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ABSTRACT

Previous studies have enabled exact prediction of probabilities of identity-by-descent (IBD) in random-
mating populations for a few loci (up to four or so), with extension to more using approximate regression
methods. Here we present a precise predictor of multiple-locus IBD using simple formulas based on exact
results for two loci. In particular, the probability of non-IBD XABC at each of ordered loci A, B, and C can
be well approximated by XABC ¼ XABXBC/XB and generalizes to X123. . .k ¼ X12X23. . .Xk�1,k/Xk�2, where X is
the probability of non-IBD at each locus. Predictions from this chain rule are very precise with population
bottlenecks and migration, but are rather poorer in the presence of mutation. From these coefficients, the
probabilities of multilocus IBD and non-IBD can also be computed for genomic regions as functions of
population size, time, and map distances. An approximate but simple recurrence formula is also devel-
oped, which generally is less accurate than the chain rule but is more robust with mutation. Used together
with the chain rule it leads to explicit equations for non-IBD in a region. The results can be applied to
detection of quantitative trait loci (QTL) by computing the probability of IBD at candidate loci in terms of
identity-by-state at neighboring markers.

IN a recent article formulas for computing probabil-
ities of identity-by-descent (IBD) at multiple loci in

random-mating populations were obtained (Hill and
Weir 2007) by extending methods of Weir and
Cockerham (1969, 1974) for a haploid model. Recur-
rence equations were presented for multilocus non-IBD,
from which IBD can be computed; but the number of
terms involved quickly becomes impracticably large to
compute. For example, prediction of nonidentity at three
loci requires recurrence equations for a total of 16 non-
IBD measures defined for loci sampled on two, three,
four, five, and six different haplotypes. For four loci the
number of measures rises to 139 (Hill and Weir 2007).
Hernández-Sánchez et al. (2004) have developed ap-
proximations based on multiple regression to compute
IBD at multiple loci from that at two loci, but the for-
mulas become increasingly less tractable and accurate
as the number of loci increases.

Here we develop a straightforward method (the chain
rule) for predicting probabilities of multilocus non-IBD,
and thus IBD, which uses exact results only on two-locus
non-IBD probabilities. Assuming a known population
history, this predictor can be very precise for many loci
and can enable IBD for a whole chromosome region to
be computed. We also develop simple approximate recur-

rence equations that are generally less precise, except in
the presence of mutation.

An application of multiple-locus extensions of Wright’s
inbreeding coefficient is in gene or quantitative trait loci
(QTL) mapping on the basis of the association between
phenotypic similarity of individuals and shared IBD at
a particular genomic region (Meuwissen et al. 2002;
Hernández-Sánchez et al. 2006). The magnitude of IBD
at a QTL is computed from the identity-by-state (IBS) of
neighboring marker loci, but to do so it is necessary to
know the extent of joint IBD across the QTL and markers
relative to some reference population.

METHODS

Background: Definitions: Let A, B, and C be three loci
located in that order on a chromosome, and denote by
FA, FAB, and FABC probabilities of IBD at locus A, loci A
and B, and loci A, B, and C, respectively. Similarly, let XA,
XAB, XABC denote the probabilities of non-IBD at the
corresponding loci; i.e., XAB is the probability that nei-
ther A nor B is IBD. These quantities refer to the case
where identity is examined at all loci on a pair of haplo-
types. There are other measures when considering more
than two haplotypes. For example, two IBD loci can also
be sampled in three and four different haplotypes (Weir

and Cockerham 1974).
The IBD and non-IBD probabilities are related at any

generation by, for example,
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FA ¼ 1� XA; ð1aÞ

FAB ¼ 1� XA � XB 1 XAB ð1bÞ

FABC ¼ 1� XA � XB � XC 1 XAB 1 XAC 1 XBC � XABC

ð1cÞ

(Hill and Weir 2007). In general, k-locus IBD and non-
IBD measures are related as

F1...k ¼ 1�
Xk

i¼1

Xi 1
Xk

i , j

Xij � . . . 1 ð�1ÞkX1...k ; ð1dÞ

where F1. . .k and X1. . .k denote, respectively, the prob-
abilities of IBD and non-IBD for all ordered loci 1 to k
on two haplotypes. Equation 1d is an example of the
inclusion–exclusion principle. The multilocus meas-
ures used here, which are extensions of the Wright–
Malécot definitions of inbreeding such that pairs of
genes at each of two loci may be IBD even though iden-
tity at each locus traces back to different ancestors, differ
from the ‘‘chromosome segment homozygosity’’ defined
by Hayes et al. (2003), which defines identity of haplo-
types back to a common ancestral haplotype without in-
tervening recombination.

The following parameters are also used and assump-
tions made. All genes in the founder population (gener-
ation t ¼ 0) are assumed to be non-IBD at all loci; i.e.,
XA(0) ¼ XAB(0)¼ . . .¼ 1. The effective population size is
N diploids (2N genes) and is constant over generations.
There is random mating (with or without selfing, as
specified) and there is no selection at or near the iden-
tified loci. The recombination fraction between loci A
and B is rAB and there is no crossover interference. The
map length of a region of chromosome is denoted l (in
morgans). The rate of mutation at each locus is u, where
any mutant gene is assumed to be non-IBD to all existing
genes at that locus in the population (i.e., infinite-alleles
model), and the rate of migration is m, where migrant
haplotypes come from an infinitely large and unrelated
population, such that in the generation following migra-
tion, genotypes comprising one or two migrant haplo-
types are non-IBD at all loci. Also we define RAB¼ 4NrAB,
L ¼ 4Nl, U ¼ 4Nu, and M ¼ 4Nm.

Exact method: By extending methods of Weir and
Cockerham (1974), Hill and Weir (2007) give an ex-
act way to predict probabilities of multilocus non-IBD,
and from that IBD, by transition matrix iteration over
generations, assuming a haploid model. Although the
method is feasible for four loci it rapidly becomes un-
wieldy with more, so we review and consider alternative
methods to predict identity for multiple loci from
results for fewer loci, e.g., FABC from FAB and FBC.

Regression method: Hernández-Sánchez et al. (2004)
proposed a regression analysis to predict probabilities of
identity at three and four loci from those on two loci
given by Weir and Cockerham (1974). For example,

FAB, FAC, and FBC are computed each generation, and
from these the regression coefficients of identity at locus
B given identity at A are calculated; for example, bB.A ¼
Cov(FA, FB)/Var(FA) ¼ (FAB � FAFB)/½FA(1 � FA)�. Con-
sequently the conditional probability FBjAC of identity
at locus B given identity at A and C is predicted from a
partial regression equation including terms in bB.A and
bB.C, and thus the three-locus identity FABC ¼ FBjACFAC

(Hernández-Sánchez et al. 2004, Equation 3). On the
basis of this three-locus prediction, but still using exact
results for only two loci, Hernández-Sánchez et al. ex-
tended the regression method to predict identity at four
loci in a two-step process. The method gave good pre-
dictions for three- and four-locus identity obtained by
simulation, for example, for three- and four-locus inbreed-
ing coefficients in random-mating diploid populations
for values of R¼ 4 between adjacent loci (e.g., N¼10, r¼
0.1) and 8 (N¼ 20, r¼ 0.1). Predictions were poorer for
four loci or if the conditional identities were predicted
for loci outside (C from A and B) rather than between
the two reference loci (B from A and C). Their method
could be extended by standard multiple-regression meth-
ods to make more precise predictions for five or more
loci using the results given by Hill and Weir (2007) for
three or four loci, but computation of the partial regres-
sion coefficients rapidly becomes unwieldy as the num-
ber of loci increases.

Conditional (chain-rule) method for multilocus non-
IBD: Principle: The regression method of Hernández-
Sánchez et al. (2004) does not utilize the ordering of
the loci on the chromosome directly, i.e., the fact that for
loci ordered A, B, C, . . . , a recombination between A and
B usually also implies a recombination between A and
C. This suggests alternative methods for predicting the
multilocus (non)identities by utilizing such informa-
tion. Therefore a ‘‘natural’’ predictor of the three-locus
nonidentity is to approximate the joint probability XABC¼
XABXCjAB by X̂ABC ¼ XABXCjB, where XCjB ¼ XBC/XB is the
conditional probability of nonidentity at locus C given
nonidentity at the adjacent locus B. This implies that
knowledge of IBD probability at the more distant A adds
no further information and gives the predictor

X̂ABC ¼ XABXBC=XB : ð2Þ

In the absence of mutation it turns out that (2) is remark-
ably precise, as shown by examples in Table 1 in which
predictions of XABC are compared to exact values (Hill

and Weir 2007), with most predictions deviating ,0.1%
in absolute terms and 1% in relative terms. These are better
than those based on the regression method of Hernández-
Sánchez et al. (2004), particularly at higher values of R. For
example, for N¼ t¼ 100, the predictions from the regres-
sion method are 0.6058 (i.e., exact), 0.5796, 0.5159, and
0.3802 (an absolute deviation of almost 1% in XABC) for
RAB ¼ RBC ¼ 0, 1

4, 1, and 4, respectively (cf. Table 1). It is
important to note that, unlike in the regression method,
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the ordering of the loci is important for the chain rule; for
example, XABXAC/XA is a very poor predictor of XABC.

In view of the high predictive value of Equation 2,
unsurprisingly the natural extension to four loci

X̂ABCD ¼ XABXBC XCD=ðXBXCÞ

is also a good predictor (results not shown). For k loci, this
‘‘chain-rule’’ predictor of multilocus nonidentity X̂12...k,
from adjacent two-locus Xi;i11 and one-locus nonidenti-
ties X [ Xi, which are assumed to be the same at each
locus, is

X̂12...k ¼
Yk�1

i¼1

Xi;i11=X k�2 ð3Þ

and for equally spaced markers

X̂12...k ¼ X ðX1;2=X Þk�1: ð4Þ

Examples of predictions of multilocus nonidentity
computed from Equation 4 are compared with results
obtained by stochastic simulation using Wright–Fisher
sampling in Figure 1, where it is seen that there is ex-
cellent correspondence for these examples in which there
is a population of constant size with no mutation or mi-
gration. The method can be used for any mating system,
e.g., a haploid (Table 1) or a diploid with selfing included
(Figure 1), for nonconstant population size, and in the
presence of migration or mutation. As we show subse-
quently, of these only mutation causes significant errors.

Regional non-IBD: Using Equation 4, the probability
X(l) that all sites in a region of length l morgans are non-
IBD can be predicted by dividing it into very many, say
s ¼ k � 1, small equally sized segments and taking the
limit

X̂ðlÞ ¼ X lim
s/‘
f½Xðl=sÞ=X �sg; ð5Þ

where X(l/s) denotes the probability of joint non-IBD of
a pair of markers l/s map units apart. This probability

approaches that for loci with recombination fraction r¼
l/s as s / ‘. Equation 5 can therefore be written as

X̂ðlÞ ¼ X lim
r/0

Xðr Þ
X

� �l=r� �

¼ X lim
r/0

1 1
r

X

� � XðrÞ � X

r

� 	� �l=r� �
:

The limits are

lim
r/0

Xðr Þ ¼ X and lim
r/0

Xðr Þ � X

r

� 	
¼

dXðr Þ
dr
jr¼0;

the derivative of the two-locus non-IBD probability with
respect to the recombination fraction r between the loci
evaluated at r ¼ 0, and it is convenient to define

TABLE 1

Exact (E) and predicted (P, from Equation 2) values of three-locus nonidentity XABC with a haploid model and no
mutation or migration for N ¼ 100 and a range of RAB ¼ 4NrAB and RBC ¼ 4NrBC

RAB, RBC: 0, 0: 1
4,

1
4

1
4, 1 1, 1 1, 4 4, 4

t E, P E P E P E P E P E P

25 0.8822 0.8792 0.8792 0.8748 0.8748 0.8705 0.8704 0.8554 0.8553 0.8406 0.8404
50 0.7783 0.7683 0.7683 0.7545 0.7545 0.7410 0.7409 0.6998 0.6996 0.6611 0.6606
100 0.6058 0.5794 0.5794 0.5457 0.5456 0.5141 0.5138 0.4375 0.4369 0.3727 0.3715
150 0.4715 0.4322 0.4321 0.3856 0.3854 0.3443 0.3438 0.2616 0.2608 0.1992 0.1979
200 0.3670 0.3202 0.3201 0.2689 0.2687 0.2261 0.2255 0.1533 0.1526 0.1044 0.1033
300 0.2223 0.1740 0.1739 0.1281 0.1279 0.0945 0.0940 0.0513 0.0509 0.0281 0.0276
400 0.1347 0.0940 0.0939 0.0603 0.0602 0.0388 0.0386 0.0170 0.0168 0.0075 0.0073

Predictions are exact if RAB ¼ 0 or RBC ¼ 0.

Figure 1.—Probabilities of non-IBD at multiple loci (X1. . .k)
over generations (t). Predictions using Equation 4 are shown
as solid lines and computer simulations (1000 replicates) as
dashed lines for a monoecious diploid population. N ¼ 100,
with 100 cM between outside markers, with equal spacing of
markers within the region.
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g ¼
dXðr Þ
Xdr
jr¼0 [

d log XðrÞ
dr

jr¼0: ð6Þ

Using the definition of the exponential function, Equa-
tion 5 reduces to

X̂ðlÞ ¼ X lim
r/0
ð1 1 rgÞl=r ¼ X expðlgÞ: ð7Þ

Equation 7 can also be derived from the incremental
change in X(l ) as l is increased by an infinitesimally
small amount and integrating the resultant ‘‘growth’’
equation.

The derivatives in Equation 6 (which are negative)
can be evaluated numerically at any generation by iter-
ation of the transition matrix for a small value of r and
computing g as ½X(r)/X � 1�/r. To ensure there are no
errors due to rounding or inclusion of higher-order
terms, consistency can be checked using a range of val-
ues of r (we found consistency for r between 10�4 and
10�7). Equation 7 can also be expressed in terms of L ¼
4Nl if the derivative is similarly rescaled. Examples are
given in Figure 2. In these examples mutation is assumed
to be absent. Indeed, to include mutation it would be
necessary to define a mutation rate per unit map length
as a continuous function, and in view of the limited ac-
curacy of the chain rule in the presence of mutation, we
do not consider this extension to the analysis.

Multilocus IBD: FABC, FABCD, etc., can be predicted from
Equations 1–3 directly. For example, from Equations 1c
and 2

F̂ABC ¼ 1� XA � XB � XC 1 XAB 1 XAC 1 XBC

� XABXBC=XB : ð8Þ

A similar simple conditional argument to that used to
obtain Equation 2 would lead to a different prediction
F̃ABC ¼ FABFBC/FB. This prediction equation for F̃ABC does
not hold because the conditional probability FBCjAB does
not equal FBCjB as the regions AB and BC may be IBD for
different founder haplotypes. In contrast, replacing non-
IBD for IBD coefficients using Equations 1a and 1b and
rearranging Equation 8 gives

F̂ABC ¼ FAC � ðFA � FABÞðFC � FBC Þ=ð1� FBÞ: ð9Þ

Thus for the chain rule in terms of IBD, the term on the
right of Equation 9 is the overall probability of identity
at A and C less situations in which there is nonidentity at
B but identity at A and C.

Prediction of k-locus IBD from non-IBD using Equa-
tion 1d involves 2k � 1 terms, and becomes computa-
tionally impractical for evaluating IBD over multiple
sites (e.g., 6 hr of computation for k ¼ 30 with an �1
Mflop computer). There is, however, a very efficient al-
gorithm for adding successive loci in the chain. Note
that

FAB � F ¼ XAB � X

FABC � FAB ¼ �X 1 XAC 1 XBC � XABC

from Equations 1b and 1c, and from Equation 2

F̂ABC � FAB ¼ XAC � X 1 XBC � XABXBC=X

¼ FAC � F � ðXBC=X ÞðFAB � F Þ:

Similarly

F̂ABCD � F̂ABC ¼ FAD � F � ðXBD=X ÞðFAB � F Þ
� ðXCD=X ÞðF̂ABC � FABÞ:

Let D1 [ F, D2 [ F12� F, D3 [ F̂123 � F12, and, in general,
Di [ F̂1...i � F̂1...i�1. Then

Dk ¼ X1k � X � 1

X

Xk�1

i¼2

ðXikDiÞ ð10Þ

for k . 2, and

F̂1...k ¼
Xk

i¼1

Di : ð11Þ

Equation 10, in which one locus is added at each iter-
ation to compute the change in multilocus IBD, involves
k terms when the kth locus is added and thus a total
of 1

2 k(k� 1) in all. This contrasts with the 2k� 1 needed
in Equation 1d, such that the computation is feasible up
to thousands of loci (e.g., 10 sec computation for k ¼
2000 with the same computer). To predict the probabil-
ity of IBD on a region assuming equal recombination

Figure 2.—Regional non-IBD for an increasing genome
length (in centimorgans) and specific generations/popula-
tion size (t/N) in a monoecious diploid population. The solid
lines were obtained using Equation 7, where the derivative was
obtained numerically, and dashed lines using Equation 15,
where a closed formula for the derivative was obtained after
approximating transition matrices with the linearization in
Equation 13.
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fractions between consecutive loci, it requires the eval-
uation only of k� 1 values of Xik, i¼ 1, . . . , k, and it is also
possible to predict regional IBD simply by estimating
IBD for a very large number of sites.

A comparison between predictions of multilocus IBD
from simulation and use of Equation 11 is given in Fig-
ure 3 for a population of constant size in the absence of
mutation or migration. In view of the excellent predic-
tions of non-IBD shown in Figure 1, for example, the fit
of IBD is to be expected. Results for regional IBD are
given for a wider range of parameters in Figure 4. Fig-
ures 3 and 4 also show how slowly the multilocus IBD
increases with generation if many loci are considered,
which implies that there can be small regions of the ge-
nome non-IBD even when most nearby sites are IBD.

Mutation, migration, and population bottlenecks: The chain-
rule predictions of multilocus non-IBD probabilities, and
of those from IBD, can be undertaken for any random-
mating system (e.g., in haploid and monoecious or dioecius
diploid populations with/without avoidance of selfing) by
using an appropriate transition matrix to compute the
two-locus non-IBD (Weir and Cockerham 1974).

Changes in population size, for example due to
bottlenecks, are easily accounted for in the chain rule
by using the appropriate value of N. Migration, under
the continent-to-island model, increases the probability
of non-IBD. This can be accounted for by replacing xt by
xt1 mt in Equation 7 of Hill and Weir (2007) in the
following vector ½assuming for simplicity that the migra-
tion rate m is small so terms of O(m2) can be ignored�,

mt ¼
ð1� 2mÞx1 1 2m

ð1� 3mÞx2 1 m 1 2mx1

ð1� 4mÞx3 1 4mx1

2
64

3
75;

where xi refers to the ith component of vector xt of
two-, three-, and four-haplotype coefficients of non-IBD.
Continent-to-island and also multiple small-island mod-
els results in Figure 5 show an excellent level of pre-
diction of simulated values of FABC using the chain rule,
which also implies that the chain rule would apply within
a nonrandom mating population, for example, incor-
porating avoidance of mating of relatives.

Mutation is the only evolutionary force considered in
this study for which the chain rule gave poor predictions
(Figure 5). Although the departure is small with realistic
u (,10�5) and few loci in small populations, it worsens
as mutation rate (U ) increases and as linkage becomes
very tight as do predicted regional non-IBD and IBD
probabilities (results not shown). A simple explanation
of why mutation breaks the chain rule is that the ad-
jacent locus does not contain all the information about
the non-IBD status at a given locus (with mutation XAjBC .

XAjB and without XAjBC ¼ XAjB). In the presence of
mutation, information about the IBD status at locus C is
useful in predicting the status at A because B may be non-
IBD due to mutation and, except for this mutation, the
chromosome region including A and C would be IBD. The
chain rule assumes a first-order Markov chain that is
violated in the presence of mutation because mutations
occur independently of position (so that an IBD locus can
be next to a mutant locus). In contrast, migration affects
the whole string of loci, so a subset contains all the
information (which will subsequently suffer recombina-
tion in the standard fashion). A formal analysis demon-
strating the bias due to mutation on the chain rule for the
case of completely linked loci is in the next section.

Figure 3.—Multiple-locus IBD probabilities (F1. . .k) over
generations (t). Solid lines were obtained with Equation 11
and dashed lines with computer simulations averaging 10,000
replicates in a monoecious diploid population. N ¼ 100, with
100 cM between outside markers with equal spacing.

Figure 4.—Regional IBD for an increasing genome length
(in centimorgans) and specific t/N using Equation 11 with
k ¼ 1000 loci in a monoecious diploid population. Note that
as larger regions are less saturated with loci than shorter ones,
e.g., 1000 loci within 1 cM vs. 1000 loci within 10 cM, predic-
tions are likely to be more accurate for short than for long
regions.

Multilocus Identity-by-Descent 2311



Simple recurrence relations: Principle: The recurrence
equations for non-IBD at two loci depend on terms in
two-, three-, and four-haplotype probabilities in previ-
ous generations (Weir and Cockerham 1974; Hill and
Weir 2007), although some may have very small coef-
ficients in the recurrence equations. Numerical exam-
ples (not shown), however, indicate that these three- and
four-haplotype identities are of similar magnitude to each
other over quite a wide range of parameters, as are corre-
sponding terms for three or more loci. Thus, if genes at
one of the pair of loci A and B are sampled from different
haplotypes, the probability of (non-)IBD depends little
on whether the other A and B genes are sampled from
one or two more haplotypes. In addition, if the two loci
are not very tightly linked, the probability of two-locus
(non-)IBD for genes sampled on four different haplotypes
is slightly greater than XAXB, i.e., the joint probability for
two independent loci. Hence approximate recurrence
predictions of non-IBD for two linked loci can be ob-
tained solely by considering the probabilities on a pair of
haplotypes and at individual loci. Similar arguments ap-
ply for more loci. Thus for two loci, this prediction of the
two-locus non-IBD, X*AB, satisfies

X *AB;t11 �ð1� rABÞ2½1� 1=ð2N ÞX *AB;t �
1 ½1� ð1� rABÞ2�½ð1� 1=ð2N ÞÞ�2XA;tXB;t :

ð12Þ

If rAB is small and N is large, (12) reduces to

X *AB;t11 � ½1� 2rAB � 1=ð2N Þ�X *AB;t 1 2rABXA;tXB;t ;

ð13Þ

where XA,t ¼ XB,t ¼ ½1� 1/(2N)�t� exp(�t/2N). The first
term in Equations 12 and 13 denotes sampling two dif-
ferent and nonrecombined haplotypes that are non-IBD
at both loci and the second denotes the sampling of recom-
binant gametes that are non-IBD at both loci. Equation
13 extends naturally to more loci, allowing for recombi-
nation between A and B and between B and C, and ig-
noring the chance of double recombinants. For example,

X *ABC ;t11 � ½1� 2rAB � 2rBC � 1=ð2N Þ�X *ABC ;t

1 2rABXA;tX *BC ;t 1 2rBC X *AB;tXC ;t : ð14Þ

The two-locus terms in Equation 14 can be predicted
from Equation 13.

These are simple rather than necessarily precise pre-
dictors, but Equation 12 is exact if linkage is complete
(rAB ¼ 0) or if loci are essentially independent (RAB /
‘). Evaluations using Equations 13 and 14 compared to
exact methods (Hill and Weir 2007) are illustrated in
Figure 6. The method is seen to give reasonably good
predictions for much of the range of R (0, 1

4, 1, 4, 16) and
t/N (0, 0.01, . . . , 4). This is probably because the second
term in Equations 12 and 13 makes a small contribution
when r is very small, but XA,tXB,t departs most from the
actual probability when both loci are segregating; and
when r is large, it makes a larger contribution but is a
better approximation of XA,tXB,t. Other examples (not
shown) indicate that the approximation behaves rela-
tively poorly in small populations (say N , 10) than
large (say N . 50) for the same value of R¼ 4Nr, which is
expected since relative probabilities of random sam-
pling from three rather than four haplotypes are more
likely when N is small. Similar results can be obtained
using Equation 14 or alternatively by joint use of Equa-
tions 12 and 13 for loci pairs AB and BC together with
the three-locus chain prediction (Equation 2). It can also
be shown that Equations 12, 13, and 14 are consistent: i.e.,
replacing X*ABC,t by X*AB,tX*BC,t/XB,t at t and t 1 1
satisfies Equation 14 if terms of O(,1/N) are excluded.

Regional non-IBD: Formulas for the two-locus non-IBD
after integration with respect to time are derived in
appendix a in the case of no mutation or migration
(Equation A1). This equation can then be used with the
chain rule to obtain multilocus non-IBD and, as it can be
differentiated explicitly (Equation A2), can be used with
Equation 7, to obtain a remarkably simple formula for
regional non-IBD (Equation A3),

X̂ðlÞ � X exp½Lð1� e�t=2N � t=2N Þ� ð15Þ

or, if DF ¼ 1/2N, then X̂ðlÞ ¼ X exp½L(F � tDF)�, where
L¼ 4Nl. Results in Figure 2 show that Equation 15 gives
reasonably satisfactory predictions of regional IBD.

Figure 5.—Three-loci IBD probability (FABC) over genera-
tions (t) directly observed (solid line) and predicted using
Equation 9 (dashed line), using computer simulation with
10,000 replicates in monoecious diploid populations. ‘‘Drift’’
denotes a haploid population with N ¼ 100, rAB ¼ 0.000625,
and rBC ¼ 0.0025. ‘‘Bottleneck’’ denotes the drift population
with a bottleneck at t¼ 100 when N¼ 10 (N¼ 100 otherwise).
‘‘Migration’’ denotes the drift population receiving migrants
from an infinitely large continent at a rate of m ¼ 0.000625
haplotypes/generation. ‘‘Islands’’ denotes a five-islands mi-
gration model with total migration rate m ¼ 0.005 and N ¼
20 per island. ‘‘Mutation’’ denotes the drift population with
mutation rate of u ¼ 0.000625/gene/generation.
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Bottlenecks, mutation, and migration: These recurrence
formulas (Equations 12–14) extend straightforwardly to
include bottlenecks in population size by changing N
accordingly. Assume for simplicity that mutation rates
(u) are the same at each locus and migration is at rate
m haplotypes from a completely unrelated and large
population (i.e., continent-to-island model). (A more
complete migration analysis, for example using a finite-
island model, is more complicated (Vitalis and Couvet

2001) and beyond the scope of this article.) From Kimura

and Crow (1964), the recurrence relation for a single
locus is (ignoring higher-order terms)

X *A;t11 ¼ ð1� 2u � 2mÞXA;t 1 2u 1 2m:

For two loci the two-locus non-IBD arises if there is no
mutation on two nonrecombinant haplotypes or a mu-
tation at locus B at haplotypes on which A is non-IBD
and vice versa. In the migration model used, an immi-
grant haplotype is non-IBD at all loci. Hence extending
Equation 13 and similarly Equation 14 leads to

X *AB;t11 � ½1� 2rAB � 4u � 2m � 1=ð2N Þ�XAB;t

1 2rABXA;tXB;t 1 2uðXA 1 XBÞ1 2m ð16Þ

X *ABC ;t11 ¼½1� 2rAB � 2rBC � 6u� 2m � 1=ð2N Þ�XABC ;t

1 2rABXA;tXBC ;t 1 2rBC XAB;tXC ;t

1 2uðXAB;t 1 XAC ;t 1 XBC ;tÞ1 2m: ð17Þ

With mutation and migration included, asymptotic
expectations as t / ‘ are given in appendix b. With
complete linkage (so results are exact) and no migra-
tion the asymptotic value of the k-locus non-IBD prob-
ability based on iterating (17) reduces to k!Uk for small
values of U (from Equation A5). In contrast, it reduces
to 2k�1U 2k�1 by using Equation 16 to obtain the two-locus
non-IBD and then applying the chain rule. This
illustrates the breakdown of the chain rule with muta-

tion, whereas with migration and no mutation or recom-
bination, the k-locus non-IBD asymptotes at M/(M 1 1)
for any number of loci, satisfying the chain rule.

RESULTS AND DISCUSSION

The probability of IBD simultaneously at two or more
neutral loci is a generalization of Wright’s inbreeding
coefficient, F. Such probabilities are clearly functions of
the population size, time, and the breeding structure, as
is F, but they also depend on the degree of linkage be-
tween loci. For example, in a closed random-mating pop-
ulation without mutation, the probability of double IBD
is approximately equal to F 2 for unlinked loci, but in-
creases to F for a completely linked pair. The multilocus
IBD is a useful parameter in predicting the joint an-
cestry of multiple loci, for example, in mapping studies
(Meuwissen et al. 2002), in inferences about historic
population structure from current data (Hayes et al.
2003), and also in computing variances and covariances
of quantitative traits in finite populations (Weir and
Cockerham 1977; Barton and Turelli 2004). Whereas
contributions to variance in the absence of epistasis de-
pend only on two-locus identities or disequilibria, with
epistasis, multilocus terms may be involved.

Although in principle a method exists for predicting
multilocus IBD (Hill and Weir 2007), it is unwieldy for
more than four loci and applies only for a haploid model.
In contrast, the chain-rule method proposed here, which
utilizes the independence of crossing-over events to com-
pute multilocus non-IBD, is computationally simple for
an unlimited number of loci and applies for diploid as
well as haploid models assuming random mating. It is
not, however, applicable exactly in the presence of mu-
tation. The approximate method proposed previously by
Hernández-Sánchez et al. (2004) generally gives poorer
predictions and becomes unwieldy to apply for more
than five or so loci.

Figure 6.—Approximation (dashed lines) and
exact (solid lines) two and three loci non-IBD
(XAB, XABC) over generations (t) for RAB ¼ RBC ¼ 0
(top lines), 1

4, 1, 4, and 16 (bottom lines) with a
haploid model for N ¼ 100. ½Note that the first
t ¼ 400 corresponds to the end of XAB and to
the beginning (t ¼ 0) of XABC.�
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The second method proposed in this article, which is
based on ignoring some of the descent measures de-
fined by Weir and Cockerham (1974) for two loci and
Hill and Weir (2007) for more, gives less precise pre-
dictions because of the simplifications made, but is
straightforward to apply and leads to closed formulas at
intermediate generations and for regional non-IBD. In
addition, it can be applied when there is much muta-
tion, for it generally performs better than the chain rule
for any degree of recombination when mutation rates
are moderate or high (U . 0.25) (results not shown). As
the chain rule is in any case easier to apply for multiple
loci, there seems little benefit in using the simple method
other than to cope with mutation.

The relation between multilocus non-IBD and mo-
ments of multilocus linkage disequilibria is shown by
Weir and Cockerham (1974) and Hill and Weir (2007).
These require all the relevant descent measures; for two
loci, for example, the expected linkage disequilibrium,
E(D2) is a function of nonidentity of genes sampled from
two haplotypes (i.e., XAB), three haplotypes, and four hap-
lotypes. Thus neither of the linear methods developed
here involving only sampling from two haplotypes can
be used to predict such moments of disequilibria.

A potential application of this theory is fine mapping
of QTL, where the data comprise phenotypes for the
trait and genotypes at nearby marker loci, such that pro-
babilities of IBD at the QTL can be computed for any
individuals (Meuwissen and Goddard 2001). Using
the equations developed here to calculate multilocus
(non-)IBD, the probability of IBD at putative QTL can
be computed for any pair of individuals in the popula-
tion, conditional on their genotypes or IBS at marker
loci. For example, for marker A and QTL B, P(IBS A,
IBD B)/½P(IBS A, IBD B) 1 P(IBS A, non-IBD B)�, in
which P(IBS A, IBD B) ¼ FAB 1 (FB � FAB)(1 � HA),
where HA is its heterozygosity in the founder popula-
tion. Assuming a model of random QTL effects, the
covariance due to the QTL between individuals i and j is
covQTLði; jÞ ¼ s2

QTL
1
2

P2
k;l¼1 IBDðik; jlÞ, where k and l

denote QTL alleles. Therefore, the variance contrib-
uted by a putative QTL (s2

QTL) at any position can be
estimated using predicted IBD among all alleles in a
sample. Likewise, the regression models proposed by
Hernández-Sánchez et al. (2006) to predict IBD at the
QTL given IBS at linked markers can now be more easily
extended to include multiple markers together using
this multilocus theory. These calculations require as-
sumptions of population history and marker allele
frequencies or heterozygosity at its foundation. In this
application, at least in the livestock context, population
sizes are not likely to be so large that mutation rates at
marker loci, particularly SNPs, will be sufficient to lead to
appreciable inaccuracies of prediction because of break-
down of the chain rule. More importantly, the robustness
of the rule to migration or population introgression
seems a far more important feature.

Regional IBD has also been used in gene mapping.
For example, Goldgar (1990) predicted regional IBD
among sibling pairs and Guo (1995) extended the
method to accommodate any pair of relatives within a
simple pedigree. Henceforth, gene mapping consisted
of correlating phenotypic similarity with regional IBD.
Regional IBD is conceptually linked to Fisher’s (1953)
junction theory. As junctions were defined as recombi-
nation events delimiting different IBD regions, there
must be a link between the number of junctions and
the regional IBD obtained in this work (e.g., MacLeod

et al. 2005).
Finally, predicting IBD from IBS requires, as do

Meuwissen and Goddard (2000), information on pop-
ulation history, and robustness to historical assumptions
is an issue needing research.
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APPENDIX A : EXPLICIT APPROXIMATION FOR SEGMENTAL NON-IBD

From the iterative approximation (Equation 13) assuming no mutation,

X *AB;t11 � X *AB;t ¼ �½2rAB 1 1=ð2N Þ�X *AB;t 1 2rABXA;tXB;t :

Replacing this difference equation by a differential equation, and noting that (1 � 1/(2N)�t � e�t/2N,

dX *
AB

dt
¼ �ð2rAB 1

1

2N
ÞXAB 1 2rABe�t=N :

The equation dy=dx 1 aðxÞy ¼ f ðxÞ has solution y ¼ ½
Ð

f ðxÞbðxÞdx�=½
Ð

aðxÞdx�1 C (Korn and Korn 1968). Hence,
after rearrangement and integration with respect to t, and noting that XAB ¼ 1 if t ¼ 0,

X *
AB;t ¼

1

4NrAB � 1
½4NrABe�t=N � e�ð4NrAB 1 1Þt=2N � ¼ 1

RAB � 1
½RABe�t=N � e�ðRAB 1 1Þt=2N � ðA1Þ

for rAB 6¼ 1/4N, and X*AB,t ¼ e�t/N½1 1 t/2N� if rAB ¼ 1/4N. To utilize the chain rule to compute non-IBD for genomic
segments, we require the derivative at generation t:

dX *
AB

dRAB
¼ � 1

ðRAB � 1Þ2
½RABe�t=N � e�ðRAB 1 1Þt=2N �1 1

RAB � 1
½e�t=N 1

t

2N
e�ðRAB 1 1Þt=2N �:

Evaluating the derivative at RAB ¼ 0 (see Equation 4) and dividing by XA ¼ e�t/2N,

d log X *
AB

dRAB
jRAB¼0 ¼ 1� e�t=2N � t

2N
ðA2Þ

and the derivative wrt rAB is 4N times larger. Hence, an approximation, for a region of length L ¼ 4Nl is

X̂AðdÞZ ¼ X expðl
d log XAðzÞB

dz
Þ

¼ X exp½Lð1� e�t=2N � t=2N Þ� ¼ exp½�t=2N 1 Lð1� e�t=2N � t=2N Þ�: ðA3Þ

APPENDIX B: ASYMPTOTIC VALUES FROM THE SIMPLE APPROXIMATION

With mutation and migration included, we consider just asymptotic expectations, denoted X̃A, X̃ *
AB , . . . , assuming

other parameters to be constant and t / ‘. Equating values in successive generations following Kimura and Crow

(1964), for a single locus X̃A ¼ (U 1 M)/(U 1 M 1 1), and for two loci from Equation 16,

X̃ *
AB �

1

2U 1 M 1 RAB 1 1

� �
ðU 1 M Þ2RAB

ðU 1 M 1 1Þ2 1
2U ðU 1 M Þ
U 1 M 1 1

1 M

� �
: ðB1Þ

With complete linkage and no migration (M¼ RAB¼ 0), (B1) is exact and reduces to X̃ *
AB ¼ ½U/(U 1 1)�½2U/(2U 1 1)�.

For k loci with the same assumptions, by using Equation 17 it can be shown that

X̃ *
1...k ¼

Yk

i¼1

� iU

iU 1 1

�
; ðB2Þ

which reduces to k!Uk for small values of U.
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