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EVOLUTION OF THE TRANSFORMING GROWTH
FACTOR-BETA SUPERFAMILY

David W. Burt and Andrew S. Law

Department of Cellular and Molecular Biology
AFRC Roslin Institute
Roslin, Midlothian, EH25 9PS, U .K.

Transforming growth factor 1 (TGF-BI) is the prototype of an increasingly complex
superfamily of growth and differentiation factors. To date, a total of 74 TGF-B-like
sequences have been published, probably representing 23 distinct genes. These sequences
were obtained from mammalian, avian, amphibian and insect species, thus emphasising
the ancient nature of the TGF-B superfamily peptides. This article summarises current
hypotheses concerning the evolutionary history of this protein superfamily, based on the
molecular phylogeny of the published sequences. Comparison of the deduced amino acid
sequences leads to the definition of five main groups within the superfamily (TGF-B,
Bone Morphogenetic Proteins [BMP], Anti-Miillerian Hormone [AMH], Inhibin a
[INHa] and GDF-9) and six subgroups within the BMPs (60A, Decapentaplegic
[dpp]. Vgl, BMP-3, Inhibin B [INHf,s] and nodal). This classification predicts
possible phylogenetic and functional relationships among these proteins.

Keywords: Transforming growth factor, bone morphogenetic protein, phylogenetic
tree, molecular evolution, sequence comparisons.

INTRODUCTION

The Transforming Growth Factors-8 (TGF-fs) are a family of multifunctional
peptides that controls proliferation, differentiation and other functions in many cell
types [1]. Mature TGF-f1, the prototype member of the family, is a disulphide-linked
dimer of two identical 112 amino acid polypeptide chains. Each chain is derived by
proteolytic cleavage from the C-terminus of a 390 amino acid precursor [1]. The
glycosylated dimer is secreted as a complex with other proteins in a latent form that
can be activated by heat, acid or protease treatment [1]. Soon after its discovery, a
number of other proteins were found to share sequence homology with TGF-p1,
either throughout the whole polypeptide sequence (The TGF-g Family) or restricted
to the C-terminal region (The TGF-p Superfamily). The sequence homology observed
between these various proteins and the conservation of the genes encoding the various
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TGF-B-like molecules in species as diverse as insects and man strongly support the
fundamental role of these molecules in regulating basic biological processes such as
growth and development.

The number of proteins being assigned to the TGF-f superfamily on the basis of
their sequence similarity continues to increase. Seventy-four proteins have been
described to date, isolated from ten different species and falling into 23 distinct gene
types. These are listed together with their alternative names, species of origin and
reference in Fig. 1. It is beyond the scope of the article to present the biology of these
growth factors in any detail. A brief overview is given and the reader is encouraged to
consult the appropriate references for more details.

Five members of the immediate TGF-8 family have been described; they are now
known as TGF-8I through to TGF-g5 [1]. However, the common practice of naming
apparently novel unidentified proteins on the basis of their observed actions, coupled
with the multifunctional nature of the TGF- B proteins, has resulted in a profusion of

Names Species References
Anti-Mullerian hormone (AMH), Mullerian inhibiting substance (MIS)  Hu, Bo, Mu, Ra 5,46,47,48
Bone morphogenetic protein 2 (BMP-2, BMP-2A) Hu, Bo, My, Xe 25, 49, 50, 51
Bone morphogenetic protein 3 (BMP-3, BMP-3A), Osteogenin Hu, Bo 25
Bone morphogenetic protein 4 (BMP-4, BMP-2B) Hu, Bo, My, Ra, Xe 25,48, 51, 52, 53, 54,55
Bone morphogenetic protein S (BMP-5), short ear (se} Hu, Mu 23,56
Bone morphogenctic protein 6 (BMP-6), Vg-related-1 (Vgr-1) Hu, Mu, Ra 23,57,58
Bone morphogenetic protein 7 (BMP-7), Ostogenic protein 1 (OP-1) Hu, Bo, My, Xe 23, 49, 51, 59, 60
Ostogenic protein 2 (OP-2) Hu, My, Xe* 26
Decapentaplegic gene complex (dpp) Dr 14
60A protein (60A) Dr 17,18
Dorsalin-1 (dsi-1) Ck, Mu 16
GrowilvDifferentiation factor 1 (GDF-1) Hu, My 19,20
GrowtlvDifferentiation factor 3 (GDF-3), Vg-related-2 (Vgr-2) Mu 21,22
Growtly/Differentiation factor 9 (GDF-9) Mu 21
Inhibin o subunit (INHo) Hu, Bo, Po, Mu, Ra 61, 62, 63, 64, 65, 66, 67
Inhibin B4 subunit (INHB,), Activin Bs, XTC-MIF (mesoderm-inducing Hu, Bo, Po, Mu, Ra, Ck, Xe 11, 61, 62, 63, 66, 68, 69, 70, 71
factor), Erythroid differentiation factor (EDF)
Inhibin Bg subunit (INHBR), Activin 8B subunit Hu, Po, Sh, Mu, Ra, Ck, Xe 61, 63, 66, 67,70,71,72,73,74
Nodal Mu 13
Transforming growth factor-81 (TGF-81, TGF-84) Hu, Ce, Bo, Po, Mu, Ra, Ck 40, 75,76, 77,78, 79, 80, 81, 82
Transforming growth factor-82 (TGF-82), Glioblastoma-derived Tcell  Hu, Ce, Po, Mu, Ck, Xe 41, 83, 84, 85, 86, 87, 88, 89
suppressor factor (G-TSF), BSC-1 cell growth inhibitor (GI), Polyergin
Transforming growth factor-83 (TGF-83) Hu, Po, Mu, Ck 90, 91,92, 93,94
Transforming growth factor-85 (TGF-85) Xe 95
Vegetal hemisphere protein 1 (Vg1) Xe 12

FIGURE 1. The TGF-J superfamily, listing members whose sequence is known. Key to species: Hu: Human;
Ce: African Green Monkey; Bo: Cow; Po: Pig; Sh: Sheep; Mu: Mouse; Ra: Rat; Ck: Chicken; Xe: Xenopus
laevis; Dr: Drosophila melanogaster. * Xenopus laevis sequence AC JH0690 (PIR Database) shows moderate
sequence homology to the mammalian OP-2 gene (86% over 106 residues). It is therefore included in the table
under this heading. However, the sequence fragment also shows significant homology to other BMP-like
proteins. Exactly which member of the gene family this sequence represents remains to be determined.
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alternative names. In addition, many early studies utilised impure preparations. For
example, Sarcoma Growth Factor (SGF) is a mixture of TGF-8 and TGF-«, a
structurally unrelated protein with similar activity to the TGF-fs in certain assay
systems [2]. Buffalo rat liver cells produce differentiation inhibitor (DI), a potent
inhibitor of myoblast differentiation, which is a mixture of several TGF-f isoforms
[3]. Other names for TGF-f family members to be found in the literature include
Cartilage-Inducing Factor-A (CIF-A) and CIF-B, which correspond to TGF-f1 and
TGF-12, respectively [4].

In the wider TGF-f Superfamily, Anti-Miillerian hormone, also known as Miiller-
ian Inhibitory Factor (MIF) or Substance (MIS), is produced by the testes and is
responsible for the regression of the female Miillerian ducts in the male embryo [5].
Paradoxically, it may also play a role in the development of the female reproductive
system and in the adult female ovary [5, 6]. Other members of the superfamily
involved in reproductive processes include the Inhibins, heterodimeric proteins
consisting of a single inhibin « chain coupled to either an inhibin B, (Inhibin A) or an
inhibin g chain (Inhibin B), and Activins which are homo- or heterodimers of the
inhibin f subunits. Inhibins and Activins are produced in the gonads and reportedly
act to modulate the secretion of Follicle Stimulating Hormone (FSH) from the
pituitary gland. They may also have intragonadal paracrine actions {7, §, 9].

Activin has recently been found to have a wider range of biological activities,
including a potent mesoderm-inducing activity in amphibian animal cap assays {10]
and erythroid differentiation activity [11]. Indeed, roles in early development and
pattern formation have been invoked for many members of the TGF- 8 superfamily.
Xenopus vegetal hemisphere protein Vgl also reportedly induces the overlying animal
pole to form mesodermal tissue, although there is some uncertainty as to the precise
nature of this effect [12]. Mouse rodal encodes a molecule essential for mesoderm
formation and subsequent organisation of axial structures in early development [13].
The Drosophila decapentaplegic protein (dpp) participates in the establishment of
dorsal-ventral specification [14,15]. Chick dorsalin-1 (dsl-1) is the latest member of
the TGF-f superfamily to be cloned and characterised and appears to regulate the
differentiation of cell types along the dorso-ventral axis of the neural tube [16].
Drosophila 60A gene protein may participate in the development of the embryonic gut
[17, 18].

The embryonic growth factor GDF-1 may mediate cell differentiation events
during early development [19, 20]. Two further GDF-like sequences, GDF-3 and
GDF-9, have recently been isolated [21] using degenerate oligonocleotides. Their
function is, as yet, unknown. However, a sequence identical to GDF-9, Vgr-2
(Vg-related-2) has also been isolated independently by cross-hybridisation at low
stringency with a Xenopus Vgl probe [22]. The expression pattern of Vgr-2 suggests
that it is involved in the complex process of bone formation in the embryo.

This action of members of the TGF-f superfamily in bone and cartilage formation
is a recurrent theme. As mentioned previously, TGF-p1 and TGF-82 were originally
described by some authors as Cartilage-Inducing Factors. In addition, the osteogenic
proteins BMP-2 through BMP-7 induce cartilage and bone formation [23, 24, 25].
The related protein OP-2 is expressed early in embryogenesis and may also have bone
inducing activity [26]. However, multiple functions are suggested by the fact that all
BMP-like molecules are expressed during early embryonic development, as well as
later in life, in a range of tissue types [27].
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HUMAN MOUSE
Locus Location Locus Location References
TGFB1 19q13 Tgf-bl 7@3.3) 96, 28
TGFB2 1q41 Tgf-b2 1 (86.5) 97,98, 28
TGFB3 14q24 Tgf-b3 12 (36) 97,24
AMH 19p133 Amh 10 (49.5) 99, 29

nd nd Amh-rsl 1(104) 29

nd nd Amh-rs2 13 (50) 29

nd nd Ambh-rs3 nd 29

nd nd Amh-rsd 12 (43) 29

nd nd Ambh-rsS nd 29

nd nd Ambh-rs6 nd 29

nd nd Amh-rs7 15 (40) 29

nd nd Amh-rs8 nd 29
INHA 2q33-qter Inha 1 (20.5) 100, 101
INHBA 7pl15-p13 Inhba 13(19) 100, 101, 102
INHBB 2cen-q13 Inhbb 12 (48-50) 100, MM

nd nd pInhbb 1 (30-34) MM
BMP2 20p12 Bmp2a 2(75) 103, 104, 28
BMP3 4pl4-q21 Bmp3 5 (60) 103, 28
BMP4 14 Bmp2b-1 14 (24.4) 105, 28

nd nd Bmp4a X (32.2) 28
BMPS 6 Bmps, se 9(42) 106, 56
BMP6 6 Vgr-1 13 (28) 106, 28
BMP7 20 Bmp7 nd 106
GDF3 nd Vgr-2 6(57.4) 22

FIGURE 2. Chromosomal location of genes of the TGF-f superfamily in man and mouse. Key: Amh-
rs = Amh-related sequence; nd = not determined. MM = Marti Matzuk, personal communication. The
figure in brackets in the mouse gene location column represents the distance of the gene from the centromere in
centimorgans (cMs).

A number of TGF-f superfamily genes have been mapped onto the genomes of
mouse and man and are listed in Fig. 2. Chromosomal assignments of TGF-§
superfamily members indicate that these genes have become widely dispersed during
their evolution [28]. It is likely that the entire multigene family evolved from a series of
gene duplications and became separated by chromosomal translocations. Interest-
ingly, a number of apparent, uncharacterised TGF-fBlike genes were identified in
these mapping studies. In addition to the expected BMP-4 locus on mouse chromo-
some 14, an X-linked BM P-4a gene was also discovered [28]. Whether this gene is
present in other species remains to be determined. Eight unlinked, polymorphic
AMH-related loci (Amh-rsi through Amh-rs8) have also been detected [29]. These
may represent novel members of the TGF-8 superfamily or artefactual sequences.
Until these Amh-rs loci are cloned and characterised, this question must remain
unanswered.
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Many investigators have isolated, sequenced and compared TGF-B-like sequences.
These comparisons have indicated homologies between polypeptides and defined
conserved peptide domains or motifs. For some groups of proteins, homology is
observed throughout the precursor protein (e.g. within the TGF-8 or BMP sub-
groups) but taking the superfamily in its entirety, sequence homology is restricted to
the C-terminal mature peptide. The degree and extent of sequence homology suggests
phylogenetic relationships within the TGF-f superfamily. For distantly related genes
the definition of homologous (orthologous) or duplicated (paralogous) genes is often
difficult; a phylogenetic study can often solve this problem. In addition to defining its
history, an evolutionary classification of the TGF-f superfamily into groups and sub-
groups can also suggest functional relationships. This is useful in an era when PCR
can rapidly identify new members of a multigene family with relative ease. Conse-
quently, new genes are often discovered purely on the basis of sequence homology
and in the total absence of functional data. Evolutionary information from sequence
data may therefore allow a prediction of the possible biochemical properties of these
otherwise uncharacterised proteins.

THE EVOLUTION OF THE TGF-§ SUPERFAMILY

The TGF-p Superfamily

To focus the discussion on the evolution of the multigene family rather than the
evolution of the separate species studied, one distinct example of each TGF-8
superfamily member (the human gene wherever possible) was selected for analysis.
However, in some cases it was not possible to be absolutely certain that the genes
included were heterologous genes. For example, it is impossible to determine whether
the Drosophila genes dpp and 60A4 and the Xenopus TGF-5 gene represent homolo-
gues of genes present in other species or are products of recent gene duplications due
to the large evolutionary distance separating these species from the others involved in
the study. A multiple alignment of the selected sequences was made using the
PILEUP program [30] based on the C-terminal sequence conserved in all TGF-§
superfamily members. The result is shown in Fig. 3. Proteins from the TGF-j
superfamily are only active as homo- or heterodimers, with the two polypeptide
chains being linked by a single disulphide bond. From X-ray crystallography studies
of TGF-p2 it is known that all other cysteines are involved in intrachain disulphide
bonds [31,32]. This structure would therefore not be expected to accept major
insertions or deletions of amino acid residues. Consequently, the inclusion of gaps in
the alignment was minimised by the imposition of large gap weights. The consensus
sequence is displayed beneath the alignment. Fig. 4 plots graphically the relative
degree of amino acid conservation at each site across the whole of the TGF-S
superfamily. Together these two figures reveal the modular nature of the TGF-f
superfamily proteins with the two most highly conserved domains lying at the N- and
C-terminal regions of the mature proteins. These two domains contain the seven
invariant residues conserved across the entire superfamily. A lesser, but still signifi-
cant, region of homology lies in the centre. These three conserved domains have long
been recognised {l14]. The biological significance of these domains is unclear.
However, there is experimental evidence that domains IT and Il are important in
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FIGURE 4. Degrees of amino acid conservation throughout the C-terminus of the 23 TGF-S superfamily
proteins. The similarity plot was constructed with the PLOTSIMILARITY program (30) using the sequence
alignment shown in Fig. 3. The horizontal axis represents the amino acid residue position relative to the first
invariant cysteine. The vertical axis is the similarity score based on the 23 TGF-S-like sequences. Arrows
indicate the sites where the amino acid residues are conserved in all proteins. See text for a discussion of the
conserved domains (1, I1, III).

TGF-pI1 receptor binding [33]. The limited homology found in the central domain
also overlaps with a region that distinguishes the specificities of the TGF-81 and
TGF-B2 proteins [34]. Within this region only 14 differences are found between TGF-
Bl and TGF-p2, and presumably some or all of these residues specify this difference.

Figure 5 shows the relative degree of amino acid conservation between all the
members of the TGF-f superfamily. This clearly shows the subfamily groupings, with
the highest degree of conservation observed within the members of the TGF-8
subfamily and the BMP groupings.

The TGF-p superfamily C-terminal sequences were used to generate a distance
matrix (PROTDIST) using the Kimura 2-p correction for multiple substitutions and
different transitions/transversion rates. PROTPARS, a maximum parsimony pro-
gram, is often used to group together protein sequences. However, it has two major
disadvantages. Firstly, PROTPARS does not correct for multipie substitutions. This
is important for the analysis of distantly related genes. Secondly, the deduced tree
topology is distorted by lineages with a greater than two-fold difference in rates of
sequence divergence which is known to be the case for the TGF-8 superfamily [35].
The distance methods FITCH and NEIGHBOR can correct for multiple substitu-
tions and do not assume rate constancy across different lineages [36]. These methods
were therefore used in this analysis.

Distance data derived from the PROTDIST program was used in the tree building
program PITCH to find the single best phylogenetic tree. The result of this analysis is
shown in Fig. 6. Since the length of the aligned region was short (111 amino acid
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FIGURE 6. Phylogenetic tree obtained from distance matrix analysis of TGF-$ superfamily C-terminal
amino acid sequences. Branch lengths are drawn to scale. Units are units of distance as calcnlated in the
distance matrix. 30,483 trees were examined with an average percentage standard deviation (APSD) of 7.404.
The APSD provides an estimate of the error in branch length and position. The tree is drawn unrooted since it
is impossible to determine which sequence represents the most ancient ancestral gene.

residues) and the presumed evolutionary distances large, care must be taken not to
over-interpret the results obtained by this method. Consequently, a Bootstrap
analysis was performed to assess the validity of the phylogenetic tree. A Bootstrap
analysis is a method of repeatedly sampling the data under study to infer confidence
limits for each branch of the tree and was introduced into phylogenetic studies by
Felsenstein [37]. The result of the Bootstrap analysis is shown in Fig. 7. The tree
described by this analysis groups the most closely related proteins together; the
number at each bifurcation describes the number of times the grouping to the right of
the branching point occurred as a percentage of the total number of analyses
performed. However, this analysis is confounded by the large number of genes
studied combined with the relative antiquity of the genes and the number of species
included. A more meaningful analysis will only be possible when all the TGF-8
superfamily gene sequences from a single species are described. However, it is clear
that the divergence between the main branches illustrated in Fig. 6 is very ancient,
occurring prior to the separation of insects and other arthropods.

Since the divergence rates are so variable between and within groups [35] it is not
possible to use a program which assumes equal rates in all branches to derive a likely
root to the phylogenetic tree. In addition, it is impossible to define an outgroup or
distantly related sequence to root the TGF-g superfamily tree. The final gene tree is
therefore unrooted, but serves to classify the family into groups and subgroups.

It is apparent from both methods of analysis that the TGF-f superfamily may be
split into subgroupings. This is most obvious from Fig. 6. The immediate TGF-£
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FIGURE 7. Majority-rule and strict consensus tree of TGF-§ superfamily proteins derived from a
bootstrapping analysis. The alignment shown in Fig. 3 was resampled using SEQBOOT (n = 100), distance
matrices were calculated (PROTDIST), and a consensus tree was calculated using the program CONSENSE
(PHYLIP 3.5). The number at each fork indicate the number of times the grouping to the right of that fork
occurred as a percentage of the total number of data samplings. The branch lengths do not represent any scale.
The tree has been arbitrarily rooted to Xenopus laevis TGF-p5.

sequences are clustered together as a subgroup, as are the BMP-related genes. The
BMP-like genes may also be further divided into subgroupings with BMP-5. -6 and -7
more closely related to each other and, to a lesser extent, 604 and OP-2 than they are
to BMP-2 and BMP-4. BMP-3, whilst apparently separate from the main BMP
grouping at first glance, represents a third sub-branch of this group presumably
resulting from a more ancient duplication event. It is important to remember when
viewing such trees that relative divergence is proportional to the length of branch
between individual sequence names. Each node may be freely rotated provided that
branch lengths are maintained.
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TABLE 1. Pairwise comparisons of the propeptide and mature regions of the BMPs. The numbers
represent % amino acid identity.

BMP-2 BMP-4 BMP-5 BMP-7 BMP-6 OP-2

BMP-2 - 57 27 29 29 27
BMP-4 86 - 26 28 29 28
BMP-5 58 56 - 70 57 58 Pro-
BMP-7 59 58 79 - 75 57 region
BMP-6 58 57 81 66 - 56
OP-2 53 52 61 62 62 -

Mature

BM P-related Genes

An extension of the comparison of mature peptide sequences to the propeptide
region of the BMP-related proteins also verifies the tree topology. BMP-2 and BMP-4
share 86% sequence identity in the mature peptide and 57% in the proregion (Table
1). It would seem likely that BMP-2 and -4 are the products of a recent gene
duplication which has occurred from a dpp-like gene after the divergence of insects
and vertebrates 700 million years ago. Which of the two is the more ancient is
impossible to determine (c.f. Bootstrap scores in Fig. 7). It is also clear that the
chicken dorsalin gene is derived from this lineage, but again it is not possible to
determine if this represents a gene homologous or heterologous to the dpp gene.
BMP-5, BMP-6, BMP-7 and OP-2 also share a high level of sequence identity in their
proregions. These genes are clearly derived from the same lineage as the 604 gene.
However, again it is impossible to determine the exact order of the duplications that
led to these genes.

TGF-B1, TGF-82 and TGF-f3 Genes

A more informative approach to determining the evolutionary history of the TGF-
B family is to compare the DNA sequences that code for the precursor polypeptide
sequence. The exact methodology chosen for such comparisons must be determined
by the relative closeness of the genes under study. For closely related sequences, a
comparison of the third base in each codon is very sensitive, Mutations in the third
coding position are frequently ‘silent’ mutations and occur at a much higher
frequency than at the first or second coding positions. Consequently, over a short
period of time (in evolutionary terms), the number of mutations occurring in this
position will be such that a meaningful statistical conclusion may be drawn. However,
for more distantly related genes, this more rapid rate of mutation results in a near
random variation at the third coding base and comparison of the first and second
bases of each codon is recommended.
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From a comparison of the synonymous components at the third base of the coding
sequences of all the reported TGF-f sequences, it was suggested that the chicken
TGF- B4 gene was probably the avian homologue of the mammalian TGF- ] gene [38]
(note: the sequence originally described as chicken TGF-fI [39] was the result of an
erroneous sequencing of a porcine TGF-BI clone [40]). This was confirmed by
Southern blotting of avian and mammalian genomic DNAs using either chicken
TGF-p4 or human TGF-B1 probes. At first this seems inconsistent with the
comparison of amino acid sequences. The TGF-f1 and TGF-$4 proteins show
sequence identities of 45 and 82% in the pro- and mature regions, respectively.
Usually, for any given TGF-f isoform, both these regions are highly conserved.
typically, 80 and 95%, respectively. The lack of sequence identity in the proregion has
frequently been cited as evidence that the five TGF-f proteins characterised so far
(TGF-pB1 through to TGF-f5) are the products of five distinct (heterologous) genes.
However, the proposed TGF-f phylogeny suggests that the ancestral gene for TGF-
Bl and TGF- 4 diverged almost 300 million years ago. This is approximately the time
of the divergence of mammalian and avian ancestors. A common gene at this point
would therefore have diverged sufficiently to create what might appear to be, at first
sight, two distinct TGF-f proteins.

In that same study [38], it was suggested that the TGF- 1 and TG F- 3 genes shared
a common ancestor approximately 300 million years ago, prior to the emergence of
either the TGF-B2 or TGF-B5 genes. However, due to the stochastic nature of base
substitutions at the third coding position and the long times of sequence divergence
being considered (300-700 million years), it is possible that the position of the TGF-
genes in that proposed phylogeny may require some re-adjustment. The errors on the
rates of divergence calculated are high and an examination of the first and second
components may reveal a more significant relationship. Using essentially the same
DNA alignment [38] but with the addition of the porcine TGF-f2 sequence [41], a
distance matrix was calculated combining the information from coding bases | and 2.
This was generated using DNADIST [36] with the Kimura 2-p model to correct for
multiple base substitutions and a transition/transversion ratio of 2. The best tree was
calculated using FITCH (local and global rearrangements of the tree, 10 jumbles) and
is shown in Fig. 8. This tree suggests that TGF-f1, TGF-p4 and TGF-$5 may form a
single group, and 7GF-f82 and TGF-B3 another. This in turn suggests that the
Xenopus laevis TGF-BS gene is the amphibian homologue of TGF-B1. This hypothesis
is supported by the lack of any other TGF-f genes besides TGF-$2 and TGF-f5 in
screens of Xenopus laevis TGF-f genes (Ali Hemmati-Brivanlou and Igor B. Dawid,
personal communication). The lack of a Xenopus laevis TGF-3 gene implies that
either the duplication that resulted in TGF-B3 occurred after the divergence of
amphibians or that the TGF-$3 gene may have been deleted in this lineage. Only
further studies of other amphibian species will resolve these questions.

In Drosophila the only TGF-B-like genes to be identified to date are dpp and 604,
even using PCR methods [17, 18]. Primers designed specifically to amplify the TGF-
Bs. in preference to dpp or BMPs, did not permit recovery of any additional
Drosophila sequences. Thus, if other TGF-B superfamily members exist in the
Drosophila genome, they may require novel approaches for their isolation.

The isolation and comparison of the primary sequences of TGF-f genes from other
species will provide further evidence to test the current models of TGF-8 gene
evolution.
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FIGURE 8. Phylogenetic tree obtained from distance matrix analysis of TGF-J nucleotide sequences, based
on nucleotide substitutions at the first and second position in the aligned codons. The nucleotide alignment is
identical to that previously published [38]. Branch lengths are drawn to scale in units of distance as calculated
in the distance matrix. 4,265 trees were examined with an APSD of 2.605. This tree is drawn rooted to the
Xenopus laevis TGF-f5S gene. The numbers at each fork indicate the percentage likelihood of the grouping to
the right of the fork occurring in a bootstrapping analysis (# = 100 resamplings).

ANCIENT RELATIONSHIPS BETWEEN TGF-§ SUPERFAMILY AND
OTHER STRUCTURALLY RELATED MOLECULES

Evidence of ancient evolutionary relationships have previously been proposed on
the basis of X-ray crystal structures, structural protein motifs, or conserved sequence
motifs. Using the consensus TGF-g motif (I,V)xxPxx(Y,F)xxxxCxGxC defined in
Fig. 3 and the program FINDPATTERNS [30], a search of protein sequence
databases (SWISS-PROT release 25.0, PIR release 36.0; March 1993) was made. As
expected, all the sequences listed in Fig. 1 were reported to match the pattern. No
other matching sequences were found. Using an alternative approach, a search of
nucleotide databases (GENBANK release 75.0, EMBL release 34.0; March 1993)
with an ambiguous DNA sequence coding for this TGF- 4 motif was also performed.



TGF-B Superfamily 113

Again all the previously identified TGF-f superfamily sequences were retrieved, along
with two other sequence entries. The two extra matching sequences were Coxsackie-
virus A2l viral genome (EMBL Database AC D00538) and a Homo sapiens
(D22S272) anonymous DNA segment (EMBL database AC Z16437) containing a
(CA) repeat. Both lacked any homology outside of the TGF-f peptide motif. In
addition, the human sequence is unlikely to represent an isolated exon of an
unidentified TGF-Slike sequence since no classical splice donor/acceptor sites were
found flanking the homology. These sequences are therefore likely to represent the
false matches expected with such a database search.

Glutaredoxins (thiol-transferases)

Three regions of strong sequence conservation have been identified in the C-
terminal domain of the mature TGF- B polypeptides (Figs 3 and 4). The most strongly
conserved of these domains, the first, is very similar to a region found in animal
glutaredoxins [42]. Out of 13 amino acid residues conserved in this region among
TGF-fs, nine are also conserved in glutaredoxins. This pattern is thought to reflect a
distant relationship and a shared functional specificity. It is unique to the TGF-f
superfamily and the glutaredoxins and is not found elsewhere in the current sequence
databases. The similarity between TGF-f superfamily polypeptides and glutaredox-
ins, particularly the presence of a potential dithiol active site in TGF-p, suggest a
mechanism of action for ligand-induced receptor activation similar to that proposed
for gonadotrophic hormones, in which dithiol-disulphide interchange reactions
would be involved in the activation of the receptor [42].

pp63, Tyrosine Kinase Inhibitor

A phosphorylated N-glycoprotein secreted by rat hepatocytes, pp63, displays three
regions of more than 70% DNA sequence identity with AMH, but fails to show any
homology with other members of the TGF-f superfamily {43] or any other sequence
in the protein databases. The phosphorylated form of this protein inhibits insulin
receptor kinase and receptor autophosphorylation.

Nerve Growth Factor (NGF)

The recent crystallographic determination of the structure of human TGF-f82
{31, 32] uncovered an unusual protein fold. This is now thought to be very similar to a
structural motif found in Nerve Growth Factor (NGF) [44, 45]. Comparison of the
structures shows the topology of the four central § strands and the three pairs of
disulphide bonds to be conserved, despite the low sequence homology. It remains to
be seen if this is an example of convergent evolution or evidence of an ancient
common ancestor.

CONCLUSION AND FUTURE DIRECTIONS

In summary, we have attempted to present models of TGF-f superfamily evolution
and review the current evidence. There are many areas that remain to be explored.
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For example, can we find evidence for more TGF-flike molecules in Drosophila
besides dpp and 6047 If not, did all present day TGF-B-like sequences evolve from a
dpp/60A-like gene? Do primitive species contain only a single TGF-f-like molecule?
The current sequencing of the genomes of Drosophila melanogaster, Caenorhabditis
elegans, Saccharomyces cerevisiae and man and searches with the TGF-§ peptide
motif may provide the final answer. These and many other questions need to be
addressed in order that the evolution of such a diverse family of molecules can be
understood. Whatever we find in these other species, it is very likely that during the
next few years the description of new TGF-S-like sequences based on their homology
to those already known is likely to progress much more rapidly than our knowledge
about their function. At the very least, an evolutionary classification of sequence data
may allow a prediction of the biochemical properties of these novel proteins.
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