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EVOLUTION OF THE TRANSFORMING GROWTH 
FACTOR-BETA SUPERFAMILY 

David W. Burt and Andrew S. Law 

Department of Cellular and Molecular Biology 
AFRC Roslin Institute 

Roslin, Midlothian, EH25 9PS, U.K. 

Transforminggrowthfactor j31 (TGF-PI) is the prototype of an increasingly complex 
superfamily of growth and differentiation factors. To date, a total of 74 TGF-Piike 
sequences have been published, probably representing 23 distinct genes. These sequences 
were obtainedfrom mammalian, avian, amphibian and insect species, thus emphasising 
the ancient nature of the TGF-p superfamily peptides. This article summarises current 
hypotheses concerning the evolutionary history of this protein superfamily, based on the 
molecular phylogeny of the published sequences. Comparison of the deduced amino acid 
sequences leads to the de$nition of five main groups within the superfamily (TGF-p, 
Bone Morphogenetic Proteins [BMP], Anti-Miillerian Hormone [AMH], Inhibin u 
[INHa] and GDF-9) and six subgroups within the BMPs (@A, Decapentaplegic 
(dpp]. Vgl, BMP-3, Inhibin /3 [INHB,,,] and nodal). This classijication predicts 
possible phylogenetic and functional relationships among these proteins. 

Keywords: Transforming growth factor, bone morphogenetic protein, phylogenetic 
tree, molecular evolution, sequence comparisons. 

INTRODUCTION 

The Transforming Growth Factors-P (TGF-@) are a family of multifunctional 
peptides that controls proliferation, differentiation and other functions in many cell 
types [ 11. Mature TGF-/Il, the prototype member of the family, is a disulphide-linked 
dimer of two identical 112 amino acid polypeptide chains. Each chain is derived by 
proteolytic cleavage from the C-terminus of a 390 amino acid precursor [l]. The 
glycosylated dimer is secreted as a complex with other proteins in a latent form that 
can be activated by heat, acid or protease treatment [l]. Soon after its discovery, a 
number of other proteins were found to share sequence homology with TGF-Pl, 
either throughout the whole polypeptide sequence (The TGF-/I Family) or restricted 
to the C-terminal region (The TGF-/I Superfamily). The sequence homology observed 
between these various proteins and the conservation of the genes encoding the various 
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TGF-PIike molecules in species as diverse as insects and man strongly support the 
fundamental role of these molecules in regulating basic biological processes such as 
growth and development. 

The number of proteins being assigned to the TGF-JI superfamily on the basis of 
their sequence similarity continues to increase. Seventy-four proteins have been 
described to date, isolated from ten different species and falling into 23 distinct gene 
types. These are listed together with their alternative names, species of origin and 
reference in Fig. 1. It is beyond the scope of the article to present the biology of these 
growth factors in any detail. A brief overview is given and the reader is encouraged to 
consult the appropriate references for more details. 

Five members of the immediate TGF-P family have been described; they are now 
known as TGF-PI through to TGF-/?5 [ 11. However, the common practice of naming 
apparently novel unidentified proteins on the basis of their observed actions, coupled 
with the multifunctional nature of the TGF-Pproteins, has resulted in a profusion of 

Anti-Mullerian hamone (AMH), Mullerian inhibiting subt&ux (MIS) Hu, Bo. Mu, Ra 

Bone mcqhogenetic potein 2 (BMP-I. BMP-2A) Hu, Bo. Mu, Xc 

Bone maphogenetic pmtein 3 (BMP-3, BMP-3A). Ostecgadn Hu. Bo 

Bone morphoguaic protein 4 (BMP-4, BMP-ZB) Hu. Bo, Mu, Ra. Xe 

Bone mmphogenctic pa-win 5 (BMPJ), shat ear (se) Hu, Mu 

Bone morpbageaetic protein 6 @IMP-6). Vg-related-1 (@r-l) Hu. Mu. Ra 

Bone morphogemtic protein 7 (BMP-71, Ostogcnic prc4ein 1 (OP-1) Hu. Bo. Mu. Xe 

Ostogcnic pmtein 2 (OP-2) Hu, Mu. Xc’ 

Decnpentaplegic gene ccmplex (dpp) Dr 

60A protein @WA) Dr 

Dorsalin- (d&l) Ck, Mu 

GmwWDifferentiation factor I (GDF-1) Hu, Mu 

GmwlhlDiffenntiation factor 3 (GDF-3). Vg-related-2 (Vgr-2) Mu 

Growth/Differentiation factor 9 (GDP-g) MU 

Inhibin rx subunit (INHcz) Hu. Bo, PO. Mu, Ra 

lnhibin !3~ subunit (INHE*), Activin !3a, XTC-MIF (mesodam-inducing Hu, Bo, PO. Mu. Ra, Ck, Xc 

factor). Erythmid differentiation factor (EDF) 

lnhibin 8~ subunit (INHOB), Acdvin 6B subunit Hu. PO. Sh, Mu. RR, Ck, Xc 

NOdid MU 

Transforming gnwtb factor-t31 (TGF-61, TGF-64) Hu. Cc, Bo. PO. MU, Ra, Ck 

Transforming gmwtb factor-02 (TGF-62). Olioblastomrderived T  cell Hu. Cc. PO, Mu, CL, Xe 

suppressor factor (G-TSF). BSC-I cell growth inhibitor (01). Polyqin 
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Transforming growth factor-l35 (TGF-0.5) XC 

Vegetnl hemisphere protein 1 (Vgl) Xe 
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12 

FIGURE 1. The TGF-P superfamily, listing members whose sequence is known. Key to species: Hu: Human; 
Ce: African Green Monkey; Boz Cow; PO: Pig; Sh: Sheep; Mu: Moose; Ra: Rat; ck: Chicken: Xe: Xenopus 
laevis; Dr: Drosophila melanogaster. *Xenopus laevis sequence AC JHO6m (PIR Database) shows moderate 

sequence homology to the mammalian OP-2 gene (56% over 106 residues). It is therefore iacladed in the table 
under this heading. However, the sequence fragment also shows signltkant homology to other BMP-like 
proteins. Exactly which member of the gene family this seqwnce represents rem&s to be determined. 
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alternative names. In addition, many early studies utilised impure preparations. For 
example, Sarcoma Growth Factor (SGF) is a mixture of TGF-P and TGF-a; a 
structurally unrelated protein with similar activity to the TGF-j% in certain assay 
systems [2]. Buffalo rat liver cells produce differentiation inhibitor (DI), a potent 
inhibitor of myoblast differentiation, which is a mixture of several TGF-/? isoforms 
[3]. Other names for TGF-P family members to be found in the literature include 
Cartilage-Inducing Factor-A (CIF-A) and CIF-B, which correspond to TGF-PI and 
TGF-I)2, respectively [4]. 

In the wider TGF-p Superfamily, Anti-Miillerian hormone, also known as Miiller- 
ian Inhibitory Factor (MIF) or Substance (MIS), is produced by the testes and is 
responsible for the regression of the female Miillerian ducts in the male embryo [5]. 
Paradoxically, it may also play a role in the development of the female reproductive 
system and in the adult female ovary [5,6]. Other members of the superfamily 
involved in reproductive processes include the Inhibins, heterodimeric proteins 
consisting of a single inhibin orchain coupled to either an inhibin PA (Inhibin A) or an 
inhibin W chain (Inhibin B), and Activins which are homo- or heterodimers of the 
inhibin p subunits. Inhibins and Activins are produced in the gonads and reportedly 
act to modulate the secretion of Follicle Stimulating Hormone (FSH) from the 
pituitary gland. They may also have intragonadal paracrine actions [7, 8, 91. 

Activin has recently been found to have a wider range of biological activities, 
including a potent mesoderm-inducing activity in amphibian animal cap assays [lo] 
and erythroid differentiation activity [ll]. Indeed, roles in early development and 
pattern formation have been invoked for many members of the TGF-p superfamily. 
Xenopus vegetal hemisphere protein Vgl also reportedly induces the overlying animal 
pole to form mesodermal tissue, although there is some uncertainty as to the precise 
nature of this effect [12]. Mouse nodal encodes a molecule essential for mesoderm 
formation and subsequent organisation of axial structures in early development [ 131. 
The Drosophila decapentaplegic protein (dpp) participates in the establishment of 
dorsal-ventral specification [14,15]. Chick dorsalin- (d&Z) is the latest member of 
the TGF-j3 superfamily to be cloned and characterised and appears to regulate the 
differentiation of cell types along the dorso-ventral axis of the neural tube [16]. 
Drosophila 60A gene protein may participate in the development of the embryonic gut 
[17, IX]. 

The embryonic growth factor GDF-1 may mediate cell differentiation events 
during early development [19, 201. Two further GDF-like sequences, GDF-3 and 
GDF-9, have recently been isolated [21] using degenerate oligonocleotides. Their 
function is, as yet, unknown. However, a sequence identical to GDF-9, Vgr-2 
(Vg-related-2) has also been isolated independently by cross-hybridisation at low 
stringency with a Xenopus Vgl probe [22]. The expression pattern of Vgr-2 suggests 
that it is involved in the complex process of bone formation in the embryo. 

This action of members of the TGF-/!I superfamily in bone and cartilage formation 
is a recurrent theme. As mentioned previously, TGF-/I1 and TGF-P;! were originally 
described by some authors as Cartilage-Inducing Factors. In addition, the osteogenic 
proteins BMP-2 through BMP-7 induce cartilage and bone formation [23, 24, 251. 
The related protein OP-2 is expressed early in embryogenesis and may also have bone 
inducing activity [26]. However, multiple functions are suggested by the fact that all 
BMP-like molecules are expressed during early embryonic development, as well as 
later in life, in a range of tissue types [27]. 
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nd 
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nd 

nd 

nd 

nd 

nd 

nd 
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nd 

6 

6 
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Bmp5, se 

Vgr- 1 

Bmp7 

Vgr-2 

Lwation References 

l(3.3) 96.28 

1 (86.5) 97,98,28 

12 (36) 97.24 

10 (49.5) 99,29 

1 (10.4) 29 

13 (50) 29 

nd 29 

12 (43) 29 

nd 29 

nd 29 

15 (40) 29 

nd 29 

1 (20.5) 100,101 

13 (19) 100,101.102 

12 (48-50) 100, MM 

1 (30-34) MM 

2 (75) 103, 104.28 

5 (60) 103.28 

14 (24.4) 105,28 

X (32.2) 28 

9 (42) 106.56 

13 (28) 106.28 

nd 106 

6 (57.4) 22 

FIGURE 2. Chromosomal location of genes of the TGF-P superfamily in man and mouse. Key: Amh- 
rs = Amh-related sequence; nd = not determined. MM = Marti Matzuk, personal communication. The 
figure in brackets in the mouse gene location column represents the distance of the gene from the centromere in 

centimorgans (cMs). 

A number of TGF-p superfamily genes have been mapped onto the genomes of 
mouse and man and are listed in Fig. 2. Chromosomal assignments of TGF-/I 
superfamily members indicate that these genes have become widely dispersed during 
their evolution [28]. It is likely that the entire multigene family evolved from a series of 
gene duplications and became separated by chromosomal translocations. Interest- 
ingly, a number of apparent, uncharacterised TGF-plike genes were identified in 
these mapping studies. In addition to the expected BMP-4 locus on mouse chromo- 
some 14, an X-linked BMP-4a gene was also discovered [28]. Whether this gene is 
present in other species remains to be determined. Eight unlinked, polymorphic 
AMH-related loci (Am&rsl through Amh-rs8) have also been detected [29]. These 
may represent novel members of the TGF-/I superfamily or artefactual sequences. 
Until these Amh-rs loci are cloned and characterised, this question must remain 
unanswered. 
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Many investigators have isolated, sequenced and compared TGF-PIike sequences. 
These comparisons have indicated homologies between polypeptides and defined 
conserved peptide domains or motifs. For some groups of proteins, homology is 
observed throughout the precursor protein (e.g. within the TGF-P or BMP sub- 
groups) but taking the superfamily in its entirety, sequence homology is restricted to 
the C-terminal mature peptide. The degree and extent of sequence homology suggests 
phylogenetic relationships within the TGF-/I superfamily. For distantly related genes 
the definition of homologous (orthologous) or duplicated (paralogous) genes is often 
difficult; a phylogenetic study can often solve this problem. In addition to defining its 
history, an evolutionary classification of the TGF-/I superfamily into groups and sub- 
groups can also suggest functional relationships. This is useful in an era when PCR 
can rapidly identify new members of a multigene family with relative ease. Conse- 
quently, new genes are often discovered purely on the basis of sequence homology 
and in the total absence of functional data. Evolutionary information from sequence 
data may therefore allow a prediction of the possible biochemical properties of these 
otherwise uncharacterised proteins. 

THE EVOLUTION OF THE TGF-/3 SUPERFAMILY 

The TGF-p Superfamily 

To focus the discussion on the evolution of the multigene family rather than the 
evolution of the separate species studied, one distinct example of each TGF-p 
superfamily member (the human gene wherever possible) was selected for analysis. 
However, in some cases it was not possible to be absolutely certain that the genes 
included were heterologous genes. For example, it is impossible to determine whether 
the Drosophila genes dpp and 60A and the Xenopus TGF-@5 gene represent homolo- 
gues of genes present in other species or are products of recent gene duplications due 
to the large evolutionary distance separating these species from the others involved in 
the study. A multiple alignment of the selected sequences was made using the 
PILEUP program [30] based on the C-terminal sequence conserved in all TGF-p 
superfamily members. The result is shown in Fig. 3. Proteins from the TGF-/I 
superfamily are only active as homo- or heterodimers, with the two polypeptide 
chains being linked by a single disulphide bond. From X-ray crystallography studies 
of TGF-QL it is known that all other cysteines are involved in intrachain disulphide 
bonds [31,32]. This structure would therefore not be expected to accept major 
insertions or deletions of amino acid residues. Consequently, the inclusion of gaps in 
the alignment was minimised by the imposition of large gap weights. The consensus 
sequence is displayed beneath the alignment. Fig. 4 plots graphically the relative 
degree of amino acid conservation at each site across the whole of the TGF-P 
superfamily. Together these two figures reveal the modular nature of the TGF-P 
superfamily proteins with the two most highly conserved domains lying at the N- and 
C-terminal regions of the mature proteins. These two domains contain the seven 
invariant residues conserved across the entire superfamily. A lesser, but still signifi- 
cant, region of homology lies in the centre. These three conserved domains have long 
been recognised [14]. The biological significance of these domains is unclear. 
However, there is experimental evidence that domains II and III are important in 
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FIGURE 4. Degrees of amino acid conservation throughout the C-terminus of the 23 TGF-P superfamily 
proteins. The similarity plot was constructed with the PLOTSIMILARITY program 1301 using the sequence 

alignment shown in Fii. 3. The horizontal axis represents the amino acid residae positioa relative to the first 
invariant cysteine. The vertical axis is the similarity score based on the 23 TGF-/Hike sequences. Arrows 

indiiate the sites where the amino acid residues are collserved in alI proteins. See text for a discussion of the 
conserved domains (I, II, III). 

TGF-/?I receptor binding [33]. The limited homology found in the central domain 
also overlaps with a region that distinguishes the specificities of the TGF-/-II and 
TGF-fl proteins [34]. Within this region only 14 differences are found between TGF- 
/I1 and TGF-QZ, and presumably some or all of these residues specify this difference. 

Figure 5 shows the relative degree of amino acid conservation between all the 
members of the TGF-psuperfamily. This clearly shows the subfamily groupings, with 
the highest degree of conservation observed within the members of the TGF-I) 
subfamily and the BMP groupings. 

The TGF-/I superfamily C-terminal sequences were used to generate a distance 
matrix (PROTDIST) using the Kimura 2-p correction for multiple substitutions and 
different transitions/transversion rates. PROTPARS, a maximum parsimony pro- 
gram, is often used to group together protein sequences. However, it has two major 
disadvantages. Firstly, PROTPARS does not correct for multiple substitutions. This 
is important for the analysis of distantly related genes. Secondly, the deduced tree 
topology is distorted by lineages with a greater than two-fold difference in rates of 
sequence divergence which is known to be the case for the TGF-P superfamily [35]. 
The distance methods FITCH and NEIGHBOR can correct for multiple substitu- 
tions and do not assume rate constancy across different lineages [36]. These methods 
were therefore used in this analysis. 

Distance data derived from the PROTDIST program was used in the tree building 
program PITCH to find the single best phylogenetic tree. The result of this analysis is 
shown in Fig. 6. Since the length of the aligned region was short (111 amino acid 
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Hu INHa 

FIGURE 6. Phylogenetk tree obtained from distance matrix analysis of TGF-4 superfamily C-terminal 

amiw acid sequences. Bramzh lengths are drawn to scale. Units are units of distance as cakolated in the 
distance matrix. 30,483 trees were examined with an average percentage standard deviation (APSD) of 7.404. 

The APSD provides an estimate of the error in branch leagth and position. The tree is drawn mwooted since it 
is impossible to determine which seqwnce represents the most ancient ancestral gene. 

residues) and the presumed evolutionary distances large, care must be taken not to 
over-interpret the results obtained by this method. Consequently, a Bootstrap 
analysis was performed to assess the validity of the phylogenetic tree. A Bootstrap 
analysis is a method of repeatedly sampling the data under study to infer confidence 
limits for each branch of the tree and was introduced into phylogenetic studies by 
Felsenstein [37]. The result of the Bootstrap analysis is shown in Fig. 7. The tree 
described by this analysis groups the most closely related proteins together; the 
number at each bifurcation describes the number of times the grouping to the right of 
the branching point occurred as a percentage of the total number of analyses 
performed. However, this analysis is confounded by the large number of genes 
studied combined with the relative antiquity of the genes and the number of species 
included. A more meaningful analysis will only be possible when all the TGF-I) 
superfamily gene sequences from a singfe species are described. However, it is clear 
that the divergence between the main branches illustrated in Fig. 6 is very ancient, 
occurring prior to the separation of insects and other arthropods. 

Since the divergence rates are so variable between and within groups [35] it is not 
possible to use a program which assumes equal rates in all branches to derive a likely 
root to the phylogenetic tree. In addition, it is impossible to define an outgroup or 
distantly related sequence to root the TGF-/? superfamily tree. The final gene tree is 
therefore unrooted, but serves to classify the family into groups and subgroups. 

It is apparent from both methods of analysis that the TGF-P superfamily may be 
split into subgroupings. This is most obvious from Fig. 6. The immediate TGF-fi 
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FIGURE 7. Majority-rule and strict consensus tree of TGF-ji superfnmiIy proteins derived from a 
bootstrapping analysis. The alignment shown in Fig. 3 was resampled using SEQBOOT (n = lOO), distance 
matrices were calculated (PROTDIST), and a consemus tree was calculated using the program CONSENSE 
(PHYLIP 3.5). The number at each fork indicate the number of times the grouping to the right of that fork 
occurred as a percentage of the total number of data samplings. The branch lengths do not represent any scale. 
The tree has been arbitrarily rooted to Xenopus luevis TGF-/IS. 

sequences are clustered together as a subgroup, as are the BMP-related genes. The 
BMP-like genes may also be further divided into subgroupings with BMP-5, -6 and -7 
more closely related to each other and, to a lesser extent, 60A and OP-2 than they are 
to BMP-2 and BMP-4. BMP-3, whilst apparently separate from the main BMP 
grouping at first glance, represents a third sub-branch of this group presumably 
resulting from a more ancient duplication event. It is important to remember when 
viewing such trees that relative divergence is proportional to the length of branch 
between individual sequence names. Each node may be freely rotated provided that 
branch lengths are maintained. 
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TABLE 1. Pairwise comparisons of the propeptide and mature regions of the BMPs. The numbers 

represent % amino acid identity. 

BMP-2 

BMP-4 

BMP-5 

BMP-7 

BMP-6 

OP-2 

BMP-2 BMP-4 BMP-5 BMP-7 BMP-6 OP-2 

58 56 - 70 57 58 

59 58 79 - 75 57 

58 57 81 66 - 56 

53 52 61 62 62 - 

Pro- 

region 

Mature 

BMP-related Genes 

An extension of the comparison of mature peptide sequences to the propeptide 
region of the BMP-related proteins also verifies the tree topology. BMP-2 and BMP4 
share 86% sequence identity in the mature peptide and 57% in the proregion (Table 
1). It would seem likely that BMP-2 and -4 are the products of a recent gene 
duplication which has occurred from a dpp-like gene after the divergence of insects 
and vertebrates 700 million years ago. Which of the two is the more ancient is 
impossible to determine (c.$ Bootstrap scores in Fig. 7). It is also clear that the 
chicken dorsalin gene is derived from this lineage, but again it is not possible to 
determine if this represents a gene homologous or heterologous to the dpp gene. 
BMP-5, BMP-6, BMP-7 and OP-2 also share a high level of sequence identity in their 
proregions. These genes are clearly derived from the same lineage as the 60A gene. 
However, again it is impossible to determine the exact order of the duplications that 
led to these genes. 

TGF-PI , TGF-/XL? and TGF-m Genes 

A more informative approach to determining the evolutionary history of the TGF- 
j3 family is to compare the DNA sequences that code for the precursor polypeptide 
sequence. The exact methodology chosen for such comparisons must be determined 
by the relative closeness of the genes under study. For closely related sequences, a 
comparison of the third base in each codon is very sensitive. Mutations in the third 
coding position are frequently ‘silent’ mutations and occur at a much higher 
frequency than at the first or second coding positions. Consequently, over a short 
period of time (in evolutionary terms), the number of mutations occurring in this 
position will be such that a meaningful statistical conclusion may be drawn. However. 
for more distantly related genes, this more rapid rate of mutation results in a near 
random variation at the third coding base and comparison of the first and second 
bases of each codon is recommended. 



From a comparison of the synonymous components at the third base of the coding 
sequences of all the reported TGF-p sequences, it was suggested that the chicken 
TGF-p4 gene was probably the avian homologue of the mammalian TGF-/?l gene [38] 
(note: the sequence originally described as chicken TGF-pl [39] was the result of an 
erroneous sequencing of a porcine TGF-/31 clone [40]). This was confirmed by 
Southern blotting of avian and mammalian genomic DNAs using either chicken 
TGF-@ or human TGF-/?I probes. At first this seems inconsistent with the 
comparison of amino acid sequences. The TGF-PI and TGF-@ proteins show 
sequence identities of 45 and 82% in the pro- and mature regions, respectively. 
Usually, for any given TGF-/? isoform, both these regions are highly conserved, 
typically, 80 and 95%, respectively. The lack of sequence identity in the proregion has 
frequently been cited as evidence that the five TGF-P proteins characterised so far 
(TGF-PI through to TGF-p5) are the products of five distinct (heterologous) genes. 
However, the proposed TGF-P phylogeny suggests that the ancestral gene for TGF- 
81 and TGF-/34 diverged almost 300 million years ago. This is approximately the time 
of the divergence of mammalian and avian ancestors. A common gene at this point 
would therefore have diverged sufficiently to create what might appear to be, at first 
sight, two distinct TGF-/? proteins. 

In that same study [38], it was suggested that the TGF-j?l and TGF-p3 genes shared 
a common ancestor approximately 300 million years ago, prior to the emergence of 
either the TGF-j32 or TGF-IJS genes. However, due to the stochastic nature of base 
substitutions at the third coding position and the long times of sequence divergence 
being considered (300-700 million years), it is possible that the position of the TGF-p 
genes in that proposed phylogeny may require some re-adjustment. The errors on the 
rates of divergence calculated are high and an examination of the first and second 
components may reveal a more significant relationship. Using essentially the same 
DNA alignment [38] but with the addition of the porcine TGF-/X2 sequence [4l], a 
distance matrix was calculated combining the information from coding bases I and 2. 
This was generated using DNADIST [36] with the Kimura 2-p model to correct for 
multiple base substitutions and a transition/transversion ratio of 2. The best tree was 
calculated using FITCH (local and global rearrangements of the tree, 10 jumbles) and 
is shown in Fig. 8. This tree suggests that TGF-pl, TGF-/34 and TGF-p-5 may form a 
single group, and TGF-/?2 and TGF-83 another. This in turn suggests that the 
Xmopus luevis TGF-j3.5 gene is the amphibian homologue of TGF-PI. This hypothesis 
is supported by the lack of any other TGF-P genes besides TGF-p2 and TGF-p.5 in 
screens of Xenopus luevis TGF-Q genes (Ali Hemmati-Brivanlou and Igor B. Dawid, 
personal communication). The lack of a Xenopus luevis TGF-p3 gene implies that 
either the duplication that resulted in TGF-p3 occurred after the divergence of 
amphibians or that the TGF-/I3 gene may have been deleted in this lineage. Only 
further studies of other amphibian species will resolve these questions. 

In Drosophila the only TGF-/%like genes to be identified to date are dpp and 60A. 
even using PCR methods [I 7, 181. Primers designed specifically to amplify the TGF- 
pS. in preference to dpp or BMPs, did not permit recovery of any additional 
Drosophila sequences. Thus, if other TGF-P superfamily members exist in the 
Drosophilu genome, they may require novel approaches for their isolation. 

The isolation and comparison of the primary sequences of TGF-Pgenes from other 
species will provide further evidence to test the current models of TGF-p gene 
evolution. 
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FIGURE 8. Phylogenetic tree obtained from distance matrix analysis of TGF-P nacleotide seqwnces, based 
on nucleotide substitations at the first and second position in tbe aligned codons. ‘lie nacleotide alignmeat is 
identical to that previoasly published 1381. Branch lengths are drawn to scale in units of distance as mlctdrted 
in the distance matrix. 4,265 trees were examined with an APSD of 2.685. This tree is drawn rooted to tbe 
Xenopus lads TGF# gene. The numbers at each fork indicate the percentage likelihood of the grouping to 
the right of the fork occurring in a bootstrapping aaalysis (n = 180 resamplings). 

ANCIENT RELATIONSHIPS BETWEEN TGF-/? SUPERFAMILY AND 
OTHER STRUCTURALLY RELATED MOLECULES 

Evidence of ancient evolutionary relationships have previously been proposed on 
the basis of X-ray crystal structures, structural protein motifs, or conserved sequence 
motifs. Using the consensus TGF-Q motif (I,V)xxPxx(Y,F)xxxxCxGxC defined in 
Fig. 3 and the program FINDPATTERNS [30], a search of protein sequence 
databases (SWISS-PROT release 25.0, PIR release 36.0; March 1993) was made. As 
expected, all the sequences listed in Fig. 1 were reported to match the pattern. No 
other matching sequences were found. Using an alternative approach, a search of 
nucleotide databases (GENBANK release 75.0, EMBL release 34.0; March 1993) 
with an ambiguous DNA sequence coding for this TGF-p motif was also performed. 
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Again all the previously identified TGF-Psuperfamily sequences were retrieved, along 
with two other sequence entries. The two extra matching sequences were Coxsackie- 
virus A21 viral genome (EMBL Database AC D00538) and a Homo sapiens 
(D22S272) anonymous DNA segment (EMBL database AC 216437) containing a 
(CA) repeat. Both lacked any homology outside of the TGF-/I peptide motif. In 
addition, the human sequence is unlikely to represent an isolated exon of an 
unidentified TGF-plike sequence since no classical splice donor/acceptor sites were 
found flanking the homology. These sequences are therefore likely to represent the 
false matches expected with such a database search. 

Glutaredoxins (thiol-transferases) 

Three regions of strong sequence conservation have been identified in the C- 
terminal domain of the mature TGF-Ppolypeptides (Figs 3 and 4). The most strongly 
conserved of these domains, the first, is very similar to a region found in animal 
glutaredoxins [42]. Out of 13 amino acid residues conserved in this region among 
TGF-@, nine are also conserved in glutaredoxins. This pattern is thought to reflect a 
distant relationship and a shared functional specificity. It is unique to the TGF-p 
superfamily and the glutaredoxins and is not found elsewhere in the current sequence 
databases. The similarity between TGF-/I superfamily polypeptides and glutaredox- 
ins, particularly the presence of a potential dithiol active site in TGF-P, suggest a 
mechanism of action for ligand-induced receptor activation similar to that proposed 
for gonadotrophic hormones, in which dithioldisulphide interchange reactions 
would be involved in the activation of the receptor [42]. 

pp63, Tyrosine Kinase Inhibitor 

A phosphorylated N-glycoprotein secreted by rat hepatocytes, pp63, displays three 
regions of more than 70% DNA sequence identity with AMH, but fails to show any 
homology with other members of the TGF-P superfamily [43] or any other sequence 
in the protein databases. The phosphorylated form of this protein inhibits insulin 
receptor kinase and receptor autophosphorylation. 

Nerve Growth Factor (NGF) 

The recent crystallographic determination of the structure of human TGF-/X? 
[3 1,321 uncovered an unusual protein fold. This is now thought to be very similar to a 
structural motif found in Nerve Growth Factor (NGF) [44,45]. Comparison of the 
structures shows the topology of the four central /3 strands and the three pairs of 
disulphide bonds to be conserved, despite the low sequence homology. It remains to 
be seen if this is an example of convergent evolution or evidence of an ancient 
common ancestor. 

CONCLUSION AND FUTURE DIRECTIONS 

In summary, we have attempted to present models of TGF-Psuperfamily evolution 
and review the current evidence. There are many areas that remain to be explored. 
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For example, can we find evidence for more TGF-plike molecules in Drosophila 
besides dpp and 60A? If not, did all present day TGF-plike sequences evolve from a 
dpp/60A-like gene? Do primitive species contain only a single TGF-/Mike molecule‘? 
The current sequencing of the genomes of Drosophila melanogaster, Caenorhabditis 
elegans, Saccharomyes cerevisiae and man and searches with the TGF-/I peptide 
motif may provide the final answer. These and many other questions need to be 
addressed in order that the evolution of such a diverse family of molecules can be 
understood. Whatever we find in these other species, it is very likely that during the 
next few years the description of new TGF-plike sequences based on their homology 
to those already known is likely to progress much more rapidly than our knowledge 
about their function. At the very least, an evolutionary classification of sequence data 
may allow a prediction of the biochemical properties of these novel proteins. 
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