
Isabelle Primer for Mathematicians

B. Grechuk

Abstract

This is a quick introduction to the Isabelle/HOL proof assistant, aimed at mathematicians who would
like to use it for the formalization of mathematical results.

1 Introduction

Interactive proof assistants are special programs, which make it possible to check mathematical results up to a
nearly absolute level of certainty. Clearly, computers cannot read and understand natural language, and even if
they could, a typical textbook proof usually omits some details and cannot be treated as absolutely rigorous. To
check the proof in an automated proof assistant, you need to write it using a special language, understandable
by computers. This “translation” to computer language is called the formalizationof the proof.

There are many proof assistants with different languages and underlying logics, and the first step is to
choose a particular one. Suppose that you chose the Isabelle/HOL proof assistant and want to learn how to
formalize using it. The obvious first step is to download the tutorial [1], and this should certainly be done.
However, not everyone will want to read a 218-page tutorial before formalizing the first simple lemma. In
contrast to the tutorial, this primer is aimed to help you start formalizing immediately, and learn the Isabelle
language (called Isar) in the process, based on examples. Sometimes, however, we will still refer to the tutorial.

You can work with Isabelle directly, or use a graphical user interface. It is highly advised to use a graphical
user interface, and the recommended interface is the Emacs-based ProofGeneral, distributed with Isabelle.
From now on I will assume that you use this interface.

First, you need to install Isabelle with Proof-General on your computer. The installation process depends
on the computer platform you use. All the programs and instructions can be found on the Isabelle website
http://isabelle.in.tum.de/ and in the tutorial. Supposing you have installed the program correctly, you are ready
to work. Let us start!

2 A First Lemma

If you open Proof General1, you see an empty window where it is possible to enter text. This file is automatically
called Scratch.thy. The whole Isabelle library consists of files with the extension “thy”, which are called
theories. A theory in Isabelle is just a collection of definitions, lemmas and theorems, like chapters in a book.
Dozens of theories are installed with Isabelle on your computer, and you can use any lemma from these theories
to derive your results. More important at this stage is that you can use these theories to study Isar - the language
of Isabelle. Instead of reading hundreds of pages of tutorial, let’s justopen some theory and see what is there.

To open an existing theory, you use the File> Open File command in the menu, then choose the folder
where you installed Isabelle, then> src> HOL, and here is a huge theory collection. Let us, for example, open

1Run the “isabelle emacs” command in the corresponding directory

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28971144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the theory Fun.thy2, in which basic notions about functions are introduced. The theory startswith some com-
ments and explanations of what is done here, embraced by open parenthesis-star and star-closed parenthesis,
like this:

(*comment*)

As you have probably guessed, in such comments you can write whatever you want, and this will not affect your
proofs. Other allowed syntax for comments aretext {*comment* }, -- {*comment* }, --"comment" . Because
large formal proofs are sometimes hard to understand, it is desirable to writesuch comments, but for now we
can omit them together with the optionalheader command and look further, where the theory actually starts.

theory Fun

Ok, this is easy. So, every theory should start with keywordtheory followed by the theory name. We can open
Isabelle in a new window, and write similarly:

theory MyFirst

The next lines in Fun.thy are

imports Complete Lattice
begin

Clearly, the commandbegin just starts the theory. The commandimports requires a little bit more explanation.
Theories in Isabelle form a huge directed graph - some theories “import” other ones to refer to their results and
definitions. You will need to import at least one theory, otherwise you will have to prove everything from
scratch. You can import several theories using a command like

imports <theoryName1 > <theoryName2 > <theoryName3 >

but importing a theory obviously means importing the whole hierarchy behind it, therefore it is usually enough
to import just one theory with a rich enough parent hierarchy. For a start,it may be a good choice to import
Main.thy, which accumulates all the basic theories in arithmetic. So, let us write in theory MyFirst

imports Main
begin

and look at the example Fun.thy again. After the commandbegin , we can see some comment of the form
text {* ... * } , which we will ignore, and then finally we see the first lemma of the theory.

lemma expand fun eq: " f = g ↔ (∀x. f x = gx)"

From this example we see, that every lemma starts with keywordlemma followed by the lemma’s name, a colon
: , and the lemma statement in quotes. Clearly, the name of the lemma is given for future references. Let us
ignore this lemma for now, and start with something which seems to be easier to prove, and write

lemma two two: " 2+2= 4"

Now, we want to prove this lemma. The statement which we want to prove is calleda goal. If we look at
Fun.thy, we can guess that text following every lemma is the proof. First lemma expandfun eq has a 4-line
proof, which looks like

2Here we use theory Fun.thy from Isabelle2009 as an illustrative example, to explain theories organization in Isabelle. In future
versions of Isabelle this particular theory can be modified, renamed, oreven removed, but this is not important for the Primer.

2

apply(...)
...
apply(...)
done

This is one of the general proof strategies in Isabelle. The commandapply means that we want to apply some
method to prove our goal. After this, the goal is usually simplified, and we use another method to proceed.
When the goal is proved, we write commanddone . But for our simple lemma we do not expect a long proof,
we would prefer to prove such a statement in one step. So, let us look at thesecond lemma in Fun.thy

lemma apply inverse:
"f x = u ⇒ (∀ x. P x ⇒ g (f x) = x) ⇒ P x ⇒ x = g u"
by auto

You can see, that the whole proof here is just the phraseby auto . auto is a method which tries to prove the
statement automatically. This method combines logical reasoning and arithmetic transformations to simplify
the goal and ideally prove it completely. Commandby is just a replacement for two commandsapply anddone ,
namelyby(method) is the same asapply(method) done . It requires the method to solve a goal completely,
and will fail otherwise. Also, from this example we can see, thatby auto can be written without parentheses.
Ok, let us try to prove our simple lemma similarly:

lemma two two: "2+2=4" by auto

Next step is to check in Isabelle that the proof is correct. We can click on Proof-General> Next Step in
the menu. This is the same as clicking on the right arrow on the tool-bar panel just below the menu. If you
click once, you see that the start of your theory has a different color,which means that this part is checked
and no misprints found. We will call this checking process “execution”. Ifyou click a second time, the lemma
formulation is accepted, and if you click the third time, you will see the messageFailed to finish proof
At command by in the window below, which is called the Proof General response buffer.

The usual strategy in this case is to replaceby by apply and see how farauto can proceed. But in this case
we will see the messageempty result sequence -- proof command failed At command "ap ply" . This
message indicates that the method cannot make any progress in solving the goal and hence cannot be applied
here at all.

So, does it mean that we cannot prove even such a simple lemma automatically in Isabelle? Clearly, in this
case formalizing serious mathematical results would be completely impossible in Isabelle. Fortunately, this is
not the case. To see the problem, let us go back (left arrow on the tool-bar panel), then try again, but execute
only the lemma formulation (click only once on the right arrow on the tool-bar panel) and look at the response
buffer (window below).

proof (prove): step 0
goal (1 subgoal):
1. (2::’a)+(2::’a)=(4::’a)

The lineproof (prove): step 0 just indicates that the proof starts, then Isabelle shows us how it under-
stands our lemma. Symbol:: indicates the type of the object. The point is that we often use the same symbols
in mathematics to indicate formally different notions. Of course, this is completely unacceptable in formal
proof systems, and therefore every constant or variable has a type, which clearly indicates what we mean. For
example, we use the symbol “2” in mathematical text to indicate a natural number,real number, complex num-
ber, or even, say, a label for a vertex in a graph, where 2+2 is not even defined. Symbol’a denotes atype
variable, meaning that the system understands that 2, 2, and 4 are meant to have thesame type, but it has no
idea what this type is. Sometimes this works: for example, if we write the lemma2=2 , we can easily prove it

3

by auto, because this lemma is true for every type. So, formally, we wanted to state our lemma about natural
numbers, but we stated a much more general lemma, which in general is incorrect, and this was the reason that
we could not prove it.

The type for natural numbers isnat , and we can correct the lemma as follows

lemma two two: "(2::nat)+2=4" apply auto

Notice that we need to specify the type only once, and Isabelle automatically understands that the second
2 and the 4 are also natural numbers. Now, if we execute the lemma formulation,it shows the correct goal
2+2=4 ,3 and after executingapply auto we get a messageNo subgoals! which means that the proof is
finished, and we can either typedone or replaceapply with by , finally getting

lemma two two: "(2::nat)+2=4" by auto

Now, we can writeend at the end of file, and save the file choosing File> Save as. There is a special
condition that theory name is the same as file name, so we should save our theory with name “MyFirst.thy”.

2.1 Summary

• Mathematical knowledge formalized by Isabelle consists of theory files *.thy,which form a theory hier-
archy by importing each other using the commandimports . Syntax: each theory starts with keyword
theory followed by the theory name, the commandimports , thenbegin , followed by the body of the
theory, ending withend .

• The body of a theory is a collection of definitions, lemmas and theorems. Everylemma consists of its
statement and proof. Syntax: keywordlemma, then lemma name, then: , then the lemma’s statement in
quotes, then the proof.

• The proof may look likeapply(<method 1>) ... apply(<method n>) done . As we incremen-
tally execute such a proof we can see what is left to prove in the responsebuffer. Syntax: the last
expressionapply(<method n>) done’ can be replaced byby(<method n>) .

• auto is a method which tries to prove the statement automatically.

• Every constant or variable in Isabelle has a type.nat is the type used for natural numbers (syntax
example:(2::nat)). We can use Isabelle> Settings> Show types in the menu to see all the types in
the response buffer.

3 Main Notations

Now, let us have a closer look at lemmas in Fun.thy to learn the main notations of theIsabelle language. Let us
start with the first lemma expandfun eq:

lemma expand fun eq: " f = g ↔ (∀x. f x = gx)"

First of all, you can see that the lemma’s statement uses some mathematical symbolswhich you cannot see
on your keyboard. You can type such symbols using the Math menu, but I would not say that this is convenient.
In the appendix of the tutorial there is a very useful table which shows the way to write most symbols using the

3Now no types are indicated in the goal2+2=4 . The type-related error described above is very typical when workingin Isabelle,
so if you have an error and do not know what is the reason, choose Isabelle> Settings> Show types in the menu, and try to execute
again. Now you will see all the types in the response buffer, in particular,in our case, the goal will be(2::nat)+(2::nat)=(4::nat)

4

keyboard in a natural way. For example, the arrow=⇒ can be written as==>, or even\<Longrightarrow >.
Notations like==>, which is called ASCII notation, are more convenient and will be used in the rest of the
primer. If menu option Proof-General> Options> Unicode Tokens is turned on, ”==>” will be automatically
transformed to ”=⇒” each time you type it.4. You will get used to such notation very quickly and it will be
absolutely no problem to understand mathematical text in this form. I would recommend to print the table with
ASCII notation from the tutorial appendix now, and have it available until you get used to it.

In this notation↔ is written as<- >, ∀ is denotedALL. So, the lemma expandfun eq can be written as

lemma expand fun eq: "f=g <- > (ALL x. f x = g x)"

Now all the symbols are present on the keyboard and it is easy to type this lemmain. The meaning of the
lemma is obvious: two functions f and g are equal if and only iff (x) = g(x) for every argumentx. Notice
that f (x) can be written without parenthesis. More complicated expressions with functions can also be written
without parenthesis, but you should be careful here: for example, expressionf t u means(f t) u (and not
f (t u)), and can be used to denote a function of two variables f(t,u). In contrast, f(t,u) is not a function
of 2 variables, because(t,u) denotes a point in product space, with first and second coordinates equal to t
andu, respectively. Also, you should know the priorities of different operations: expression f x + y means (f
x) + y and not f(x+y); equality has a high priority andA & B = B & A (symbol & means “and”) meansA
& (B=B) & A, not (A & B) = (B & A) . In general, the priorities of the main logical binary connectives in
decreasing order are &,| (“or”), -- >, and they are associative to the right:A -- > B -- > C meansA -- >
(B -- > C) . You can find all these and many more rules and examples of this kind in the Isabelle tutorial, but
I would recommend you to use parenthesis when you are not sure. If youwrite (A & B) = (B & A) this
clearly indicates what you mean, and moreover looks nice.

Let us return to the lemma’s statement. The phrase “for all x, we have f(x)=g(x)” is written asALL x. f
x = g x , where the period “. ” replaces “we have”. The period is always used after any quantifier,and we
can writeALL x y z. x+(y+z)=(x+y)+z instead ofALL x. ALL y. ALL z. x+(y+z)=(x+y)+z . Another
important use of period is in function definitions. For example, to define function f (x) = x+1 we can write
f=(%x. x+1) . It is important to always leave a space after the period, or expressionslike ALL x.x or %x.x
will be understood incorrectly. Moreover, to be safe, I would recommendleaving a space after every special
character. For example, the existential quantifier,∃, denoted5 as ? should be followed by a space “? x ”
because the expression “?x ” has a completely different meaning. It is used forschematic variables, which can
be instantiated arbitrarily. For example, the mathematical theoremx=x is represented in Isabelle as?x=?x ,
which means that you can instantiate this variable to any term of the given type.

Now we understand all of the notation in the statement of the lemma expandfun eq, so let us move to the
next lemma in the Fun.thy theory, the lemma applyinverse, which in ASCII notation takes the form

lemma apply inverse:
"f x = u -- > (ALL x. P x -- > g (f x) = x) -- > P x -- > x = g u"

This formulation is a little bit less intuitive. ExpressionP x here can be understood as a predicate, i.e.
for everyx expressionP x is either true or false. Formally, this can be a function with Boolean values, or
equivalently just a set, and in this case the notationP x is equivalent tox:P , which is the ASCII abbreviation
for x∈P. In Isabelle there is a special syntax, calledset , which can be used to define relevant types: for example,
any set of natural numbers has the typenat set . To define a set explicitly, we can use notation of the form “{x.
x is such that...}”, or even of the form “{f(x,y) | x y. x and y are such that...}”. For example, stringsP::nat
set andP = {x. x >10} define the set of all natural numbers greater than 10.

4This is your choice, but I personally prefer to see on the screen exactlywhat I typed, therefore I usually turn off Unicode Tokens
in the menu, and just use ASCII notations

5Recommended ASCII notation of∃ is EX

5

Now all the symbols are understandable, but it may still be not obvious how toread this lemma, which has
the form of a long logical formula. The point is that expressionA -- > B -- > C is logically equivalent to
(A & B) -- > C, and the same is true for longer expressions. Thus, lemmas with assumptionsA1, A2, ..., An

which provesB can be written asA1 -- > A2 -- > ... -- > An -- > B. Now we can easily read the above
lemma as follows: assume that (1) f(x)=u, (2) for everyx ∈ P we have g(f(x))=x, and (3)x ∈ P. Then g(u)=x.
Now we can see that the lemma is obvious, and it is not a surprise that it is proved automatically.

After two auxiliary lemmas, theory Fun.thy contains some definitions, the first ofwhich looks like

definition id :: " ’a ⇒ ’a " where "id = (λx. x)"

This defines an identity function f(x)=x where x is a variable of any type. In ACSII notation⇒ becomes
=> andλ becomes %. We can see, that the keyworddefinition is followed by the name of an object we want
to define, then after:: we indicate the type of this object, and then afterwhere we list the defining equation of
this object. We already know that arbitrary type is denoted by’a , thus the function from’a to ’a has a type’a
=> ’a . Then, afterwhere we specify that id(x)=x by writingid = (%x. x) .

Let us use this example to construct our own definition inMyFirst.thy , for example, to define a class of
functions from real to real, which are nondecreasing on some interval S. First, we need to understand that this
is actually a Boolean functional, which for every function f and set S will have value “True” or “False”. The
Boolean type in Isabelle is one of the base types and is denoted bybool . The formal definition of real numbers
is somewhat complicated, so we will not discuss it here, but the corresponding type is calledreal . Now S
has the typereal set , f has the type(real = > real) , so the type of our functional will bereal set = >

(real = > real) = > bool . Let us give it the namenondecreasing on. Now, nondecreasing on S f has
a value “True” if and only if for allx,y ∈ S such thatx ≤ y we have f (x) ≤ f (y). We already know all the
necessary notation from the previous examples, and can write this as

definition nondecreasing on :: "real set = > (real = > real) = > bool"
where "nondecreasing on S f <- > (ALL x:S. ALL y:S. x <=y -- > f x <= f y)"

However, if we try to execute this definition, we will obtain an error:Undeclared type constructor:
"real" At command "definition" . The obvious guess after such an error would be that the type of real
number is not denotedreal in Isabelle. To check this, we can go to the directory with Isabelle’s theory
files (the folder you installed Isabelle in), then> src> HOL, and look for the corresponding theory. For-
tunately, this is easy in this case, because there is a theory with name RealDef.thy, which is obviously what
we want. If we look inside this theory, we will see that the type name is indeedreal . Usually, if you see
a definition or lemma in some theory, you can use it. Then if the system does not recognize it, it may be
that you did not import the corresponding theory. Indeed it turns out that real numbers are not included by
Main.thy. To avoid this and similar problems, it is desirable to import the “latest” theory, accumulating as
much of the library as possible. However, I cannot tell you the name of such a theory once and for all, because
the library is growing continuously. The current theory dependencies graph can be found on Isabelle website:
http://www.cl.cam.ac.uk/research/hvg/isabelle/dist/library/HOL/index.html. For now,let us replaceimports
Main by imports Complex Main : theory ComplexMain.thy imports Main.thy together with many more the-
ories containing, for example, all the basic properties of real and complexnumbers. The definition can now be
executed.

As you can see, reading just a few lemmas and one definition from a randomlychosen theory, Fun.thy, gives
us enough notation to create our own nontrivial definitions. If we look at this theory further, we will be able to
guess the meaning of almost all new mathematical notation in Isabelle. For example, one of the next lemmas
is image ident stating that(%x. x) ‘ Y = Y . We can guess that it states that the image of the set Y under
the identity function will be Y, whence symbol‘ is an important notation of theimage of a set under a function
(f ‘ X is by definition the set{y. EX x:X. y = f x }). Looking at the next few lemmas we can see that-‘
is a notation forinverse image, and the next definition introduces a useful notation for functioncomposition f

6

o g which means function “f(g(.))”, or, in Isabelle notation,(%x. f (g x)) . All the important functions and
notations inMain.thy are listed in [3]. But it is impossible to learn all the notation at once. We now know
more than enough to start proving theorems, and will learn more notation in the process.

3.1 Summary

• All the main mathematical symbols also have ASCII notation, as a way to type them ona keyboard. For
example,=⇒ is ==>, −→ is -- >, ↔ is <- >, ∀ is ALL, ∃ is EX, ≤ is <=, x:P is ASCII abbreviation for
x∈P, the symbol & means “and”; the symbol| means “or”.

• Equality has a high priority; the priorities of the main logical binary connectives in decreasing order are
&, |, -- >, and they associate to the right. Use parentheses when you are not sure.

• bool is the type for Boolean variables.set is the syntax for defining types for sets, for examplenat set
is the set of natural numbers. Function types may be constructed using=>, for examplenat = > bool .
Many standard types are defined in Isabelle, for examplereal is the type of real numbers.

• Period is used (1) with quantifiers, likeALL x. f(x)=g(x) ; (2) to define functions, for examplef=(%x. x+1) ;
and (3) to define sets, eg.P = {x. x >10}. In every case, a space should follow immediately after the
period.

• The symbol‘ is a notation of the image of a set under a function (f ‘ X is by definition set{y. EX x:X.
y = f x }). Notationf o g means function composition f(g(.)).

• All the important functions and notations inMain.thy are listed in [3].

4 Automatic Proofs

The most important skill in proving mathematical theorems in Isabelle is the ability to prove simple lemmas
with almost no effort. Every arbitrarily long proof can be represented asa chain of simple steps, and this repre-
sentation is an interesting and fully mathematical task. But proving every simple step may be a bit problematic
for new Isabelle users, as we saw on the example of lemma “2+2=4”.

One of the main problems here is that the user often does not know what relevant lemmas exist in the
library. If you want to prove some result from a particular area of mathematics, it is useful to look at the
existing theories in this area before you start. However, Isabelle also provides us with several ways to search
through the library.

Given that we want to prove some lemma in Isabelle, the first question is what ifexactly such a lemma
already exists in the library and we just did not know about it? For example, assume that we do not know
the lemmaid apply in Fun.thy, stating thatid x = x , and want to prove exactly the same lemma with name
apply id (recall that the functionid is defined inFun.thy , and it is the identity function).

lemma apply id: "id x = x"

If we execute this lemma statement, we see the following message in the response buffer:

The current goal could be solved directly with:
Fun.id apply: id ?x = ?x

This important mechanism of lemma suggestions can prevent you from reproving results which already
exist in the library. If such a message does not appear, you may be surethat your result is new6. The search

6At least in this formulation and in theories that you have imported.

7

tries to look at themeaning of the lemma, not just symbol-by-symbol coincidence, for example if you change
the name of the variable and write:

lemma apply id: "id y = y"

Isabelle will still suggest you use lemmaid apply to solve the goal directly. To use an existing lemma in your
proof you can use theusing command and write:

lemma apply id: "id y = y" using id apply by auto

and the lemma will be proved. But, clearly, proving this lemma again makes no sense: if you wanted to prove
some lemma and the system found this lemma in the library, it is better just to delete yourlemma and use
the existing one. Notice that we can use it just by lemma name, likeid apply , writing the full name like
Fun.id apply is possible but unnecessary, and moreover will make your theory unstable. It can stop working
in the future versions of Isabelle if the library is reorganized.

Unfortunately, the lemma suggestion mechanism is currently very sensitive to your lemma’s formulation.
In particular, Isabelle regards equations as directed, and if we write

lemma apply id: "x = id x"

no lemma is suggested. This statement is actually a combination of two lemmas: idapply and the fact that
“a=b” is equivalent to “b=a”. Fortunately, there is a tool in Isabelle, called Sledgehammer, which tries existing
lemmas to automatically prove your goal. After executing the formulation of your lemma, choose Isabelle>
Commands> Sledgehammer in the menu, and you will see the message

Try this command: apply (metis id apply)

which suggests to apply lemma idapply to solve our lemma. If we click at this command in the response buffer,
it will be added to the proof, and we get messagegoal: No subgoals! . So the proof is finished, we can write
done to get

lemma apply id: "x = id x" apply (metis id apply) done

The methodmetis , similarly to auto , tries to prove the statement automatically. The difference is that
metis uses only logical reasoning, but it is very strong in proving logical statements. To prove the correct
logical formula, it is often enough to writeapply metis . To prove that our statement is a logical consequence
of some lemma, we need to writeapply(metis <lemma name>) , in our caseapply (metis id apply) . If
we want to prove a corollary from several lemmas we should write all of them,for exampleapply (metis
id apply two two) . But the point is that we wrote the proof above using sledgehammer having no idea about
metis, and (theoretically) without knowledge that the relevant lemma “idapply” already exists in the library.

Sometimes sledgehammer needs some time to find a proof, but it can work in the background, and you
can continue to work on your proof in parallel. Sometimes, it gives back a message that it cannot find a
proof. This may indicate that your lemma is nontrivial and new, which would bethe ideal case. Unfortunately,
sledgehammer is not always helpful even in simple cases, especially if lemmas involve quantifiers. For example,
if we formulate the lemma

lemma expand: "h = t <- > (ALL y. h y = t y)"

which is just a reformulation of lemmaexpand fun eq in Fun.thy , the lemma suggestion mechanism imme-
diately tells you that

The current goal could be solved directly with:
Fun.expand fun eq: (?f = ?g) = (ALL x. ?f x = ?g x)

8

But now, if you replaceh y = t y by t y = h y and write

lemma expand: "h = t <- > (ALL y. t y = h y)"

no lemma is suggested automatically, and sledgehammer also gives the messageExternal prover failed .
For this reasons it is desirable to formulate all your lemmas in the most natural way, without unnecessary
changes of order in equalities, etc. Hopefully, the lemma suggestion mechanism and sledgehammer will be
significantly improved in future versions of Isabelle, and all the results thatare trivial consequences from the
existing ones will be proved automatically, without any effort from the user.

4.1 Summary

• When we execute the formulation of a lemma, we may get the messageThe current goal could be
solved directly with:... which implies that this lemma is not new but is just an instance of an
existing result in the Library.

• Sledgehammer is a mechanism which tries to combine two or more existing lemmas to prove the goal.
After executing the formulation of your lemma, choose Isabelle> Commands> Sledgehammer in the
menu, and, if successful, you will see the message likeTry this command: ...

• To use an existing lemma in your proof you can use theusing command and writeusing <lemma name>
apply(<method >) .

• The proof methodmetis , similarly to auto , tries to prove statements automatically. It is very good at
proving logical statements.

5 Interactive Proof

In this section, we start writing proofs, which Isabelle cannot do completelyautomatically. Let us start from a
simple example: suppose we want to prove a simple formula from school algebra: (a+b)2 = a2+2ab+b2.

First, we should formulate the lemma carefully. We know from the example2+2=4 that the type of variables
should be specified explicitly. Furthermore, we cannot omit the multiplication symbol * and writeab, because
Isabelle will understand this as a new variable. With this in mind, it is easy to formulate the lemma:

lemma sum square: "(a+b)ˆ2=aˆ2+(2::real)*a*b+bˆ2"

If we execute this lemma statement, no suggestion appears in the response buffer. Sledgehammer also
cannot help here (messageInterrupted (reached timeout) appears), so we need to prove the lemma by
hand.

So far, we know only two automatic proof methodsauto andmetis . To prove the lemma above, we will
need a third one:simp . This method is a powerful simplifier, which tries to simplify your expression using
hundreds of lemmas and simplification rules. Actually, the lemmaid apply from Fun.thy , considered above,
is formulated as follows:

lemma id apply [simp]: "id x = x" by (simp add: id def)

The attribute[simp] after the lemma formulation states that this lemma will be automatically added to
those ones which thesimp method will use. Namely, ifsimp finds expression likeid <expression >, it will
simplify it and rewrite as just<expression > using this lemma. You can easily use the[simp] attribute to
add any of your lemmas to those which are used bysimp . But this should be done very carefully: if you add
lemma likea+b=b+a , simp may use it again and again, working forever. It is recommended to add onlythose

9

lemmas which really simplify expressions, in the sense that the right-hand side issimpler that the left-hand
side. If you want the simplifier to use some other lemma(s) in a particular case, you can use theadd command.
For example, expressionby (simp add: id def) in the example above proves lemmaid apply by the simp
method, which uses all the lemmas with the[simp] attribute plus the definition of the identity functionid def .
In general, if we write any definition in Isabelle, the corresponding lemma with suffix def is automatically
created, and we can use this lemma in future proofs by writing commands likeby (simp add: id def) or
using id def by auto .

There are many lemmas which are not added tosimp by default, but which are very useful in some particular
cases. For example, to simplify expressions involving addition and multiplication (or, more generally, any
group, ring, or field equalities), it is useful to addalgebra simps to the simplifier by writingapply (simp
add: algebra simps) .

Let us return to proving our lemmasum square . It involves addition and multiplication, but immediately
writing apply (simp add: algebra simps) fails to prove the lemma, because it involves also the operation
of power. First, we should explain to Isabelle, thataˆ2 meansa*a and so on. This fact is so simple, that it
should be in the library for sure, but how to find it? One way is to use the lemma suggestion mechanism and
write somewhere above

lemma "aˆ2=(a::real)*a"

execute this, and the system will suggest you that

The current goal could be solved directly with:
Nat Numeral.monoid mult class.power2 eq square: ?aˆ2 = ?a * ?a

Sometimes, however, it is hard to guess the exact lemma formulation. In this caseyou can use Proof-
General> Find Theorems item in the menu, where you can search for theorems, say, by name, writingname:
<name to find > in the string below. For example, in our case, we can guess to search forname: square and
find all the lemmas containingsquare in the name. In this case we will get the following message:

found 57 theorems (40 displayed) in 0.146 secs:

This message indicates that not all found lemmas are displayed. We can modifythe search and state explicitly
how many lemmas we want to be displayed: if we search for(100) name: square , now all the lemmas
containingsquare in the name are displayed, including the relevantpower2 eq square lemma.

If we cannot guess part of lemma’s name, we can also search for part of its formulation. For example, to find
all the lemmas containing product of some number by itself we can (after choosing ProofGeneral> Find Theo-
rems item in the menu) search for"?a*?a" , and now 44 theorems are found, including thepower2 eq square
lemma. If too many lemmas are found, we can combine these approaches: search forname: square "?a*?a"
result in just 20 lemmas which have both “square” in the name and expressionlike “a*a” in the formulation.
Another relevant attempt is the query"?aˆ2" "?a*?a" which searches for lemmas containing both these ex-
pressions at the same time: now only three lemmas are found.

After finding lemmapower2 eq square , we are almost done. First, tell the simplifier to transform squares
to multiplication by writingapply (simp add: power2 eq square)

lemma sum square: "(a+b)ˆ2=aˆ2+(2::real)*a*b+bˆ2"
apply (simp add: power2 eq square)

After executing this, we can see the following in the response buffer:

goal (1 subgoal): 1. (a + b) * (a + b) = a * a + 2 * a * b + b * b

10

This means that, after simplification, it is left to prove the statement above. Now ituses only addition
and multiplication, we can writeapply (simp add:algebra simps) , execute to see messagegoal: No
subgoals! , and finish the proof by commanddone . The resulting proof looks like

lemma sum square: "(a+b)ˆ2=aˆ2+(2::real)*a*b+bˆ2"
apply (simp add: power2 eq square)
apply (simp add: algebra simps)

done

The resulting proof is called abackward proof. At every step we apply the relevant method to simplify
the goal, and see what is left to prove in the response buffer. But, first,the resulting proof script is hard to
understand: after reading the long sequence ofapply commands which proves a hard theorem, it is hard to say
what was the main idea of the proof. Second, most of the proofs in mathematical papers rarely use the argument
“it is left to prove that”. The typical proof usually looks like “From definitionwe have Statement 1. Also, from
well-known lemma it follows Statement 2. Now, from these 2 statements we can conclude Statement 3, and the
proof follows”. This is calledforward proof, or declarative proof, and it is also supported in Isabelle. Let us
use the lemma above to prove thatx2+6x+9≥ 0.

lemma expression nonneg: "xˆ2+(6::real)*x+9 >= 0"

As a first step of proof, we want to say thatx2+6x+9= (x+3)2. For Isabelle, this will be a sublemma
inside the proof of our lemma. To formulate such a sublemma, commandhave is used, and to indicate that we
are inside the proof of lemmaexpression nonneg , we should writeproof- beforehave :

lemma expression nonneg: "xˆ2+(6::real)*x+9 >= 0"
proof-

have aux: "xˆ2+(6::real)*x+9 = (x+3)ˆ2"

Hereaux is the name of the sublemma which will be used for future references. To prove this, we need
to substitutex and3 into the lemmasum square . This can be done using the attributeof which has format
<lemma name> [of <var1 > <var2 > ... <varn >] :

have aux: "xˆ2+(6::real)*x+9 = (x+3)ˆ2" using sum square [of x 3] by auto

Now we need to find a lemma stating that full square is nonnegative. It is logical to assume that such a
lemma hassquare as a part of name. To find it, go to ProofGeneral> Find Theorems in the menu,then write
name: square , and in resulting list we can see the lemma we need:

Rings.linordered ring strict class.zero le square: (0::?’a) <= ?a * ?a

In our case variable?a should bex+3. To see the result of the substitution we can usethm command

thm zero le square [of "x+3"]

Please notice that expressions likex+3 should be in quotes when used afterof . Executing the string above, we
can see in the response buffer

0 <= (x + 3) * (x + 3)

as expected. So we can write

have "(x+3)ˆ2 >= 0" using zero le square [of "x+3"] by auto

11

and the auxiliarythm command can now be erased.
Alternatively, we can try to use Sledgehammer to prove any of our subgoals. After executing the expression

after have, we can choose Isabelle> Commands> Sledgehammer in the menu, and for the statement(x+3)ˆ2
>= 0 it works: you can see the message

Try this command: apply (metis zero le power2)

which also finishes the proof of the statement immediately.
Now we want to say that the lemma expressionnonneg follows from these two statements. The first one has

nameaux , and the last one can be referred using keywordsfrom this . The phrase “and the lemma follows”
in Isabelle language looks likeshow ?thesis , and we can write:

from this show ?thesis using aux by auto

After executing we see that the proof is correct, and then the declarativeproof should be finished by the
commandqed . The resulting proof looks like:

lemma expression nonneg: "xˆ2+(6::real)*x+9 >= 0"
proof-

have aux: "xˆ2+(6::real)*x+9 = (x+3)ˆ2" using sum square [of x 3] by auto
have "(x+3)ˆ2 >= 0" using zero le square [of "x+3"] by auto
from this show ?thesis using aux by auto

qed

In contrast to the backward proof of lemma sumsquare, this proof is clear for the reader. For readability
of large proofs, it is important to indent the proof text betweenproof- andqed . Moreover, you can improve
the language of the proof by replacingfrom this by then , from this have by then have or hence , from
this show by thus , etc. However, backward proof can sometimes be easier to write: you justformulate the
goal and see how far the appropriate automated method can proceed. So,maybe the best strategy would be to
combine forward and backward proof methods. For example, you may prefer to state some major sublemmas
in your proof usinghave and then prove these sublemmas by the backward strategy usingapply .

Sometimes it is convenient to exchange the order of proving sublemmas in a forward proof. For example,
if the proof of statement B has the formhave A hence B , we may prefer first to prove the second state-
ment (namely, that A implies B) and then return to proving A. Isabelle providesyou with this opportunity
with the help ofsorry command, which “proves” everything. For example, if we would like to use lemma
expression nonneg first, and then return to proving it, we could temporary “prove” it in one line:

lemma expression nonneg: "xˆ2+(6::real)*x+9 >= 0" sorry

However, thesorry command should be used with care, because you can “prove” a false statement with it, and
then build your proof based on this statement.

5.1 Summary

• Methodsimp is a simplification method which tries to simplify the goal automatically. It uses all the
lemmas in the library marked with the[simp] attribute. To makesimp also use another lemma, we
should add it explicitly, by writingapply(simp add: <lemma name>) . For example,apply (simp
add: algebra simps) is useful to simplify expressions involving addition and multiplication.

• If you can guess a part of the name of the lemma you want to use, choose ProofGeneral> Find Theorems
item in the menu, and then writename: <name to find > in the string below. You can also indicate how
many found lemmas to display: for example search for(100) name: square will result in up to 100
lemmas with “square” as a part of the name.

12

• Similarly, if you can guess a part of the lemma statement, choose ProofGeneral > Find Theorems, and
then search for any expression, or several expressions, using schematic variables. For example, search
for "?bˆ2" "?a*?a" will result in the list of lemmas containing both a square and a product of a term
with itself.

• There are two main strategies in proving results. Proof in the formapply(<method 1>) ... apply
(<method n>) done is called backward proof. Alternatively, you can use the forward strategy which
looks like proof- have <statement 1 > ... have <statement n > qed , where the statements
after have should, in turn, be proved using backward or forward strategies, and, perhaps, the earlier
proved statements. Also, at every step you can use Sledgehammer to try to prove the statement automat-
ically.

• To substitute particular values for the variables in an earlier proved lemma, you can use the attributeof ,
for example...using sum square [of x 3] by auto .

• To use the last proven fact you can writefrom this have , or then have , or hence .

• At the end of forward proof, you should writeshow ?thesis , finish the proof, and then writeqed .

• To exchange the order of reasoning in a forward proof, you can temporarily assume as proven any state-
ment or lemma with commandsorry .

6 Assumptions and Local Variables

In a usual human proof, the same variables and notations are used to denote, strictly speaking, different objects,
and in this section we explain how this works in Isabelle. For example, let us write down the proof of a simple
well-known result, that pointx in a metric space belongs to the interior7 of setS if and only if S contains a ball
with centerx.

Proof: If x belongs to the interior ofS, then, by definition,x belongs to some open subsetT of S. Because
T is open, it contains a ballB with centerx, and we haveB ⊆ T ⊆ S. Vice versa, ifS contains a ball with center
x, this ball is an open subset ofS which containsx, hence, by definition,x belongs to interiorS.

We can see that the proof consists of two parts, and in the first partx is an arbitrary point belonging to
the interior ofS, while in the second one we assume that “S contains a ball with centerx”, and this creates no
confusion. Let us try to formalize the proof above.

First, we can find if the notion of interior is defined in Isabelle. If you importComplex Main only,
searching forname: interior def or evenname: interior will show no results. Fortunately, basic no-
tions of topology was recently formalized in the context of a big project of multivariate analysis formalization
in Isabelle. If you addimports Multivariate Analysis 8 at the beginning of your theory, searching for
name: interior def will lead you to the result:

interior ?S = {x. EX T. open T & x:T & T <= ?S}

Similarly, search forname: ball def will result in ball ?x ?e = {y. dist ?x y < ?e}, so we can
conclude thatball x e is the ball with center x and radius e. Now we can formulate the lemma.

lemma interior ball: "x:interior S <- > (EX e. 0 < e & (ball x e) <= S)"

7By definition, the interior ofS is the set of all pointsx, such that there exists an open subset ofS which containsx
8If you get an errorCould not find theory file "Multivariate Analysis.thy" in... , please go to the folder in which

you have installed Isabelle and execute the command./build -m HOL-Multivariate Analysis HOL

13

There is no need to specify that x is an element of a metric space, and e is a real number: Isabelle under-
stands this from stringball x e . If we execute this lemma formulation, we will see thatThe current goal
could be solved directly with: Topology Euclidean Space.mem interior , i.e. that this lemma al-
ready exists in the library, but we will ignore this and prove it by hand.

The proof starts with the assumption “Ifx belongs to interiorS...”. In Isabelle, there is a corresponding
commandassume . To tell Isabelle which part of the proof this assumption affects, we shouldenclose it in
braces{}. The general way to prove the implicationA -- > B is to write{assume A... have B }. Also, we
can write several assumptionsA1, ...,An to derive(A1&A2& ...&An)−−> B.

So, let us start the proof by writing

proof-
{ assume "x:interior S"

The next step is to define T such thatx ∈ T , T is open, andT ⊆ S. This can be done by commandsobtain
andwhere :

from this obtain T where T def: "open T & x:T & T <= S" using interior def by
auto

The line above does not just introduce a new notation T, but it proves thatsuch a T actually exists.
This fact follows directly (by auto) from the assumption (from this) and the definition of interior (using
interior def), and we gave it a name (T def) for future reference.

Next, we want to say that “BecauseT is open, it contains a ballB with centerx”. The corresponding lemma
can be easily found, say, by searching for “name: ball” and it is calledopen contains ball . Thus, we can
write

hence "EX e. e >0 & ball x e <= T" using open contains ball by auto

Here hence is the same asfrom this have , so we have proved this statement by auto using lemma
open contains ball and the previous line stating that T is open. Now we can use the factT <= S to conclude
thatball x e <= S, and then finish the first part of the proof

hence "EX e. e >0 & ball x e <= S" using T def by auto
} note imp1 = this

All the statements inside the block are conditional with respect to the assumption.The last statement before
the closing parenthesis} should not contain any local notation like T. Then we can close the block, and Isabelle
automatically derives the unconditional statement of the form “assumption –> last statement inside the block”,
which can be referred to usingthis . Commandnote imp1 = this gives it a nameimp1 for future references.

To prove the converse statement, we assume thatS contains a ball with centerx, denote itT , and claim that
this T is exactly what we need to prove thatx : interior S by definition.

{ assume "EX e. e >0 & ball x e <= S"
from this obtain e where e def: "e >0 & (ball x e) <= S" by auto
def T == "ball x e"
hence "open T & x:T & T <= S"

From the assumption we “obtain” radiuse > 0 such that(ball x e) <= S, and then just introduce a
notation T for (ball x e) in commanddef . The syntax isdef <name> == " <description >" . In contrast to
obtain , commanddef does not require any proof of existence. Now, to prove that T is open we need to find
the corresponding lemmaopen ball in the library, statementT <= S follows from e def , and the obvious
fact x : T can be proved automatically. So, the rest of the proof is easy:

14

hence "open T & x:T & T <= S" using open ball e def by auto
hence "x:interior S" using interior def by auto

} from this show ?thesis using imp1 by auto
qed

The lastthis here refers to the fact that from assumptionEX e. e >0 & ball x e <= S the last state-
ment of the blockx:interior S follows. This together withimp1 finishes the proof.

The proof of this lemma in Isabelle library is shorter, but this proof illustrates how to use assumptions in
Isabelle, which will be very useful in other proofs. For example, the general method to prove thatA <- > B
is to derive B from A using format{assume A... have B }, and then derive B from A using{assume B...
have A}.

Also, it is possible (and often useful) to fix local variables inside a block using thefix command. For ex-
ample, to prove that two sets S and T are equal, the straightforward way is{fix x assume "x:S"... have
"x:T" } to derive(x:S) -- > (x:T) , and then prove the opposite statement to derive(x:T) -- > (x:S) :

lemma st: "(S::’a set)=T"
proof-

{ fix x assume "x:S" hence "x:T" sorry } note imp1 = this
{ fix x assume "x:T" hence "x:S" sorry }
from this show ?thesis using imp1 by auto

qed

Our lemmainterior ball can be used to obtain the following equivalent characterization of the interior:

lemma interior def2: "interior S = {x. EX e. e >0 & (ball x e) <= S}"

For a proof, we need to use lemmainterior ball for a particular S, but for arbitrary x. This can be done
using theof attribute in the following format:interior ball[of S] .

lemma interior def2: "interior S = {x. EX e. e >0 & (ball x e) <= S}"
using interior ball[of S] by auto

6.1 Summary

• To use some additional assumption during the proof, one can use the commandassume . In this case,
we should enclose the block where this assumption applies in braces{}. The general way to prove the
implicationA -- > B is to write{assume A... have B }.

• Commandobtain <object name> where <thm name>: ... allows us to obtain an object with
a particular properties. To finish this command, we need to prove that such an object exists, and then
we can use this object as<object name> during the proof (say, substitute it as a parameter afterof
attribute), referring to its properties as to<thm name>.

• Commanddef with format def <name> == " <description >" just introduces a notation and does
not require any proof of existence. We can refer to this definition using<name> def .

• All statements inside a block enclosed in braces{} are conditional with respect to the assumptions, and
all variables defined (with commandobtain) inside such a block are local ones. No such variable can
participate in the last statement of the block. We can use variables with the same names in different
blocks.

15

• The commandfix is used to fix a local variable (say,x) inside a block. If such a variable participates in
the last statement of the block (say,"P x"), then the block proves this statement with universal quantifier
(in our case,"ALL x. P x").

7 Introducing New Notations and Concepts

Convenient definitions and notation are crucial in proving mathematical results. For example, suppose we want
to prove, that for any convex sets A, B, C, the set

{x + y + z |x y z. x:A & y:B & z:C }

is also convex. Search in Isabelle (for example, byname: convex , provided that you import theory Convex)
results in lemmaconvex sums stating that for two convex sets A and B set{x + y |x y. x:A & y:B } is
convex. Now it is natural to define sumA+B of two sets, and then argue that for convex sets A, B, C, setA+B,
and whenceA+B+C = (A+B)+C is convex by lemmaconvex sums.

Now, how to introduce new notation? As usual, you can read the tutorial, butit is easier to look at the
existing theories. For example, our favorite theoryFun.thy introduces a notation for function composition

definition
comp :: "(’b = > ’c) = > (’a = > ’b) = > (’a = > ’c)" (infixl "o" 55)
where "f o g == (%x. f (g x))"

We see, that composition is actually a functioncomp f g with two arguments: f of type(’b = > ’c) and
g of type (’a = > ’b) , which returns the result of type(’a = > ’c) . String (infixl "o" 55) introduces
notationf o g for this function. Using this example, we can try to define sum of two sets: it should be a
function like set add A B, where A and B are sets with elements of the same type, and we want a notation,
say,A +s B

definition set add :: "’a set => ’a set => ’a set" (infixl "+s" 55)
where "A +s B == {x + y |x y. x:A & y:B }"

But, if we try to execute this definition, we get an error

Type unification failed: Variable ’a::type not of sort plus

This is quite common error in Isabelle, stating that the types are not appropriate (not of correct “sort”) for
this context. For example, in our case Isabelle tells us that addition cannot bedefined for arbitrary sets, and
elements of our sets should have a type with a special sortplus . To correct this error, we can easily specify
sort explicitly

definition set add :: "(’a::plus) set => ’a set => ’a set" (infixl "+s" 55)
where "A +s B == {x + y |x y. x:A & y:B }"

and now the definition executes correctly9.
Next, let us formulate and prove a lemma about the sum of two convex sets in thenew notation. As usual,

to learn the corresponding syntax, let us first look at the statement and thebeginning of the proof of the existing
lemmaconvex sums in theoryConvex.thy .

9It may be confusing that we still do not understand the meaning of string(infixl "+s" 55) . Actually, now it is easy to use the
Tutorial’s Index to findinfixl there, and read thatinfixl means that operation is associative to the left, and55 indicates the priority
of the operation.

16

lemma convex sums:
assumes "convex s" "convex t"
shows "convex {x + y |x y. x:s & y:t }"
using assms unfolding convex def image iff

proof- ...

We can see, that the assumptions of the lemma can be formulated after the keyword assumes , and then we
can refer to them during the proof by writingusing assms . The statement of the lemma in this case follows
the keywordshows . Let us formulate the corresponding lemma with the notation"+s" .

lemma convex sums2:
assumes "convex A" "convex B"
shows "convex (A +s B)"

Since it is just a reformulation of lemmaconvex sums, it is natural to try to prove this lemma automatically,
using the existing lemma, assumptions, and definition of"+s" . However, an attempt

using set add def assms convex sums by auto

does not work, so more details are required. One way is to tell Isabelle the exact parameters to substitute in
set add def , namely

using set add def[of A B] assms convex sums by auto

Alternatively, we can proceed by analogy with the proof of lemmaconvex sums above, and use the
unfolding command:

lemma convex sums2:
assumes "convex A" "convex B"
shows "convex (A +s B)"
unfolding set add def using assms convex sums by auto

After executing the statement of the lemma we can see goalconvex (A +s B) . Then, after executing
unfolding set add def the remaining goal isconvex {x + y |x y. x:A & y:B }, i.e. this command “un-
folded” the definition. Next we can executeusing assms convex sums by auto and the proof is success-
fully finished.

Now we can prove the initial lemma

lemma convex sums3:
assumes "convex A" "convex B" "convex C"
shows "convex {x + y + z |x y z. x:A & y:B & z:C }"

First, we want to claim that the set in question is exactlyA +s B +s C in the new notation.

proof-
have " {x + y + z |x y z. x:A & y:B & z:C } = (A +s B +s C)"
unfolding set add def by auto

Then we can claim that setA +s B +s C is convex, prove this usingconvex sum2, and the lemma will
follow from these two statements. To tell Isabelle that one statement follows from several previous ones, we
can usemoreover andultimately commands:

17

moreover have "convex (A +s B +s C)" using convex sum2 assms by auto
ultimately show ?thesis by auto qed

In this case, convenient notation for sum of sets helped us prove the desired result easily. However, you
should be very careful when introducing new definitions and notation in Isabelle. The problem is that nota-
tion for many natural concepts already exists somewhere in Isabelle, but itis often nontrivial to find them.
Introducing several different notations for the same concept will oftenresult in double work in theorem prov-
ing. For example, in our case, the definition of the sum of two sets really existsin Isabelle library, in theory
SetsAndFunctions.thy , but the formulation is slightly different

definition
set plus :: "(’a::plus) set = > ’a set = > ’a set"(infixl " ⊕" 65)
where "A ⊕ B == {c. EX a:A. EX b:B. c = a + b }",

and it is nontrivial to find it there.10 For this reason, it helps to spend some time to look through the li-
brary to be aware of what concepts it offers. You can also ask the Isabelle mailing list, if you are going to
introduce some important concept and do not see it in the library. In general, your are welcome to ask this
mailing list all kinds of questions, somebody will answer you soon and in detail.You can subscribe to it
at http://www.cl.cam.ac.uk/research/hvg/Isabelle/community.html. At the same page, there is a useful link to
Isabelle FAQ, and also links to various materials (slides, demos, and exercises) for learning Isabelle.

7.1 Summary

• Types in Isabelle have asort , which tells us some properties of this type. For example, addition is
defined for types of sortplus . Syntax example:(’a::plus) set is a set of arbitrary elements, for
which addition is defined.

• Assumptions of a lemma can be formulated after keywordassumes , and then we can refer to them in the
proof by writingusing assms . The statement of the lemma in this case follows the keywordshows .

• Commandunfolding with formatunfolding <lemma name>, where<lemma name> is often a defi-
nition, tries to “unfold” a symbol or term in the goal using<lemma name>.

• Isabelle mailing list is the place where you can ask any questions about Isabelle. You can subscribe at
http://www.cl.cam.ac.uk/research/hvg/Isabelle/community.html

8 Summary

This Primer is aimed at mathematicians, who want to start working with Isabelle. Wehave discussed only a
tiny portion of Isabelle here, but it is enough to start the formalization of somesimple mathematical results.
We have tried to concentrate on topics which are especially useful for a beginner: main notations, search in
Isabelle, sledgehammer, organization of blocks inside the proof, etc. More importantly, we have tried not just
tell you “how it works”, but tell you how tolearn Isabelle, looking at the existing theories. Instead of providing
you with correct proofs immediately, we often start with intuitive, but incorrect versions, and describe how to
correct the resulting errors.

Obviously, you will often need some methods which are not described here. In this case, one general
strategy is to look at the existing theories formalizing the same area of mathematics,and maybe you will

10Well, you can guess import Library, and then search for, say,"?x + ?y" " {x. ?P x }" , to find all the expressions which contains
sum, and also defines a set in the form “set consists of all x such that P(x)”, and in this case you would find 24 theorems including
SetsAndFunctions.set plus def . But it is a nontrivial guess to perform such a search.

18

find relevant methods there. Reading selected sections from the Isabelle tutorial [1], which corresponds to
your particular formalization, is also useful. Proof by induction, as well assome other useful proof methods,
are described very well in a short Isar tutorial [2]. Many basic types,functions, and notations are listed in
[3]. These and other useful documents are available at the Documentationsection of the Isabelle website
http://www.cl.cam.ac.uk/research/hvg/Isabelle/documentation.html. Finally, many Isabelle users are ready to
help you, if you send your question to the Isabelle mailing list.

In conclusion, the formalization of mathematics in Isabelle is a little bit difficult to start, but very exciting.
After some time, you become comfortable with Isabelle, and then enjoy proving nontrivial theorems to the
strongest opponent in the world, who will never overlook your error or non-strict argument. And maybe, after
some time with Isabelle, you also begin to feel, that only formalized theorems are reallyproved in mathematics.
All the other proofs are just proof outlines.

References

[1] Nipkow, T, Paulson, C., Wenzel, M., Isabelle/HOL: A Proof Assistantfor Higher-Order Logic,
http://www.cl.cam.ac.uk/research/ hvg/Isabelle/documentation.html

[2] Nipkow, T, A Tutorial Introduction to Structured Isar Proofs, http://www.cl.cam.ac.uk/research/
hvg/Isabelle/documentation.html

[3] Nipkow, T, What’s in Main, http://www.cl.cam.ac.uk/research/ hvg/Isabelle/documentation.html

19

