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Evolution of Inconsistent Ontologies in Physics∗†

Jos Lehmann, Alan Bundy, Michael Chan

School of Informatics, University of Edinburgh, Edinburgh, UK

{jlehmann, bundy, mchan}@inf.ed.ac.uk

Abstract

Inconsistency robustness in autonomous software can be seen as a problem
of automated reasoning about ontology evolution. Formal ontologies specify the
knowledge that software systems use when reasoning about the entities in their do-
main. Such knowledge is bound to evolve in the face of new information. Robust
software should therefore be able to maintain the consistency between its own on-
tologies and any incoming information that contradicts them. This can be achieved
either by isolating the inconsistency or by evolving the ontologies.

We propose a higher-order logical approach to ontology evolution and apply it
to examples in physics, as advances in this field are naturally modelled as cases of
ontology evolution. GALILEO, a system based on this approach, is being imple-
mented and tested. Its basic mechanisms for evolution are ontology repair plans.
These operate on ontologies formalised and implemented as contexts, which are
logical theories that use their own local concepts to describe the domain, thus pre-
venting potential contradictions with other theories to arise. When, though, ontolo-
gies are mapped or aligned, they share axioms. This may allow the proof of contra-
dictory facts that affect the robustness of the system. At this stage, the application
of an ontology repair plan may resolve the inconsistency, as each plan compiles
together a pattern for diagnosis of conflicts between ontologies and transformation
rules for effecting a repair. The repair can combine the retraction of axioms, the
change of beliefs as well as the deeper modification of the language in which the
ontology is represented.

1 Introduction
Artificial intelligence and, more generally, computer science are presently faced with
the challenge of how autonomous software can achieve inconsistency robustness by
∗The research reported was supported by EPSRC grant EP/E005713/1 and an ORSAS award.
†Copyright of this paper belongs to the authors, who hereby grant permission to Stanford University to

include it in the conference material and proceedings of Inconsistency Robustness 2011 and to place it on
relevant websites.
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manipulating its own knowledge. Such knowledge is typically represented in an ontol-
ogy that conceptualises the entities of the software’s application domain and allows the
software to reason about such entities at a higher level of abstraction than simply the
level of data or information. Just like any abstract model, ontologies are limited repre-
sentations of the world, which is dynamic and inherently complex. If autonomous sys-
tems are to feature any kind of robustness with respect to the dynamics and complexity
of changing environments and goals, of communication acts and of new information,
they must be able to autonomously update their own ontologies.

The literature on the subject of updating an ontology in the face of new information
often uses the phrase ontology evolution and usually concentrates on how Description
Logic (DL) axiomatic theories for Semantic Web applications need to retract axioms
or modify entailments in order to maintain their coherence and consistency. Section
2 discusses work on ontology evolution and inconsistency robustness that is related to
ours.

Based on this discussion, we present our approach to formalizing and automat-
ing ontology evolution in Higher Order Logic (HOL), which underlies the GALILEO1

system. In GALILEO, the basic mechanisms for evolution are called ontology repair
plans (ORPs). Each ORP compiles together a pattern for diagnosis of conflicts between
ontologies and transformation rules for effecting a repair. For both development and
testing, we rely on examples from physics, as advances in this field may naturally
be modelled as cases of ontology evolution and they are usually well documented.
Physicists revise predictive theories when confronted with conflicting experimental ev-
idence. Therefore, the ORPs typically assume there is one ontology representing a
predictive theory and a second ontology representing an experimental or observational
set-up for that theory. When the experimental ontology contains a theorem that con-
tradicts one of the theoretical ontology, an ORP is triggered and amends the two on-
tologies. The development methodology of GALILEO revolves around the selection of
initial ontologies by the collection, analysis, formalisation, implementation and testing
of appropriate case studies in the history of physics and of the ORPs inspired by them.

The initial ontologies are formalized and implemented as contexts, i.e., as logical
theories which are isolated from other theories and which use their own local concepts
to describe the entities in the domain. In such a setting, ontologies may implicitly
contradict one another without though producing an explicit logical contradiction at the
global level. When, though, two or more such ontologies are bridged, i.e., mapped or
aligned through a third one which merges them and resolves their differences, they will
be able to share axioms. This will allow the proof of contradictory facts thus affecting
the robustness of the system. In this type of situation we say that the ontologies are
locally consistent but globally inconsistent. And it is when the global inconsistency
has become explicit that the application of an ORP may resolve the contradiction and
re-establish consistency.

Shortly, we investigate in Higher Order Logic the problem of ontology evolution
from the perspective of automating the mechanisms to repair locally consistent but
globally inconsistent ontologies.

The empirical part of our methodology supports the long-term objectives of the

1Guided Analysis of Logical Inconsistencies Leads to Evolved Ontologies.
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definition of a theory of ontology evolution, as well as of an evolution calculus. The
overall aim is to demonstrate that automatic ontology evolution via ORPs is computa-
tionally feasible and can account for the kinds of ontology evolution that are observed
in human problem solving in the physics domain, and possibly in similar ones. We
would like to achieve desirable properties, e.g., coverage, efficiency, maintainability,
high quality of the repairs. So far we have been able to evaluate the generality of
a higher-order logical approach to ontology evolution and the meaningfulness of the
possible evolutions proposed by GALILEO.

Section 2 discusses related work. Section 3 describes the adopted methodology.
Sections 4, 5, 6 present three ORPs and applications for each them. These three sec-
tions are quite dense in formal content, they describe in detail the formal apparatus
of our proposal as well as a number of higher-order logical models of physics case
studies to which our ORPs apply. Section 7 briefly illustrates the initial implementa-
tion of GALILEO. Section 8 draws some conclusions and discusses initial elements of
evaluation.

2 Discussion of related work
The literature on the subject of updating an ontology in the face of new informa-
tion often uses the phrase ontology evolution and usually concentrates on how De-
scription Logic (DL) ontologies for Semantic Web applications need to evolve, ei-
ther to maintain their own coherence and consistency (ontology debugging) or to es-
tablish a relationship with other ontologies (ontology alignment). Debugging yields
notions like incoherence and inconsistency diagnosis and repair [Haase et al, 2005,
Kalyanpur et al, 2006b, Ji et al, 2009, Lam et al, 2008], belief revision [Flouris, 2006],
conservative extensions [Ghilardi et al, 2006]; alignment yields notions like match-
ing [Doan et al, 2004, Giunchiglia & Shvaiko, 2004], mapping and contextualisation
[Bouquet et al, 2004].

A standard example used in the DL literature about incoherence and inconsistency
diagnosis and repair is shown in Figure 1. Note the following DL conventions: A v B
is the DL notation for the first-order logic formula ∀x.A(x)→ B(x); i : A is the DL nota-
tion for i is an instance of A; a DL ontology consists of a TBox, T , in which concepts
are specified using the signature elements of sig(T ), and of an ABox, A where as-
sertions are made about the individuals using the terminology. The axiomatic theory
of members of a university formed by the ordered couple (Tuni,Auni) is a knowledge
base. In DL terms [Flouris et al, 2006], (Tuni,Auni) is inconsistent, i.e., it has no mod-
els, because axioms (7, 5) allow to conclude that bruce is a Student while axioms (7,
6, 4) allow to conclude that bruce is not a Student. The source of the inconsistency lies
in Tuni, which is incoherent, i.e., it contains the unsatisfiable concept PhDStudent. A
concept is unsatisfiable if it is mapped to the empty set in all models of the ontology.

In order to diagnose the unsatisfiable concept and repair the incoherence and the
inconsistency, DL approaches such as [Haase et al, 2005] try to identify the axiom that,
if removed, would allow to re-establish coherence and consistency. This is done by
algorithms that compute so-called Minimal Unsatisfiability-Preserving Subsets of the
ontology (MUPS) as well as its Minimal Inconsistent Subsets (MIS). For instance, start-
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sig(Tuni) ::= {
. . . ,Person,Student,Employee, . . .} (1)

Tuni ::= {
Student v Person, (2)

Employeev Person, (3)

Employeev ¬Student, (4)

PhDStudent v Student, (5)

PhDStudent v Employee} (6)

Auni ::= {
bruce : PhDStudent} (7)

Figure 1: Example of an inconsistent DL ontology of members of a university. Axioms
(7, 5) allow to conclude that bruce is a Student while axioms (7, 6, 4) allow to conclude
that bruce is not a Student. The concept PhDStudent is unsatisfiable.

ing from a subset of the ontology containing one axiom, the algorithm adds to the
subset, one at the time, the axioms that are connected to it, i.e., that share type symbols
with it (e.g. axioms (4, 5)), until the subset is unsatisfiable. In Figure 1 the only MUPS
of Tuni contains axioms (4, 5, 6). A judgement call is therefore required to decide which
axiom to remove. This decision procedure may dramatically increase in complexity in
real-world scenarios, where MUPS are often more than one.

Even in cases where only one MUPS is returned, the axiomatic structure of the
ontology may be entangled and make axiom-removal simply infeasible. Consider for
instance the version of (Tuni,Auni) given below (where / is set subtraction) in which
axioms (4, 5) are substituted by one single axiom (8):

T ∗uni ::= Tuni/{Employeev Person,Employeev ¬Student}∪{
Employeev Personu¬Student} (8)

Removing axiom (8) would affect the entailment structure of T ∗uni beyond what is
needed and make the repair harmful, as an instance of Employee would no more qual-
ify as an instance of Person. This has motivated approaches such as [Lam et al, 2008,
Kalyanpur et al, 2006a, Schlobach & Cornet, 2003] that try to refine both the diagnos-
tic and the repair operations, in order to allow for more surgical removals or even axiom
rewriting. In such approaches the diagnosis usually applies minimal unsatisfiability to
abstract versions of the axioms at hand. For instance, axiom (8) would have to be bro-
ken up along its conjunction, i.e., reduced to (4, 5), so that a separate unsatisfiability
test can be run on each conjunct. A problematic aspect of this approach to diagnosis is
that different types of formula and connective need different types of abstraction rules
and, of course, the complexity of the rules increases with the complexity of the axioms.
Abstraction may also become a problem when repairing, because the user needs to be
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T ∗∗uni ::= Tuni/{Employeev ¬Student}

A∗∗uni ::= Auni

sig(Tcom) ::= {
. . . ,Person,Trainee,Staff , . . .} (9)

Tcom ::= {
Traineev Person, (10)

Staff v Person, (11)

Staff v ¬Trainee} (12)

Map(T ∗∗uni ,Tcom) ::= {
〈1,Student,Trainee〉, (13)

〈2,Employee,Staff 〉} (14)

Figure 2: A locally consistent and globally inconsistent network of DL ontologies. The
network formed by (T ∗∗uni ,A∗∗uni) and (Tcom,Acom) through the mapping Map(T ∗∗uni ,Tcom)
is incoherent and inconsistent, as it allows to prove that bruce is and is not a Student.
Coherence and consistency are re-established by removing lines (13) or (14) from the
mapping.

able to relate back the abstracted axioms to the original ones in order to proceed to their
removal, and this is not always a straightforward task.

An additional type of incoherence and inconsistency diagnosis and repair is pre-
sented in [Ji et al, 2009]. This applies a MUPS- and MIS-based, axiom-removal ap-
proach to the case of so-called ontology networks, in particular to the diagnosis and
repair of networked ontologies that are locally consistent and globally inconsistent. For
instance, in Figure 2, (T ∗∗uni ,A∗∗uni) is a coherent and consistent version of (Tuni,Auni).
(T ∗∗uni ,A∗∗uni) is mapped onto another coherent and consistent ontology (Tcom,Acom) for
company members. The network formed by (T ∗∗uni ,A∗∗uni) and (Tcom,Acom) through the
mapping Map(T ∗∗uni ,Tcom) (where 〈id, ti, t j〉 means that term ti in T ∗∗uni is mapped onto
term t j in ontology Tcom) is incoherent and inconsistent, as it allows to prove again that
bruce both is and is not a Student. Coherence and consistency are re-established by
removing lines (13) or (14) from the mapping.

In general, we think that the types of approaches described above have proven in-
sufficient to address the study of the automation of ontology evolution, because of a
number of circumstances. Firstly, most proposed approaches depend on users’ instruc-
tions, which does not include ontology evolution performed at runtime, for instance,
by agents in heterogeneous environments. Secondly, automated ontology repair sys-
tems, e.g., Swoop [Kalyanpur et al, 2006b], or even those that take heterogeneity into
account like RaDON [Ji et al, 2009], focus mostly on retracting axioms and modifying
entailments. Systems like [Lam et al, 2008] that go beyond axiom retraction and that
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try to enable refined repair operations seem to be doing so on a limited logical basis
and they still have to rely on users’ judgements in order to evaluate the helpfulness
and harmfulness of repairs. Furthermore, such systems do not support deeper syntactic
manipulations, e.g., changes of the signature of the language. Thirdly, the focus on DL
ontologies does not allow for a sufficiently general analysis and resolution of ontologi-
cal faults. The limited expressivity of first-order logic, let alone fragments of it such as
DL, constitutes a limit on the modelling of ontology evolution. Without the means to
quantify over and to reason about the predicates, it is virtually impossible to formalise
and automate sufficiently generic ontology evolution patterns.

In order to deal with the first two limitations found in the DL-based literature, we
investigate the problem of ontology evolution from the perspective of automating the
mechanisms to repair locally consistent but globally inconsistent ontologies. As men-
tioned in Section 1, we assume that the robustness of a system is achieved by having
information about the same entities distributed in the system across different ontolo-
gies or contexts. When two such contexts are bridged, i.e., mapped through a third
one which resolves their differences, they will be able to communicate and prove facts
in terms of each other. Such a multiple-ontologies approach has inherent advantages
for automating ontology evolution. As a matter of fact, a single inconsistent ontology
allows to prove all the formulae derivable in the ontology as well as their negations.
Thus, when trying to diagnose the source of the inconsistency, all the formulae of the
ontology and their negations are returned. This is not very informative. As shown
above, the use of MUPS and MIS provides many candidate sources of a given contradic-
tion, ultimately requiring a human to decide which repair to effect. As opposed to this,
the case of multiple ontologies allows to diagnose the type or shape of the contradiction
that arises at the global level once contexts are bridged2. Given that the individual on-
tologies are locally consistent, i.e. reliable, the diagnosis can be focused on statements
that follow from the two ontologies and that directly contradict each other. This in turn
opens up the new possibility of many kinds of syntactical manipulations (e.g., split-
ting a function, changing its arity, etc.) to re-establish global consistency. Note that a
DL-approach like [Ji et al, 2009], although focussing on the multiple-ontologies case,
does not exploit the potential inherent in it and limits itself to retracting the undesirable
mappings. On the other hand, there are earlier non DL-based attempts at automated
ontology evolution with multiple-ontologies, such as [McNeill & Bundy, 2007] which
investigate how agents with different ontologies interact.

For what concerns the second and third limitation found in the literature, i.e., the
inherent lack of generality of DL-based approaches, the GALILEO system bases au-
tomated ontology evolution on the use of higher-order logic. Diagnosis and repairs
more sophisticated than retracting axioms (e.g., splitting a function into parts, adding
new arguments to a function, etc.) require a meta-logic more expressive than DL, or
FOL. Modelling ORPs in HOL allows for the existential quantification over ontologies
and functions, which is useful in domains containing many ontologies/theories, e.g.,
natural sciences and general real-world semantics. Moreover, the polymorphism of
symbols employed in ORPs permits their high generality. HOL formulae can abstract

2Note that although this multiple-ontologies-approach cannot directly deal with a single inconsis-
tent ontology that is self-contained, it can be integrated by an approach for single ontologies, such as
[Haase et al, 2005], which exploits the notion of connectedness to isolate the source of the contradiction.
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Shared signature (Sx,y)

6

6

Laws (Lx)

6

Ontology (Ox)

6

Bridge (BLx,Ly ) Laws (Ly)

6

Ontology (Oy)

Figure 3: Typical modularization with bridge. Ox, Oy contain data or value assertions
about entities in the domain. The arrows pointing upward represent the dependence of
Ox and Oy on ontologies Lx resp. Ly, which in turn may share part of their signatures
but differ in other parts. BLx,Ly merges Lx and Ly in one unified context which resolves
all the relevant differences by means of so-called bridging axioms.

over types, number of arguments, etc. therefore using HOL as a meta-logic for ontol-
ogy evolution is a contribution to ontology evolution research. Being able to quantify
over the predicates and the ontologies allows for the formulation of logical theories of
ontology evolution – as opposed to the algorithms usually found in the DL literature.

Finally, an additional consideration for preferring HOL over DL is its expressivity
as an object language, i.e., the possibility of representing directly, rather than as roles
in concepts, physics formulae or other inherently higher-order logical parts of mathe-
matics, e.g. calculus.

3 Robustness by ontology repair plans and contexts
At the heart of our approach to ontology evolution lies the notion of ontology repair
plan. These are generic combinations of diagnosis and repair operations that guide
the evolution of an ontology. The diagnostic component takes as input two or more
ontologies that represent physics theories and experimental data, and checks whether
specific logical conditions (e.g. a contradiction) hold between the ontologies. In the
positive, the repair component is triggered. By grouping these meta-level operations,
ORPs tradeoff completeness against reduction in search.

ORPs operate on ontologies that are formalized and implemented as contexts and
that are assumed to have modularization patterns akin to the DL distinction between
TBox and ABox. As shown in Figure 3, we assume that any two physics ontologies
Ox, Oy contain data or value assertions about entities in the domain. The arrows point-
ing upward represent the fact that Ox and Oy depend on, i.e., inherit all contents of
ontologies Lx resp. Ly. These two ontologies contain specifications of the laws of
physics, which allow the derivation of new information about the entities from the data
in Ox and Oy. Lx and Ly have signatures that are at least in part different, i.e., they use
different languages. In order to resolve such differences, a bridging ontology BLx,Ly
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Shared signature (Sx,y)

6

6

Laws (Lx)

6

Ontology (Ox)

6

Bridge (BLx,Oy.n )

...

Bridge (BLx,Oy.1 )

Laws (Ly)
6

6
Ontology (Oy.1) . . .

6
Ontology (Oy.n)

Figure 4: Another typical modularization with bridges. Ontologies Oy.1 . . .Oy.n provide
data for Ly and conflicts between such data are detected and resolved by bridging each
Oy.1 . . .Oy.n to Lx.

merges in one unified context all symbols of the languages of Lx and Ly and resolves
all relevant differences between Lx and Ly by means of so-called bridging axioms. Us-
ing information of Ox in BLx,Ly it is possible to derive theorems in the language of
Oy and vice versa. Therefore, if Ox and Oy contain conflicting information about the
entities in the domain, the contradiction becomes apparent through the bridging ontol-
ogy. Lx and Ly do not necessarily share signature elements in an ontology Sx,y. But,
when this is the case, they usually share basic mathematical theories used in physics,
e.g., arithmetic or geometry. However, Sx,y is not required for ORPs to operate, as
long as all representational differences are resolved in the bridging ontology. Figure 4
shows a modularization in which ontologies Oy.1 . . .Oy.n provide data for Ly and con-
flicts between such data are detected and resolved by bridging each Oy.1 . . .Oy.n to Lx.
Earlier presentations of ORPs without bridges and of their applications can be found in
[Bundy & Chan, 2008] and [Chan & Bundy, 2008].

So far eight ORPs have been conceptualised and formalised, three of them are being
implemented and are being tested.

The ORP called Where’s My Stuff? (WMS) is triggered in situations such as Figure
3, where a theoretical prediction in Ox conflicts with sensory information derived from
experiments in Oy through the bridge BLx,Ly . WMS deploys an addition-strategy that
is quite common in physics. For instance, in order to account for unpredictable yet
observed gravitational behaviours in the orbit of a planet or in the stellar orbital velocity
in a galaxy, astronomers postulate the presence of an additional unobserved planet or,
resp., of dark matter. Accordingly, WMS redefines the contradictory function (in the
examples, the functions orbit, resp., orbital velocity) as the sum of a visible part (i.e.
the amount calculated by the original function) and an invisible part (i.e. the amount
that can only indirectly be observed).

The ORP called Inconstancy is triggered in situations such as Figure 4, where
sensory information is derived from experiments run under different circumstances
Oy.1 . . .Oy.n. If such experiments present variations (e.g. variations in temperature) in
the value of a function stuff which according to Ox, should be constant (e.g. the volume
to pressure ratio of a gas) Inconstancy repairs the theoretical ontology by changing the
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signature and making the constant quantity dependent on the varying quantity.
The ORP called Unite is triggered in situations such as Figure 3, where the observa-

tions in Oy for two distinct entities in Lx fully match, and this is a ground for identifying
the two functions as one. Unite is the converse of WMS: it is not triggered by a con-
tradiction, but by an equality of two stuff s relative to a chosen defining property; the
repair is to equate in Ox the two stuff s. Note that this ORP can be considered as an
inconsistency-resolution mechanism to the same extent to which redundancy can be
considered as a form of scientific inconsistency, as it violates the general principles of
parsimony such as Occam’s razor.

Other ORPs perform other types of repairs, such as merging two theoretical ontolo-
gies; changing the type structure of a function to let it fit a given dataset; drawing an
analogy between two theoretical ontologies; revising the geometry of a physical object
type; skolemizing a theorem containing an existential quantifier and transforming a set
of unary predicates into a unary function.

4 The Where’s My Stuff? ORP

The Where’s My Stuff? ORP, described in Figure 5, is triggered when the predicted
value returned by a function conflicts with the observed value of the same function. It
assumes three ontologies: an ontology Ox representing the current state of a predictive
physics theory, a heterogeneous ontology Oy representing some sensory information
arising from an experiment, a bridge BLx,Ly mapping Ox’s and Oy’s heterogeneous sig-
nature elements. Suppose the function f measures some property of stuff . There are
two possible ways to identifying the conflict: with equation (16), where f (stuff ) is
equal or less than a particular value in Ax(BLx,Ly)∪Ax(Oy) (where Ax(O) returns all
axioms of O), and with equation (17), where f (stuff ) is equal or greater than a partic-
ular value in Ax(BLx,Ly)∪Ax(Ox). The repair is to split stuff into three: visible stuff ,
invisible stuff , and total stuff , defining invisible stuff in terms of total and visible stuff s
in the repaired Ox, ν(Ox) (18, 19). The new BLx,Ly , ν(BLx,Ly), is the same as BLx,Ly

except for the renaming of stuff to stuff vis (20).

4.1 WMS’s application to the discovery of latent heat
Until the second half of the 18th century, the chemical/physical notion of heat was
conflated with the notion of temperature and it was seen as a function of a tempo-
ral quantity, e.g. flow [Wiser & Carey, 1983]. Flow was the cause of the change of
temperature of a physical body put in direct contact with another physical body at a
different temperature. This pre-modern view of heat and temperature can be rationally
reconstructed in the following equation:

∆T ≡ Q = m×∆t (21)

where Q is the heat absorbed or released by a body and is equivalent to ∆T , the body’s
difference in temperature at the start and at the end of the flow, m is the body’s mass,
∆t is the flow of heat, measured over time, from the hotter to the cooler body.
In the period 1759-1763 the discoveries of specific and of latent heat by Joseph Black
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Trigger: Ox is the predictive ontology and Oy is the observational one. If f (stuff ) has two
different values in Ox and in Ax(BLx,Ly)∪Oy then the following formula will be triggered:

∃Lx,Ly,Ox,Oy,BLx,Ly:Onto, τ,τ′:Types, f:τ 7→ τ
′, stuff:τ, v:τ′.

(Lx ⊆ Ox∧ Ly ⊆ Oy→ (15)

((Ax(Ox) ` f (stuff ) >τ′ v ∧ Ax(BLx,Ly)∪Ax(Oy) ` f (stuff )≤τ′ v) ∨ (16)

(Ax(BLx,Ly)∪Ax(Ox) ` f (stuff )≥τ′ v ∧ Ax(Oy) ` f (stuff ) <τ′ v))) (17)

where L⊆ O means that ontology O depends on ontology L; BLx,Ly means that ontology
B bridges ontologies Lx and Ly; O ` φ means that formula φ is a theorem of ontology O;
t:Types means t is a type; o:Onto means o is an ontology; >τ is the greater-than operator
for τ; Ax(O) returns all axioms of O. In the case where each comparison operator in (16,
17) is reversed, the roles of Ox and BLx,Ly below are reversed.

Repair: Two new kinds of stuff and a definition of the invisible stuff are introduced.

stuff σinvis := stuff −τ stuff σvis (18)

When stuff is a constant, the substitution σvis just replaces it with new constant standing
for the visible stuff; when stuff is compound, the replacement is more complex, but still
automatable. Similar remarks hold for σinvis.
Let ν(Ox) and ν(BLx,Ly) be the repaired ontology, resp., bridge. The axioms for the new
ontologies are updated in terms of those of the old as follows:

Ax(ν(Ox)) := { stuff σinvis := stuff −τ stuff σvis } ∪ Ax(Ox) (19)

Ax(ν(BLx,Ly)) := {φ{stuff /stuff σvis} | φ ∈ Ax(BLx,Ly) } (20)

To effect the repair, the axioms of ν(Ox) are the same as those of Ox except for the
addition of the new definition; the axioms of ν(BLx,Ly) are the same as those of BLx,Ly

except for the renaming of the original stuff to the visible stuff.

Figure 5: The Where’s My Stuff? ontology repair plan with bridge

brought to a revision of the view underlying equation (21) and established the modern
view, based on a distinction between the quantity of heat transferred to a physical body
and the rise in temperature undergone by the body. On the one hand, the notion of
specific heat capacity (1759) accounted for the fact that when equal masses of different
materials at equal temperatures absorb the same quantity of heat (i.e. when exposed
to equal flows) they undergo different rises in temperature. This is due to a material
specific capacity constant c. On the other hand, the case of single-substance bodies led
to the formulation of the theory of latent heat (1761). A melting block of, for instance,
ice releases heat at constant temperature. Such heat is proportional to a constant L
which is specific to the body’s material as well as to its phase-transition. This modern
view of heat and temperature is represented by the following equation:

Q = m×∆T × c+m×L (22)
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Ax(S1,2) ::= {
. . . ,Mass::Obj 7→ Evt 7→ Real,Melting::Evt,Start::Evt 7→ Real, . . .} (23)

Ax(L1) ::= {
. . . ,Duration::Evt 7→ Time,Heat::Obj 7→ Evt 7→ Real, (24)
∀o:Obj,e:Evt.Heat(o,e) = Mass(o,e)×Duration(e)} (25)

Ax(L2) ::= {
. . . ,Hght::Obj 7→ Time 7→ Real,TempDiff ::Obj 7→ Evt 7→ Real, . . . (26)
∀o:Obj,e:Evt.TempDiff (o,e) =
(Hght(MerOf (ThmIn(o,Start(e))))−Hght(MerOf (ThmIn(o,End(e)))))} (27)

Ax(O1) ::= {
Mass(H2O,Melting) > 0, (28)
Duration(Melting) > 0} (29)

Ax(O2) ::= {
Hght(MerOf (ThmIn(H2O,Start(Melting)))) = 5, (30)
Hght(MerOf (ThmIn(H2O,End(Melting)))) = 5} (31)

Ax(BL1,L2) ::= {
. . . ,L1.Start Start,L2.Start Start,L1.Duration Duration,L2.Hght Hght, . . . (32)
∀o:Obj,e:Evt,∀v:Real.Heat(o,e) = v←→ TempDiff (o,e) = v} (33)

Figure 6: Initial model of the Latent Heat case study. Bridge BL1,L2 merges (indicated
by ) L1’s and L2’s signatures and maps their concepts, for instance, Heat, the amount
of heat absorbed or released by a body, is mapped on TempDiff , the temperature dif-
ference undergone by the body. This allows the contradiction between BL1,L2 and O1
about the value of Heat to become explicit, just as in the WMS trigger formula, because
during a melting event there is no change in temperature.

where Q is the heat put into or taken out of the body, m is the mass of the body, c is
the specific heat capacity of the body’s substance, ∆T is the change in temperature, L
is the specific latent heat of the substance during the considered phase-transition.

Note that the evolution from equation (21) to equation (22) marks a shift in the
meaning of the variables: Q is not mapped anymore on and measured solely by the
temperature difference of the body, ∆T (which now has its own place in the equation).
Also, there is no need anymore to make explicit reference to a temporal notion such
as flow (∆t). Based on the modularization shown in Figure 3, Figure 6 represents the
state of the theory of heat according to equation (21) and to the experimental results
that lead to the introduction of latent heat. At the top, S1,2 contains the shared signature
of two ontologies of physics. For instance, Melting is defined as a subtype of event
(Evt), Start as a function from Evt to the type of the real numbers Real. L1 introduces
new signatures elements such as the duration of an event (Duration) and represents
equation (21) by equation (25). O1 contains value assertions for Mass and Duration
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that allow this module to predict that the quantity of Heat released by H2O during the
Melting event is greater than zero. On the other hand, L2 represents the experimental
set-up: it introduces other signature elements for the instruments (such as ThmIn for the
thermometer used in the measurements) and it defines the difference in temperature of
a body (TempDiff ) as the difference in height (Hght) of the mercury column (MerOf ) of
a thermometer stuck in the body throughout an event. O2 contains value assertions for
the relevant observations of the height of the mercury. Bridge BL1,L2 translates L1’s and
L2’s signatures. For instance, Start in L1 (indicated by L1.Start) is translated (indicated
by the symbol  ) to Start. BL1,L2 also aligns signatures elements, for instance Heat
and TempDiff . This allows the contradiction with O1 to become explicit just like in the
WMS trigger formula (16):

Ax(O1) ` Heat(H2O,Melting) > 0 (34)
Ax(BL1,L2)∪Ax(O2) ` Heat(H2O,Melting) = 0 (35)

Given the substitution:

{O1/Ox,O2/Oy,λx.x(H2O,Melting)/ f ,Heat/stuff ,0/v}

WMS repairs the two ontologies as in ν(Ox) (i.e. by adding to O1 the distinction be-
tween visible and invisible Heat) and as in ν(BLx,Ly) (i.e. by renaming in BL1,L2 all
occurrences of heat to Heatvis).

Ax(ν(O1)) := { Heatinvis := Heat−Heatvis } ∪ Ax(O1) (36)
Ax(ν(BL1,L2)) := {φ{Heat/Heatvis} | φ ∈ Ax(BL1,L2) } (37)

4.2 WMS’s application to the postulation of dark matter
The theoretical existence of dark matter is based on various sources of evidence, in-
cluding the rotational velocities of stars in spiral galaxies, which exceeds the predicted
orbital velocities3, as first observed by Rubin [Rubin et al, 1980]. Given the observed
distribution of mass in these galaxies, Newtonian dynamics predicts that orbital veloc-
ities decrease inversely with the square root of the distance from the galactic centre,
or the radius (equation (41)). However, the observed velocity was almost constant out
to large radii. Rubin’s conclusion was that some invisible matter exerts a gravitational
force on these stars, causing the unexpectedly high orbital velocities. The theoreti-
cal notions that play a role in this case are Newton’s second law of motion (equation
(38)), the law of gravitational attraction in circular orbits (equation (39)) and the law
of centripetal acceleration (equation (40)), which combined allow to derive the orbital

3It is assumed that observed orbital velocity and rotational velocity for stars are the same. Observations
were initially based on gas clouds (HII regions) rather than stars, and only later were the observations based
on both gases and stars. We simplify the physics by considering only stars.
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velocity of a body (equation (41)) at distance r from the body at the centre of the orbit.

F = ma (38)

F =
GMm

r2 (39)

a =
v2

orb
r

(40)

vorb =

√
G×M

r
(41)

where F is the force applied to an orbiting body, m is the mass of the body, a is its
acceleration, M is the mass of the body at the centre of the orbit, G is the gravitational
constant, r is the radius, or distance between the orbiting body and the body at the
centre of the orbit, vorb is the orbital velocity.

On the experimental side, orbital velocity is calculated as rotational velocity, based
on spectrographic data and using, among others, equations (42, 43, 44).

z =
λ−λ0

λ0
(42)

vrad = c× z (43)

vrot =
vrad− vsys

sin(i)
(44)

where z is the redshift of a radiation λ with respect to a reference λ0, c is the speed of
light, vrad is the radial velocity of a body (e.g. a star) along the line of observation, vsys
is the velocity of the system (e.g. a galaxy) to which the observed body belongs, vrot
is the rotational velocity of the object. Based on the modularization shown in Figure
3, Figure 7 represents the state of the theory of galactic orbital velocity according to
equation (41) and to the observations yielded by equations (42) to (44), which led to
the postulation of dark matter. At the top, S3,4 contains the shared signature where,
for instance, the type Rad for distances from the galactic centre is defined as a func-
tion that maps the product of objects (e.g. stars) and object sets (e.g. galaxies) and
an observation event onto the type Dst for distances (this in turn maps onto real num-
bers). Note that S3,4 is assumed to inherit from some higher mathematical module
knowledge about shapes of curves, e.g., UpFlat is the curve that has a positive gradient
between zero and some point and a zero gradient thereafter. Such knowledge makes
it possible to compare the predictions and the observations. L3 and O3 introduce the
galaxy rotation curve GphA, a Keplerian curve computed according to equation (47)
(which models equation (41)) where Evt, Gly, Dst, and Str denote types for represent-
ing events, galaxies, distances, and stars, resp.; G denotes the universal gravitational
constant; OV , the orbital velocity; gr, the set of stars in the galaxy g up to distance r;
Mass, the mass of a body. L4 and O4 introduce GphB, the curve based on observations,
computed according to equations (50) to (52) (which model equations (42) to (44))
where RtV denotes the rotational velocity; RdV , the radial velocity; SyV , the velocity
of the galactic system relative to the observer; Inc, the inclination of the galaxy; λShift,
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Ax(S3,4) ::= {
. . . ,UpFlat::Real 7→ Real,Rad::(Obj∗Obj Set) 7→ Evt 7→ Dst . . .} (45)

Ax(L3) ::= {
. . . ,GphA::Gly 7→ Evt 7→ Real, . . . (46)

∀e:Evt, g:Gly, r:Dst. OV(g,e) =

√
G×∑s ∈ gr.Mass(s,e)

r
, (47)

∀e:Evt. GphA(Glxy71,e) = OV(Glxy71,e)} (48)

Ax(L4) ::= {
. . . ,GphB::Gly 7→ Evt 7→ Real, . . . (49)
∀e:Evt, s:Str, g:Gly. RdV(s,g,e) = c×λShift(s,g,e), (50)

∀e:Evt, s:Str, g:Gly. RtV(s,g,e) =
RdV(s,g,e)−SyV(g,e)

sin(Inc(g,e))
, (51)

∀s:Str. GphB(Glxy71,Rad(s,Glxy71)) = RtV(s,Glxy71,Obs6)} (52)

Ax(O3) ::= {
G = 6.673×10−11, (53)

∑s ∈ Glxy71Rad(Star1,Glxy71).Mass(s,Obs6) = 100, (54)

∑s ∈ Glxy71Rad(Star9,Glxy71).Mass(s,Obs6) = 110} (55)

Ax(O4) ::= {
c = 299792458, (56)
λShift(Star1,Glxy71,Obs6) = 300, (57)
λShift(Star9,Glxy71,Obs6) = 300} (58)

Ax(BL3,L4) ::= {
. . . ,L3.UpFlat UpFlat,L4.UpFlat UpFlat, . . . (59)
∀e:Evt, s:Str, g:Gly, v,r:Real. RtV(s,g,e) = v ∧Rad(s,g) = r←→ OV(g,r,e) = v} (60)

Figure 7: Initial model of the Dark Matter case study. BL3,L4 merges (indicated by )
the signatures of L3 and L4 and aligns RtV with OV . This allows the contradiction with
O4 to become explicit just as in the reversed WMS trigger formula (17).

the shift in wave length; Glxy71, the galaxy being observed; Star1 and Star9, stars in
the observed galaxy; and, Obs6, the observation event.

Some symbols in O4, such as RtV and RdV , are not in the language of O3. BL3,L4

links together the seemingly disparate terms by relating RtV in L4 to the OV in L3.
This allows the contradiction with O4 to become explicit just like in the reversed WMS
trigger formula (17):

Ax(O3) ` GphA < UpFlat (61)
Ax(BL3,L4)∪Ax(O4) ` GphA = UpFlat (62)

Given the substitution:

{O3/Ox,O4/Oy,GphA/ f ,Glxy71/stuff ,UpFlat/v}
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WMS repairs the two ontologies as in ν(Ox) (i.e. by adding to O3 the distinction be-
tween visible and invisible Glxy71) and as in ν(BLx,Ly) (i.e. by renaming in BL3,L4 all
occurrences of Glxy71 to Glxy71vis).

Ax(ν(O3)) := {φ{Glxy71/Glxy71vis} | φ ∈ Ax(O3) } (63)
Ax(ν(BL3,L4)) := { Glxy71invis := Glxy71−Glxy71vis } ∪ Ax(BL3,L4) (64)

5 The Inconstancy ORP

The Inconstancy ORP, described in Figure 8, is triggered when, given an ontology Ox
representing the current state of a physical theory and some ontologies Oy.i represent-
ing sensory information arising from experiments, the sensory ontologies give distinct
values for function stuff (~si) in different circumstances. Suppose function V (~si,~bi) of
the ith sensory ontology, where ~bi contains variables distinguishing among these cir-
cumstances, returns distinct values in each of these circumstances, but is not one of
the parameters in ~si, i.e., stuff (~si) does not depend on V (~si,~bi). We call stuff (~si) the
inconstancy and V (~si,~bi) the variad. The Inconstancy repair plan establishes a relation-
ship between the variad V (~si,~bi) and the inconstancy stuff (~si). The inconstancy might,
for instance, be the gravitational constant G and the variad might be the acceleration
of an orbiting star due to gravity, as suggested by the MOdified Newtonian Dynamics
approach to the dark matter case study.

To discover the meaning of the function F , Inconstancy follows the tradition of
Langley’s BACON program [Langley et al, 1983] by using curve fitting. The ontologies
Os(V (~si,~bi) = vi . . .) provide a useful collection of equations: F(c(~si),V (~si,~bi)) = ci
for i = 1, . . . ,n. Curve fitting techniques, e.g., regression analysis, can be applied to
these equations to approximate a definition of F . This hypothesis can then be tested by
creating additional observations Os(V (~s j, ~b j) = v j . . .), for new values of V (~s j, ~b j), and
confirming or refuting the hypothesis.

5.1 Inconstancy application to the MOND approach
An alternative theory for the anomaly in orbital velocities of stars in galaxies is pro-
vided by MOdified Newtonian Dynamics MOND, proposed by Moti Milgrom in 1981
as an alternative to the dark matter explanation. MOND is an example of the Incon-
stancy plan. This is a good example of how the same observational discrepancies can
trigger different repair plans. MOND suggests that the gravitational constant is not a
constant, but depends on the acceleration between the objects on which it is acting. It
is constant until the acceleration becomes very small and then it depends on this accel-
eration, which is the case for stars in spiral galaxies. So, the gravitational constant G
in equation (41) can be repaired by giving it an additional argument to become G(a),
where a is the centripetal acceleration of a star s (equation (40)) due to the gravitational
attraction between the star and the galaxy in which it belongs. a is the variad and G is
the inconstancy.

Based on the modularization shown in Figure 4, Figure 9 extends and modifies the
axiomatization presented in Figure 7. S5,6 extends S3,4 to include the symbol for cen-
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Trigger: Ox is the predictive ontology, Oy.i(v(~bi) =τ′ vi) ∀i ∈ [1,n] are the observational ones,
made under the conditions v(~bi) =τ′ vi. Oy.i are bridged to Ox by BLx,Oy.i . If stuff is
measured to take different values in at least two of these bridges, the following formulae
will be triggered:

∃Lx,Ly,Ox,Oy.1,Oy.n,BLx,Oy.1 ,BLx,Oy.n:Onto,τ,τ′, ~τ′′ : Types,stuff ,c,c1, . . . ,cn:τ,

v1, . . . ,vn:τ′, ~b1, . . . , ~bn:~τ′′,v : ~τ′′ 7→ τ′

Lx ⊆ Ox∧ Ly ⊆ Oy→ (65)

(Ax(Ox) ` f (stuff ) ::= c∧ (66)

Ax(BLx,Oy.1(v(~b1) =τ′ v1)) ` f (stuff ) =τ c1∧
...

...
Ax(BLx,Oy.n(v(~bn) =τ′ vn)) ` f (stuff ) =τ cn∧ (67)

Ax(Ox) ` c1 6= cn) (68)

where L ⊆ O means that ontology O depends on ontology L; BLx,Ly means that ontology
B bridges ontologies Lx and Ly; O ` φ means that formula φ is a theorem of ontology O;
t:Types means t is a type; o:Onto means o is an ontology; >τ is the greater-than operator
for τ; Ax(O) returns all axioms of O.

Repair: The repair is to change the signature of all the ontologies to relate the inconstancy,
stuff , to the variad, v(~y) via a new function F :

ν(stuff ) ::= λ~y. F(c,v(~y)) (69)

The axioms of the new ontologiesare calculated in terms of those of the old, as follows:

Ax(ν(Ox)) ::= {φ{stuff /ν(stuff )(~y)} |φ ∈ Ax(Ox)}
\{stuff ::= c}∪{ν(stuff ) ::= λ~y. F(c,v(~y))} (70)

Ax(ν(BLx,Oy.i(v(~bi) =τ′ vi))) ::=

{φ{stuff /ν(stuff )(~bi)} |φ ∈ Ax(BLx,Oy.i(v(~bi) =τ′ vi))} (71)

Figure 8: The Inconstancy ontology repair plan with bridges

tripetal acceleration Accel(s,e). This is defined in L3’s extension L5 as a function of
orbital velocity and in L4’s extension L6 as a function of rotational velocity. O6.1 and
O6.2 contain the data that allow to calculate according to equation (51) the rotational
velocity for Star1 and Star9, which has the same value. Therefore, according to equa-
tion (74) their acceleration varies with their radius. On the other had, bridges BL5,O6.1
and BL5,O6.2 , which just as BL3,L4 , equate orbital and rotational velocity, allow to cal-
culate the local value for G, which varies as the variad. This allows the contradiction
with O5 to become explicit, like in Inconstancy’s trigger formulae (66) through (68),
where G is calculate in each BL5,O6.i by the inverse of equation (47) (the value of which
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Ax(S5,6) ::= Ax(S3,4)∪{
. . . ,Accel::Obj 7→ Evt 7→ Real . . .} (72)

Ax(L5) ::= Ax(L3)∪{

∀e:Evt, s:Str, g:Gly.Accel(s,e) =
(OV(s,g,e))2

Rad(s,g)
} (73)

Ax(L6) ::= Ax(L4)∪{

∀e:Evt, s:Str, g:Gly.Accel(s,e) =
(RtV(s,g,e))2

Rad(s,g)
} (74)

Ax(O5) ::= Ax(O3) (75)

Ax(O6.1) ::= {
c = 299792458, (76)

λShift(Star1,Glxy71,Obs6) = 300} (77)

Ax(O6.9) ::= {
c = 299792458, (78)
λShift(Star9,Glxy71,Obs6) = 300} (79)

Ax(BL5,O6.1) ::= Ax(BL3,L4) (80)

Ax(BL5,O6.9) ::= Ax(BL3,L4) (81)

Figure 9: Initial model of the MOND case study. Bridges BL5,O6.1 and BL5,O6.2 , which
just as BL3,L4 in Figure 7, equate orbital and rotational velocity, allow to calculate the
local value for G, which varies as the variad. This allows the contradiction with O5 to
become explicit.

is equated here to Gi for the sake brevity in the substitutions that follow):

Ax(O5) ` G ::= 6.673×10−11 (82)

Ax(BL5,O6.1(Accel(Star1) = A1)) `

G =
(OV(Star1,Glxy71,Obs6))2×Rad(Star1,Glxy71)

∑s ∈ Glxy71/Star1.Mass(s,Obs6)
= G1 (83)

...
...

Ax(BL5,O6.9(Accel(Star9) = A2)) `

G =
(OV(Star9,Glxy71,Obs6))2×Rad(Star9,Glxy71)

∑s ∈ Glxy71/Star9.Mass(s,Obs6)
= G9 (84)

Ax(O5) ` G1 6= G9 (85)

17



Given the substitutions:

∀i ∈ [1,n]

{O5/Ox,O6i/Oyi ,stuff /G,= / f ,c/6.673×10−11,ci/Gi,v/Acc,~bi/〈Stari〉,vi/Ai}

Inconstancy repairs the two ontologies by redefining the inconstancy G as a function
of G and of the variad Accel and by replacing the old definition with the new one:

Ax(ν(O5)) ::= {φ{G/ν(G)(〈s〉)} |φ ∈ Ax(O5)}
\{G ::= 6.673×10−11}∪{ν(G) ::= λ〈s〉. F(G,Accel(〈s〉)} (86)

Ax(ν(BL5,O6.i(Accel(〈Stari〉) =τ′ Ai))) ::=
{φ{G/ν(G)(〈Stari〉)} |φ ∈ Ax(BLx,Oy.i(Accel(〈Stari〉) =τ′ Ai))} (87)

6 The Unite ORP

The Unite ORP, described in Figure 10, is triggered when the observed values of the
defining properties of two distinct functions are the same. For instance, the orbit of
(heavenly) bodies is one of their defining properties, i.e., equating two orbits is equiva-
lent to identifying the corresponding bodies as the same one, according to principle that
two objects cannot be at the same place at the same time. Just like WMS, Unite assumes
three ontologies: an ontology Ox representing a predictive physics theory and labelling
a given property as defining, a heterogeneous ontology Oy representing some sensory
information arising from observations, a bridge BLx,Ly . Contrary to WMS, Unite is not
triggered by a contradiction, but by an equality of two stuff s relative to the chosen
defining quality. The repair is to equate in Ox stuff 1 and stuff 2.

6.1 Unite application to the Morning and Evening Star case study
Because Venus is closer to the Sun than the Earth, it becomes visible either just before
dawn or just after sunset, when it is the brightest heavenly object after the Moon. These
two kinds of appearance were not originally identified as coming from the same object.
It was only with the quantification of astronomy that the orbits of these two stars were
calculated and seen to be the same (up to experimental error).

One way of comparing the two orbits is to calculate their mean anomaly M, i.e.,
the parameter relating position and time for a body moving in a Kepler orbit:

M =

√
G(M +m)

a3 × t (94)

where a is the length of the orbit’s semi-major axis, M and m are the orbiting masses,
and G is the gravitational constant.

For instance the mean anomaly of specific bodies orbiting the Sun can be under-
stood as the time since the last point of closest approach to the Sun (periapsis) multi-
plied by their mean motion.
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Trigger: Ox is the predictive ontology and Oy is the observational one. If f (stuff 1) and f (stuff 2)
has no values in Ox, the same values in Oy, and f is labelled as defining in Ox, then the
following formula will be triggered:

∃Lx,Ly,Ox,Oy,BLx,Ly:Onto, τ,τ′:Types, f:τ 7→ τ
′, stuff 1,stuff 2:τ.

Lx ⊆ Ox∧ Ly ⊆ Oy→ (88)

(Ax(Ox) 0 stuff 1 =τ stuff 2 (89)

Ax(Ox) ` DefProp( f ,τ) (90)

Ax(BLx,Ly)∪Ax(Oy) ` f (stuff 1) =τ′ f (stuff 2)) (91)

where L⊆ O means that ontology O depends on ontology L; BLx,Ly means that ontology
B bridges ontologies Lx and Ly; O ` φ means that formula φ is a theorem of ontology O;
t:Types means t is a type; o:Onto means o is an ontology; =τ and =τ′ are the equality
operators for τ and τ′; Ax(O) returns all axioms of O..

Repair: The two stuff s are identified as one.

stuff σinvis := stuff 1 =τ stuff 2 (92)

Let ν(Ox) be the repaired predictive ontology. The axioms for the new ontologies are
updated in terms of those of the old as follows:

Ax(ν(Ox)) := { stuff 1 =τ stuff 2} ∪ Ax(Ox) (93)

To effect the repair, the axioms of ν(Ox) are the same as those of Ox except for the
addition of the new definition.

Figure 10: The Unite ontology repair plan with bridge

Based on the modularization shown in Figure 3, Figure 11 axiomatizes the case
study at hand. S9,10 provides type declarations for MorningStar, EveningStar, Sun. L9
provides theoretical knowledge for calculating the mean anomaly of objects orbiting
the Sun and declares the defining property; O9 is empty, no prediction is made using
the new heliocentric theory. On the other hand, L10 is empty, as the old geocentric
theory is not relevant, while the observations of MorningStar and EveningStar in O10
are. BL9,L10 allows to apply the new theory to the available data as follows:

Ax(O9) 0 MorningStar =τ EveningStar (107)
Ax(O9) ` DefProp(MeanAnom(o,e),o) (108)

Ax(BL9,L10)∪Ax(O10) ` ∀e.MeanAnom(MorningStar,e) =τ′ (109)
MeanAnom(MorningStar,e)

Given the substitutions:

{O9/Ox,O10/Oy,stuff 1/MorningStar,stuff 2/EveningStar,

f /λe.(MeanAnom(o,Sun,Moon,e))}
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Ax(S9,10) ::= {
. . . ,MorningStar::Obj,EveningStar::Obj,Sun::Obj . . .} (95)

Ax(L9) ::= {
. . . ,MeanAnom::Obj 7→ Evt 7→ RealSet, . . . (96)

∀o:Obj, e:Evt. MeanAnom(o,e) =

√
G× (Mass(Sun,e)+Mass(o,e))

Rad3
a(o,Sun,e)

×Duration(e), (97)

DefProp(MeanAnom(o,e),o)} (98)

Ax(L10) ::= {}

Ax(O9) ::= {}

Ax(O10) ::= {
∀e.Mass(Sun,e) = 1.9891×1030, (99)

∀e.Mass(MorningStar,e) = 4.868×5×1024, (100)

∀e.Mass(EveningStar,e) = 4.868×5×1024, (101)

Rad(MorningStar,Obs1) = 107940156, (102)

Rad(EveningStar,Obs1) = 107940156, (103)
...

Rad(MorningStar,Obs5) = 108942109, (104)

Rad(EveningStar,Obs5) = 108942109} (105)

Ax(BL9,L10) ::= {
. . . ,L9.MeanAnom MeanAnom, . . .} (106)

Figure 11: Initial model of the Morning and Evening Star case study: BL9,L10 allows to
calculate the orbit of MorningStar and EveningStar from the data available in O10 and
thus identify the two stars as one heavenly body.

Unite repairs O9 as follows:

Ax(ν(O9)) ::= Ax(O9)∪{MorningStar =τ EveningStar}

6.2 Unite application to the shape of the Earth case study
Pythagoras was one of the first astronomers to realise that the Earth was a sphere.
He gathered evidence to support this theory from various sources, among which were
observations of lunar eclipses. He noticed that the edge of the shadow that the Earth
cast on the Moon was always circular. He reasoned that the only 3D shape that always
casts circular shadows is a sphere.

The defining property is Project(v,Sun,Moon,e): the orthographic projection of
a volume v from the Sun onto the Moon, which for a couple of coordinates x, y is
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Ax(S11,12) ::= {
. . . ,Shape::Obj 7→ shape,Earth::Obj,Sun::Obj . . .} (110)

Ax(L11) ::= {
. . . ,Project::Obj 7→ Evt 7→ RealSet, . . . (111)

∀o1,o2,o3:Obj, e:Evt. Project(Shape(o1),o2,o3,e) = (112)

cosLat(Shape(o1),e)× sin(Lon(Shape(o1))−Lon0,e) . . . ,

DefProp(Project(p,o2,o3,e), p)} (113)

Ax(L12) ::= {}

Ax(O11) ::= {}

Ax(O12) ::= {
∀e.Shape(Earth,e) = Sphere, (114)

∀e.Shape(Ball,e) = Sphere, (115)

cosLat(Shape(Earth),Obs3)× sin(Lon(Shape(o1),Obs3)−Lon0) = 3, (116)

cosLat(Shape(Ball),Obs3)× sin(Lon(Shape(o1))−Lon0,Obs3) = 3, (117)
...

cosLat(Shape(Earth),Obs4)× sin(Lon(Shape(o1),Obs4)−Lon0) = 5, (118)

cosLat(Shape(Ball),Obs4)× sin(Lon(Shape(o1))−Lon0,Obs4) = 5} (119)

Ax(BL11,L12) ::= {
. . . ,L11.Project Project, . . .} (120)

Figure 12: Initial model of the shape of the Earth case study: BL11,L12 allows to calculate
the shape of Earth and Ball from the data available in O12 and thus identify the two
shapes as the same one.

calculated as follows:

x = cosLat× sin(Lon−Lon0) (121)
y = cosLat0× sinLat− sinLat1× cosLat cos(Lon−Lon0) (122)

where Lat is the latitude, Lon is the longitude, and Lon0 and Lat0 are reference longi-
tudes and latitudes, respectively.

The idea is that if two 3D objects always have the same 2D projections then they
have the same shape. Multiple, independent projections are required. A cylinder also
projects as a circle along its axis, but most of its projections are not circular, so one
projection is not enough. Note also that the observed projections of Ball are a thought
experiment.

Based on the modularization shown in Figure 3, Figure 12 axiomatizes the case
study at hand. S11,12 provides type declarations for, among others, the symbols Shape,
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Earth, Sun. L11 provides part of theoretical knowledge for calculating orthographic
projections and declares the defining property for such knowledge, O11 is empty, no
prediction is made using the sphere theory. On the other hand, L12 is empty, as the old
(e.g. flat Earth) theory is not relevant while the observations of lunar eclipses in O12
are. BL11,L12 allows to apply the theory to the available data as follows:

Ax(O11) 0 Shape(Earth) =τ Shape(Ball) (123)
Ax(O11) ` DefProp(Project(p,o2,o3,e), p) (124)

Ax(BL11,L12)∪Ax(O12) ` ∀e.Project(Shape(Earth),Sun,Moon,e) =τ′ (125)
Project(Shape(Ball),Sun,Moon,e)

Given the substitutions:

{O11/Ox,O12/Oy,stuff 1/Earth,stuff 2/Ball,

f /λe.(Project(Shape(Earth),Sun,Moon,e))}

Unite repairs O11 as follows:

Ax(ν(O11)) ::= Ax(O11)∪{Shape(Earth) =τ Shape(Ball)}

7 Initial implementation
GALILEO is prototyped in the higher-order theorem prover Isabelle [Paulson, 1994].
On the one hand the ontologies are represented as Locales [Ballarin, 2004], i.e., as in-
dependent proof contexts that can be extended and merged. Extensions allow to express
dependencies between the ontologies (e.g., the arrows in Figures 3 and 4), whereas
merges (e.g. the boxes in Figures 3 and 4) allow to align heterogeneous ontologies. On
the other hand, ORPs are being implemented as extensions of Isabelle’s higher-order
matching (HOM) mechanism, a special case of higher-order unification (HOU). So far
we have mainly worked on the implementation of ORPs that diagnose and are triggered
by conflicts between ontologies, e.g., WMS and Inconstancy.

The goal of conflict diagnosis is the correct instantiation of the term stuff in the
trigger, and this is essentially a reasoning task. Conflict diagnosis consists of two main
phases: preparation, term discovery, heuristics-based filtering.

Preparation requires user interaction. In order to reduce the inferential search scope,
the user provides the conflicting ontologies and the bridges (e.g., O1, O2, BL1,BL2

)
as well as the shape of the contradiction, i.e. the derivable sentence causing the
contradiction (e.g., Heat(H2O,Melting) = 0).

Term discovery is completely automatic and based on HOM. Due to the high general-
ity of the trigger formulae, where f and stuff are polymorphic, the space of possi-
ble instantiations typically contains a large number of hits. These, though, often
contain arbitrary λ-expressions that have no meaningful semantic relevance.
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Heuristics-based filtering is used to prune the solution space, e.g., disregarding in-
stantiations that contain the identity function, or that contain no element of the
signature, or that contain the same functional symbol applied to permuted argu-
ments.

Once a match is selected, the repair then takes place. Occurrences of the instantia-
tion of stuff in an axiom are checked by HOM as well. Even though the transformation
rules of repair require only syntactic analysis of the axioms, formalising repair as a
HOM problem provides more robustness to the whole procedure. Thus, the look-up of
occurrences of stuff in a formula involves searching for a match.

8 Conclusion
Based on an initial discussion of the relevant literature, we have presented a higher-
order logical approach to the problem of ontology evolution from the perspective of
automating the mechanisms to repair locally consistent but globally inconsistent on-
tologies. Three ontology repair plans and applications for each them were discussed.
The ORP Where’s My Stuff? was applied to the discovery of latent heat and to the pos-
tulation of dark matter; Inconstancy was applied to the Modified Newtonian Dynamics
approach to the study galaxies; Unite was applied to the identification of the Morning
and Evening Stars and to the assessment of the shape of the Earth.

Both the HOL formalization and GALILEO’s implementation in a higher-order the-
orem prover are providing us with important elements of evaluation. At this stage we
are mainly evaluating the generality of the diagnosis and the meaningfulness of the
discovered instantiations and getting the following:

1. The expressivity of higher-order logic is valuable in achieving generality. The
instantiations of stuff are diverse in types and arities, the described mechanism
for diagnosis indeed has the capacity to identify conflicts on a general level – not
just within an example, but across disparate case studies.

2. Even at a lower unification bound, the raw search spaces for all case studies
are too vast. Therefore the use of heuristics prunes away from the solution scope
meaningless solution in the order of the tens of thousands, thus making the search
space manageable.

3. Even under ideal circumstances, in which the heuristics prune away all, and only,
semantically meaningless matches, the pruned solution space generated typically
still contains multiple matches, each corresponding to a unique set of instanti-
ations. The instantiation of stuff in each of the matches is logically valid and,
hopefully, meaningful. For instance, in the case study of the postulation of dark
matter, instantiating stuff to Glxy71 indicates that the galaxy should have an
extra component; to GphA leads to a redefinition of all predicted curves; and,
to GphA(Glxy71) limits the modification to only the definition of the predicted
curve for Glxy71. Similar considerations hold for all other case studies. If the
preference for particular matches is indicated, then a manual decision for the
preferred matches can be avoided.
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4. Compared to the approaches found in the literature and discussed in Section 2,
our approach expands the space of solutions. The application of an ontology
repair plan often combines the retraction of axioms, the change of beliefs as well
the deeper modification of the language in which the ontology is represented. For
instance, if one were to apply WMS to the incoherent and inconsistent ontology
network shown in Figure 2, WMS would propose an additional solution with
respect to DL approaches, that would look as an abstract version of the following:

a. add ToBeTrainedStaff and NotToBeTrainedStaff to signature sig(Tcom);
b. rename Staff to NotToBeTrainedStaff in Tcom;
c. add axiom Staff ≡ ToBeTrainedStaff tNotToBeTrainedStaff to sigTcom;
d. rename Staff to ToBeTrainedStaff in Map(T ∗∗uni ,Tcom).

Note that the abstract solution proposed by WMS would add to sig(Tcom), for in-
stance, Staff vis rather than ToBeTrainedStaff and Staff invis for NotToBeTrainedStaff .
Yet WMS would automatically change the language of the ontology thus give a very
circumscribed hint on where and how the language of the ontology needs to be further
refined.

Future work will concentrate on furthering our understanding of the relationships
between DL and HOL approaches to ontology evolution; on the logical status of bridges
with respect to their implementation as Isabelle locales; on the implementation of other
ORPs; on more complex testing and evaluation.

References
[Ballarin, 2004] Ballarin, C. (2004). Locales and locale expressions

in Isabelle/Isar. Lecture Notes in Computer Science,
3085:34–50.

[Bouquet et al, 2004] Bouquet, P., Giunchiglia, F., Van Harmelen, F., Ser-
afini, L. and Stuckenschmidt, H. (2004). Contextu-
alizing ontologies. Web Semantics: Science, Services
and Agents on the World Wide Web, 1(4):325–343.

[Bundy & Chan, 2008] Bundy, Alan and Chan, Michael. (2008). Towards on-
tology evolution in physics. In Hodges, Wilfrid and
de Queiroz, Ruy, (eds.), Logic, Language, Informa-
tion and Computation, volume 5110 of Lecture Notes
in Computer Science, pages 98–110. Springer Berlin /
Heidelberg.

[Chan & Bundy, 2008] Chan, M. and Bundy, A. (November 2008). Incon-
stancy: An ontology repair plan for adding hidden
variables. In Bringsjord, S. and Shilliday, A., (eds.),
Symposium on Automated Scientific Discovery, num-
ber FS-08-03 in Technical Report, pages 10–17. AAAI
Press. ISBN 978-1-57735-395-9.

24



[Doan et al, 2004] Doan, A., Madhavan, J., Domingos, P. and Halevy, A.
(2004). Ontology matching: A machine learning ap-
proach. Handbook on Ontologies in Information Sys-
tems, pages 397–416.

[Flouris, 2006] Flouris, G. (2006). On Belief Change and Ontology
Evolution.

[Flouris et al, 2006] Flouris, G., Z., Huang, Pan, J., Plexousakis, D. and
H., Wache. (2006). Inconsistencies, Negations and
Changes in Ontologies. pages 1295–1300.

[Ghilardi et al, 2006] Ghilardi, S., Lutz, C. and Wolter, F. (2006). Did I
damage my ontology? A case for conservative exten-
sions in description logic. Proceedings of the Tenth
International Conference on Principles of Knowledge
Representation and Reasoning, pages 187–197.

[Giunchiglia & Shvaiko, 2004] Giunchiglia, F. and Shvaiko, P. (2004). Seman-
tic matching. The Knowledge Engineering Review,
18(03):265–280.

[Haase et al, 2005] Haase, P., van Harmelen, F., Huang, Z., Stucken-
schmidt, H. and Sure, Y. (2005). A Framework for
Handling Inconsistency in Changing Ontologies. In
The Semantic Web-ISWC 2005: 4th International Se-
mantic Web Conference, ISWC 2005, Galway, Ireland,
November 6-10, 2005: Proceedings. Springer Verlag.

[Ji et al, 2009] Ji, Q., Haase, P., Qi, G., Hitzler, P. and Stadtmüller,
S. (2009). RaDON Repair and Diagnosis in Ontology
Networks. The Semantic Web: Research and Applica-
tions, pages 863–867.

[Kalyanpur et al, 2006a] Kalyanpur, A., Parsia, B., Sirin, E. and Grau, B.C.
(2006a). Repairing unsatisfiable concepts in OWL on-
tologies. In ESWC, pages 170–184. Springer.

[Kalyanpur et al, 2006b] Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C. and
Hendler, J. (2006b). Swoop: A web ontology edit-
ing browser. Web Semantics: Science, Services and
Agents on the World Wide Web, 4(2):144–153.

[Lam et al, 2008] Lam, J.S.C., Sleeman, D., Pan, J.Z. and Vasconcelos,
W. (2008). A fine-grained approach to resolving un-
satisfiable ontologies. Lecture Notes in Computer Sci-
ence, 4900:62.

25



[Langley et al, 1983] Langley, P., Zytkow, J., Simon, H. and Bradshaw, G.
(June 1983). Mechanisms for qualitative and quan-
titative discovery. In Michalski, R. S, (ed.), Proceed-
ings of the International Machine Learning Workshop,
pages 121–132. University of Illinois.

[McNeill & Bundy, 2007] McNeill, F. and Bundy, A. (2007). Dynamic, auto-
matic, first-order ontology repair by diagnosis of failed
plan execution. International Journal On Semantic
Web and Information Systems, 3(3):1–35. Special is-
sue on ontology matching.

[Paulson, 1994] Paulson, L. C. (1994). Isabelle: A generic theorem
prover. Springer-Verlag.

[Rubin et al, 1980] Rubin, V. C., Thonnard, N. and Ford, Jr. W. K. (1980).
Rotational properties of 21 SC galaxies with a large
range of luminosities and radii, from NGC 4605 (R
= 4kpc) to UGC 2885 (R = 122 kpc). Astrophysical
Journal, 238:471.

[Schlobach & Cornet, 2003] Schlobach, S. and Cornet, R. (2003). Non-standard
reasoning services for the debugging of description
logic terminologies. In International Joint Conference
on Artificial Intelligence, volume 18, pages 355–362.
Citeseer.

[Wiser & Carey, 1983] Wiser, M. and Carey, S. (1983). When heat and tem-
perature were one. In Stevens, A. and Gentner, D.,
(eds.), Mental Models, pages 267–297. Erlbaum.

26


