tempo

[linked-named-object] [Classes]

NAME:

tempo

File: tempo.lsp

Class Hierarchy: named-object -> linked-named-object -> tempo

20 SC/NAMED-OBJECT 847

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the tempo class which holds very simple

tempo information, simply the type of beat and the number

of beats per minute etc.

Author: Michael Edwards: m@michael-edwards.org

Creation date: March 11th 2001

$$ Last modified: 17:30:08 Mon May 5 2014 BST

SVN ID: $Id: tempo.lsp 5048 2014-10-20 17:10:38Z medward2 $

20.2.477 tempo/make-tempo

[tempo] [Functions]

DESCRIPTION:

Make a tempo object.

ARGUMENTS:

- A number indicating beats per minute.

OPTIONAL ARGUMENTS:

keyword arguments:

- :beat. Sets the "beat" value of the beats per minute; i.e., ’q (or 4) for

"quarter = xx bpm" etc. Default = 4.

- :id. Sets the ID of the tempo object.

- :description. A text description (string) of the tempo, such as "Allegro

con brio" etc.

RETURN VALUE:

A tempo object.

EXAMPLE:

;; Default beat is a quarter, thus the following makes a tempo object of

20 SC/NAMED-OBJECT 848

;; quarter=60.

(make-tempo 60)

=>

TEMPO: bpm: 60, beat: 4, beat-value: 4.0, qtr-dur: 1.0

qtr-bpm: 60.0, usecs: 1000000, description: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: 60

;; Set the beat using the :beat keyword argument. Thus, the following makes a

;; tempo object of dotted-quarter = 96.

(make-tempo 96 :beat ’q.)

;; Add a text description, which is stored in the tempo object’s DESCRIPTION

;; slot.

(let ((tt (make-tempo 76 :beat 2 :description "Allegretto")))

(description tt))

=> "Allegretto"

SYNOPSIS:

(defun make-tempo (bpm &key (beat 4) id description)

20.2.478 tempo/tempo-equal

[tempo] [Methods]

DESCRIPTION:

Test to determine whether the values of two tempo objects are equal.

ARGUMENTS:

- A first tempo object.

- A second tempo object.

RETURN VALUE:

Returns T if the values of the two tempo objects are equal, otherwise NIL.

EXAMPLE:

;; Equal

20 SC/NAMED-OBJECT 849

(let ((tt1 (make-tempo 60))

(tt2 (make-tempo 60)))

(tempo-equal tt1 tt2))

=> T

;; Not equal

(let ((tt1 (make-tempo 60))

(tt2 (make-tempo 96)))

(tempo-equal tt1 tt2))

=> NIL

SYNOPSIS:

(defmethod tempo-equal ((t1 tempo) (t2 tempo))

20.2.479 linked-named-object/time-sig

[linked-named-object] [Classes]

NAME:

time-sig

File: time-sig.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist -> time-sig

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of a time-sig class that stores

information about time signatures, allows comparison of

time signatures etc.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 12th February 2001

$$ Last modified: 11:27:41 Sat Apr 20 2013 BST

SVN ID: $Id: time-sig.lsp 5048 2014-10-20 17:10:38Z medward2 $

20 SC/NAMED-OBJECT 850

20.2.480 time-sig/beat-duration

[time-sig] [Methods]

DESCRIPTION:

Get the duration in seconds of one beat of the given time-signature at a

tempo of quarter=60.

ARGUMENTS:

- A time-sig object.

RETURN VALUE:

A number.

EXAMPLE:

;; Beat duration in seconds for time-signature 2/4 at quarter=60

(let ((ts (make-time-sig ’(2 4))))

(beat-duration ts))

=> 1.0

;; Beat duration in seconds for 6/8 at quarter=60

(let ((ts (make-time-sig ’(6 8))))

(beat-duration ts))

=> 1.5

SYNOPSIS:

(defmethod beat-duration ((ts time-sig))

20.2.481 time-sig/get-beat-as-rhythm

[time-sig] [Methods]

DESCRIPTION:

Get the beat unit of a given time-sig object and return it as a rhythm.

ARGUMENTS:

20 SC/NAMED-OBJECT 851

- A time-sig object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to consider the beat of a compound meter to

be the denominator of the time signature (such as 8 for 6/8) or the beat

duration derived from the traditionally understood beat of that meter

(such as Q. for 6/8). NIL = denominator. Default = NIL.

RETURN VALUE:

A rhythm object.

EXAMPLE:

;; Returns a rhythm object

(let ((ts (make-time-sig ’(2 4))))

(get-beat-as-rhythm ts))

=>

RHYTHM: value: 4.000, duration: 1.000, rq: 1, is-rest: NIL,

score-rthm: 4.0f0, undotted-value: 4, num-flags: 0, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 1.000,

is-grace-note: NIL, needs-new-note: T, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 4, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: 4, tag: NIL,

data: 4

;; Default for compound meters is to return the denominator of the time

;; signature

(let ((ts (make-time-sig ’(6 8))))

(data (get-beat-as-rhythm ts)))

=> 8

;; Setting the optional argument to T returns the compound beat of a compound

;; meter rather than the denominator of the time signature

(let ((ts (make-time-sig ’(6 8))))

(data (get-beat-as-rhythm ts t)))

=> Q.

SYNOPSIS:

(defmethod get-beat-as-rhythm ((ts time-sig) &optional handle-compound)

20 SC/NAMED-OBJECT 852

20.2.482 time-sig/get-whole-bar-rest

[time-sig] [Methods]

DESCRIPTION:

Create an event object consisting of a rest equal in duration to one full

bar of the given time-sig object.

ARGUMENTS:

- A time-sig object.

RETURN VALUE:

Returns an event object.

EXAMPLE:

;; Returns an event object

(let ((ts (make-time-sig ’(2 4))))

(get-whole-bar-rest ts))

=>

EVENT: start-time: NIL, end-time: NIL,

duration-in-tempo: 0.0,

compound-duration-in-tempo: 0.0,

amplitude: 0.7

bar-num: -1, marks-before: NIL,

tempo-change: NIL

instrument-change: NIL

display-tempo: NIL, start-time-qtrs: -1,

midi-time-sig: NIL, midi-program-changes: NIL,

8va: 0

pitch-or-chord: NIL

written-pitch-or-chord: NIL

RHYTHM: value: 2.000, duration: 2.000, rq: 2, is-rest: T,

score-rthm: 2.0f0, undotted-value: 2, num-flags: 0, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 2.000,

is-grace-note: NIL, needs-new-note: NIL, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 2, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: 2, tag: NIL,

data: 2

20 SC/NAMED-OBJECT 853

;; The rhythmic value of the event object returned is equal to the rhythmic

;; duration of a full bar in the given time signature, the PITCH-OR-CHORD slot

;; is set to NIL, and the IS-REST slot is set to T.

(let* ((ts (make-time-sig ’(2 4)))

(tswbr (get-whole-bar-rest ts)))

(print (value tswbr))

(print (pitch-or-chord tswbr))

(print (is-rest tswbr)))

=>

2.0

NIL

T

SYNOPSIS:

(defmethod get-whole-bar-rest ((ts time-sig))

20.2.483 time-sig/is-compound

[time-sig] [Methods]

DESCRIPTION:

Determine whether the value of a given time-sig object is a compound time

signature.

ARGUMENTS:

- A time-sig object.

RETURN VALUE:

T if the value of the given time-sig object is a compound time signature,

otherwise NIL.

EXAMPLE:

;; Testing a time-sig object with a 2/4 time signature returns NIL

(let ((ts (make-time-sig ’(2 4))))

(is-compound ts))

=> NIL

;; Testing a time-sig object with a 6/8 time signature returns T

20 SC/NAMED-OBJECT 854

(let ((ts (make-time-sig ’(6 8))))

(is-compound ts))

=> T

SYNOPSIS:

(defmethod is-compound ((ts time-sig))

20.2.484 time-sig/make-time-sig

[time-sig] [Functions]

DESCRIPTION:

Create a time-sig object. In addition to the numerator and denominator

values, the object also stores other automatically calculated information,

such as whether the signature is simple or compound, the duration of one

bar of the given time signature in seconds, the number of midi-clocks, etc.

ARGUMENTS:

- A two-item list of numbers, the first being the numerator (number of

beats per measure), the second being the denominator (beat type).

RETURN VALUE:

- A time-sig object.

EXAMPLE:

(make-time-sig ’(2 4))

=>

TIME-SIG: num: 2, denom: 4, duration: 2.0, compound: NIL, midi-clocks: 24, num-beats: 2

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "0204", tag: NIL,

data: (2 4)

SYNOPSIS:

(defun make-time-sig (ts)

20 SC/NAMED-OBJECT 855

20.2.485 time-sig/scale

[time-sig] [Methods]

DESCRIPTION:

Scale the value of the given time-sig object by a specified factor.

ARGUMENTS:

- A time-sig object.

- A number (scaling factor).

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not to preserve the meter by maintaining

the same number of beats as the numerator of the time signature. T =

preserve the meter. Default = T.

RETURN VALUE:

A time-sig object.

EXAMPLE:

;; Scaling a (2 4) time-sig object by 3 creates a new time-sig object with a

;; value of 6/4

(let ((ts (make-time-sig ’(2 4))))

(scale ts 3))

=>

TIME-SIG: num: 6, denom: 4, duration: 6.0, compound: NIL, midi-clocks: 24, num-beats: 6

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "0604", tag: NIL,

data: (6 4)

;; Scaling a (2 4) time-sig object by 2 by default preserves the meter

(let ((ts (make-time-sig ’(2 4))))

(data (scale ts 2)))

=> (2 2)

;; Scaling a (2 4) time-sig object by 2 with the optional argument set to NIL

;; changes the meter and results in a 4/4

20 SC/NAMED-OBJECT 856

(let ((ts (make-time-sig ’(2 4))))

(data (scale ts 2 nil)))

=> (4 4)

;; Halving the value of a time-sig object is achieved using a factor of .5

(let ((ts (make-time-sig ’(2 4))))

(data (scale ts .5)))

=> (2 8)

SYNOPSIS:

(defmethod scale ((ts time-sig) scaler

&optional (preserve-meter t) ignore1 ignore2)

20.2.486 time-sig/time-sig-equal

[time-sig] [Methods]

DESCRIPTION:

Determine whether the values of two given time-sig objects are the same. If

they are identical in signature, return T; if they are different signatures

but have the same duration (e.g. 2/4, 4/8, 8/16 etc.) return

TIME-SIG-EQUAL-DURATION; otherwise return NIL.

ARGUMENTS:

- A first time-sig object.

- A second time-sig object.

RETURN VALUE:

Returns T if the time signatures are identical; returns

TIME-SIG-EQUAL-DURATION if they are different signatures with the same

duration; otherwise NIL.

EXAMPLE:

;; Two identical signatures return T

(let ((ts1 (make-time-sig ’(2 4)))

(ts2 (make-time-sig ’(2 4))))

(time-sig-equal ts1 ts2))

21 SC/SLIPPERY-CHICKEN 857

=> T

;; Two different signatures of the same duration return TIME-SIG-EQUAL-DURATION

(let ((ts1 (make-time-sig ’(2 4)))

(ts2 (make-time-sig ’(4 8))))

(time-sig-equal ts1 ts2))

=> TIME-SIG-EQUAL-DURATION

;; Two completely different signatures return NIL

(let ((ts1 (make-time-sig ’(2 4)))

(ts2 (make-time-sig ’(3 4))))

(time-sig-equal ts1 ts2))

=> NIL

SYNOPSIS:

(defmethod time-sig-equal ((ts1 time-sig) (ts2 time-sig))

21 sc/slippery-chicken

[Classes]

NAME:

slippery-chicken

File: slippery-chicken.lsp

Class Hierarchy: named-object -> slippery-chicken

Version: 1.0.5

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the slippery-chicken class.

Author: Michael Edwards: m@michael-edwards.org

Creation date: March 19th 2001

$$ Last modified: 18:30:17 Wed Oct 15 2014 BST

SVN ID: $Id: slippery-chicken.lsp 5048 2014-10-20 17:10:38Z medward2 $

21 SC/SLIPPERY-CHICKEN 858

21.1 slippery-chicken/auto-set-written

[slippery-chicken] [Methods]

DESCRIPTION:

Automatically set the WRITTEN-PITCH-OR-CHORD slot for all events where the

player plays a transposing instrument (which can change of course).

ARGUMENTS:

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :start-bar. NIL or an integer that is the first bar for which the written

pitch/chord data is to be set. If NIL, start from bar 1. Default = NIL.

- :end-bar. NIL or an integer that is the last bar for which the written

pitch/chord data is to be set. If NIL, do all bars. Default = NIL.

- :players. NIL, the ID or a list of IDs for the player(s) whose part(s)

are to be affected. If NIL, all players’ parts will be affected.

Default = NIL.

RETURN VALUE:

T

EXAMPLE:

;;; Create a slippery-chicken object, set all the written-pitch-or-chord

;;; slots to NIL and print the results. Apply the method and print the results

;;; again to see the difference.

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((hn (french-horn :midi-channel 1))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((hn (1 1 1 1 1))))))))

(next-event mini ’hn nil 1)

(loop for ne = (next-event mini ’hn)

while ne

21 SC/SLIPPERY-CHICKEN 859

do (setf (written-pitch-or-chord ne) nil))

(next-event mini ’hn nil 1)

(print

(loop for ne = (next-event mini ’hn)

while ne

collect (written-pitch-or-chord ne)))

(auto-set-written mini)

(next-event mini ’hn nil 1)

(print

(loop for ne = (next-event mini ’hn)

while ne

collect (data (written-pitch-or-chord ne)))))

=>

(NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL NIL

NIL NIL NIL NIL NIL NIL NIL)

(C4 D4 E4 FS4 G4 C4 D4 E4 FS4 G4 C4 D4 E4 FS4 G4 C4 D4 E4 FS4 G4 C4 D4 E4

FS4 G4)

SYNOPSIS:

(defmethod auto-set-written ((sc slippery-chicken) &key start-bar end-bar

players)

21.2 slippery-chicken/change-bar-line-type

[slippery-chicken] [Methods]

DESCRIPTION:

Change single to double or repeat bar lines and vice-versa. NB This is a

score function only, i.e., if you add repeat bar lines these will not (yet)

be reflected in playback with MIDI or CLM.

ARGUMENTS:

- the slippery-chicken object

- the bar number at the end of which you want the bar line to change

- bar line type: 0 = normal, 1 = double bar, 2 = final double bar, 3 =

begin repeat, 4 = begin and end repeat, 5 = end repeat

RETURN VALUE:

always T

21 SC/SLIPPERY-CHICKEN 860

EXAMPLE:

(let ((min

(make-slippery-chicken

’+minimum+

:instrument-palette +slippery-chicken-standard-instrument-palette+

:ensemble ’(((fl (flute :midi-channel 1))))

:set-palette ’((1 ((c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1)))

:rthm-seq-palette ’((1 ((((4 4) - e e e e - - e e e e -)))))

:rthm-seq-map ’((1 ((fl (1))))))))

;; this piece only has one bar so the bar line will be 2 by default ;

(print (bar-line-type (get-bar min 1 ’fl)))

(change-bar-line-type min 1 1)

(bar-line-type (get-bar min 1 ’fl)))

=>

...

2

1

SYNOPSIS:

(defmethod change-bar-line-type ((sc slippery-chicken) bar-num type)

21.3 slippery-chicken/check-beams

[slippery-chicken] [Methods]

DESCRIPTION:

See the description, with example, for check-beams in rthm-seq-bar.lsp.

Players can either be a single symbol, a list of symbols, or nil (whereby

all players will be checked).

SYNOPSIS:

(defmethod check-beams ((sc slippery-chicken) &key start-bar end-bar players

auto-beam print (on-fail #’warn))

21.4 slippery-chicken/check-ties

[slippery-chicken] [Methods]

DESCRIPTION:

21 SC/SLIPPERY-CHICKEN 861

Check that all ties are started and ended properly. If the optional

argument <same-spellings> is set to T, all tied pitches will be forced to

have the same enharmonic spellings.

ARGUMENTS:

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to force all tied pitches to have the same

enharmonic spellings.

RETURN VALUE:

T if all tie data is ok, otherwise performs the on-fail function and

returns NIL.

EXAMPLE:

;;; Create a slippery-chicken object, manually create a problem with the ties,

;;; and call check-ties with a #’warn as the on-fail function.

(let* ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1)))

:rthm-seq-palette ’((1 ((((4 4) { 3 tq tq tq } +q e (s) s)))))

:rthm-seq-map ’((1 ((cl (1)))))))

(e4 (get-event mini 1 4 ’cl)))

(setf (is-tied-to e4) nil)

(check-ties mini nil #’warn))

=> WARNING: slippery-chicken::check-ties: bad tie, CL bar 1

SYNOPSIS:

(defmethod check-ties ((sc slippery-chicken)

&optional same-spellings (on-fail #’error))

21.5 slippery-chicken/check-time-sigs

[slippery-chicken] [Methods]

DATE:

21 SC/SLIPPERY-CHICKEN 862

28-Jan-2011

DESCRIPTION:

Check every bar in the given slippery-chicken object to see if all players

have the same time signature. Drops into the debugger with an error if not.

ARGUMENTS:

- A slippery-chicken object.

RETURN VALUE:

T if all players have the same time signature at the same time, otherwise

drops into the debugger with an error.

EXAMPLE:

;; A successful test

(let* ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (viola :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) { 3 tq tq tq } +q e (s) s)))))

:rthm-seq-map ’((1 ((vn (1 1 1))

(va (1 1 1))

(vc (1 1 1))))))))

(check-time-sigs mini))

=> T

;; A failing test

(let* ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(va (viola :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) { 3 tq tq tq } +q e (s) s)))))

21 SC/SLIPPERY-CHICKEN 863

:rthm-seq-map ’((1 ((vn (1 1 1))

(va (1 1 1))

(vc (1 1 1))))))))

(setf (time-sig (get-bar mini 1 ’vn)) ’(3 4))

(check-time-sigs mini))

=>

slippery-chicken::check-time-sigs: time signatures are not the same at bar 1

[Condition of type SIMPLE-ERROR]

SYNOPSIS:

(defmethod check-time-sigs ((sc slippery-chicken))

21.6 slippery-chicken/check-tuplets

[slippery-chicken] [Methods]

DESCRIPTION:

Check the qualities of the tuplets brackets in a given slippery-chicken

object to make sure they are all formatted properly (i.e. each starting

tuplet bracket has a closing tuplet bracket etc.). If an error is found,

the method will try to fix it, then re-check, and only issue an error then

if another is found.

ARGUMENTS:

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

- The function to use if something is not ok with the tuplets. This

defaults to #’error, but could also be #’warn for example

RETURN VALUE:

T if all tuplets brackets are ok, otherwise performs the on-fail function

and returns NIL.

EXAMPLE:

;;; Create a slippery-chicken object, manually add an error to the tuplet data

;;; and call check-tuplets with #’warn as the on-fail function.

21 SC/SLIPPERY-CHICKEN 864

(let* ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1)))

:rthm-seq-palette ’((1 ((((4 4) { 3 tq tq tq } +q e (s) s)))))

:rthm-seq-map ’((1 ((cl (1)))))))

(e1 (get-event mini 1 1 ’cl)))

(setf (bracket e1) nil)

(check-tuplets mini #’warn))

=> rthm-seq-bar::check-tuplets: Can’t close non-existent bracket.

SYNOPSIS:

(defmethod check-tuplets ((sc slippery-chicken) &optional (on-fail #’error))

21.7 slippery-chicken/clm-play

[slippery-chicken] [Methods]

DESCRIPTION:

Using the sound files (samples) defined for the given reference (group ID)

in the sndfile-palette slot of the slippery-chicken object, use CLM to

generate a new sound file using the pitch and timing information of one or

more players’ parts from the slippery-chicken object.

NB: The sound file will begin with the first sounding event in the section

at 0.0 seconds. If there are any leading rests in the player’s part,

these will be omitted in the output file.

By grouping sound files in the sndfile-palette slot, the user can generate

a CLM sound file version of the piece in various ’flavours’; perhaps, for

example, using exclusively source sound files consisting of string samples,

or percussion sounds, or a variety of sounds, as desired. See below for an

example of a sndfile-palette.

By default this method does not attempt to match the pitches of the output

sound file to those generated for the slippery-chicken object, but rather

generates its own sequence of pitches based on pitches from the current

set. Instead of using the pitches of the specified players’ parts, which

might produce extreme sound file transpositions both upwards and downwards,

it accesses each note of the current set (assigned by the set-map to each

21 SC/SLIPPERY-CHICKEN 865

rthm-seq) from the bottom up, one voice after another. If do-src is T,

transposition will then be calculated such that the frequency of the sound

file, if specified, will be shifted to the pitch of the given pitch of the

set. Since this transposition process may still yield extreme

transpositions, the note-number keyword can be specified to indicate an

index into the current set of pitches to serve as the lowest voice

instead. However, if the number of voices plus this index exceeds the

number of pitches in the set, the method will wrap around to the lowest

pitch of the set.

If instead of the above method the user would like the pitches in the

resulting sound file to be transposed to match the pitches of the

slippery-chicken object, the keyword argument :pitch-synchronous can be set

to T (and do-src should be left set to T as well). This will also work with

chords.

See also make-sfp-from-wavelab-marker-file in sndfile-palette.lsp for

automatically creating a sndfile-palette from markers in a Steinberg

Wavelab marker file.

Event amplitudes are as yet unused by this method.

NB: CLM’s nrev instrument must be loaded before calling this method.

ARGUMENTS:

- A slippery chicken object.

- The ID of the starting section.

- The IDs of the player(s) whose events are to be used to obtain the

rhythmic structure (and optionally, pitch content) of the resulting sound

file. This can be a single symbol for an individual player, a list of

player IDs, or NIL. If NIL, the event from all players’ parts will be

reflected in the output file. Default = NIL.

- The ID of the sound file group in the sndfile-palette slot of the

slippery-chicken object that contains the source sound files from which

the new sound file is to be generated.

OPTIONAL ARGUMENTS:

keyword arguments:

- :num-sections. An integer or NIL to indicate how many sections should be

generated, including the starting section. If NIL, sound file data will

be generated for all sections of the piece. NB If there are sub-sections

this will include them in the total, i.e., if section 1 has 3 subsections

and :num-sections is 2, we’ll generate data from the first two

subsections of section 1, not all subsections of main sections 1 and

21 SC/SLIPPERY-CHICKEN 866

2. Default = NIL.

- :from-sequence. An integer that is the number of the first sequence

within the specified starting section to be used to generate the output

file. This argument can only be used when num-sections = 1. Default = 1.

- :num-sequences. NIL or an integer that indicates how many sequences are

to be generated, including that specified by :from-sequence. If NIL, all

sequences will be played. This argument can only be used when

num-sections = 1 and the section has no subsections. Default = NIL.

- :srate. A number that is the sampling rate of the output file

(independent of the input file). This and the following two arguments

default to the CLM package globals. See clm.html for more options.

Default = clm::*clm-srate*.

- :header-type: A CLM package header-type specification to designate the

output sound file format. For example, clm::mus-riff will produce .wav

files, clm::mus-aiff will produce .aiff files. The value of this argument

defaults to the CLM package globals. See clm.html for more

options. Default = clm::*clm-header-type*.

- :data-format. A CLM package data-format specification to designate the

output sound file sample data format. For example, clm::mus-float will

produce a 32-bit little-endian floating-point format; clm::mus-l24int

will produce little-endian 24-bit integer; mus-bshort will produce 16-bit

big-endian files, and mus-bfloat will produce 32-bit floating-point

big-endian files. NB: AIFF and AIFC files are not compatible with little

endian formats. The value of this argument defaults to the CLM package

globals. See clm.html for more options.

Default = clm::*clm-data-format*.

- :sndfile-extension. NIL or a string that will be the extension of the

output sound file (e.g. ".wav", ".aif"). If NIL, the method will

determine the extension automatically based on the header-type. NB: The

extension does not determine the output sound file format; that is

determined by :header-type. Default = NIL.

- :channels. An integer that is the number of channels in the output sound

file, limited only by the sound file format specified. Note that both

stereo and mono sounds from the palette will be randomly panned between

any two adjacent channels. Default = 2.

- :rev-amt. A number that determines the amount of reverberation for the

resulting sound file, passed to CLM’s nrev.

NB: 0.1 is a lot. Default = 0.0.

- time-offset. A number that is an offset time in seconds. This produces a

lead time of a specified number of seconds of silence prior to the sound

output.

- :play. T or NIL to indicate whether CLM should play the output file

automatically immediately after it has been written.

T = play. Default = NIL.

- :inc-start. T or NIL to indicate whether playback of the source sound

files is to begin at incrementally increasing positions in those files or

21 SC/SLIPPERY-CHICKEN 867

at their respective 0.0 positions every time. If T, the method will

increment the position in the source sound file from which playback is

begun such that it reaches the end of the source sound file the last time

it is ’played’. T = increment start times. Default = NIL.

- :ignore-rests. T or NIL to indicate whether silence should be

incorporated into the resulting sound file to correspond with rests in

the player’s parts. If T, the sound files will play over the duration of

rests. However, this is only true on a bar-by-bar basis; i.e., notes at

the end of one bar will not be continued over into a rest in the next

bar. This implies that rests at the start of a bar will not be turned

into sounding notes. T = ignore resets. Default = T.

- :sound-file-palette-ref2. The ID of a sound file group in the given

slippery-chicken object’s sndfile-palette slot. If this reference is

given, the method will invoke fibonacci-transitions to transition from

the first specified group of source sound files to this one. If NIL, only

one group of source sound files will be used. Default = NIL.

- :do-src. T, a number, or a note-name pitch symbol to indicate whether

transposition of the source sound files for playback will be calculated

such that the perceived fundamental frequencies of those sound files are

shifted to match the pitches of the current set. If do-src is a number

(frequency in Hertz) or a note-name pitch symbol, the method will use

only that pitch instead of the sound files’ frequencies when transposing

to the events’ pitches. NB Whichever is used, after being converted to a

sample rate conversion factor, this is always multiplied by the

src-scaler (see below). T = match sound files’ frequencies to set

pitches. Default = T.

- :pitch-synchronous: T or NIL to indicate whether the source sound files

are to be transposed to match the pitches of the events in the given

players’ part. This will only be effective if the given source sound file

has a perceptible frequency that has been specified using the sndfile

object’s :frequency slot in the sndfile-palette. :do-src must also be T

for this to work. T = match pitches. Default = NIL.

- :reset-snds-each-rs. T or NIL to indicate whether to begin with the first

source sound file of the specified group at the beginning of each

rthm-seq. T = begin with the first sound file. Default = T.

- :reset-snds-each-player. T or NIL to indicate whether to begin with the

first source sound file of the specified group for the beginning of each

player’s part. T = begin with the first sound file. Default = T.

- :play-chance-env. A list of break-point pairs that determines the chance

that a given event from the source player’s part will be reflected in the

new sound file. It is determined by random selection but uses a fixed

seed that is re-initialized each time clm-play is called. The following

default ensures every note will play. Default = ’(0 100 100 100).

- :play-chance-env-exp. A number that will be applied as the exponent to

the play-chance-env’s y values to create an exponential interpolation

between break-point pairs. Default = 0.5.

21 SC/SLIPPERY-CHICKEN 868

- :max-start-time. A number that is the last time-point in seconds for

which events will be processed for the output file. If a maximum start

time is specified here (in seconds), events after this will be

skipped. The default value of 99999999 seconds (27778 hours) will result

in all events being reflected in the sound file.

- :time-scaler. A number that will be the factor by which all start times

are scaled for the output file (in effect a tempo scaler). If

:ignore-rests is T, this will also have an indirect effect on

durations. This argument should not be confused with

:duration-scaler. Default = 1.0.

- :duration-scaler. A number that is the factor by which the duration of

all events in the output sound file will be scaled. This does not alter

start times, and will therefore result in overlapping sounds if greater

than 1.0. This is not to be confused with :time-scaler. Default = 1.0.

- :normalise. A decimal number that will be the maximum amplitude of the

resulting output file; i.e., to which the samples will be scaled. Can

also be NIL, whereupon no normalisation will be performed.

Default = 0.99

- :amp-env. A list of break-point pairs that will govern the amplitude

envelope applied to all source-sound files as it is being written to the

new output file. NB: If the user wants to maintain the original attack of

the source sound file and is not employing the :inc-start option, this

should be set to ’(0 1 ...). If :inc-start is T, the resulting sound file

will probably contain clicks from non-zero crossings.

Default = ’(0 0 5 1 60 1 100 0).

- :src-width. An integer that reflects the accuracy of the sample-rate

conversion. The higher the value, the more accurate the transposition,

but the slower the processing. Values of 100 might be useful for very low

transpositions. Default = 20.

- :src-scaler: A number that is the factor by which all sample-rate

conversion values will be scaled (for increasing or decreasing the

transposition of the overall resulting sound file). Default = 1.0.

- :note-number. A number that is an index, representing the the nth pitch

of the current set or chord (from the bottom) to be used for the lowest

player. Default = 0.

- :duration-run-over. T or NIL to indicate whether the method will allow a

sound file event to extend past the end of specified segment boundaries

of a sound file in the sndfile-palette. T = allow. Default = NIL.

- :short-file-names. T or NIL to indicate whether abbreviated output file

names will be automatically created instead of the usually rather long

names. T = short. Default = NIL.

- :output-name-uniquifier. A user-specified string that will be

incorporated into the file name, either at the end or the beginning

depending on whether short-file-names is T or NIL. Default = "".

- :check-overwrite. T or NIL to indicate whether to query the user before

overwriting existing sound files. T = query. Default = T.

21 SC/SLIPPERY-CHICKEN 869

- :print-secs. T or NIL to indicate whether CLM should print the seconds

computed as it works. T = print. Default = NIL.

- :simulate. T or NIL to indicate whether only the sound file sequencing

information should be calculated and printed for testing purposes,

without generating a sound file. T = simulate. Default = NIL.

- :sndfile-palette. NIL or a file name including path and extension that

contains an external definition of a sndfile-palette. This will replace

any sndfile-palette defined in the slippery-chicken object. If NIL, the

one in the slippery-chicken object will be used. Default = NIL.

- :chords. NIL or a list of lists consisting of note-name symbols to be

used as the pitches for the resulting sound file in place of the pitches

from the set-map. There must be one chord specified for each sequence. If

NIL, the pitches from the set-map will be used. Default = NIL.

- :chord-accessor. Sometimes the chord stored in the palette is not a

simple list of data so we need to access the nth of the chord

list. Default = NIL.

- :clm-ins. The CLM instrument that should be called to generate sound file

output. This must accept required and keyword arguments like samp5 (see

src/samp5.lsp or more simply src/sine.lsp) but can of course choose to

ignore them. Remember that your CLM instruments will (most probably) be

in the CLM package so you’ll need the clm:: qualifer. Default =

#’clm::samp5.

- :clm-ins-args. This should be a list of keyword arguments and values to

pass to each CLM instrument call (e.g. ’(:cutoff-freq 2000 :q .6)) or a

function which takes two arguments (the current event and the event

number) and returns a list of keyword arguments perhaps based on

those. Default = NIL.

RETURN VALUE:

Total events generated (integer).

EXAMPLE:

;;; An example using some of the more frequent arguments

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(hn (french-horn :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1 1 1))

(2 (1 1 1 1 1 1 1))

(3 (1 1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h (q) e (s) s))

21 SC/SLIPPERY-CHICKEN 870

:pitch-seq-palette ((1 (2) 3))))

(2 ((((4 4) (q) e (s) s h))

:pitch-seq-palette ((1 2 (3)))))

(3 ((((4 4) e (s) s h (q)))

:pitch-seq-palette ((2 3 3))))

(4 ((((4 4) (s) s h (q) e))

:pitch-seq-palette ((3 (1) 2)))))

:rthm-seq-map ’((1 ((cl (2 3 2 4 1 3 1))

(hn (2 4 1 2 3 1 3))

(vc (1 2 2 3 4 1 3))))

(2 ((cl (4 2 1 3 3 1 2))

(hn (2 1 4 3 2 1 3))

(vc (2 3 4 3 1 2 1))))

(3 ((cl (3 1 2 4 3 1 2))

(hn (3 4 2 1 3 2 1))

(vc (3 2 3 1 4 2 1)))))

:snd-output-dir (get-sc-config ’default-dir)

:sndfile-palette ’(((sndfile-grp-1

((test-sndfile-1.aiff)

(test-sndfile-2.aiff)

(test-sndfile-3.aiff)))

(sndfile-grp-2

((test-sndfile-4.aiff :frequency 834)

(test-sndfile-5.aiff)

(test-sndfile-6.aiff))))

("/path/to/sndfiles-dir-1"

"/path/to/sndfiles-dir-2")))))

(clm-play mini 2 ’(cl vc) ’sndfile-grp-1

:num-sections 1

:srate 48000

:header-type clm::mus-aiff

:data-format clm::mus-b24int

:rev-amt 0.05

:inc-start t

:ignore-rests nil

:sound-file-palette-ref2 ’sndfile-grp-2

:pitch-synchronous t

:reset-snds-each-rs nil

:reset-snds-each-player nil))

SYNOPSIS:

#+clm

(defmethod clm-play ((sc slippery-chicken) section players

sound-file-palette-ref

&key

21 SC/SLIPPERY-CHICKEN 871

sound-file-palette-ref2

(play-chance-env ’(0 100 100 100))

(max-start-time 99999999)

(play-chance-env-exp 0.5)

(time-scaler 1.0)

(normalise .99)

(simulate nil)

(from-sequence 1)

(num-sequences nil)

(num-sections nil)

(ignore-rests t)

(time-offset 0.0)

(chords nil)

(chord-accessor nil)

(note-number 0)

(play nil)

(amp-env ’(0 0 5 1 60 1 100 0))

(inc-start nil)

(src-width 20)

(src-scaler 1.0)

(do-src t)

(pitch-synchronous nil)

(rev-amt 0.0)

(duration-scaler 1.0)

(short-file-names nil)

(check-overwrite t)

(reset-snds-each-rs t)

(reset-snds-each-player t)

(duration-run-over nil)

(channels 2)

(srate clm::*clm-srate*)

(header-type clm::*clm-header-type*)

(data-format clm::*clm-data-format*)

(print-secs nil)

(output-name-uniquifier "")

(sndfile-extension nil)

(sndfile-palette nil)

;; MDE Mon Nov 4 10:10:35 2013 -- the following were

;; added so we could use instruments other than samp5

(clm-ins #’clm::samp5)

;; either a list or a function (see above)

clm-ins-args)

21 SC/SLIPPERY-CHICKEN 872

21.8 slippery-chicken/clone

[slippery-chicken] [Methods]

DESCRIPTION:

Copy (clone) the specified instance and all data associated with the

slippery-chicken object.

ARGUMENTS:

- A slippery-chicken object.

RETURN VALUE:

A slippery-chicken object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:instrument-palette +slippery-chicken-standard-instrument-palette+

:ensemble ’(((fl (flute :midi-channel 1))))

:set-palette ’((1 ((c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1)))

:rthm-seq-palette ’((1 ((((4 4) - e e e e - - e e e e -)))))

:rthm-seq-map ’((1 ((fl (1))))))))

(clone mini))

SYNOPSIS:

(defmethod clone ((sc slippery-chicken))

21.9 slippery-chicken/cmn-display

[slippery-chicken] [Methods]

DESCRIPTION:

Write the data stored in a given slippery-chicken object to disk as an EPS

(Encapsulated Postscript) file using CMN.

Several of the keyword arguments for this method are passed directly to CMN

and therefore have identical names to CMN functions.

21 SC/SLIPPERY-CHICKEN 873

NB: This might fail if LilyPond files are generated first. If this happens,

re-evaluate the slippery-chicken object and call cmn-display again.

ARGUMENTS:

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :file. A string that is the directory path with file name and extension

for the .eps file to be created. Default = "cmn.eps" in the directory

(get-sc-config ’default-dir) (default "/tmp/")

- :players. NIL or a list of player IDs to indicate whether all players’

parts should be printed to the score. If NIL, all players’ parts will be

written to the score. If a single symbol or a list of player IDs, only

the parts of those players will be written to the score. Default = NIL.

- :in-c. T or NIL to indicate whether the output should be printed at

sounding pitch (in C) or at written pitch. NB: If in C, piccolo and

double bass maintain their usual octave transpositions.

T = print at sounding pitch. Default = NIL.

- :respell-notes. T, a list of player IDs paired with a sequence of bar and

note numbers, or NIL to indicate whether to the cmn-display method should

call the respell-notes method to the pitches contained in the

slippery-chicken object according to slippery chicken’s enharmonics

algorithm. If T, the all of the pitches in the object will be considered

and slippery chicken will convert a number of the pitches to their

enharmonic equivalents to create more sensible linear pitch progression

within bars. If a list of player IDs paired with a sequence of bar and

event numbers is passed, in the form

’((vln (13 2) (14 3)) (cl (14 3 t))), only the specified pitches are

changed; e.g., (13 2) = bar 13 note 2 (1-based and counting tied notes

but not rests). If an additional T is included after the bar number and

event number (as in the cl example above), only the spelling of the

written pitch for that event will be changed (the default is to change

the sounding note spelling only). Chords are not respelled by the default

algorithm, so if these need to be respelled, this should be indicated by

sub-grouping the note number portion of the given bar/note pair into a

2-item sublist, in which the first number is the position of the chord in

among the attacked notes of that bar and the second number is the

position of the desired pitch within the chord, counted from the bottom

up, e.g. (vln (13 (2 1))). If NIL, no changes will be made. Default = T.

- :auto-clefs. T or NIL to indicate whether the cmn-display method should

call the auto-clefs method, which automatically insert clef changes into

the parts of those instruments that use more than one clef.

21 SC/SLIPPERY-CHICKEN 874

T = automatically place clef changes. Default = T.

- :start-bar. An integer that indicates the first bar of the object to be

written to the resulting .eps file. NIL = the first bar. Default = NIL.

- :end-bar. The last bar to be written to the resulting .eps file. NIL =

the last bar of the slippery-chicken object. Default = NIL.

- :title. T, a string, or NIL to indicate whether to write the title of the

given slippery-chicken object to the resulting .eps file. If T, the TITLE

slot of the slippery-chicken object will be used. If a string, the

specified string will be used instead. If NIL, no title will be included

in the output. Default = T.

- :size. A number to indicate the overall size of the symbols in the CMN

output. Default = 15.

- :page-nums. T or NIL to indicate whether page numbers are to be written.

T = write page numbers. Default = T.

- :empty-staves. T or NIL to indicate whether an empty staff should be

displayed under each instrument. This can be useful for making editing

notes by hand. T = print empty staff. Default = NIL.

- :display-sets. T or NIL to indicate whether to print the set of pitches

used for each rthm-seq on a separate treble-bass grand staff at the

bottom of each system in the score. T = print. Default = NIL.

- :write-section-info. T or NIL to indicate whether to write the section ID

into the score. NB: This might not work without first regenerating the

slippery-chicken object. T = write section IDs. Default = NIL.

- :display-time. T or NIL to indicate whether the elapsed time in

(mins:secs) should printed above each measure in the resulting score.

T = print time. Default = NIL.

- :staff-separation. A number that governs the amount of white space to be

placed between staves, measured in CMN’s units. Default = 3.

- :line-separation. A number that governs the amount of white space to be

placed between systems (i.e. not groups, but a line of music for the

whole ensemble), measured in CMN’s units. Default = 5.

- :group-separation. A number that governs the amount of white space placed

between groups in a system, measured in CMN’s units. Default = 2.

- :system-separation. An indication for how CMN determines the amount of

white space between systems. If cmn::page-mark, only one system will be

written per page. Default cmn::line-mark.

- :page-height. A number to indicate the height of the page in centimeters.

Default = 29.7.

- :page-width. A number to indicate the width of the page in

centimeters. Default = 21.0.

- :all-output-in-one-file. T or NIL to indicate whether to write a separate

file for each page of the resulting score. T = write all pages to the

same multi-page file. Default = T.

- :one-line-per-page. T or NIL to indicate whether to write just one line

(system) to each page. T = one line per page. Default = NIL.

- :start-bar-numbering. An integer that indicates the number to be given as

21 SC/SLIPPERY-CHICKEN 875

the first bar number in the resulting EPS file. The bars will be numbered

every five bars starting from this number. NB: The value of this argument

is passed directly to a CMN function. If a value is given for this

argument, slippery chicken’s own bar-number writing function will be

disabled. NB: It is recommended that a value not be passed for this

argument if a value is given for :auto-bar-nums. NIL = bar 1. Default =

NIL.

- :auto-bar-nums. An integer or NIL to indicate a secondary bar numbering

interval. This is separate from and in addition to the bar-number written

in every part every 5 bars. It corresponds to CMN’s

automatic-measure-numbers. If set to e.g. 1, a bar number will be printed

for every measure at the top of each system, or if :by-line, a bar number

will be printed at the start of each line. NB: The value of this argument

is passed directly to a CMN function. If a value is given for this

argument, slippery chicken’s own bar-number writing function will be

disabled. NB: It is recommended that a value not be passed for this

argument if a value is given for :start-bar-numbering. NIL = no secondary

bar numbering. Default = NIL.

- :rehearsal-letters-all-players. T or NIL to indicate whether rehearsal

letters should be placed above the staves of all instruments in a score

(this can be useful when generating parts). If NIL, rehearsal letters are

only placed above the staves of the instruments at the top of each

group. T = place rehearsal letters above all instruments. Default = NIL.

- :tempi-all-players. T or NIL to indicate whether to print the tempo above

all players’ parts in the score. T = print above all players’ parts.

Default = NIL.

- :process-event-fun. A user-defined function that takes one argument,

namely an event object. The specified function will then be called for

each event in the piece. This could be used, for example, to

algorithmically add accents, dynamics, or change the colour of notes,

etc. If NIL, no function will be applied. Default = NIL.

- :automatic-octave-signs. T or NIL to indicate whether ottava signs should

be inserted automatically when notes would otherwise need many ledger

lines. T = automatically insert. Default = NIL.

- :multi-bar-rests. T or NIL to indicate whether multiple bars of wrests

should be consolidated when writing parts. T = consolidate. NIL = write

each consecutive rest bar separately. Default = NIL.

- :display-marks-in-part. T or NIL to indicate whether to print the marks

stored in the MARKS-IN-PART slot of each rhythm object in the score. If

NIL, the indications stored in the MARKS-IN-PART slot are added to parts

only. T = also print to score. Default = NIL.

- :add-postscript. NIL or postscript code to be added to the .eps file

after it has been generated. See the add-ps-to-file function for details.

Default = NIL.

- :auto-open. Whether to open the .EPS file once written. Currently only

available on OSX with SBCL and CCL. Uses the default app for .EPS

21 SC/SLIPPERY-CHICKEN 876

files, as if opened with ’open’ in the terminal. Default = Value of

(get-sc-config cmn-display-auto-open).

RETURN VALUE:

Always T.

EXAMPLE:

;;; The simplest usage

(let ((mini

(make-slippery-chicken

’+mini+

:title "mini"

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1)))

:rthm-seq-palette ’((1 ((((2 4) (s) (s) e e e))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1))))))))

(cmn-display mini :file "/tmp/mini.eps"))

;;; Used with some of the more frequently implemented keyword arguments

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(hn (french-horn :midi-channel 2))

(vc (cello :midi-channel 3))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5)))

(2 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5)))

(3 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (2 2 2 2 2))

(3 (3 3 3 3 3)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5))))

(2 ((((4 4) q e s s h))

:pitch-seq-palette ((1 2 3 4 5))))

(3 ((((4 4) e s s h q))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((cl (1 3 2 1 2))

(hn (3 1 1 2 2))

(vc (1 1 3 2 2))))

21 SC/SLIPPERY-CHICKEN 877

(2 ((cl (3 1 1 2 2))

(hn (1 3 1 2 2))

(vc (3 2 2 1 1))))

(3 ((cl (1 1 3 2 2))

(hn (2 1 1 2 3))

(vc (3 1 1 2 2))))))))

(cmn-display mini

:file "/tmp/cmn.eps"

:players ’(cl vc)

:in-c nil

:respell-notes nil

:auto-clefs nil

:start-bar 8

:end-bar 13

:title "CMN Fragment"

:size 13

:page-nums nil

:empty-staves t

:display-sets t

:write-section-info t

:display-time t

:staff-separation 2

:line-separation 3))

=> T

SYNOPSIS:

#+cmn

(defmethod cmn-display ((sc slippery-chicken)

&key

(respell-notes t)

(start-bar nil)

(start-bar-numbering nil)

(end-bar nil)

;; MDE Fri Apr 6 13:27:08 2012

(title t)

(file (format nil "~a~a.eps"

(get-sc-config ’default-dir)

(filename-from-title (title sc))))

(all-output-in-one-file t)

(one-line-per-page nil)

(staff-separation 3)

(line-separation 5)

(empty-staves nil)

(write-section-info nil)

21 SC/SLIPPERY-CHICKEN 878

(group-separation 2)

(system-separation cmn::line-mark)

(process-event-fun nil)

(display-sets nil)

(rehearsal-letters-all-players nil)

(display-marks-in-part nil)

(tempi-all-players nil)

(players nil)

(page-height 29.7)

(page-width 21.0)

(size 15)

(auto-bar-nums nil)

(page-nums t)

(in-c nil)

(auto-clefs t)

(multi-bar-rests nil)

(automatic-octave-signs nil)

(display-time nil)

(auto-open (get-sc-config ’cmn-display-auto-open))

(add-postscript nil))

21.10 slippery-chicken/copy-bars

[slippery-chicken] [Methods]

DESCRIPTION:

Copy the rhythmic contents (rthm-seq-bar objects) from the specified bars

of one specified player’s part to another. NB No check is performed to

ensure that the copied notes are within the new instrument’s range.

ARGUMENTS:

- A slippery-chicken object.

- A 1-based integer or assoc-list reference (section seq-num bar-num) that

is the number of the first bar in the source player’s part whose rhythmic

contents are to be copied.

- A 1-based integer or assoc-list reference (section seq-num bar-num) that

is the number of the first bar in the target player’s part to which the

rhythmic contents are to be copied.

- The ID of the source player’s part.

- The ID of the target player’s part.

- NIL or an integer that is the number of bars to copy, including the

start-bar. When NIL, all bars in the piece starting from <to-start-bar>

will be copied.

21 SC/SLIPPERY-CHICKEN 879

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to print feedback to the listener about the

copying process. T = print. Default = NIL.

RETURN VALUE:

T

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((hn (french-horn :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5))))

(2 ((((4 4) h h))

:pitch-seq-palette ((1 2)))))

:rthm-seq-map ’((1 ((hn (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((hn (2 2 2 2 2))

(vc (2 2 2 2 2))))

(3 ((hn (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(copy-bars mini 7 2 ’vc ’hn 2 t))

=> T

SYNOPSIS:

(defmethod copy-bars ((sc slippery-chicken) from-start-bar to-start-bar

from-player to-player num-bars

&optional (print-bar-nums nil))

21.11 slippery-chicken/count-notes

[slippery-chicken] [Methods]

DESCRIPTION:

21 SC/SLIPPERY-CHICKEN 880

Returns the number of notes between start-bar and end-bar (both

inclusive).

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the first bar in which notes will be counted.

- An integer that is the last bar in which notes will be counted.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to count just the number of attacked notes

(not including ties) or the number of note events (including ties).

T = just attacked notes. Default = NIL.

NB: A chord counts as one note only.

- NIL or a list of one or more IDs of the players whose notes should be

counted. This can be a single symbol or a list of players. If NIL, the

notes in all players’ parts will be counted. Default = NIL.

RETURN VALUE:

An integer that is the number of notes.

EXAMPLE:

;;; Using defaults

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h (q) e (s) s)

(q (e) s +s h)

((e) s (s) (q) h))

:pitch-seq-palette ((1 2 3 4 5 1 3 2)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(3 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

21 SC/SLIPPERY-CHICKEN 881

(count-notes mini 2 11))

=> 62

;;; Counting all notes just for player ’vc

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h (q) e (s) s)

(q (e) s +s h)

((e) s (s) (q) h))

:pitch-seq-palette ((1 2 3 4 5 1 3 2)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(3 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(count-notes mini 2 11 nil ’vc))

=> 31

;;; Counting just the attacked notes for player ’vc

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h (q) e (s) s)

(q (e) s +s h)

((e) s (s) (q) h))

:pitch-seq-palette ((1 2 3 4 5 1 3 2)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

21 SC/SLIPPERY-CHICKEN 882

(3 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(count-notes mini 2 11 t ’vc))

=> 27

SYNOPSIS:

(defmethod count-notes ((sc slippery-chicken) start-bar end-bar

&optional just-attacks players)

21.12 slippery-chicken/find-boundaries

[slippery-chicken] [Methods]

DESCRIPTION:

This methods tries to find structural boundaries (i.e section starts) in a

complete piece. It does so by looking purely at event densities across bars

and groups of bars; when these change sharply, a section change is noted.

ARGUMENTS:

- the slippery-chicken object to analyse

OPTIONAL ARGUMENTS:

- when looking at groups of bars, how many bars at a time? Default = 3

- when looking at the sharpness of the envelope, what percentage change in

number of events per bar (based in the min/max in the overall envelope)

is considered a steep enough change. Default = 50 (%)

RETURN VALUE:

A list of bar numbers

SYNOPSIS:

(defmethod find-boundaries ((sc slippery-chicken) &optional

(sum-bars 3) (jump-threshold 50))

21.13 slippery-chicken/find-note

[slippery-chicken] [Methods]

DATE:

21 SC/SLIPPERY-CHICKEN 883

09-Apr-2011

DESCRIPTION:

Print to the Listener the numbers of all bars in a specified player’s part

of a given slippery-chicken object in which the specified pitch is found.

ARGUMENTS:

- A slippery-chicken object.

- A player ID.

- A note-name pitch symbol or a list of note-name pitch symbols for the

pitch to be sought. If a list, this will be handled as a chord.

OPTIONAL ARGUMENTS:

keyword arguments:

- :written. T or NIL to indicate whether to look for the specified pitch as

as a written note only. T = as written only. Default = NIL.

- :start-bar. An integer that is the first bar in which to search for the

given pitch. This number is inclusive. Default = 1.

- :end-bar. An integer that is the last bar in which to search for the

given pitch. This number is inclusive. Default = number of bars in the

given slippery-chicken object.

RETURN VALUE:

Returns a list of all corresponding event objects found. Prints the bar

numbers of the results directly to the Lisp listener.

EXAMPLE:

;;; Prints the bar number for all occurrences in the entire piece by default

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h (q) e (s) s)

(q (e) s +s h)

((e) s (s) (q) h))

21 SC/SLIPPERY-CHICKEN 884

:pitch-seq-palette ((1 2 3 4 5 1 3 2)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(3 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(find-note mini ’vc ’f4))

=>

bar 1

bar 3

bar 4

bar 6

bar 7

bar 9

bar 10

bar 12

bar 13

bar 15

bar 16

bar 18

bar 19

bar 21

bar 22

bar 24

bar 25

bar 27

bar 28

bar 30

bar 31

bar 33

bar 34

bar 36

bar 37

bar 39

bar 40

bar 42

bar 43

bar 45

;;; Examples of use specifying the optional arguments

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

21 SC/SLIPPERY-CHICKEN 885

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h (q) e (s) s)

(q (e) s +s h)

((e) s (s) (q) h))

:pitch-seq-palette ((1 2 3 4 5 1 3 2)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(3 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(find-note mini ’cl ’f3)

(find-note mini ’cl ’f3 :written t)

(find-note mini ’vc ’f4 :start-bar 3 :end-bar 17))

SYNOPSIS:

(defmethod find-note ((sc slippery-chicken) player note &key (written nil)

start-bar end-bar)

21.14 slippery-chicken/find-rehearsal-letters

[slippery-chicken] [Methods]

DESCRIPTION:

Return in list form the numbers of bars in the given slippery-chicken

object that have rehearsal letters.

ARGUMENTS:

- A slippery-chicken object.

RETURN VALUE:

A list of numbers.

EXAMPLE:

(let ((mini

(make-slippery-chicken

21 SC/SLIPPERY-CHICKEN 886

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:rehearsal-letters ’(2 5 7)

:set-palette ’((1 ((c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) (s) (s) e e e))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1 1))))))))

(find-rehearsal-letters mini))

=> (2 5 7)

SYNOPSIS:

(defmethod find-rehearsal-letters ((sc slippery-chicken))

21.15 slippery-chicken/get-all-events

[slippery-chicken] [Methods]

DATE:

August 22nd 2013 (Edinburgh)

DESCRIPTION:

Return a flat list containing all the events of a slippery-chicken object

fo the given player.

ARGUMENTS:

- The slippery-chicken object

- The player (symbol)

RETURN VALUE:

A list of event objects

SYNOPSIS:

(defmethod get-all-events ((sc slippery-chicken) player)

21 SC/SLIPPERY-CHICKEN 887

21.16 slippery-chicken/get-all-section-refs

[slippery-chicken] [Methods]

DESCRIPTION:

Return all section IDs as a list of lists. Subsection IDs will be contained

in the same sublists as their enclosing sections.

ARGUMENTS:

- A slippery-chicken object.

RETURN VALUE:

A list of lists.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax (alto-sax :midi-channel 1))))

:set-palette ’((1 ((e3 fs3 b3 cs4 fs4 gs4 ds5 f5))))

:set-map ’((1 (1 1 1))

(2 (1 1 1))

(3 ((a (1 1 1))

(b ((x (1 1 1))

(y (1 1 1))))))

(4 ((a (1 1 1))

(b (1 1 1))

(c (1 1 1 1))))

(5 (1 1 1))

(6 (1 1 1))

(7 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1))))

(2 ((sax (1 1 1))))

(3 ((a ((sax (1 1 1))))

(b ((x ((sax (1 1 1))))

(y ((sax (1 1 1))))))))

(4 ((a ((sax (1 1 1))))

(b ((sax (1 1 1))))

(c ((sax (1 1 1 1))))))

(5 ((sax (1 1 1))))

21 SC/SLIPPERY-CHICKEN 888

(6 ((sax (1 1 1))))

(7 ((sax (1 1 1))))))))

(get-all-section-refs mini))

=> ((1) (2) (3 A) (3 B X) (3 B Y) (4 A) (4 B) (4 C) (5) (6) (7))

SYNOPSIS:

(defmethod get-all-section-refs ((sc slippery-chicken))

21.17 slippery-chicken/get-bar

[slippery-chicken] [Methods]

DESCRIPTION:

Get the rthm-seq-bar object located at a specified bar number within a

given player’s part.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar within the overall piece for

which the rthm-seq-bar object is sought.

- The ID of the player from whose part the rthm-seq-bar object is

sought. If this is passed as NIL, the method will return the rthm-seq-bar

objects for all players in the ensemble at the specified bar number.

NB: Although listed as an optional argument, the player ID is actually

required. It is listed as optional due to method inheritance.

OPTIONAL ARGUMENTS:

- (see the comment on the <player> argument above.

RETURN VALUE:

A rthm-seq-bar object (or objects).

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

21 SC/SLIPPERY-CHICKEN 889

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s)

(q e s s h)

(e s s q h))

:pitch-seq-palette ((1 2 3 4 5

1 3 2 4 5

3 5 2 4 1)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(3 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(get-bar mini 17 ’cl))

=>

RTHM-SEQ-BAR: time-sig: 2 (4 4), time-sig-given: NIL, bar-num: 17,

old-bar-nums: NIL, write-bar-num: NIL, start-time: 64.000,

start-time-qtrs: 64.0, is-rest-bar: NIL, multi-bar-rest: NIL,

show-rest: T, notes-needed: 5,

tuplets: NIL, nudge-factor: 0.35, beams: NIL,

current-time-sig: 2, write-time-sig: NIL, num-rests: 0,

num-rhythms: 5, num-score-notes: 5, parent-start-end: NIL,

missing-duration: NIL, bar-line-type: 0,

player-section-ref: (2 CL), nth-seq: 0, nth-bar: 1,

rehearsal-letter: NIL, all-time-sigs: (too long to print)

sounding-duration: 4.000,

rhythms: (

[...]

SYNOPSIS:

(defmethod get-bar ((sc slippery-chicken) bar-num &optional player)

21.18 slippery-chicken/get-bar-from-ref

[slippery-chicken] [Methods]

DESCRIPTION:

Return a rthm-seq-bar object from the piece by specifying its section,

21 SC/SLIPPERY-CHICKEN 890

sequence number, bar number, and the player. Sequenz-num and bar-num are

1-based.

ARGUMENTS:

- A slippery-chicken object.

- A section ID (number or list).

- A player ID.

- An integer that is the number of the sequence in the section from which

the bar is to be returned (1-based).

- An integer that is the number of the bar within the given sequence

(1-based).

RETURN VALUE:

A rthm-seq-bar object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s)

(q e s s h)

(e s s q h))

:pitch-seq-palette ((1 2 3 4 5

1 3 2 4 5

3 5 2 4 1)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(3 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(get-bar-from-ref mini 2 ’vc 3 2))

=>

RTHM-SEQ-BAR: time-sig: 2 (4 4), time-sig-given: NIL, bar-num: 23,

old-bar-nums: NIL, write-bar-num: NIL, start-time: 88.000,

21 SC/SLIPPERY-CHICKEN 891

start-time-qtrs: 88.0, is-rest-bar: NIL, multi-bar-rest: NIL,

show-rest: T, notes-needed: 5,

tuplets: NIL, nudge-factor: 0.35, beams: NIL,

current-time-sig: 2, write-time-sig: NIL, num-rests: 0,

num-rhythms: 5, num-score-notes: 5, parent-start-end: NIL,

missing-duration: NIL, bar-line-type: 0,

player-section-ref: (2 VC), nth-seq: 2, nth-bar: 1,

rehearsal-letter: NIL, all-time-sigs: (too long to print)

sounding-duration: 4.000,

rhythms: (

[...]

SYNOPSIS:

(defmethod get-bar-from-ref ((sc slippery-chicken) section player

sequenz-num bar-num)

21.19 slippery-chicken/get-bar-num-from-ref

[slippery-chicken] [Methods]

DESCRIPTION:

Get the bar number of a given rthm-seq-bar object by specifying the

section, sequenz, and number of the bar within that sequenz.

ARGUMENTS:

- A slippery-chicken object.

- The ID of the section in which the given rthm-seq-bar object is located.

- An integer that is the number of the sequence within that section in

which the rthm-seq-bar object is located.

- The number of the bar within the given rthm-seq-bar object for which the

overall bar number (within the entire piece) is sought.

RETURN VALUE:

An integer.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

21 SC/SLIPPERY-CHICKEN 892

(vc (cello :midi-channel 2))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s)

(q e s s h)

(e s s q h))

:pitch-seq-palette ((1 2 3 4 5

1 3 2 4 5

3 5 2 4 1)))))

:rthm-seq-map ’((1 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(2 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))

(3 ((cl (1 1 1 1 1))

(vc (1 1 1 1 1))))))))

(get-bar-num-from-ref mini 2 4 3))

=> 27

SYNOPSIS:

(defmethod get-bar-num-from-ref ((sc slippery-chicken) section

sequenz-num bar-num)

21.20 slippery-chicken/get-clef

[slippery-chicken] [Methods]

DATE:

11-Apr-2011

DESCRIPTION:

Get the clef symbol attached to a specified event.

NB: The very first clef symbol in the very first measure of a given

player’s part is determined by the corresponding instrument object and

attached to differently; as such, it cannot be retrieved using this

method.

NB: All clef symbols after the starting clef are added using the auto-clefs

method, either directly or by default in the cmn-display or

write-lp-data-for-all methods.

21 SC/SLIPPERY-CHICKEN 893

ARGUMENTS:

- A slippery-chicken object.

- (NB: The optional arguments are actually required.)

OPTIONAL ARGUMENTS:

NB: The optional arguments are actually required.

- An integer that is the number of the bar from which to return the clef

symbol.

- An integer that is the number of the event object within that bar from

which to retrieve the clef symbol.

- The ID of the player from whose part the clef symbol is to be returned.

RETURN VALUE:

A clef symbol.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 96)))

:set-palette ’((1 ((g2 f4 e5))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((5 4) e e e e e e e e e e))

:pitch-seq-palette ((1 1 2 2 2 2 3 3 3 1)))))

:rthm-seq-map ’((1 ((vc (1 1 1))))))))

(auto-clefs mini)

(get-clef mini 1 3 ’vc))

=> TENOR

SYNOPSIS:

(defmethod get-clef ((sc slippery-chicken) &optional bar-num event-num player)

21.21 slippery-chicken/get-current-instrument-for-player

[slippery-chicken] [Methods]

DESCRIPTION:

21 SC/SLIPPERY-CHICKEN 894

Get the currently active instrument for a given player in a specified

sequence of a slippery-chicken object, as defined in the

instrument-change-map.

ARGUMENTS:

- The ID of the section from which to retrieve the current instrument for

the specified player. This can also be a reference, e.g. in the form

’(2 1).

- The ID of the player for whom the current instrument is sought.

- The number of the sequence from which to retrieve the current

instrument. This is a 1-based number. A slippery-chicken object.

RETURN VALUE:

An instrument object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax ((alto-sax tenor-sax) :midi-channel 1))

(db (double-bass :midi-channel 2))))

:instrument-change-map ’((1 ((sax ((1 alto-sax) (3 tenor-sax)))))

(2 ((sax ((2 alto-sax) (5 tenor-sax))))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))

(2 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))))))

(get-current-instrument-for-player 2 ’sax 3 mini))

=>

INSTRUMENT: lowest-written: BF3, highest-written: FS6

lowest-sounding: CS3, highest-sounding: A5

starting-clef: TREBLE, clefs: (TREBLE), clefs-in-c: (TREBLE)

prefers-notes: NIL, midi-program: 66

transposition: EF, transposition-semitones: -9

score-write-in-c: NIL, score-write-bar-line: NIL

chords: NIL, chord-function: NIL,

21 SC/SLIPPERY-CHICKEN 895

total-bars: 5 total-notes: 25, total-duration: 20.000

total-degrees: 2920, microtones: T

missing-notes: (BQF3 BQF4), subset-id: NIL

staff-name: alto saxophone, staff-short-name: alt sax,

largest-fast-leap: 999, tessitura: BQF3

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: ALTO-SAX, tag: NIL,

data: NIL

SYNOPSIS:

(defmethod get-current-instrument-for-player (section player sequence

(sc slippery-chicken))

21.22 slippery-chicken/get-event

[slippery-chicken] [Methods]

DESCRIPTION:

Retrieve a specified event object from a slippery-chicken object, giving

bar number, event number, and player.

NB: This counts returns event objects, regardless of whether they are notes

or rests.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which the event object is

to be returned.

- An integer that is the number of the event object to be returned from

that bar. This number is 1-based and counts all events, including notes,

rests, and tied notes.

- A symbol name for the player.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether an error should be signalled if the event

doesn’t exist.

RETURN VALUE:

An event object.

21 SC/SLIPPERY-CHICKEN 896

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(vc (cello :midi-channel 2))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) (e) e+e. 32 (32)))

:pitch-seq-palette (((1) 2)))))

:rthm-seq-map ’((1 ((vn (1 1 1))

(vc (1 1 1))))))))

(get-event mini 2 4 ’vn))

=>

EVENT: start-time: 3.750, end-time: 3.875,

duration-in-tempo: 0.125,

compound-duration-in-tempo: 0.125,

amplitude: 0.700

bar-num: 2, marks-before: NIL,

tempo-change: NIL

instrument-change: NIL

display-tempo: NIL, start-time-qtrs: 3.750,

midi-time-sig: NIL, midi-program-changes: NIL,

8va: 0

pitch-or-chord:

PITCH: frequency: 293.665, midi-note: 62, midi-channel: 1

pitch-bend: 0.0

degree: 124, data-consistent: T, white-note: D4

nearest-chromatic: D4

src: 1.122462, src-ref-pitch: C4, score-note: D4

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 4, c5ths: 0, no-8ve: D, no-8ve-no-acc: D

show-accidental: T, white-degree: 29,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: D4, tag: NIL,

data: D4

written-pitch-or-chord: NIL

21 SC/SLIPPERY-CHICKEN 897

RHYTHM: value: 32.000, duration: 0.125, rq: 1/8, is-rest: NIL,

score-rthm: 32.0, undotted-value: 32, num-flags: 3, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 0.125,

is-grace-note: NIL, needs-new-note: T, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 32, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: 32, tag: NIL,

data: 32

SYNOPSIS:

(defmethod get-event ((sc slippery-chicken) bar-num event-num player

&optional (error t))

21.23 slippery-chicken/get-events-from-to

[slippery-chicken] [Methods]

DATE:

22-Jul-2011 (Pula)

DESCRIPTION:

Return a list of event objects for a given player, specifying the region by

bar and event number.

ARGUMENTS:

- A slippery-chicken object.

- A player ID.

- An integer (1-based) that is the first bar from which to return events.

- An integer (1-based) that is the first event object in the start-bar to

return.

- An integer (1-based) that is the last bar from which to return events.

OPTIONAL ARGUMENTS:

- An integer (1-based) that is the last event within the end-bar to

return.

RETURN VALUE:

A flat list of event objects.

21 SC/SLIPPERY-CHICKEN 898

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax ((alto-sax tenor-sax) :midi-channel 1))

(db (double-bass :midi-channel 2))))

:instrument-change-map ’((1 ((sax ((1 alto-sax) (3 tenor-sax)))))

(2 ((sax ((2 alto-sax) (5 tenor-sax))))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))

(2 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))))))

(get-events-from-to mini ’sax 3 2 5 3))

=>

(

EVENT: start-time: 10.000, end-time: 11.000,

duration-in-tempo: 1.000,

compound-duration-in-tempo: 1.000,

amplitude: 0.700

bar-num: 3, marks-before: NIL,

tempo-change: NIL

instrument-change: NIL

display-tempo: NIL, start-time-qtrs: 10.000,

midi-time-sig: NIL, midi-program-changes: NIL,

8va: 0

pitch-or-chord:

PITCH: frequency: 164.814, midi-note: 52, midi-channel: 1

pitch-bend: 0.0

degree: 104, data-consistent: T, white-note: E3

nearest-chromatic: E3

src: 0.62996054, src-ref-pitch: C4, score-note: E3

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 3, c5ths: 0, no-8ve: E, no-8ve-no-acc: E

show-accidental: T, white-degree: 23,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

21 SC/SLIPPERY-CHICKEN 899

NAMED-OBJECT: id: E3, tag: NIL,

data: E3

written-pitch-or-chord:

PITCH: frequency: 369.994, midi-note: 66, midi-channel: 1

pitch-bend: 0.0

degree: 132, data-consistent: T, white-note: F4

nearest-chromatic: FS4

src: 1.4142135, src-ref-pitch: C4, score-note: FS4

qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,

micro-tone: NIL,

sharp: T, flat: NIL, natural: NIL,

octave: 4, c5ths: 1, no-8ve: FS, no-8ve-no-acc: F

show-accidental: T, white-degree: 31,

accidental: S,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: FS4, tag: NIL,

data: FS4

RHYTHM: value: 4.000, duration: 1.000, rq: 1, is-rest: NIL,

score-rthm: 4.0, undotted-value: 4, num-flags: 0, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 1.000,

is-grace-note: NIL, needs-new-note: T, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 4, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: Q, tag: NIL,

data: Q

EVENT: start-time: 11.000, end-time: 11.500,

[...]

SYNOPSIS:

(defmethod get-events-from-to ((sc slippery-chicken) player start-bar

start-event end-bar &optional end-event)

21.24 slippery-chicken/get-events-sorted-by-time

[slippery-chicken] [Methods]

21 SC/SLIPPERY-CHICKEN 900

DESCRIPTION:

Get all the events of all players between the given bars and then order

them by ascending time.

ARGUMENTS:

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :start-bar. An integer that is the first bar in which the function is to

be applied to event objects. Default = 1.

- :end-bar. NIL or an integer that is the last bar for which the event

objects should be returned. If NIL, the last bar of the

slippery-chicken object is used. Default = NIL.

RETURN VALUE:

A list of event objects.

SYNOPSIS:

(defmethod get-events-sorted-by-time ((sc slippery-chicken)

&key (start-bar 1) end-bar)

21.25 slippery-chicken/get-instrument-for-player-at-bar

[slippery-chicken] [Methods]

DATE:

09-Feb-2011

DESCRIPTION:

Get the current instrument for a specified player at a specified bar number

in a slippery-chicken object, as defined in the instrument-change-map.

ARGUMENTS:

- The ID of a player in the slippery-chicken object.

- An integer that is the number of the bar from which to get the current

instrument.

- A slippery-chicken object.

21 SC/SLIPPERY-CHICKEN 901

RETURN VALUE:

An instrument object.

EXAMPLE:

(let* ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax ((alto-sax tenor-sax) :midi-channel 1))

(db (double-bass :midi-channel 2))))

:instrument-change-map ’((1 ((sax ((1 alto-sax) (3 tenor-sax)))))

(2 ((sax ((2 alto-sax) (5 tenor-sax))))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))

(2 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))))))

(get-instrument-for-player-at-bar ’sax 3 mini))

=>

INSTRUMENT: lowest-written: BF3, highest-written: FS6

lowest-sounding: AF2, highest-sounding: E5

starting-clef: TREBLE, clefs: (TREBLE), clefs-in-c: (BASS TREBLE)

prefers-notes: NIL, midi-program: 67

transposition: BF, transposition-semitones: -14

score-write-in-c: NIL, score-write-bar-line: NIL

chords: NIL, chord-function: NIL,

total-bars: 5 total-notes: 25, total-duration: 20.000

total-degrees: 2710, microtones: T

missing-notes: (FQS3 FQS4), subset-id: NIL

staff-name: tenor sax, staff-short-name: ten sax,

largest-fast-leap: 999, tessitura: FS3

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: TENOR-SAX, tag: NIL,

data: NIL

SYNOPSIS:

(defmethod get-instrument-for-player-at-bar (player bar (sc slippery-chicken))

21 SC/SLIPPERY-CHICKEN 902

21.26 slippery-chicken/get-nearest-event

[slippery-chicken] [Methods]

DESCRIPTION:

Find the nearest event to <reference-event> in the <search-player>

ARGUMENTS:

- the slippery-chicken object

- the reference event object that we want to find the nearest event to in

another player

- the player we want to find the nearest event in (symbol).

OPTIONAL ARGUMENTS:

- if T only return sounding events (pitches/chords) otherwise return the

nearest rest or sounding event.

- if T only return struck events i.e. ignore those that are tied to

RETURN VALUE:

An event object.

SYNOPSIS:

(defmethod get-nearest-event ((sc slippery-chicken) reference-event

search-player &optional

(ignore-rests t)

(ignore-tied t))

21.27 slippery-chicken/get-note

[slippery-chicken] [Methods]

DESCRIPTION:

Get a numbered event from a specified bar of a given player’s part within a

slippery-chicken object.

NB: Slippery-chicken doesn’t have ’note’ and ’rest’ classes, rather both of

these are events. The nomenclature ’note’ and ’rest’ are thus used here

and elsewhere merely for convenience, to distinguish between sounding

and non-sounding events.

See also rthm-seq-bar methods for accessing notes by other means.

21 SC/SLIPPERY-CHICKEN 903

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which to get the note

(counting from 1).

- An integer that is the number of the note to get within that bar,

counting tied notes (counting from 1). This can also be a list of numbers

if accessing pitches in a chord (see below).

- The ID of the player from whose part the note is to be retrieved.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether, when accessing a pitch in a chord, to

return the written or sounding pitch. T = written. Default = NIL.

RETURN VALUE:

An event object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1)))

:rthm-seq-palette ’((1 ((((2 4) (e) e+e. 32 (32)))

:pitch-seq-palette (((1) 2)))))

:rthm-seq-map ’((1 ((vn (1))))))))

(print (data (get-rest mini 1 2 ’vn)))

(print (data (get-note mini 1 2 ’vn)))

(print (data (get-note mini 1 ’(2 1) ’vn)))

(print (data (get-note mini 1 ’(2 2) ’vn)))

(print (is-tied-from (get-note mini 1 1 ’vn))))

=>

32

"E."

C4

A4

T

SYNOPSIS:

21 SC/SLIPPERY-CHICKEN 904

(defmethod get-note ((sc slippery-chicken) bar-num note-num player

&optional written)

21.28 slippery-chicken/get-num-sections

[slippery-chicken] [Methods]

DESCRIPTION:

Return the number of sections in the given slippery-chicken object, as

defined in e.g. in the set-map. N.B. If the object has subsections these

are counted also.

ARGUMENTS:

- A slippery-chicken object.

RETURN VALUE:

An integer that is the number of section.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax (alto-sax :midi-channel 1))))

:set-palette ’((1 ((e3 fs3 b3 cs4 fs4 gs4 ds5 f5))))

:set-map ’((1 ((a (1 1 1 1))

(b (1 1 1 1))))

(2 (1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((a ((sax (1 1 1 1))))

(b ((sax (1 1 1 1))))))

(2 ((sax (1 1 1))))

(3 ((sax (1 1 1 1 1))))))))

(get-num-sections mini))

=> 4

SYNOPSIS:

(defmethod get-num-sections ((sc slippery-chicken))

21 SC/SLIPPERY-CHICKEN 905

21.29 slippery-chicken/get-phrases

[slippery-chicken] [Methods]

DESCRIPTION:

This returns lists of events that make up phrases. Its notion of phrases

is very simplistic but hopefully useful all the same: it’s any sequence of

sounding notes surrounded by rests.

ARGUMENTS:

- the slippery-chicken object

- a single symbol or list of symbols representing the players from the

ensemble.

OPTIONAL ARGUMENTS:

keyword arguments:

- :start-bar. An integer bar number where the process should start. If

NIL we’ll default to 1. Default = NIL.

- :end-bar. An integer bar number where the process should end. If

NIL we’ll default to the last bar. Default = NIL.

- :pad. If a phrase starts or ends mid-bar, pad the first bar with leading

rests and the last bar with trailing rests to ensure we have full bars.

RETURN VALUE:

A list of sublists, one for each requested player. Each player sublist

contains sublists also, with all the events in each phrase.

SYNOPSIS:

(defmethod get-phrases ((sc slippery-chicken) players

&key start-bar end-bar pad)

21.30 slippery-chicken/get-player

[slippery-chicken] [Methods]

DESCRIPTION:

Return the player object for the specified player.

ARGUMENTS:

21 SC/SLIPPERY-CHICKEN 906

- A slippery-chicken object.

- A player ID.

RETURN VALUE:

A player object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((fl (flute :midi-channel 1))

(tp (b-flat-trumpet :midi-channel 2))

(vn (violin :midi-channel 3))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((fl (1 1 1 1 1))

(tp (1 1 1 1 1))

(vn (1 1 1 1 1))))))))

(get-player mini ’vn))

=>

PLAYER: (id instrument-palette): SLIPPERY-CHICKEN-STANDARD-INSTRUMENT-PALETTE

doubles: NIL, cmn-staff-args: NIL, total-notes: 25, total-degrees: 3548,

total-duration: 20.000, total-bars: 5, tessitura: B4

LINKED-NAMED-OBJECT: previous: (TP), this: (VN), next: NIL

NAMED-OBJECT: id: VN, tag: NIL,

data:

INSTRUMENT: lowest-written: G3, highest-written: C7

lowest-sounding: G3, highest-sounding: C7

starting-clef: TREBLE, clefs: (TREBLE), clefs-in-c: (TREBLE)

prefers-notes: NIL, midi-program: 41

transposition: C, transposition-semitones: 0

score-write-in-c: NIL, score-write-bar-line: NIL

chords: T, chord-function: VIOLIN-CHORD-SELECTION-FUN,

total-bars: 5 total-notes: 25, total-duration: 20.000

total-degrees: 3548, microtones: T

missing-notes: NIL, subset-id: NIL

staff-name: violin, staff-short-name: vln,

largest-fast-leap: 13, tessitura: B4

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: VIOLIN, tag: NIL,

21 SC/SLIPPERY-CHICKEN 907

data: NIL

SYNOPSIS:

(defmethod get-player ((sc slippery-chicken) player)

21.31 slippery-chicken/get-rest

[slippery-chicken] [Methods]

DESCRIPTION:

Retrieve the event object that contains the specified rest in a

slippery-chicken object by giving bar number, rest number and player.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which to retrieve the rest

event object.

- An integer that is the number of the rest (not the number of the event)

within that bar, counting from 1.

- The ID of the player from whose part to retrieve the rest object.

RETURN VALUE:

An event object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(vc (cello :midi-channel 2))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) (e) e+e. 32 (32)))

:pitch-seq-palette (((1) 2)))))

:rthm-seq-map ’((1 ((vn (1 1 1))

(vc (1 1 1))))))))

(get-rest mini 2 1 ’vc))

=>

21 SC/SLIPPERY-CHICKEN 908

EVENT: start-time: 2.000, end-time: 2.500,

duration-in-tempo: 0.500,

compound-duration-in-tempo: 0.500,

amplitude: 0.700

bar-num: 2, marks-before: NIL,

tempo-change: NIL

instrument-change: NIL

display-tempo: NIL, start-time-qtrs: 2.000,

midi-time-sig: NIL, midi-program-changes: NIL,

8va: 0

pitch-or-chord: NIL

written-pitch-or-chord: NIL

RHYTHM: value: 8.000, duration: 0.500, rq: 1/2, is-rest: T,

score-rthm: 8.0, undotted-value: 8, num-flags: 1, num-dots: 0,

is-tied-to: NIL, is-tied-from: NIL, compound-duration: 0.500,

is-grace-note: NIL, needs-new-note: NIL, beam: NIL, bracket: NIL,

rqq-note: NIL, rqq-info: NIL, marks: NIL, marks-in-part: NIL,

letter-value: 8, tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: E, tag: NIL,

data: E

SYNOPSIS:

(defmethod get-rest ((sc slippery-chicken) bar-num rest-num player)

21.32 slippery-chicken/get-section

[slippery-chicken] [Methods]

DESCRIPTION:

Return the section object with the specified reference ID.

ARGUMENTS:

- A slippery-chicken object.

- A reference ID.

RETURN VALUE:

A section object.

EXAMPLE:

21 SC/SLIPPERY-CHICKEN 909

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax (alto-sax :midi-channel 1))

(db (double-bass :midi-channel 2))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))

(2 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))))))

(get-section mini 2))

=>

SECTION:

RECURSIVE-ASSOC-LIST: recurse-simple-data: NIL

num-data: 2

linked: T

full-ref: (2)

ASSOC-LIST: warn-not-found NIL

CIRCULAR-SCLIST: current 0

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

BAR-HOLDER:

start-bar: 6

end-bar: 10

num-bars: 5

start-time: 20.0

end-time: 40.0

start-time-qtrs: 0

end-time-qtrs: 40.0

num-notes (attacked notes, not tied): 50

num-score-notes (tied notes counted separately): 50

num-rests: 0

duration-qtrs: 20.0

duration: 20.0 (20.000)

SYNOPSIS:

(defmethod get-section ((sc slippery-chicken) reference)

21 SC/SLIPPERY-CHICKEN 910

21.33 slippery-chicken/get-section-refs

[slippery-chicken] [Methods]

DATE:

07-May-2012

DESCRIPTION:

Return the reference IDs for all section and subsections of a given

slippery-chicken object.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the first top-level section for which to return the

reference IDs. As this number refers to the number of top-level sections

only, any subsections will be contained in these and only count as 1.

- An integer that is the number of consecutive sections to return section

reference IDs.

RETURN VALUE:

A list of lists containing the section reference IDs of the specified

range in the slippery-chicken object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax (alto-sax :midi-channel 1))))

:set-palette ’((1 ((e3 fs3 b3 cs4 fs4 gs4 ds5 f5))))

:set-map ’((1 (1 1 1))

(2 (1 1 1))

(3 ((a (1 1 1))

(b ((x (1 1 1))

(y (1 1 1))))))

(4 ((a (1 1 1))

(b (1 1 1))

(c (1 1 1 1))))

(5 (1 1 1))

(6 (1 1 1))

(7 (1 1 1)))

21 SC/SLIPPERY-CHICKEN 911

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1))))

(2 ((sax (1 1 1))))

(3 ((a ((sax (1 1 1))))

(b ((x ((sax (1 1 1))))

(y ((sax (1 1 1))))))))

(4 ((a ((sax (1 1 1))))

(b ((sax (1 1 1))))

(c ((sax (1 1 1 1))))))

(5 ((sax (1 1 1))))

(6 ((sax (1 1 1))))

(7 ((sax (1 1 1))))))))

(get-section-refs mini 2 4))

=> ((2) (3 A) (3 B X) (3 B Y) (4 A) (4 B) (4 C) (5))

SYNOPSIS:

(defmethod get-section-refs ((sc slippery-chicken) start-section num-sections)

21.34 slippery-chicken/get-sequenz-from-section

[slippery-chicken] [Methods]

DESCRIPTION: ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE:
SYNOPSIS:

(defmethod get-sequenz-from-section ((sc slippery-chicken)

section-ref player-ref seq-num) ; 1-based

21.35 slippery-chicken/get-starting-ins

[slippery-chicken] [Methods]

DESCRIPTION:

Return the instrument object that is the first instrument object used by a

specified player in a given slippery-chicken object.

ARGUMENTS:

- A slippery-chicken object.

- A player ID.

21 SC/SLIPPERY-CHICKEN 912

RETURN VALUE:

An instrument object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax ((alto-sax tenor-sax) :midi-channel 1))

(db (double-bass :midi-channel 2))))

:instrument-change-map ’((1 ((sax ((1 alto-sax) (3 tenor-sax)))))

(2 ((sax ((2 alto-sax) (5 tenor-sax))))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))

(2 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))))))

(get-starting-ins mini ’sax))

=>

INSTRUMENT: lowest-written: BF3, highest-written: FS6

lowest-sounding: CS3, highest-sounding: A5

starting-clef: TREBLE, clefs: (TREBLE), clefs-in-c: (TREBLE)

prefers-notes: NIL, midi-program: 66

transposition: EF, transposition-semitones: -9

score-write-in-c: NIL, score-write-bar-line: NIL

chords: NIL, chord-function: NIL,

total-bars: 5 total-notes: 25, total-duration: 20.000

total-degrees: 2920, microtones: T

missing-notes: (BQF3 BQF4), subset-id: NIL

staff-name: alto saxophone, staff-short-name: alt sax,

largest-fast-leap: 999, tessitura: BQF3

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: ALTO-SAX, tag: NIL,

data: NIL

SYNOPSIS:

(defmethod get-starting-ins ((sc slippery-chicken) player) ; symbol

21 SC/SLIPPERY-CHICKEN 913

21.36 slippery-chicken/get-tempo

[slippery-chicken] [Methods]

DESCRIPTION:

Return the tempo object in effect for a specified bar of a given

slippery-chicken object.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of a bar within that slippery-chicken

object.

RETURN VALUE:

A tempo object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax (alto-sax :midi-channel 1))))

:tempo-map ’((1 (q 60)) (5 (e 72)) (7 (q. 176 "prestissimo")))

:set-palette ’((1 ((e3 fs3 b3 cs4 fs4 gs4 ds5 f5))))

:set-map ’((1 (1 1 1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1 1 1 1))))))))

(get-tempo mini 6))

=>

TEMPO: bpm: 72, beat: E, beat-value: 8.0, qtr-dur: 1.6666666

qtr-bpm: 36.0, usecs: 1666666, description: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: 72

SYNOPSIS:

(defmethod get-tempo ((sc slippery-chicken) bar-num)

21 SC/SLIPPERY-CHICKEN 914

21.37 slippery-chicken/get-time-sig

[slippery-chicken] [Methods]

DESCRIPTION:

Get the time-sig object associate with a specified bar number in a given

slippery-chicken object.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar for which to the time-sig object

is to be returned. NB: Although this argument is listed as optional in

the method definition (due to inheritance), it is actually required.

OPTIONAL ARGUMENTS:

- (see above).

RETURN VALUE:

A time-sig object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax (alto-sax :midi-channel 1))))

:set-palette ’((1 ((e3 fs3 b3 cs4 fs4 gs4 ds5 f5))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s)

((5 8) q e s s e)

((3 16) s e))

:pitch-seq-palette ((1 2 3 4 5 1 2 3 4 5 1

2)))))

:rthm-seq-map ’((1 ((sax (1 1 1))))))))

(get-time-sig mini 2))

=>

TIME-SIG: num: 5, denom: 8, duration: 2.5, compound: NIL, midi-clocks: 24, num-beats: 5

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "0508", tag: NIL,

data: (5 8)

21 SC/SLIPPERY-CHICKEN 915

SYNOPSIS:

(defmethod get-time-sig ((sc slippery-chicken) &optional bar-num)

21.38 slippery-chicken/get-transposition-at-bar

[slippery-chicken] [Methods]

DATE:

24-Mar-2011

DESCRIPTION:

Return the number of semitones difference between the sounding pitches and

written pitches of a given player’s part in a specified bar within a

slippery-chicken object; e.g. bass clarinet = -14.

ARGUMENTS:

- The ID of the player for whom the transposition value is sought.

- An integer which is the number of the bar for which the transposition

value is sought.

- A slippery-chicken object.

RETURN VALUE:

An integer.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax (alto-sax :midi-channel 1))))

:set-palette ’((1 ((e3 fs3 b3 cs4 fs4 gs4 ds5 f5))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1))))))))

(get-transposition-at-bar ’sax 2 mini))

=> -9

SYNOPSIS:

(defmethod get-transposition-at-bar (player bar (sc slippery-chicken))

21 SC/SLIPPERY-CHICKEN 916

21.39 slippery-chicken/lp-display

[slippery-chicken] [Functions]

DESCRIPTION:

This function has exactly the same arguments as write-lp-data-for all and

only differs from that method in that after writing all the Lilypond text

files for the score, it calls Lilypond to render the PDF, which is then

opened automatically from within Lisp (if the value of

(get-sc-config ’lp-display-auto-open) is T).

In order to work properly, you’ll need to make sure the value of the

’lilypond-command configuration parameter is set via (set-sc-config ...) to

the full path of your Lilypond command (not the app: it’s usually

/path/to/Lilypond.app/Contents/Resources/bin/lilypond on OSX).

NB Only available with CCL and SBCL on OSX. With SBCL on OSX the output

from Lilypond is only printed once the process has exited, so it may take a

while until you see anything.

ARGUMENTS:

See write-lp-data-for-all

RETURN VALUE:

An integer: the shell’s exit code for the PDF open command, usually 0 for

success. Second returned value is the patch to the PDF file.

SYNOPSIS:

(defun lp-display (&rest args)

21.40 slippery-chicken/make-slippery-chicken

[slippery-chicken] [Functions]

DESCRIPTION:

Make a slippery-chicken object using the specified data. This is the

function that will be used most often to "put it all together", and many of

its slots require full objects of other classes rather than just straight

data. These objects, such as rthm-seq-palette, rthm-seq-map etc, are also

documented in detail elsewhere in the robodoc and the user’s manual.

21 SC/SLIPPERY-CHICKEN 917

ARGUMENTS:

- A symbol that is the name/ID of the object. The value passed to this

argument will be made into a global variable, so that the newly created

slippery-chicken object and the data it contains remain in memory and can

be accessed and modified after the object is generated.

OPTIONAL ARGUMENTS:

keyword arguments:

NB: Although these arguments are technically optional, the slippery-chicken

object will only be complete and make musical sense if many of the core

elements are present.

- :title. A string that will be used as the title of the piece. The value

given for this object will be used as both the header for the printable

output as well as the base for any file names generated by the

write-lp-data-for-all method. Default = "slippery-chicken-piece".

- :subtitle. A string that will be used as the subtitle of the piece. Works

in Lilypond scores only.

- :instrument-palette. An instrument-palette object. This will be the

palette of instrument objects available to the players of in the given

slippery-chicken object’s ensemble slot.

Default = +slippery-chicken-standard-instrument-palette+.

- :ensemble. A recursive association list that will be used as the data to

create an ensemble object populated with player objects within the

slippery-chicken object. The format of this list will be a list of

user-defined player IDs each coupled with a list of instrument object IDs

from the current instrument-palette and various player object

parameters. See the user’s manual and robodoc entries on the ensemble and

player classes for more detail.

- :set-palette. A recursive association list that will be used as the data

to create a set-palette object within the slippery-chicken object. This

object is where the collections of possible pitches for any given

sequence are defined. The format of this list will be a list of IDs for

each set of pitches, each coupled with a list of note-name symbols for

the pitches that will be used to make that set. See the user’s manual and

the robodoc entry on the set-palette class for more detail.

- :set-map. A recursive association list that will be used as the data to

create a set-map object within the slippery-chicken object. This is where

the order in which the pitch collections defined in the set-palette will

be used in the piece. The format of this list will be a list of IDs from

the given slippery-chicken object’s structure coupled with a list of IDs

from those given to the sets in the set-palette. There must be an equal

number of sections in this list as there are in the rthm-seq-map, and

they must have identical names. There must be an equal number of

individual set IDs in each list paired with the section IDs as there are

21 SC/SLIPPERY-CHICKEN 918

in the corresponding lists of the rthm-seq-map. See the user’s manual and

the robodoc entries for the set-map and sc-map for more detail.

- :rthm-seq-palette. A recursive association list that will be used as the

data to create a rthm-seq-palette object within the slippery-chicken

object. This object is where the collections of possible rhythm sequences

for any given sequence in the piece are defined. This list will take the

format of a list of IDs paired with a list of data for individual

rthm-seq objects. These in turn will consist of one or more lists of

rhythm data for rthm-seq-bar objects, as well pitch-seq-palettes and

marks data for the individual rthm-seq objects to be created. See the

user’s manual as well as the robodoc entries for rthm-seq-palette,

rthm-seq, rthm-seq-bar, rhythm, and pitch-seq-palette for more detail.

- :rthm-seq-map. A recursive association list that will be used as the data

to create a rthm-seq-map object within the slippery-chicken object. This

is where the order in which the rhythm sequences defined in the

rthm-seq-palette will be used in the piece. It will take the format of a

list of section IDs, of which there must be an equal number as are given

in the set-map, each coupled with a list of player IDs, as defined in the

ensemble slot of the given slippery-chicken object. The player IDs in

turn are coupled with a list of IDs for rthm-seq objects, as defined in

the rthm-seq-palette. Each of these lists must contain the same number of

elements as are contained in each of the set-map sections. See the user’s

manual and robodoc entries for rthm-seq-map and sc-map for more details.

- :snd-output-dir. A string that will be used as the directory path for any

output generated by clm-play in conjunction with sound files listed in

the sndfile-palette (see below). Default = (get-sc-config ’default-dir).

- :sndfile-palette. A recursive association list that will be used as the

data to create a sndfile-palette object within the slippery-chicken

object. This is where the list is defined that contains all possible

source sound files which may be used in conjunction with output generated

by clm-play. This list will take the format of a list of IDs for

sound-file groups, coupled with lists of file names and various other

parameters associated with the sndfile class. The list of sound-file

groups is followed by a list of directory paths where the given sound

files are located and an optional list of file extensions. See the user’s

manual and the robodoc entries on sndfile-palette, sndfile, and clm-play

for more detail.

- :tempo-map. A recursive association list that will be used as the data to

create tempo objects within the slippery-chicken object. This is one of

two options for specifying the sequence of tempo changes for a given

piece (also see tempo-curve below). The format will be a list of integers

that are measure numbers within the piece, each coupled with tempo

indications in the form (beat-unit bpm). See the user’s manual as well as

the robodoc entry for tempo-map for more detail. NB: This slot cannot be

used together with :tempo-curve.

- :tempo-curve. A list of data that will be used to create tempo objects

21 SC/SLIPPERY-CHICKEN 919

within the slippery-chicken object, based on an interpolated list of

break-point pairs. This is one of two options for specifying the

sequence of tempo changes for a given piece (also see tempo-map above.)

The first item in the list will be the number of bars between each new

tempo object. The second item is the beat basis for the tempo objects

made. The third and final argument is the list of break-point pairs, of

which the first is a value on an arbitrary x-axis and the second is a

number of beats-per-minute. See the user’s manual and the robodoc entry

for tempo-curve for more detail. NB: This slot cannot be used together

with :tempo-map.

- :staff-groupings. A list of integers that indicate the placement of group

brackets for the printable output. Each number represents a consecutive

number of players, in the order they appear in the ensemble object, that

will be included in each consecutive group. The sum of the numbers in

this list must be equal to the number of players in the ensemble. See the

user’s manual for more detail.

- :instrument-change-map. A recursive association list that will be used as

the data to create an instrument-change-map object within the

slippery-chicken object. This will be used to indicate where those

players in the ensemble that play multiple instruments will change

instruments. The format will be a list of section IDs coupled with a list

of player IDs, each of which in turn is coupled with a list of 2-item

lists consisting of a sequence number paired with the ID (name) of one of

the instrument objects assigned to that player in the ensemble

object. See the user’s manual and the robodoc entries for

instrument-change-map for more detail.

- :set-limits-high. A recursive association list that will be used to limit

the uppermost pitches of either the parts of individual players or of the

entire ensemble. The format will be a list of player IDs, as defined in

the ensemble object, each paired with a list of break-point pairs that

consist of a value on an arbitrary x-axis paired with a note-name pitch

symbol. These break-point envelopes are applied to the entire duration of

the piece. See the user’s manual for more detail.

- :set-limits-low. A recursive association list that will be used to limit

the lowermost pitches of either the parts of individual players or of the

entire ensemble. The format will be a list of player IDs, as defined in

the ensemble object, each paired with a list of break-point pairs that

consist of a value on an arbitrary x-axis paired with a note-name pitch

symbol. These break-point envelopes are applied to the entire duration of

the piece. See the user’s manual for more detail.

- :fast-leap-threshold. A number that is the longest duration of a note in

seconds that can be followed by a leap of a large interval, as defined in

the largest-fast-leaps slot of the instrument objects. Default = 0.125.

- :instruments-hierarchy. A list of player IDs from the given

slippery-chicken object’s ensemble that will specify the order in which

slippery chicken’s pitch selection algorithm will choose pitches for the

21 SC/SLIPPERY-CHICKEN 920

instruments. By default (when NIL) this order follows the order in which

the instrument objects appear in the ensemble object. See the user’s

manual for more detail. Default = NIL.

- :rehearsal-letters. A list of numbers that are measure numbers at which

consecutive rehearsal letters will be placed. Since rehearsal letters are

technically actually place on the right-hand bar line of the previous

measure, measure 1 cannot be entered here. Slippery chicken automatically

proceeds consecutively through the alphabet, so only numbers are required

here. See the user’s manual for more detail. If NIL, no rehearsal letters

will be added to the score. Default = NIL.

- :avoid-melodic-octaves. T or NIL to indicate whether two linearly

consecutive pitches in the part of a given player may be of the same

pitch class but a different octave. T = avoid melodic octaves.

Default = T.

- :instruments-write-bar-nums. A list of player IDs above whose parts in

the score bar numbers should be written. If NIL, bar numbers will be

written above the top player in each group. NB: This slot affects CMN

output only. Default = NIL.

- :pitch-seq-index-scaler-min. A decimal number that affects the likelihood

that slippery-chicken’s pitch selection algorithm will choose pitches for

an instrument that have also already been assigned to other players. In

general terms, the higher this number is, the more likely it will be that

instruments may be assigned the same pitches, though this will of course

also be dependent on other factors, such as the characteristics of those

instruments and the pitches in the current set. See the user’s manual on

pitches and the robodoc entries for pitch-seq for more detail.

Default = 0.5.

- :bars-per-system-map. A list of 2-item lists, each of which consists of a

measure number coupled with a number of measures to be placed in each

system starting at that measure number. NB: This list only affects CMN

output. See the user’s manual on score layout for more details.

- :composer. A string that will be used for the composer portion of the

header on the score’s first page in LilyPond output. If NIL, no

composer’s name will appear in the score. Default = NIL.

- :rthm-seq-map-replacements. A list of lists in the format

’(((1 2 va) 3 2) ((2 3 vn) 4 3)) that indicate changes to individual

elements of lists within the given rthm-seq-map object. Each such list

indicates a change, the first element of the list being the reference

into the rthm-seq-map (the vla player of section 1, subsection 2 in the

first example here), the second element is the nth of the data list for

this key to change, and the third is the new data. If NIL, no changes

will be made. See the robodoc entries for rthm-seq-map for more

detail. Default = NIL.

- :set-map-replacements. A list of lists in the format

’((1 2 2) (3 3 1)) that indicate changes to individual elements of lists

within the given set-map object. Each such list indicates a change, the

21 SC/SLIPPERY-CHICKEN 921

first element of the list being the reference into the set-map (the

section, followed by a subsection if any exist), the second element being

the nth of the data list for to change, and the third being the new

data. If NIL, no changes will be made. See the robodoc entries for sc-map

for more detail. Default = NIL.

- :key-sig. A two-element list indicating starting key signature for the

piece, e.g. ’(ef minor). Usual note name symbols apply (e.g. ds = d

sharp, bf - b flat). Implies nothing beyond the signature, i.e. no

conformity to tonality expected. Default ’(c major) i.e. no key

signature.

(- :warn-ties. This slot is now obsolete, but is left here for backwards

compatibility with pieces composed with earlier versions of

slippery-chicken. Default = T.)

RETURN VALUE:

T

EXAMPLE:

;;; An example using all slots

(let ((mini

(make-slippery-chicken

’+mini+

:title "A Little Piece"

:composer "Joe Green"

:ensemble ’(((fl ((flute piccolo) :midi-channel 1))

(cl (b-flat-clarinet :midi-channel 2))

(hn (french-horn :midi-channel 3))

(tp (b-flat-trumpet :midi-channel 4))

(vn (violin :midi-channel 5))

(va (viola :midi-channel 6))

(vc (cello :midi-channel 7))))

:set-palette ’((1 ((fs2 b2 d4 a4 d5 e5 a5 d6)))

(2 ((b2 fs2 d4 e4 a4 d5 e5 a5 d6)))

(3 ((cs3 fs3 e4 a4 e5 a5 e6))))

:set-map ’((1 (2 1 2 3 1 3 1))

(2 (1 1 3 2 2 3 1))

(3 (2 3 1 3 1 1 2)))

:rthm-seq-palette ’((1 ((((4 4) h (q) e (s) s))

:pitch-seq-palette ((1 2 3))))

(2 ((((4 4) (q) e (s) s h))

:pitch-seq-palette ((2 1 3))))

(3 ((((4 4) e (s) s h (q)))

:pitch-seq-palette ((3 2 1)))))

:rthm-seq-map ’((1 ((fl (2 3 3 1 1 1 2))

21 SC/SLIPPERY-CHICKEN 922

(cl (3 2 1 1 2 1 3))

(hn (1 2 3 1 1 3 2))

(tp (2 1 1 3 3 2 1))

(vn (3 1 3 2 1 1 2))

(va (2 1 1 1 3 2 3))

(vc (1 2 3 1 3 2 1))))

(2 ((fl (3 1 3 2 2 1 1))

(cl (1 1 2 3 1 3 2))

(hn (1 3 2 1 3 1 2))

(tp (1 1 1 3 3 2 2))

(vn (2 1 3 1 3 1 2))

(va (2 2 3 1 1 3 1))

(vc (1 3 1 2 2 1 3))))

(3 ((fl (1 1 3 2 1 3 2))

(cl (2 1 2 3 3 1 1))

(hn (3 2 1 1 1 3 2))

(tp (3 3 1 1 2 1 2))

(vn (3 1 3 2 1 1 2))

(va (3 2 1 1 3 2 1))

(vc (1 3 2 1 2 3 1)))))

:snd-output-dir "/tmp"

:sndfile-palette ’(((sndfile-grp-1

((test-sndfile-1.aiff :start 0.021 :end 0.283)

(test-sndfile-2.aiff)

(test-sndfile-3.aiff)))

(sndfile-grp-2

((test-sndfile-4.aiff :frequency 834)

(test-sndfile-5.aiff)

(test-sndfile-6.aiff))))

("/path/to/test-sndfiles-dir-1"

"/path/to/test-sndfiles-dir-2"))

;; :tempo-map ’((1 (q 84)) (9 (q 72))) ;

:tempo-curve ’(5 q (0 40 25 60 50 80 75 100 100 120))

:staff-groupings ’(2 2 3)

:instrument-change-map ’((1 ((fl ((1 flute) (3 piccolo) (5 flute))))))

:set-limits-low ’((fl (0 c5 50 g5 100 c5))

(cl (0 c4 50 f4 100 c4))

(hn (0 f3 50 c4 100 f3))

(tp (0 c4 50 f4 100 c4))

(vn (0 e5 50 a5 100 e5))

(va (0 c3 50 f3 100 c3))

(vc (0 c2 50 f3 100 c2)))

:set-limits-high ’((fl (0 d6 50 a6 100 d6))

(cl (0 c5 50 a5 100 c5))

(hn (0 f4 50 c5 100 f4))

(tp (0 f5 50 c5 100 f5))

21 SC/SLIPPERY-CHICKEN 923

(vn (0 c6 50 e6 100 c6))

(va (0 g4 50 d5 100 g4))

(vc (0 c4 50 f4 100 c4)))

:fast-leap-threshold 0.5

:instruments-hierarchy ’(fl vn cl tp va hn vc)

:rehearsal-letters ’(3 11 19)

:avoid-melodic-octaves nil

:instruments-write-bar-nums ’(fl cl hn tp)

:pitch-seq-index-scaler-min 0.1

:bars-per-system-map ’((1 1) (2 2) (3 3) (7 4) (11 5))

:rthm-seq-map-replacements ’(((1 va) 3 1) ((2 fl) 4 3))

:set-map-replacements ’((1 2 2) (3 3 1)))))

(midi-play mini :midi-file "/tmp/mini.mid")

(cmn-display mini)

(write-lp-data-for-all mini))

SYNOPSIS:

(defun make-slippery-chicken (name &key

rthm-seq-palette

rthm-seq-map

set-palette

set-map

sndfile-palette

tempo-map

tempo-curve

(snd-output-dir (get-sc-config

’default-dir))

instrument-change-map

instruments-write-bar-nums

bars-per-system-map

staff-groupings

rthm-seq-map-replacements

set-map-replacements

set-limits-low

set-limits-high

instrument-palette

ensemble

rehearsal-letters

(fast-leap-threshold 0.125)

instruments-hierarchy

(title "slippery chicken piece")

subtitle

composer

(avoid-melodic-octaves t)

(avoid-used-notes t)

21 SC/SLIPPERY-CHICKEN 924

(pitch-seq-index-scaler-min 0.5)

defer

;; MDE Mon Jul 2 16:08:42 2012

(key-sig ’(c major))

(warn-ties t))

21.41 slippery-chicken/midi-play

[slippery-chicken] [Methods]

DESCRIPTION:

Generate a MIDI file from the data of the specified slippery-chicken

object.

ARGUMENTS:

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :midi-file. The name of the MIDI file to produce, including directory

path and extension. Default is a filename extracted from the title of the

sc piece, placed in the (get-sc-config ’default-dir) directory (default

/tmp).

- :voices. NIL or a list of player IDs indicating which of the players’

parts are to be included in the resulting MIDI file. If NIL, all players’

parts will be included. Default = NIL.

- :start-section. An integer that is the number of the first section for

which the MIDI file is to be generated. Default = 1.

- :num-sections. An integer that is the number of sections to produce MIDI

data for in the MIDI file. If NIL, all sections will be written.

Default = NIL.

- :from-sequence. An integer that is the number of the sequence within the

specified section from which to start generating MIDI data. NB: This

argument can only be used when the num-sections = 1. Default = 1.

- :num-sequences. An integer that is the number of sequences for which MIDI

data is to be generated in the resulting MIDI file, including the

sequence specified in from-sequence. If NIL, all sequences will be

written. NB: This argument can only be used when the num-sections = 1.

Default = NIL.

- :force-velocity. An integer between 0 and 127 (inclusive) that is the

MIDI velocity value which will be given to all notes in the resulting

MIDI file. Default = NIL.

21 SC/SLIPPERY-CHICKEN 925

- :auto-open. Whether to open the MIDI file once written. Currently only

available on OSX with SBCL or CCL. Uses the default app for MIDI files,

as if opened with ’open’ in the terminal. Default = Value of

(get-sc-config ’midi-play-auto-open).

- :suffix. Add some text to the filename just before .mid?. Default = ""

RETURN VALUE:

Returns the path of the file written, as a string.

EXAMPLE:

;;; An example with some typical values for the keyword arguments.

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(hn (french-horn :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1 1 1))

(2 (1 1 1 1 1 1 1))

(3 (1 1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h (q) e (s) s))

:pitch-seq-palette ((1 2 3))))

(2 ((((4 4) (q) e (s) s h))

:pitch-seq-palette ((1 2 3))))

(3 ((((4 4) e (s) s h (q)))

:pitch-seq-palette ((2 3 3))))

(4 ((((4 4) (s) s h (q) e))

:pitch-seq-palette ((3 1 2)))))

:rthm-seq-map ’((1 ((cl (1 2 1 2 1 2 1))

(hn (1 2 1 2 1 2 1))

(vc (1 2 1 2 1 2 1))))

(2 ((cl (3 4 3 4 3 4 3))

(hn (3 4 3 4 3 4 3))

(vc (3 4 3 4 3 4 3))))

(3 ((cl (1 2 1 2 1 2 1))

(hn (1 2 1 2 1 2 1))

(vc (1 2 1 2 1 2 1))))))))

(midi-play mini

:midi-file "/tmp/md-test.mid"

:voices ’(cl vc)

:start-section 2))

SYNOPSIS:

21 SC/SLIPPERY-CHICKEN 926

#+cm-2

(defmethod midi-play ((sc slippery-chicken)

&key

;; no subsection refs: use from-sequence instead

(start-section 1)

;; these voices are used to get the actual sequence

;; orders i.e. each voice will be appended to <section>

;; when calling get-data.

;; if nil then all voices.

(voices nil)

;; add something to the filename just before .mid?

(suffix "")

(midi-file

(format nil "~a~a~a.mid"

(get-sc-config ’default-dir)

(filename-from-title (title sc))

suffix))

(from-sequence 1)

(num-sequences nil)

;; if nil we’ll write all the sections

(num-sections nil)

;; MDE Tue Jun 4 19:06:11 2013 --

(auto-open (get-sc-config ’midi-play-auto-open))

;; if this is a 7-bit number we’ll use this for all notes

(force-velocity nil))

21.42 slippery-chicken/next-event

[slippery-chicken] [Methods]

DESCRIPTION:

Get the events from a specified player’s part within a given

slippery-chicken object one after the other (e.g. in a loop). This method

must be called once with a bar number (or any other non-NIL value,

whereupon we start at bar 1) first in order to reset the counter; doing

this will return NIL. Once the counter has been reset, calling the method

without a bar number will return the events in sequence.

ARGUMENTS:

- A slippery-chicken object.

- A player ID.

OPTIONAL ARGUMENTS:

21 SC/SLIPPERY-CHICKEN 927

- T or NIL to indicate whether to return only events that consist of

attacked notes (i.e., no ties or rests). T = return only events with

attacked notes. Default = NIL.

- NIL or an integer to indicate the first bar from which events are to be

retrieved. If NIL, the counter is reset to the first event of the

player’s part. This should be NIL after the first resetting call.

Default = NIL

- NIL or an integer to indicate the last bar from which events are to be

retrieved. If NIL, all events will be retrieved from the starting point

to the last event in the given slippery-chicken object. Default = NIL.

RETURN VALUE: EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(hn (french-horn :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h (q) e (s) s))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((cl (1 1 1))

(hn (1 1 1))

(vc (1 1 1))))))))

(next-event mini ’vc nil 1)

(loop for ne = (next-event mini ’vc)

while ne

collect (get-pitch-symbol ne)))

=> (E4 NIL F4 NIL G4 E4 NIL F4 NIL G4 E4 NIL F4 NIL G4)

SYNOPSIS:

(defmethod next-event ((sc slippery-chicken) player

&optional

(attacked-notes-only nil)

;; could be a number too, whereupon it’s the bar

;; number to start at

(start-over nil)

(end-bar nil)) ; inclusive

21 SC/SLIPPERY-CHICKEN 928

21.43 slippery-chicken/num-bars

[slippery-chicken] [Methods]

DESCRIPTION:

Return the number of bars in the piece.

ARGUMENTS:

- A slippery-chicken object.

RETURN VALUE:

An integer that is the number of bars.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((fl (flute :midi-channel 1))

(tp (b-flat-trumpet :midi-channel 2))

(vn (violin :midi-channel 3))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((fl (1 1 1 1 1))

(tp (1 1 1 1 1))

(vn (1 1 1 1 1))))))))

(num-bars mini))

=> 5

SYNOPSIS:

(defmethod num-bars ((sc slippery-chicken))

21.44 slippery-chicken/num-notes

[slippery-chicken] [Methods]

DESCRIPTION:

21 SC/SLIPPERY-CHICKEN 929

Returns the number of attacked notes in a given slippery-chicken object;

i.e., not including ties or rests.

ARGUMENTS:

- A slippery-chicken object.

RETURN VALUE:

An integer,

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((fl (flute :midi-channel 1))))

:set-palette ’((1 ((c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1)))

:rthm-seq-palette ’((1 ((((4 4) - e e e e - - e e e e -)))))

:rthm-seq-map ’((1 ((fl (1))))))))

(num-notes mini))

=> 8

SYNOPSIS:

(defmethod num-notes ((sc slippery-chicken))

21.45 slippery-chicken/num-seqs

[slippery-chicken] [Methods]

DESCRIPTION:

Return the number of sequences (which may contain multiple bars) in a

specified section of a slippery-chicken object.

NB This will return the total number of seqs if there are sub-sections.

ARGUMENTS:

- A slippery-chicken object.

- The ID of the section for which to return the number of sequences.

21 SC/SLIPPERY-CHICKEN 930

RETURN VALUE:

An integer.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax (alto-sax :midi-channel 1))))

:set-palette ’((1 ((e3 fs3 b3 cs4 fs4 gs4 ds5 f5))))

:set-map ’((1 (1 1 1 1))

(2 (1 1 1))

(3 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1))))

(2 ((sax (1 1 1))))

(3 ((sax (1 1 1 1 1))))))))

(num-seqs mini 2))

=> 3

SYNOPSIS:

(defmethod num-seqs ((sc slippery-chicken) section-ref)

21.46 slippery-chicken/player-doubles

[slippery-chicken] [Methods]

DATE:

02-Apr-2012

DESCRIPTION:

Boolean test to check whether a specified player plays more than one

instrument.

ARGUMENTS:

- A slippery-chicken object.

- A player ID.

21 SC/SLIPPERY-CHICKEN 931

RETURN VALUE:

T if the player has more than one instrument, otherwise NIL>

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax ((alto-sax tenor-sax) :midi-channel 1))

(db (double-bass :midi-channel 2))))

:instrument-change-map ’((1 ((sax ((1 alto-sax) (3 tenor-sax)))))

(2 ((sax ((2 alto-sax) (5 tenor-sax))))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1))

(2 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))

(2 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))))))

(player-doubles mini ’sax))

=> T

SYNOPSIS:

(defmethod player-doubles ((sc slippery-chicken) player)

21.47 slippery-chicken/players

[slippery-chicken] [Methods]

DESCRIPTION:

Return a list of all player IDs from the given slippery-chicken object.

ARGUMENTS:

- A slippery-chicken object.

RETURN VALUE:

A list of player IDs.

21 SC/SLIPPERY-CHICKEN 932

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))

(hn (french-horn :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h (q) e (s) s))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((cl (1 1 1))

(hn (1 1 1))

(vc (1 1 1))))))))

(players mini))

=> (CL HN VC)

SYNOPSIS:

(defmethod players ((sc slippery-chicken))

21.48 slippery-chicken/rebar

[slippery-chicken] [Methods]

DESCRIPTION:

Go through the vertically simultaneous sequences in all players of the

given slippery-chicken object and rebar according to the first one that has

the least number of bars (but following the player hierarchy).

If rthm-seqs or sequenzes are created algorithmically and bundled into the

slippery-chicken piece slot artificially, bypassing the usual generation

structure, it might be difficult to end up with each instrument having the

same metric structure when combined vertically. This method goes through

the vertically combined sequences and rebars as described above.

NB: See documentation in piece class method. Don’t confuse this method with

the re-bar method.

NB: This method is used internally and not recommended for direct use.

ARGUMENTS:

21 SC/SLIPPERY-CHICKEN 933

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

- A list of player IDs from the given slippery-chicken object, ordered in

terms of importance i.e. which instrument’s bar structure should take

precedence.

- NB: The rebar-fun is not yet used.

RETURN VALUE:

Always T.

SYNOPSIS:

(defmethod rebar ((sc slippery-chicken)

&optional instruments-hierarchy rebar-fun)

21.49 slippery-chicken/sc-init

[slippery-chicken] [Methods]

DESCRIPTION:

Explicitly initialize the slippery-chicken object. This is usually called

implicitly by initialize-instance (i.e. when you call

make-slippery-chicken) but there could be circumstances (e.g. in subclasses

of slippery-chicken) where you’d like to defer initialization and call this

method explicitly instead. In that case set :defer to t when making the

slippery-chicken object.

ARGUMENTS:

- the slippery-chicken object

OPTIONAL ARUGMENTS

keyword arguments:

- :regenerate-pitch-seq-map: the pitch-seq-map is generated here for each

instrument using the pitch-seqs in the rthm-seq-palette. By setting this

to T we can force regeneration (e.g. if the rthm-seq-palette has changed

and we want to re-init the sc with different data). Default = T.

RETURN VALUE:

the now fully initialized slippery-chicken object

21 SC/SLIPPERY-CHICKEN 934

EXAMPLE:

(let ((sc (make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:set-palette ’((1 ((gs4 af4 bf4))))

:defer t

:set-map ’((1 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 1 1 1 1 1 1)))))

:rthm-seq-map ’((1 ((vn (1 1 1))))))))

(sc-init sc))

SYNOPSIS:

(defmethod sc-init ((sc slippery-chicken) &key (regenerate-pitch-seq-map t))

21.50 slippery-chicken/shorten-large-fast-leaps

[slippery-chicken] [Methods]

DESCRIPTION:

Modify the pitches of each part in a slippery-chicken object to avoid large

melodic leaps at fast speeds, based on the largest-fast-leap slot of the

given instrument object and the fast-leap-threshold slot of the

slippery-chicken object.

This method is called automatically at init and as such will most likely

seldom need to be directly accessed by the user.

ARGUMENTS:

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :threshold. A number that is the maximum duration in seconds between two

consecutive notes in the slippery-chicken object for which linear

intervals greater than the number specified in the given instrument

object’s largest-fast-leap slot will be allowed. This value is taken from

the fast-leap-threshold slot of the given slippery-chicken object by

default.

- :verbose. T or NIL to indicate whether to print feedback about the

method’s operations to the Lisp listener. T = print. Default = T.

21 SC/SLIPPERY-CHICKEN 935

RETURN VALUE:

Always T

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 96)))

:set-palette ’((1 ((g3 a5 b6))))

:set-map ’((1 (1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) e s 32 64 64 e s 32 64 64))

:pitch-seq-palette ((1 5 1 5 1 5 1 5 1 5)))))

:rthm-seq-map ’((1 ((vn (1 1 1 1 1 1))))))))

(shorten-large-fast-leaps mini :threshold 0.25))

=>

******* section (1)

Getting notes for VN

Shortening short, fast leaps...

Shortened 23 large fast leaps

seq-num 0, VN, replacing B6 with G3

seq-num 0, VN, replacing B6 with G3

seq-num 0, VN, replacing B6 with G3

seq-num 0, VN, replacing B6 with G3

seq-num 0, VN, replacing G3 with B6

seq-num 0, VN, replacing G3 with B6

seq-num 0, VN, replacing G3 with B6

seq-num 1, VN, replacing G3 with B6

seq-num 1, VN, replacing B6 with G3

seq-num 1, VN, replacing B6 with G3

seq-num 1, VN, replacing B6 with G3

seq-num 1, VN, replacing B6 with G3

seq-num 1, VN, replacing G3 with B6

seq-num 1, VN, replacing G3 with B6

seq-num 1, VN, replacing G3 with B6

seq-num 2, VN, replacing G3 with B6

seq-num 2, VN, replacing B6 with G3

seq-num 2, VN, replacing B6 with G3

seq-num 2, VN, replacing B6 with G3

seq-num 2, VN, replacing B6 with G3

seq-num 2, VN, replacing G3 with B6

seq-num 2, VN, replacing G3 with B6

seq-num 2, VN, replacing G3 with B6

21 SC/SLIPPERY-CHICKEN 936

seq-num 3, VN, replacing G3 with B6

seq-num 3, VN, replacing B6 with G3

seq-num 3, VN, replacing B6 with G3

seq-num 3, VN, replacing B6 with G3

seq-num 3, VN, replacing B6 with G3

seq-num 3, VN, replacing G3 with B6

seq-num 3, VN, replacing G3 with B6

seq-num 3, VN, replacing G3 with B6

seq-num 4, VN, replacing G3 with B6

seq-num 4, VN, replacing B6 with G3

seq-num 4, VN, replacing B6 with G3

seq-num 4, VN, replacing B6 with G3

seq-num 4, VN, replacing B6 with G3

seq-num 4, VN, replacing G3 with B6

seq-num 4, VN, replacing G3 with B6

seq-num 4, VN, replacing G3 with B6

seq-num 5, VN, replacing G3 with B6

seq-num 5, VN, replacing B6 with G3

seq-num 5, VN, replacing B6 with G3

seq-num 5, VN, replacing B6 with G3

seq-num 5, VN, replacing B6 with G3

seq-num 5, VN, replacing G3 with B6

seq-num 5, VN, replacing G3 with B6

seq-num 5, VN, replacing G3 with B6

SYNOPSIS:

(defmethod shorten-large-fast-leaps ((sc slippery-chicken)

&key threshold (verbose t))

21.51 slippery-chicken/statistics

[slippery-chicken] [Methods]

DESCRIPTION:

Print various information about the given slippery-chicken object to the

Lisp listener or other specified stream.

ARGUMENTS:

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

21 SC/SLIPPERY-CHICKEN 937

- NIL or a stream to which the information should be printed. If NIL, the

method will not print the information to any stream. T = print to the

Lisp listener. Default = T.

RETURN VALUE:

A number of formatted statistics about the given slippery-chicken object.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax (alto-sax :midi-channel 1))))

:set-palette ’((1 ((e3 fs3 b3 cs4 fs4 gs4 ds5 f5))))

:set-map ’((1 (1 1 1))

(2 (1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1))))

(2 ((sax (1 1 1))))))))

(statistics mini))

=>

+MINI+

"+MINI+-piece"

start-bar: 1

end-bar: 6

num-bars: 6

start-time: 0.0

end-time: 24.0

start-time-qtrs: 0

end-time-qtrs: 24.0

num-notes (attacked notes, not tied): 30

num-score-notes (tied notes counted separately): 30

num-rests: 0

duration-qtrs: 24.0

duration: 24.0 (24.000)

SYNOPSIS:

(defmethod statistics ((sc slippery-chicken) &optional (stream t))

21.52 slippery-chicken/transpose-events

[slippery-chicken] [Methods]

21 SC/SLIPPERY-CHICKEN 938

DESCRIPTION:

Transpose the pitches of event objects in a specified region and a

specified player’s part.

ARGUMENTS:

- A slippery-chicken object.

- A player ID.

- An integer that is the first bar in which to transpose events.

- An integer that is the first event in that bar to transpose.

- An integer that is the last bar in which to transpose events.

- An integer that is the last event in that bar to transpose.

- A positive or negative number that is the number of semitones by which

the pitches of the events in the specified region should be transposed.

OPTIONAL ARGUMENTS:

keyword argument:

- :destructively. T or NIL to indicate whether the pitches of the original

event objects should be replaced. T = replace. Default = T.

RETURN VALUE:

Returns a list of events.

EXAMPLE:

;;; Print the pitches before and after applying the method

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((sax (alto-sax :midi-channel 1))

(db (double-bass :midi-channel 2))))

:set-palette ’((1 ((c2 d2 g2 a2 e3 fs3 b3 cs4 fs4 gs4 ds5 f5 bf5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h q e s s))

:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’((1 ((sax (1 1 1 1 1))

(db (1 1 1 1 1))))))))

(print

(loop for e in (get-events-from-to mini ’sax 3 2 5 3)

collect (get-pitch-symbol e)))

(transpose-events mini ’sax 3 2 5 3 11)

(print

21 SC/SLIPPERY-CHICKEN 939

(loop for e in (get-events-from-to mini ’sax 3 2 5 3)

collect (get-pitch-symbol e))))

=>

(EF4 AF4 BF4 EF5 CS4 EF4 AF4 BF4 EF5 CS4 EF4 AF4)

(D5 G5 A5 D6 C5 D5 G5 A5 D6 C5 D5 G5)

SYNOPSIS:

(defmethod transpose-events ((sc slippery-chicken) player start-bar

start-event end-bar end-event semitones

&key (destructively t))

21.53 slippery-chicken/update-instrument-slots

[slippery-chicken] [Methods]

DATE:

23rd August 2013

DESCRIPTION:

This will go through the generated slippery-chicken object’s bar structure

and update each players’ instruments’ total-bars, total-notes,

total-duration, and total-degrees slots, for statistical purposes only.

This might be called by the user after performing one of the editing

routines that deletes or changes notes, etc.

ARGUMENTS:

- The slippery-chicken object.

RETURN VALUE:

T

SYNOPSIS:

(defmethod update-instrument-slots ((sc slippery-chicken))

21.54 slippery-chicken/update-slots

[slippery-chicken] [Methods]

DESCRIPTION:

21 SC/SLIPPERY-CHICKEN 940

Called by initialize-instance and others. Updates timings of events and

statistics. Not generally called by the user but can be useful if

post-generation editing has changed something fundamental to the structure.

ARGUMENTS:

- A slippery-chicken object

OPTIONAL ARGUMENTS:

- A tempo-map object (not just as a list). If not given, then the tempo-map

from the slippery-chicken object will be used. Default = NIL.

- A number that is the start-time of the first event object in

seconds. Default = 0.0.

- A number that is the start-time of the first event, in ’quarters’ (for

MIDI timing). Default = 0.0.

- A integer that is the number of the starting bar. Default = 1.

- The reference of the current section (for internal recursive use in the

bar-holder class). Default = NIL.

- The nth sequence (for internal recursive use in the sequenz class).

Default = NIL.

- T or NIL to indicate whether to print a warning to the Lisp listener when

ties are being used at the beginning of a sequence. This argument is now

obsolete and ignored, but remains for some backward compatibility.

Default = T.

RETURN VALUE:

The duration in seconds of the object; in this class: the whole generated

piece.

EXAMPLE:

;;; Create a slippery-chicken object and print the start time of one of its

;;; events; call update-slots with a start time of 10.0 and print the start

;;; time of that same event to see the difference

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((2 4) (s) (s) e e e))

:pitch-seq-palette ((1 2 3)))))

21 SC/SLIPPERY-CHICKEN 941

:rthm-seq-map ’((1 ((vn (1 1 1 1 1))))))))

(print (start-time (get-event mini 4 1 ’vn)))

(update-slots mini nil 10.0)

(print (start-time (get-event mini 4 1 ’vn))))

=

6.0

16.0

SYNOPSIS:

(defmethod update-slots ((sc slippery-chicken)

&optional

(tempo-map nil)

(start-time 0.0)

(start-time-qtrs 0.0)

(start-bar 1)

(current-section nil)

(nth nil)

(warn-ties t)

(update-write-bar-nums nil))

21.55 slippery-chicken/write-antescofo

[slippery-chicken] [Methods]

DESCRIPTION:

Write an antescofo~ (Arshia Cont’s/IRCAM’s score follower MaxMSP external)

score file. This allows you to specify a single player to follow (for now:

no polyphonic following) and which players’ events you’d like to be

triggered along with this, in the form of MIDI notes (sent via antescofo’s

group action commands). Of course this doesn’t imply that you have to use

MIDI with antescofo, rather, that you have something that picks up midi

note data and uses them (or ignores them) somehow or other. In any case,

the MIDI notes sent consist of four messages: the MIDI note (in midi cents

e.g. middle C = 6000), the velocity (taken as usual from the amplitude slot

of the event), the channel, and the duration in beats. Each may be preceded

by a delay, which will be relative to the previous NOTE or group MIDI note.

Rehearsal letters already in the slippery-chicken piece will automatically

be written into the antescofo~ file as labels/cues. E.g. if you have

rehearsal letter A, it will show up in the antescofo~ file as "letter-A".

Further labels/cues can be added to any slippery-chicken events and these

will also be written into the antescofo~ file.

21 SC/SLIPPERY-CHICKEN 942

Action messages can also be added to events and thus written into the

antescofo~ file. You can push as many messages as you want into this list;

they’ll be reversed before writing out so that they occur in the order in

which you added them. If you prefer you can call the event method

add-antescofo-message. NB For the part we’re following, we can add messages

to rests but if it turns out we added messages to rests in other players’

(i.e. group event parts) these won’t be written to the antescofo~ file.

Do remember to set the instruments-hierarchy slot of the slippery-chicken

object so that the player you’re going to follow is top of the list,

otherwise some strange event ordering might occur in the antescofo~ file.

Bear in mind that if you want to write antescofo~ files without having to

work within the usual slippery chicken workflow, you could generate events

by any method, then put them into rthm-seq-bar objects before then calling

bars-to-sc in order to create a slippery-chicken object by brute force (as

it were).

A note about grace notes: For the voice we’re following, antescofo~

considers that grace notes are ’out of time’ so have a duration of 0. But

for group notes, which we’re triggering, they have to have some duration;

we default to the grace-note-duration of the event class (0.05 seconds by

default, which will be written as a fraction of the beat at the current

tempo, of course). Now this means our grace notes are not ’stealing’ time

from the previous note, as they do in performed music. This is not ideal,

but if we’ve got a long group of grace notes, doing that might mean we end

up with a negative duration for the previous note. So we simply make the

grace notes short and allow/hope that the score follower catches up for us

on the next recognised note.

ARGUMENTS:

- The slippery-chicken object

- the player who we’ll follow (single player for now, as a symbol)

OPTIONAL ARGUMENTS:

keyword arguments:

- :group-players (list of symbols). The players for whom midi-note events

will be written in the antescofo file as part of a "group" action. If

NIL, then we’ll write all players’ events except for the player we’re

following. NB There’s no reason why we couldn’t include the player we’re

following in these group commands (for unison playing between live and

digital instruments perhaps). The easist way to write group events for

all players is to write something like

21 SC/SLIPPERY-CHICKEN 943

:group-players (players +your-sc-object+)

Default = NIL.

- :bar-num-receiver. The MaxMSP receiver name to which bar numbers will be

sent for display other other purposes. Default = "antescofo-bar-num"

- :midi-note-receiver. The MaxMSP receiver name to which midi notes will be

sent. Default = "midi-note", so a typical group output event could be

0.0 midi-note 6500 12 4 0.6666667

- :file. The name of the file to write. If NIL, then the file name will be

created from the slippery-chicken title and placed in (get-sc-config

’default-dir). Default = NIL.

- :group-duration-in-millisecs. Should we write the group notes (i.e. those

we generate) as fractions of a beat (NIL) or have antescofo~ convert

this to millisec duration according to the current tempo (T)? Default =

NIL.

- :warn. Issue a warning when we write labels on group (rather than NOTE)

events? (Because labels attached to group event notes can be written

and read, but they won’t show up in MaxMSP as cues which you can jump

to.) Default = T.

RETURN VALUE:

The number of NOTE plus action events we’ve written. We also print to the

terminal the number of events and actions separately, which should

then correspond to what Antescofo~ prints when it loads the score in MaxMSP.

EXAMPLE:

;;; Follow the violin part and generate group events for all other parts

(let* ((mini

(make-slippery-chicken

’+mini+

:title "antescofo test"

:ensemble ’(((vn (violin :midi-channel 1))

(va (viola :midi-channel 2))

(vc (cello :midi-channel 3))))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1)))

:tempo-map ’((1 60))

:rthm-seq-palette ’((1 ((((4 4) { 3 tq tq tq } +q e (s) s)))))

:rthm-seq-map ’((1 ((vn (1 1 1))

(va (1 1 1))

(vc (1 1 1))))))))

;; Adding a label (probably wouldn’t need one in bar 1, but to illustrate)

(setf (asco-label (get-event mini 1 1 ’vn)) "test-label")

;; start the (fictitious) vocoder when the first cello note in bar 2 is played

(push "max-receiver1 start-vocoder" (asco-msgs (get-event mini 2 1 ’vc)))

21 SC/SLIPPERY-CHICKEN 944

(write-antescofo mini ’vn :file "/tmp/asco-test.txt"))

-->

******* section (1)

Getting notes for VN

Getting notes for VA

Getting notes for VC

Shortening short, fast leaps...

Shortened 0 large fast leaps

"/tmp/asco-test.txt"

Antescofo~ score written successfully with 15 events and 34 actions.

49

The generated file will begin like this:

; antescofo~ score generated by slippery chicken version

; 1.0.4 (svn revision 4733 2014-01-15 11:27:10)

; at 12:02:06 on Thursday the 8th of May 2014

BPM 60

antescofo-bar-num 1 ;;;

NOTE 6200 0.6666667 test-label

group bar1.1 {

0.0 midi-note 6000 12 2 0.6666667

0.0 midi-note 6400 12 3 0.6666667

}

NOTE 6200 0.6666667

group bar1.2 {

0.0 midi-note 6000 12 2 0.6666667

0.0 midi-note 6400 12 3 0.6666667

}

NOTE 6200 1.6666667

group bar1.3 {

0.0 midi-note 6000 12 2 1.6666667

0.0 midi-note 6400 12 3 1.6666667

}

NOTE 6200 0.5

group bar1.4 {

0.0 midi-note 6000 12 2 0.5

0.0 midi-note 6400 12 3 0.5

}

NOTE 0 0.25

NOTE 6200 0.25

group bar1.5 {

0.0 midi-note 6000 12 2 0.25

0.0 midi-note 6400 12 3 0.25

antescofo-bar-num 2 ;;;

21 SC/SLIPPERY-CHICKEN 945

}

NOTE 6200 0.6666667

group bar2.1 {

0.0 midi-note 6000 12 2 0.6666667

0.0 midi-note 6400 12 3 0.6666667

max-receiver1 start-vocoder

}

NOTE 6200 0.6666667

...

SYNOPSIS:

(defmethod write-antescofo ((sc slippery-chicken) follow-player

&key group-players file (warn t)

(group-duration-in-millisecs nil)

(midi-note-receiver "midi-note")

(bar-num-receiver "antescofo-bar-num"))

21.56 slippery-chicken/write-lp-data-for-all

[slippery-chicken] [Methods]

DESCRIPTION:

Generate all of the .ly files required by the LilyPond application for

printable output from the musical data stored in the given slippery-chicken

object.

This method produces .ly files for the score as well as the parts for all

individual players in the ensemble (unless otherwise specified by the

user). The files are automatically named based on the value passed to the

TITLE slot of the given slippery-chicken object.

NB: This method only produces the .ly files. These must be rendered by the

LilyPond application separately for PDF output. See the slippery

chicken installation web page and the manual page on Output for more

detail. Bear in mind that SBCL and CCL users on OSX can use the

lp-display macro to call Lilypond and display the resultant PDF

automatically.

NB: Many of the arguments for this method pass their values directly to

LilyPond parameters.

NB: Clefs added to grace-note events will not be rendered in Lilypond.

ARGUMENTS:

21 SC/SLIPPERY-CHICKEN 946

- A slippery-chicken object.

OPTIONAL ARGUMENTS:

keyword arguments:

- :base-path. A string that is the directory path only for the resulting

files. The method will automatically generate the file names and

extensions. Default = (get-sc-config ’default-dir).

- :start-bar. An integer that is the first bar of the given

slippery-chicken object for which output is to be generated. If NIL, the

start-bar will be set to 1. Default = NIL.

- :end-bar. An integer that is the last bar of the given slippery-chicken

object for which output is to be generated. If NIL, all bars after the

start bar will be generated. Default = NIL.

- :start-bar-numbering: For bar counting in the score only: the bar number

that the :start-bar will be counted as (integer). NIL = :start-bar.

Default = NIL.

- :players. A list of player IDs or NIL to indicate which players’ parts

are to be generated and included in the resulting score. If NIL, all

players’ parts will be generated and included in the score. This can be

handy, for example, for excluding the computer part of a piece for tape

and instruments. Default = NIL.

- :respell-notes. NIL, T or a list to indicate whether the method should

also call the respell-notes method on the given slippery-chicken object

before generating the output to undertake enharmonic changes. If a list,

then these are the specific enharmonic corrections to be undertaken. If

this is T, the method will process all pitches for potential

respelling. If NIL, no respelling will be undertaken. See the

documentation for the respell-notes method for more. Default = NIL.

- :auto-clefs. T or NIL to indicate whether the auto-clefs method should be

called to automatically place mid-measure clefs in the parts of

instruments that use more than one clef. T = automatically place clefs.

Default = T

- :in-c. T or NIL to indicate whether the full score is to contain written

pitches or sounding pitches. NB: Some transposing C instruments still

transpose at the octave in C scores, such as double-bass and piccolo.

NB: Parts will always be transposed. T = sounding pitches. Default = NIL.

- :page-nums. T or NIL to indicate whether page numbers should

automatically be added to each page (not including the start page) of the

output. T = add page numbers. Default = T.

- :rehearsal-letters-font-size. A number that indicates the font size of

rehearsal letters in LilyPond output. Default = 18.

- :rehearsal-letters-all-players. T or NIL to indicate whether rehearsal

letters are to be placed in all parts generated. T = all parts.

Default = T. NB: This must be set to T when the user would like the

rehearsal letters in all individual LilyPond parts, but printing with CMN

21 SC/SLIPPERY-CHICKEN 947

thereafter will result in rehearsal letters in all parts as well.

- :tempi-all-players. T or NIL to indicate whether tempo marks are to be

placed in all parts generated. T = all parts. Default = T.

- :all-bar-nums. T o NIL to indicate whether the corresponding bar number

should be printed above every measure in the score (not including

multi-bar rests). T = add a bar number to every measure. Default = NIL.

- :paper. A string to indicate the paper size for LilyPond output. Only

LilyPond’s predefined paper sizes are valid here. According to the

LilyPond manual, these include: "a4, letter, legal, and 11x17... Many

more paper sizes are supported... For details, see scm/paper.scm, and

search for the definition of paper-alist." NB: This argument will only

adjust paper size, but not margins or line widths, which are adjusted

using the arguments below. Default = "a4"

- :staff-size. An integer that indicates the size of the notes and staves

in the resulting output. Standard for parts is 20. Default = 14.

- :group-barlines. T or NIL to indicate whether bar lines should be drawn

through the whole staff group or just one staff. T = through the whole

staff group. Default = T.

- :landscape. T or NIL to indicate whether the paper format should be

landscape or portrait. T = landscape. NB: This argument will only adjust

paper layout, but not margins or line widths, which are adjusted using

the arguments below. Default = NIL.

- :barline-thickness. A number that is the relative thickness of the bar

lines. Default = 0.5.

- :top-margin. A number that is the margin at the top of the page in

millimeters. Default = 10.

- :bottom-margin. A number that is the margin at the bottom of the page in

millimeters. Default = 10.

- :left-margin. A number that is the margin at the left of the page in

millimeters. Default = 20.

- :line-width. A number that is the width of each line in centimeters.

Default = 17.

- :page-turns. T or NIL to indicate if LilyPond should attempt to optimize

page breaks for page turns in parts. T = optimize page breaks.

Default = NIL.

- :min-page-turn. A two-item list indicating the minimum rest necessary for

the method to automatically place a page turn, in a format similar to

that of a time signature; i.e., ’(2 1) would mean a minimum of 2 whole

rests. Default = ’(2 1))

- :use-custom-markup. T or NIL. Set to T when using a number of marks that

are specific to LilyPond, such as ’bartok or any of the marks that use

eps graphics files (whereupon those graphics files would need to be in

the same folder as your lilypond files). Default = T.

- :lp-version. A string that will be added to each .ly file generated in

conjunction with the LilyPond \version command. Default = "2.17.95"

- :process-event-fun. NIL or a user-defined function that will be applied

21 SC/SLIPPERY-CHICKEN 948

to every event object in the given slippery-chicken object. If NIL, no

processes will be applied. Default = NIL.

- :extend-hairpins. If you want hairpin (cresc/dim) to extend beyond the

previous barline (or beyond the note) set to T. Default = NIL.

- :stemlet-length. NIL or a decimal number < 1.0 that indicates the scaled

length of stems over rests in LilyPond output, should this feature be

desired. 0.75 is a recommended value for this. NIL = no stems over

rests. Default = NIL. NB: LilyPond can be instructed to extend beams over

rests (without stemlets) simply by using the ’-’ in the definition of the

rthm-seq-bar object, as is done with any other note; however,

starting/ending a beam on a rest and then trying to generate a score with

CMN will fail.

- :footer. A string to add to the footer of every score page. Default = NIL.

RETURN VALUE:

The path of the main score file generated.

EXAMPLE:

;;; An example with values for the most frequently used arguments

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((fl (flute :midi-channel 1))

(cl (b-flat-clarinet :midi-channel 2))

(vc (cello :midi-channel 3))))

:staff-groupings ’(2 1)

:tempo-map ’((1 (q 84)) (9 (q 72)))

:set-palette ’((1 ((f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

:set-map ’((1 (1 1 1 1 1 1 1 1))

(2 (1 1 1 1 1 1 1 1))

(3 (1 1 1 1 1 1 1 1)))

:rthm-seq-palette ’((1 ((((4 4) h (q) e (s) s))

:pitch-seq-palette ((1 2 3))

:marks (bartok 1)))

(2 ((((4 4) (q) e (s) s h))

:pitch-seq-palette ((1 2 3)))))

:rthm-seq-map ’((1 ((fl (1 2 1 2 1 2 1 2))

(cl (1 2 1 2 1 2 1 2))

(vc (1 2 1 2 1 2 1 2))))

(2 ((fl (1 2 1 2 1 2 1 2))

(cl (1 2 1 2 1 2 1 2))

(vc (1 2 1 2 1 2 1 2))))

(3 ((fl (1 2 1 2 1 2 1 2))

(cl (1 2 1 2 1 2 1 2))

21 SC/SLIPPERY-CHICKEN 949

(vc (1 2 1 2 1 2 1 2)))))

:rehearsal-letters ’(3 11 19))))

(write-lp-data-for-all mini

:start-bar 7

:end-bar 23

:paper "letter"

:landscape t

:respell-notes nil

:auto-clefs nil

:staff-size 17

:in-c nil

:barline-thickness 3.7

:top-margin 40

:bottom-margin 60

:left-margin 40

:line-width 22

:page-nums t

:all-bar-nums t

:use-custom-markup t

:rehearsal-letters-font-size 24

:lp-version "2.12.1"

:group-barlines nil

:page-turns t

:players ’(fl cl)

:tempi-all-players t))

=> T

SYNOPSIS:

(defmethod write-lp-data-for-all

((sc slippery-chicken)

&key

(base-path (get-sc-config ’default-dir))

start-bar end-bar (paper "a4") landscape

;; MDE Tue May 29 21:34:53 2012

start-bar-numbering

;; if a list, then these are the enharmonic corrections

(respell-notes t)

;; automatically add clefs to instruments who read more than one?

(auto-clefs t)

(staff-size 14)

;; parts will always be transposed but score can be in in C or not

(in-c nil)

(barline-thickness 0.5)

(top-margin 10) ; mm

21 SC/SLIPPERY-CHICKEN 950

(bottom-margin 10) ; mm

(left-margin 20) ;mm

(line-width 17) ;cm

;; if not nil, then in cm

between-system-space

(page-nums t)

;; print every bar number unless

;; multi-bar-rest?

(all-bar-nums nil)

;; this has to be T if we’re going to get letters in the parts--but CMN

;; printing will have all parts all letters too thereafter

(rehearsal-letters-all-players t)

;; set to t if using bartok pizz and other

;; signs

(use-custom-markup t)

(rehearsal-letters-font-size 18)

;; "2.16.2") "2.14.2") ;"2.12.3")

(lp-version "2.17.95")

;; 24.7.11 (Pula) barlines through whole staff group or just a stave

(group-barlines t)

;; 5.11.11 set to t if you want lilypond to optimize page breaks for

;; page turns in parts

(page-turns nil)

;; MDE Sat Mar 10 16:52:31 2012

(process-event-fun nil)

;; MDE Mon Apr 16 16:08:36 2012 -- added so that we can write a subset

;; of players into the score (e.g. leave out a computer part). If nil

;; all players will be written. NB the order of these will determine

;; the order in the score (overriding the ensemble order).

(players nil)

(footer nil)

;; minimum rest necessary to do a page turn; something like a time

;; signature e.g. (2 1) would mean we need a min. of 2 whole rests

(min-page-turn ’(2 1))

;; MDE Tue May 29 22:58:25 2012

(stemlet-length nil)

;; MDE Thu Jan 9 09:20:33 2014 -- if you want hairpin (cresc/dim) to

;; extend beyond the note set to T

(extend-hairpins nil)

;; sim to rehearsal letters

(tempi-all-players t))

