

Edinburgh Research Explorer

Fast, but Approximate, Workflow-Runtime Estimation Using the
Bell-Curve Calculus

Citation for published version:
Yang, L, Bundy, A, Hughes, C & Berry, D 2007 'Fast, but Approximate, Workflow-Runtime Estimation Using
the Bell-Curve Calculus'.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28971136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/fast-but-approximate-workflowruntime-estimation-using-the-bellcurve-calculus(62bda824-1ff9-46a2-92ac-216195ad040e).html

Fast, but Approximate, Workflow-Runtime
Estimation Using the Bell-Curve Calculus

Lin Yang
School of Informatics

University of Edinburgh
Email: l.yang@ed.ac.uk

Alan Bundy
School of Informatics

University of Edinburgh
Email: A.Bundy@ed.ac.uk

Conrad Hughes
School of Informatics

University of Edinburgh
Email: Conrad.Hughes@ed.ac.uk

Dave Berry
National e-Science Centre
University of Edinburgh

Email: Dave.Berry@ed.ac.uk

Abstract— In this paper we describe:
• The development of a Bell-Curve Calculus, analogous to

interval arithmetic, in which normal distributions can be
combined with arithmetic operations, such as addition,
maximum, minimum, etc.

• We apply this Bell-Curve Calculus to the propagation of
Quality of Service properties around e-Science workflows.
In particular, we apply it to the problem of estimating the
overall runtime of a workflow from estimates of the runtimes
of its component services.

• We evaluate both the accuracy and efficiency of this
Bell-Curve Calculus approach compared to alternative ap-
proaches. In particular, we show that it is much quicker
than piecewise approximation approaches, but trades this
off against a loss of accuracy, which nevertheless is sufficient
for some kinds of application.

I. INTRODUCTION

e-Science applications are typically represented by work-
flows. A workflow can be described as a graph in which
the nodes stand for e-Science services and the arcs represent
different ways of combining these services, labelled by data
flows between them. For instance, services may be combined
in the following ways.

Sequential: one after another. If each node of the work-
flow is envisaged as applying a function to the inputs
to calculate the outputs, then sequential combination
provides function nesting, e.g., if x is the initial input to
f and its output is input to g then g(f(x)) is calculated.
Parallel-All: by calling a number of services in parallel
and then combining the results to provide the over-
all result. Parallel-All combination is typically used to
calculate the arguments of a function in parallel. If
f(t1, . . . , tn) is the function to be calculated, then each
of the ti is calculated in parallel and then the results are
all input to f .
Parallel-First: by calling a number of services in parallel
where the first to succeed provides the overall result.
Parallel-First combination provides a form of parallel
disjunction between the different services performing
the same function, i.e., each of the ti in t1| . . . |tn is
calculated in parallel and the calculation is terminated
as soon as one ti terminates.
Disjunctional: by trying one service then another if the
first fails. Disjunctional combination provides a form

of sequential disjunction between two different services
performing the same function, i.e., to calculate t1|t2 first
t1 is tried. If it succeeds then its result is the overall
result. Otherwise, if it fails or times-out then t2 is run.

Figure 1 gives an example.

This is an example workflow for creating population-
based ”brain atlases”, comprised of procedures,
shown as orange ovals, and data items (shown as
rectangles) flowing between them. It is taken from
http://twiki.ipaw.info/bin/view/
Challenge/FirstProvenanceChallenge.

Fig. 1. An Example Workflow

In designing a workflow, it is important to estimate the
quality of service it will provide. Will its results be accurate?
Will it run reliably? Will it run within a reasonable time? Our

work on the Bell-Curve Calculus provides a tool to assist the
workflow designer in making these estimates.

II. ESTIMATING THE RUNTIME OF AN E-SCIENCE
WORKFLOW

Consider, for instance, estimating runtime. We could as-
sociate an arithmetic function with each way of combining
services, e.g., addition with sequential combination, maximum
with parallel-all, minimum with parallel-first, etc. The runtime
of a whole workflow can be calculated compositionally by
recursion. In the base case, we use experimental evidence
to estimate the typical runtimes of each individual e-Science
service. In the step case, we combine the estimates of two or
more sub-workflows using the arithmetic function associated
with their method of combination.

However, estimating a runtime with a single number is
not good enough. Our estimates of the runtimes of e-Science
services will be made by running that service several times,
resulting in a range of times, even for identical or very similar
conditions. Interval Arithmetic is a version of arithmetic over
the domain of intervals of real numbers [1]. It enables us to
calculate an estimated range for the whole workflow from the
estimated ranges of the component services. The lower bound
of this range gives the minimum estimated runtime and the
upper bound gives the maximum estimate.

III. THE BELL-CURVE CALCULUS

Interval Arithmetic provides an appropriate calculus for
worst-case QoS estimates, but the overall QoS range of a
complex workflow is likely to be quite large and, hence,
uninformative. A workflow designer is more likely to want
an average-case estimate and an indication of the likelihoods
of the different possible values. Not all points in a range are
equally probable. If we plot the points in a range against
their likelihood then we will get a curve. Often this curve
will approximate a normal distribution (also called a Gaussian
or a bell curve), with the points in the middle of the range
being the most probable (see Figure 2). Even when the curves
associated with the components of a workflow are not normal,
the Central Limit Theorem1 implies that the curve associated
with the whole workflow will be approximately normal [2].
These observations motivated the Bell-Curve Calculus (BCC)
— similar to Interval Arithmetic, but where the arithmetic
functions are applied to bell curves, rather than intervals.

Note that some of the operations of Interval Arithmetic do
not naturally return intervals. For instance, taking the union of
two intervals will only output an interval if the input intervals
intersect. In such cases the output sets are normalised to
intervals, e.g., by forming an interval whose bounds are the
minimum and maximum elements of the set. Similarly, in the
BCC, it is often necessary to normalise the output curve to
be a bell curve. The question then arises as to whether these
normalisation steps cause unacceptable distortions of the QoS

1If the sum of the variables has a finite variance, then it will be approxi-
mately normally distributed.

The red curve is a bell-curve in which µ = 0 and
σ = 1. The x-axis shows the possible output values
of a normally distributed, independent variable:
workflow runtimes in our case. The y-axis shows
the probability of each possible value of variable x.
The red curve is also called the probability density
function (pdf) of x. The green curve is the cdf
(cumulative density function) curve, integrated from
the pdf. It gives the probability that the output will
be at most x.
In our experimental work we always normalised
one of the input curves to µ = 0 and σ = 1.
This simplified the analysis, but is unrealistic for
workflow runtimes, which will always be positive,
whereas our bell curves have non-zero probability
(positive y values) for negative runtime (x values). In
practice, this is not a problem, since our results can
be readily translated to account for unnormalised
input curves. Any parts of input or output bell curves
that occur to the left of the y-axis can be regarded
as estimate error.

Fig. 2. A bell curve and its cdf

estimates. This is an empirical question that we investigated
in our project and which is discussed in §VII.

A bell curve can be defined by the following equation:

BC(µ, σ) = λx.
e−(x−µ)2/2σ2

σ
√

2π
Note that each curve is defined by two parameters: the mean
µ and the standard deviation σ.

The restriction of the BCC to the domain of bell curves
means that it is potentially very efficient: given the parameters
of two input bell curves, we need only calculate the parameters
of the output bell curve. Compare this, for instance, to the
piecewise approximation method of combining two curves to
produce a third, described in §V. If high resolution is required,
this can be a computationally expensive operation. Comparing
the efficiency of these two methods of combining curves was
another topic for empirical investigation in our project. This
topic is also addressed in §VII.

IV. RESEARCH QUESTIONS ADDRESSED

During our project, we worked closely with the Depend-
able Service-Centric Computing (DSCC) project2. One of the
deliverables of DSCC is the Agrajag program, which is a
tool for calculating piecewise approximations of combinations
of arbitrary curves for use in QoS estimates [3]. Piecewise
approximation is obtained by approximating the input curves
using the union of a large number (n each, say) of uniform
distributions, performing the relevant arithmetic operation
pairwise on these to produce O(n2) such distributions and
merging these back together in least-error pairs until we have
about n of them again. The pairwise operations on the sub-
distributions are usually implemented using interval arithmetic
so that an operation on one pair will usually produce one result
distribution. The aggregation of a large number of these pieces
is what gives us an accurate result.

Agrajag and BCC provide an accuracy/complexity tradeoff:
Agrajag provides higher accuracy, but BCC is more efficient.
Agrajag also provides a “gold standard” against which we
can measure the accuracy and efficiency of the BCC. So our
research resolved around the following questions.

1) For each of the ways of combining workflows, define a
function that, given BCC estimates of the runtime of the
components, outputs a BCC estimate of the runtime of
the combination.

2) Measure the accuracy of the BCC estimates compared
to the piecewise approximations.

3) Measure the efficiency of the BCC estimates compared
to the piecewise approximations.

V. METHODOLOGY

We decided to adopt an empirical methodology. It is not
clear that there will always be neat, closed-form, bell-curve
functions for each of the workflow combination methods,
especially given the inherently approximate nature of the
exercise. There is one exception to this: linear combination of
bell curves, and therefore simple pairwise addition, is known
to be exact and has a simple definition, which we give below..

So problem 1 can be defined as follows. Let BC(µ1, σ1)
and BC(µ2, σ2) be two input bell-curves and Fc be the binary
arithmetic function associated with combination method c,
where c varies over {S, PA, PF,D}, standing for sequen-
tial, parallel-all, parallel-first and disjunctional combination,
respectively. We call Fc(BC(µ1, σ1), BC(µ2, σ2)) the perfect
curve. Note that, in general, the perfect curve will not be a
bell-curve. Agrajag produces a piecewise approximation to the
perfect curve.

For the BCC, we require to define two 4-ary functions, Mc

and Σc, that will provide the parameters to a bell-curve that
will approximate Fc, i.e.,

BC(Mc(µ1, σ1, µ2, σ2),Σc(µ1, σ1, µ2, σ2)) ≈
Fc(BC(µ1, σ1), BC(µ2, σ2))

2http://digs.sourceforge.net/

We will call the LHS of this equation the BCC estimate. For
instance, when c = S then Fc is +,

MS(µ1, σ1, µ2, σ2) = µ1 + µ2

ΣS(µ1, σ1, µ2, σ2) =
√
σ2

1 + σ2
2

and ≈ can be replaced by =, i.e.,

BC(µ1 + µ2,
√
σ2

1 + σ2
2) = BC(µ1, σ1) +BC(µ2, σ2)

Figure 3 illustrates this.

The red and green bell-curves are the two input
curves to be summed. The mauve curve is the bell-
curve estimate of this sum and the blue curve is
Agrajag’s piecewise approximation. The blue and
mauve curves are superimposed and impossible to
separate. Any small difference is due to rounding
approximations in Agrajag. This is the ideal situ-
ation for BCC, but we cannot expect such perfect
answers for other bell-curve functions.

Fig. 3. The sum of two bell curves

However, we also need to find Mc and Σc for the other
three methods of workflow combination, i.e., when Fc is
max, min and a function we call cond, that corresponds
to disjunctional combination. There is no neat, exact solution
for these combination methods. Our methodology for these
methods was as follows.

1) Use Agrajag to make piecewise approximations for a
range of different values. To simplify these calculations,
without loss of generality, we set µ1 = 0 and σ1 = 1
and vary only µ2 and σ2.

2) Use Agrajag to calculate the best bell-curve approxima-
tion of each value of Fc. Call this BC(µp, σp). We call
this curve the best bell curve, since it is the best that can
be expected of a BCC that requires output curves to be
bell curves. Agrajag calculates µp and σp as the mean
and standard deviation of the piecewise estimate.

3) Eyeball how µp and σp vary with µ2 and σ2. Guess
some first approximations of Mc and Σc, and pick the
ones that generated the smallest error, calculated as the

least mean square difference between the CDFs of the
BCC estimate and the best bell curve.

4) Plot values of µ2 against the difference between Mc and
µp, and similarly with σ2.

5) Use curve-fitting techniques to generate correction fac-
tors to the initial values of Mc and Σc.

6) Repeat from step 4 until the difference between the BCC
estimate and the best bell curve is acceptably small.

This methodology generates rather messy but acceptable ap-
proximations to the best bell curves. Figure 4 illustrates this
in the case of maximum.

The colour coding of the curves is as follows: red
and green for the inputs, aqua for the BCC estimate,
mauve for the best bell curve and blue for the
piecewise estimate. Note that the blue curve is not
a bell curve, so some error is unavoidable. The
best that the BCC estimate can aspire to is the best
bell curve, to which it is quite close. Note that
we have depicted the worst case. The error only
becomes significant when the input curves overlap
substantially, as in this case. Otherwise, the larger
of the two input curves is almost exactly the same
as the output.

Fig. 4. The maximum of two bell curves

VI. THE BCC FORMULAE

The formulae developed in the BCC are given below. Recall
that the mean and standard deviation of the BCC estimate are
given by Mc(µ1, σ1, µ2, σ2) and Σc(µ1, σ1, µ2, σ2), respec-
tively, where µi and σi are the mean and standard deviation,
respectively, of the two input bell curves, for i = 1, 2. c
denotes the kind of workflow combination and takes values
in the set {S, PA, PF,D}.

We have already given the formulae for MS and ΣS in §V,
but we repeat them here for the sake of completeness. The
other three formulae are quite complex. So, in the interests
of brevity, we give them only for the special case when
µ1 = 0, σ1 = 1 and µ2 > 0. At the end we provide the
transformations required to generate the general cases from

these special cases. Also, we abbreviate the formulae using
some parameters whose values are given in the Appendix.
Although these parameters are functions with arguments, we
omit the arguments for brevity. We also recycle the same
parameter names for each of the six formulae, although each
case is different. Note that the parameters for MD and ΣD
also contain ρ, which is needed for the generalisation process
given below.

Sum: Used for sequential combination of runtimes.

MS(µ1, σ1, µ2, σ2) = µ1 + µ2

ΣS(µ1, σ1, µ2, σ2) =
√
σ1

2 + σ2
2

Max: Used for parallel-all combination of runtimes.

MPA(0, 1, µ2, σ2) = A.µ2 +B + C.e−
µ2
D

ΣPA(0, 1, µ2, σ2) = A.σ2 +B − C.e−
σ2
D

Min: Used for parallel-first combination of runtimes.

MPF (0, 1, µ2, σ2) = A.µ2 +B − C.e−
µ2
D

ΣPF (0, 1, µ2, σ2) = A.σ2 +B + C.e−
σ2
D

Cond: Used for disjunctional combination of runtimes.

MD(0, 1, µ2, σ2) = A.µ2 +B + C.e−
µ2
D

ΣD(0, 1, µ2, σ2) = A.σ2 +B + C.e−
σ2
D

To generate the general formulae from the above special
cases, the following transformations must be applied.

If µ2 ≥ µ1 then

Mc(µ1, σ1, µ2, σ2) = µ1 +Mc(0, 1,
µ2 − µ1

σ1
,
σ2

σ1
).σ1

Σc(µ1, σ1, µ2, σ2) = Σc(0, 1,
µ2 − µ1

σ1
,
σ2

σ1
).σ1

Note that in the case of Max and Min we can assume µ2 ≥ µ1

without loss of generality, since Mc and Σc are commutative
with respect to these two arguments, but in the case of Cond
we also need to consider the case µ1 > µ2.

If µ1 > µ2, substitute (1− ρ) for ρ then

Mc(µ1, σ1, µ2, σ2) = µ2 +Mc(0, 1,
µ1 − µ2

σ2
,
σ1

σ2
).σ2

Σc(µ1, σ1, µ2, σ2) = Σc(0, 1,
µ1 − µ2

σ2
,
σ1

σ2
).σ2

VII. EVALUATION

Research question 2 from §IV now breaks into two sub-
questions.
2.1 What is the error, measured as the root mean square

difference, between the piecewise approximation and the
best bell curve?

2.2 What is the error between the best bell curve and the BCC
estimate?

We can ask these sub-questions both of individual workflow
combinations and of compound workflows. The result for a
complete workflow is given in Figure 5.

The accuracy of BCC and Agrajag are compared on
a typical, complete workflow. The red curve shows
Agrajag’s piecewise approximation and the green
curve is the BCC estimate. The blue curve is the best
bell curve, showing how closely the BCC estimate
approximates this. For many purposes this degree of
accuracy would be acceptable, e.g. estimating the
cost of an expensive calculation, assessing whether
the calculation could be run in a reasonable time,
etc.

Fig. 5. Comparison of accuracy of Agrajag and BCC

Re question 3, we ran both Agrajag and BCC on an
example series of workflows. Some results are summarised in
Figure 6. Both Agrajag’s and BCC’s runtime increased linearly
with increasing workflow complexity. However, whereas the
runtime of Agrajag was of the order of seconds, even when
both the workflow and the resolution were relatively small, the
corresponding BCC runtime was of the order of milliseconds.

VIII. CONCLUSION

We have presented the Bell-Curve Calculus, a version of
arithmetic in which the domain is bell-curves rather than
numbers. This calculus is inspired by Interval Arithmetic.
But whereas intervals can be used for worst-case analyses,
bell-curves can be used for average-case analyses. The BCC
shows both the range and the likelihood of each value in
the range. We have applied the BCC to estimating quality
of service properties in e-Science workflows, in particular,
we have focused on their runtimes. The BCC estimate is not
as accurate as the piecewise approximation, but it is very
efficient to calculate. This could make it the calculus of choice
for making rough estimates of QoS properties of very large
workflows. Further details about the BCC can be found in [4],
[5].

Bell curves were chosen due to their ubiquity in experimen-
tal results. This includes e-Science workflow runtimes, but
also other QoS properties, such as accuracy and reliability.
So, the BCC has much wider potential application. To realise
this potential, many additional bell-curve functions would have

The efficiency of Agrajag and BCC are compared
by plotting their runtimes for an increasingly large
series of workflows. The red curve shows the Agrajag
runtimes and the green curve shows those for BCC.
The workflow series was generated by systematically
replacing one node after another with a complete
copy of the original workflow. The x-axis enumerates
the number of replacements and the y-axis gives
the resulting runtimes in seconds. Note that the
y−axis is plotted from -10, so that the green curve
can be distinguished from the x-axis. These results
are robust with respect to the choice of nodes to
be replaced. Both curves are linear, although the
slope of the green BCC curve cannot be seen at this
resolution and needs to be plotted with the y-axis
showing milliseconds.

Fig. 6. Comparison of efficiency of Agrajag and BCC

to be defined, such as multiplication, which is needed for
sequential combination of QoS estimates of accuracy and
reliability, for instance.

One could also envisage similar calculi for other common
families of curves, e.g., log normal curves and exponential
decay curves. The same methodology could be employed.
However, our dream is to identify a larger family of curves that
encompass, with reasonable accuracy, all these sub-families as
special cases. Then the calculus could mix curves of different
types while staying within the same family. To retain the
benefits of the BCC each member of the family would need to
be definable with a few parameters. Using a larger such curve
family would both extend the range of application but also,
potentially, the accuracy, since there would be a wider family
of curves from which to select the best approximation.

APPENDIX

Parameters for MPA

• A = 0 · 0058.σ2 + 1 · 1− 0 · 13.0 · 83σ2

− 0 · 017.σ2.(1 · 0− σ2
36

)4·0 + σ2
15

1·5e+27

• B = 0 · 00020.σ2
2·8 − 0 · 57.e−

(σ2−20·)2·0
68

+ 0 · 85.e−
(σ2−41)2·0

1·0e+2 − 0 · 050.e−
(σ2−26)2·0

24

− σ2
15

8·0e+25
+ 0 · 052.e−

(σ2−46)2·0
20·

• C = σ2.e
−σ2

0·90
20· − 1 · 0− 1 · 6.e−

(σ2−11)2·0
95

+ 1 · 9.1 · 3−1·9.σ2 + 0 · 071.e−
(σ2−32)2·0

50·

− 0 · 055.e−
(σ2−7·1)2·0

17 + 0 · 032.e−
(σ2−2·8)2·0

3·0

• D = 10 · .σ2
0·11 + 0 · 66− (σ2 + 3 · 7).1 · 1−

(σ2+3·7)1·1
0·39 .3 · 8

+ 2 · 4.50·−2·4.σ2 − 0 · 41.e−
(σ2−14)2·0

50· + 0 · 27.e−
(σ2−5·8)2·0

13

− 0 · 39.e−
(σ2−1·7)2·0

1·7 + 0 · 075.e−
(σ2−43)2·0

1·6e+2

Parameters for ΣPA
• A = (1 · 3e− 05).µ2

2·3 + 0 · 58

• B = 0 · 30.µ2 − (3 · 3e− 05).µ2
3·1 + 0 · 35.e−

(µ2−18)2·0
2·0e+2

− 0 · 081.e−
(µ2−44)2·0

40· − 0 · 13.e−
(µ2−1·5)2·0

0·30

• C = 0 · 32.µ2 + 0 · 19− (3 · 0e− 05).µ2
3·1

− 0 · 77.e−
µ2
1·3 + 0 · 14.e−

(µ2−22)2·0
1·4e+2 − 0 · 055.e−

(µ2−43)2·0
40·

• D = 0 · 44.µ2 + 0 · 99− (12e− 05).µ2
2·8)

−0·52.e−
(µ2−39)2·0

1·5e+2 −0·78.e−
(µ2−1·5)2·0

0·30 −0·41.e−
(µ2−3·8)2·0

1·8

Parameters for MPF

• A = 0 · 000075.σ2
2·0 − 0 · 021.e−

(σ2−22)2

1·3e+2 − 1·0

1·5
− σ2

1·1e+11

• B = −0 · 47.σ2 + 11− 12.0 · 88σ2

− 0 · 64.σ2.e
− |σ2−1·5|1·6

50· + 5·5−σ2
1·8

− 0 · 036.σ2.e
− (σ2−2·9)2·0

5·5 − 0 · 047.e−
(σ2−15)2·0

10·

+ 0 · 17.e−
(σ2−32)2·0

1·2e+2 − 1·0

1·3
− σ2

6·3e+6

• C = σ2.e
−σ2

0·90
20· − 0 · 58− 0 · 27.σ2.e

− (σ2−2·9)2·0
1·2e+2

+ 2 · 1−σ2 .1 · 1 + 0 · 086.e−
(σ2−26)2·0

70· − 0 · 083.e−
(σ2−47)2·0

70·

• D = 10 · .σ2
0·11 − (σ2 + 4 · 5).1 · 1−

(σ2+4·5)1·1
0·39 .3 · 5

+ 1 · 0e+ 2−σ2 .2 · 4 − 0 · 14.σ2.e
− (σ2−1·1)2·0

2·6 − 0 ·
51.e−

(σ2−12)2·0
35

+ 0 · 0039.σ2.e
− (σ2−31)2·0

2·5e+2 + 5 · 0−
σ2
6·2 − 0 · 057.e−

(σ2−19)2·0
20·

Parameters for ΣPF
• A = −(1 · 4e− 06).µ2

2·7 + 0 · 58

• B = −2 · 8.µ2
0·40 + e−

µ2−7·0
7·0 .10 ·

+ e−
µ2−22

9·0 .e−e
−µ2−22

9·0 .3 · 2 + e
− (µ2−2·5)2·0

2·0
2·8

− e−
µ2−8·5

2·0 . e
−e−

µ2−8·5
2·0

3·1 − e
− (µ2−46)2·0

1·1e+2

5·1

• C = µ2
0·71 + e−

37−µ2
11 .e−e

− 37−µ2
11 .2 · 2

− e−
µ2−10·

6·5 .e−e
−µ2−10·

6·5 + 1 · 5−
µ2
3·5 − 2 · 0

µ2
1·5e+16

• D = µ2
0·67 − e−

µ2−9·0
6·0 .e−e

−µ2−9·0
6·0 .1 · 3 + 6 · 0−

µ2
2·0 .1 · 3

+ e−(µ2−1·6)2·0.5·0

2·2 + e
− (µ2−36)2·0

1·6e+2

5·2 − 1 · 5
µ2

1·4e+10

Parameters for MD

• A =

0 · 50.ρ+ 0 · 50, 0 · 0 < σ2 < 9 · 5;
ρ, σ2 ≥ 9 · 5.

• B =

(2 · 3.ρ− 2 · 3).σ2 + 2 · 4.ρ− 2 · 4, 0 · 0 < σ2 < 9 · 5;
0 · 0, σ2 ≥ 9 · 5.

• C =

8<:
−2 · 4.ρ+ 2 · 4.σ2 − 5 · 2.ρ+ 5 · 2
−(−2 · 7.ρ+ 2 · 7).e−

σ2
3·2 , 0 · 0 < σ2 < 9 · 5;

0 · 0, σ2 ≥ 9 · 5.

• D =

2 · 3.σ2 + 1 · 9, 0 · 0 < σ2 < 9 · 5;
27, σ2 ≥ 9 · 5.

Parameters for ΣD
• A = −(−0 · 018.(ρ− 0 · 51)2·0 + 0 · 0038).µ2 + 1 · 2
− 2 · 5−2·1.ρ − (−0 · 35.(ρ− 0 · 67).|ρ− 0 · 67|0·61

+ 0 · 074) ∗ e
− µ2

8·5.ρ+11.ρ.2·3(−1·2.ρ)+4·1

• B = (−0 · 027.|ρ− 0 · 27|1·4 + 0 · 016).µ2
0·30.ρ1·5+1·7

• C = (−51.(ρ− 1 · 4).3 · 3(ρ−1·4) − 13)
.(µ2 + (−(ρ− 0 · 70)2·0.(1 · 5e+ 2) + 51 + e−|ρ−0·20|.40·.5 ·
4− e−(ρ−0·48)2·0.50·)
.3 · 6 + e−|ρ−0·30|.25 − e(ρ−0·78).55)

.(− (ρ−0·75)2·0
55

+ 0 · 99)
(µ2−(ρ−0·70)2·0.(1·5e+2)+51+e−(|ρ−0·20|).40·.5·4)

.(− (ρ−0·75)2·0
55

+ 0 · 99)
(−e−(ρ−0·48)2·0.50·.3·6+e−|ρ−0·30|.25−e(ρ−0·78).55)

− (−(ρ− 0 · 65)2·0.(1 · 6e+ 2) + 59 + e−|ρ−0·20|.40·.3 · 7 −
e(ρ−0·70).22

.2 · 0− e−(ρ−0·42)2·0.80·.3 · 7 + e−|ρ−0·67|2·4.(2·0e+2)

1·3)

• D = (e−e
−(ρ−0·41).5·0

.e−(ρ−0·41).5·0.1 · 5 + 0 · 14)

.µ2 − (e−e
−(ρ−0·40).6·3

.e−(ρ−0·40).6·3.43− 4 · 7)

− e

−(µ2−51)2·0/(e−e
−(ρ−0·35).10·

.e−(ρ−0·35).10·

.(1·6e+3)+(4·0e+2)

+e−|ρ−0·54|.15.(5·2e+2)

−e−|ρ−0·40|.20·.11
−e−|ρ−0·30|.40·.5·0−e−|ρ−0·60|.40·.11
+e(ρ−0·67).74.1·4−e(ρ−1·5).(−23).(0·14e−13))

.(e−(ρ−0·43)2·0.22.18− 3 · 4 + e−|ρ−0·28|.28.4 · 7
− e−|ρ−0·40|.50·.1 · 8 + e(ρ−0·69).89.1 · 3)

+ (e−(ρ−0·42)2·0.30·.15 + e−|ρ−0·30|.(1·0e+2).2 · 7 − 0 · 90 −
e−|ρ−0·40|.60·

.1 · 7 + e−(ρ−0·55)2·0.(3·0e+2).2 · 2 + e(ρ−0·69).56.1 · 3)

Acknowledgements

The work reported in this paper was supported by EPSRC
grant GR/S62949.

REFERENCES

[1] C. Reinsch, “A synopsis of interval arithmetic,” in The relationship
between numerical computing and programminmg languages, J. K. Reid,
Ed. North Holland, 1982, pp. 85–100.

[2] H. F. Trotter, “An elementary proof of the central limit theorem,” Arch.
Math., vol. 10, pp. 226–234, 1959.

[3] C. Hughes and J. Hillman, “QoS explorer: A tool for exploring QoS in
composed services,” icws, vol. 0, pp. 797–806, 2006.

[4] L. Yang, A. Bundy, D. Berry, and C. Hughes, “Towards a bell-curve
calculus for e-science,” in UK e-Science All Hands Meeting, September
2006.

[5] L. Yang, “Towards a bell-curve calculus and its application to e-science,”
MPhil Thesis, School of Informatics, University of Edinburgh, 2006,
forthcoming.

