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A note on Euler approximations for stochastic
differential equations with delay
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Abstract

An existence and uniqueness theorem for a class of stochastic delay differential equa-
tions is presented, and the convergence of Euler approximations for these equations
is proved under general conditions. Moreover, the rate of almost sure convergence
is obtained under local Lipschitz and also under monotonicity conditions.
Keywords: Stochastic delay differential equations, Euler approximations, rate of
convergence, local Lipschitz condition, monotonicity condition.
AMS subject classifications: 60H99

1 Introduction

Stochastic delay differential equations (SDDEs) play an important role in understanding
and modelling many real world phenomena for which the principle of causality does not
apply. One could refer to [1], [4], [5], [6], [19], [20] and the references therein for applica-
tions in biology, ecology, economics and finance without, of course, exhausting the long
list of publications on the subject matter. It is important therefore to determine precisely
under which conditions one obtains a unique solution for a delay system and, moreover, to
study the convergence of suitable numerical schemes. To this end, we employ techniques
from the theory of stochastic differential equations (SDEs) with random coefficients so
as to determine the conditions for uniqueness and existence of solutions of delay models.
Furthermore, we investigate the convergence properties of Euler schemes that are used to
approximate the aforementioned models.

Strong discrete-time approximations of SDDEs (in Lp-sense) have been studied by several
authors, including [2], [11], [15] and [17] amongst others. Moreover, in recent years, new
findings appeared in the direction of weak approximations, see for example [3] and [16].
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Our reason for presenting here results on two types of convergence, almost sure and in
probability, for numerical schemes of delay models is twofold.

First we contribute to the understanding of delay models by providing new results while
imposing essentially weaker conditions on the smoothness of the coefficients in comparison
with the current literature, see for example [2], [3], [12], [15] and [17] and the references
therein. The convergence of Euler approximations is proved under local monotonicity
condition, which is much weaker than the local Lipschitz condition that appears in [17].
Moreover, no smoothness condition on the initial data, on the delay function and on the
drift and diffusion coefficients in the delay argument are assumed in order to obtain the
convergence in probability. The main result of [17], Theorem 2.1, states convergence in
mean square. It should be noted, that under condition (H3) used in [17], our convergence
results clearly imply convergence in mean square as well. In addition, under local mono-
tonicity condition we present the almost sure rate of convergence of Euler approximations
whereas, Theorem 2.5 in [12] requires global Lipschitzness.

Second, we aid the development of the theory with regards to the understanding of prop-
erties of solutions of delay equations. As an example, one may consider the study of
different types of stability (almost sure asymptotic, exponential, mean square etc) for so-
lutions of such models. This is an area which has attracted significant attention in recent
years, see for example [10], [18], [22] and the references therein.

Finally, we note that although the authors in [21] provide an existence and uniqueness
theorem for stochastic functional differential equations, which is a more general class of
SDDEs than ours, their conditions are stronger in comparison with Theorem 2.1 below.
The reason for this is that we do not require any smoothness of the drift and diffusion
coefficients in the arguments corresponding to the delays.

We conclude this section by introducing some basic notation. Let xy be the scalar product
of vectors x, y ∈ Rd and |x| be the length of x. Moreover, if g ∈ Rd×m is a matrix, then
let gT and |g| denote the transpose of g and the Hilbert-Schmidt norm respectively, i.e.
|g| =

√
tr(ggT ). In addition, let [x] denote the integer part of the real number x. Finally,

let P and B(V ) denote the predictable σ-algebra on R+ × Ω and the σ-algebra of Borel
sets of a topological space V respectively.

2 Main Results

Let β(t, y1, . . . , yk, x) and α(t, y1, . . . , yk, x), where t ∈ R+ and x, yi ∈ Rd for 1 ≤ i ≤ k, be
B(R+)⊗B(Rd×k)⊗B(Rd)-measurable functions with values in Rd and Rd×m respectively.
Consider the stochastic delay differential equation

dX(t) = β(t,X(δ1(t)), . . . , X(δk(t)), X(t))dt+ α(t,X(δ1(t)), . . . , X(δk(t)), X(t))dWt,
(2.1)

X(t) = ξ(t), ∀t ∈ [−C, 0]

on a fixed probability space (Ω,F,P), equipped with a right-continuous complete fil-
tration F := {Ft}t≥0 and an m-dimensional Wiener martingale W := {Wt}t≥0, where
ξ := {ξ(t)}t∈[−C,0] is a continuous process such that ξ(t) is F0-measurable for every
t ∈ [−C, 0], C is a positive constant and δi(t) is an increasing function of t such that
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−C ≤ δi(t) ≤ [ t
τ
]τ for some positive constant τ and 1 ≤ i ≤ k. Note that two popular

cases for δi are included here. These are the fixed delay case, δi(t) = t−τ , and δi(t) = [ t
τ
]τ

which appear in many applications, see for example [1].

Fix a constant T > 0. Let L denote the set of nonnegative integrable functions on [0, T ]
and y := (y1, . . . , yk). Consider the following conditions:

(C1) The function β(t, y, x) is continuous in x for any t and y.

(C2) For every R > 0, there exists a KR ∈ L such that for all t ∈ [0, T ]

sup
|x|≤R

sup
|y|≤R

|β(t, y, x)| ≤ KR(t)

(C3) For every R > 0, there exists a LR ∈ L such that

2(x− z)(β(t, y, x)− β(t, y, z)) + |α(t, y, x)− α(t, y, z)|2 ≤ LR(t)|x− z|2,

for t ∈ [0, T ] and |x|, |y|, |z| < R

(C4) For any R > 0, there exists a MR ∈ L such that

2xβ(t, y, x) + |α(t, y, x)|2 ≤MR(t)(1 + |x|2)

for all t ∈ [0, T ], x ∈ Rd and |y| ≤ R.

Remark 2.1 Note that conditions (C2) and (C4) imply the existence of a KR ∈ L such
that

sup
|x|≤R

sup
|y|≤R

|α(t, y, x)|2 ≤ KR(t)

for all t ∈ [0, T ].

Theorem 2.1 Let us assume that conditions (C1)-(C4) hold, then there exists a unique
process {X(t)}t∈[0,T ] that satisfies equation (2.1).

For n ≥ 1, consider the following Euler scheme for equation (2.1)

dXn(t) = β(t, Yn(t), Xn(κn(t)))dt+ α(t, Yn(t), Xn(κn(t)))dWt, (2.2)

for t ∈ [0, T ], where Xn(t) = ξ(t) on [−C, 0], Yn(t) := (Xn(δ1(t)), . . . , Xn(δk(t))) and κn
is defined by

κn(t) :=
[n(t− t0)]

n
+ t0 (2.3)

with the observation that for equation (2.2) one takes t0 = 0 in (2.3) and that 1/n
corresponds to the time step.

Remark 2.2 We note that the Euler scheme (2.2) defines approximations to SDDEs in
an explicit way without a discretization of the delay terms. From our main theorems
on convergence of scheme (2.2), namely Theorems 2.2 and 2.3, one could easily obtain
results on convergence of this scheme with discretized delay terms. Therefore for matters
of notational simplicity, we choose the former approach.
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Furthermore, one notes that if (C2) and Remark 2.1 hold, then (2.2) is well-defined. In
addition, consider the condition below:

(C5) The functions β(t, y, x) and α(t, y, x) are continuous in y uniformly in x from com-
pacts, i.e. for every R > 0 and t ∈ [0, T ],

sup
|x|≤R

[|β(t, y, x)− β(t, y
′
, x)|+ |α(t, y, x)− α(t, y

′
, x)|]→ 0 as y → y

′
.

Theorem 2.2 Let us assume that conditions (C1)-(C5) hold. Consider equation (2.1)
and the corresponding Euler scheme defined by (2.2). Then

sup
t≤T
|Xn(t)−X(t)| P−→ 0 as n→∞.

Let {Xn}n≥1 be a sequence of random variables and {an}∞n=1 be a positive numerical
sequence. Then

Xn = O(an)

denotes that there exists a finite random variable ζ such that, almost surely,

|Xn| ≤ ζan

for all n ≥ 1. In order to obtain an estimate for the a.s convergence of the Euler scheme,
we consider the following conditions:

(A1) For every R > 0, there exists a constant kR such that, for all t ∈ [0, T ],

sup
|x|≤R

sup
|y|≤R

(
|β(t, y, x)|+ |α(t, y, x)|

)
≤ kR.

(A2) For every R > 0, there exists a constant cR such that, for every t ∈ [0, T ],

|β(t, y, x)− β(t, y
′
, x

′
)| ≤ cR(|y − y′ |+ |x− x′ |) (2.4)

|α(t, y, x)− α(t, y
′
, x

′
)|2 ≤ cR(|y − y′ |2 + |x− x′|2)

whenever |x|, |x′|, |y|, |y′ | < R.

(A3) For every R > 0, there exists a constant cR such that, for every t ∈ [0, T ],

2(x− x′
)
(
β(t, y, x)− β(t, y, x

′
)
)
≤ cR|x− x

′ |2

|β(t, y, x)− β(t, y
′
, x)| ≤ cR|y − y

′ |

whenever |x|, |x′|, |y|, |y′ | < R.

Remark 2.3 Note that conditions (A1) and (A2) imply that equation (2.1) has a unique
(complete) local solution. The same is true if (2.4) is replaced by (A3).
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Theorem 2.3 Let conditions (A1) and (A2) hold. Assume that equation (2.1) admits a
solution {X(t)}t∈[0, T ]. Let {Xn(t)}t∈[0, T ] denote the solution of the Euler scheme (2.2).
Then,

sup
t≤T
|X(t)−Xn(t)| = O(n−γ) (a.s.) (2.5)

for every γ < 1/2. Moreover, if one replaces (2.4) with (A3), then (2.5) holds for every
γ < 1/4.

Remark 2.4 Note that without loss of generality, it is assumed henceforth that T is a
multiple of τ . To see this, one considers equation (2.1) for every t ≤ T

′
, where T

′
= Nτ ≥

T and N is a positive integer, and observes that all the above conditions are satisfied when
β and α are replaced by β I1{t≤T} and α I1{t≤T}.

3 Existence and Uniqueness

Let b and σ be P ⊗ B(Rd)-measurable functions, defined on R+ × Ω×Rd, with values in
Rd and Rd×m respectively. It is noted that although these are random functions, the use
of ω notation is suppressed for brevity as it often happens in relevant literature. Let t0
and t1 be any positive constants such that 0 ≤ t0 < t1 ≤ T . Let also A denote the set of
nonnegative F-adapted stochastic processes L = {L(t)}t∈[0,T ] such that∫ T

0

L(t) dt <∞ (a.s.).

Consider
dX(t) = b(t,X(t)) dt+ σ(t,X(t)) dWt, ∀ t ∈ [t0, t1], (3.1)

with an initial condition X(t0) which is an Ft0-measurable, almost surely finite random
variable. Furthermore, consider conditions

(D1) The function b(t, x) is continuous in x for any t and ω.

(D2) For every R > 0, there exists KR ∈ A such that, almost surely,

sup
|x|≤R

|b(t, x)| ≤ KR(t)

for any t ∈ [t0, t1].

(D3) For every R > 0, there exists LR ∈ A such that, almost surely,

2(x− z)(b(t, x)− b(t, z)) + |σ(t, x)− σ(t, z)|2 ≤ LR(t)|x− z|2

for any t ∈ [t0, t1] and |x|, |z| < R.

(D4) There exists M∈ A such that, almost surely,

2xb(t, x) + |σ(t, x)|2 ≤M(t)(1 + |x|2)

for every t ∈ [t0, t1] and x ∈ Rd.
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The following existence and uniqueness theorem is known from [7] and [13].

Theorem 3.1 Let us assume that conditions (D1)-(D4) hold, then there exists a unique
process {X(t)}t∈[t0,t1] that satisfies equation (3.1).

We are ready now to proceed with the proof of the main theorem of this section.

Proof of Theorem 2.1. One considers first the interval [0, τ) and observes that this re-
duces to the well-known case of stochastic differential equations (without delay) where
the assumptions (C1)-(C4) guarantee the existence of a unique, continuous solution (see
Theorem 3.1 above). One then observes that

X(τ) := X(0) +

∫ τ

0

β(t, Y (t), X(t))dt+

∫ τ

0

α(t, Y (t), X(t))dWt,

with Y (t) := (X(δ1(t)), . . . , X(δk(t))), is well defined. Inductively, one may assume that
a unique, continuous solution exists on the interval [(i−1)τ, iτ ], for some positive integer
i ∈ {1, . . . , N}, with the aim to prove that the same is true on [iτ, (i + 1)τ ]. One then
considers equation (3.1) with

b(t, x) := β(t, Y (t), x), σ(t, x) := α(t, Y (t), x) (3.2)

for every t ∈ [iτ, (i + 1)τ), and with initial condition X(iτ) which is an Fiτ -measurable,
almost surely finite random variable. One immediately observes that b(t, x) and σ(t, x)
are P ⊗ B(Rd)-measurable functions with values in Rd and Rd×m respectively as a direct
consequence of the measurability properties of the aforementioned functions β and α. Fur-
thermore, one obtains that (D1)-(D4) hold for every t ∈ [iτ, (i+ 1)τ) due to assumptions
(C1)-(C4). More precisely, (D1) is a direct consequence of (C1); (D2) is a consequence of
(C2) since supiτ≤t<(i+1)τ X(δj(t)) is almost surely finite (for 1 ≤ j ≤ k) and KR(t) can be
given as

KR(t) := KR(t) I1ΩR +
∞∑

l=R+1

Kl(t) I1Ω
′
l
,

where
Ωl := { sup

iτ≤t<(i+1)τ

|Y (t)| ≤ l} and Ω
′

l := Ωl+1\Ωl

for integers l ≥ 1. Similarly, one proves that (D3) is a consequence of (C3). Clearly, (D4)
holds with

M :=
∞∑
l=1

Ml I1Ω
′
l
∈ A

where Ml is from (C4). Finally, Theorem 3.1 is used here so as to obtain a unique solution
on [iτ, (i+ 1)τ). Then, one observes that

X((i+ 1)τ) := X(iτ) +

∫ (i+1)τ

iτ

β(t, Y (t), X(t))dt+

∫ (i+1)τ

iτ

α(t, Y (t), X(t))dWt,

is well-defined, and that concludes the induction, and consequently, the proof is complete.
2

6



4 Convergence in Probability

For each integer n ≥ 1, let bn and σn be P ⊗ B(Rd)-measurable functions, defined on
R+×Ω×Rd, with values in Rd and Rd×m respectively. Let t0 and t1 be positive constants
such that 0 ≤ t0 < t1 ≤ T . Moreover, consider the following Euler scheme

dXn(t) = bn(t,Xn(κn(t))) dt+ σn(t,Xn(κn(t))) dWt, ∀t ∈ [t0, t1], (4.1)

where Xn(t0) = Xn0 is an Ft0-measurable random variable and κn(t) is defined in (2.3).

In order to prove Theorem 2.2, first we present a slight generalisation of a result from [13]
on Euler approximations of stochastic differential equations.

Theorem 4.1 Consider the Euler scheme (4.1) for equation (3.1). Let conditions (D1)-
(D4) hold. Moreover, assume that for every R > 0 there exists LnR ∈ A such that

sup
|x|≤R

[|bn(t, x)− b(t, x)|+ |σn(t, x)− σ(t, x)|2] ≤ LnR(t) (a.s.) (4.2)

and ∫ T

0

LnR(t)dt
P−→ 0 as n→∞.

Finally, let Xn0
P−→ X(t0) as n→∞. Then

sup
t0≤t≤t1

|Xn(t)−X(t)| P−→ 0 as n→∞.

Proof. One observes first that conditions (D2) and (D4) together with (4.2) imply that
for every R > 0, there exists NR(t) ∈ A such that

sup
|x|≤R

[|bn(t, x)|+ |σn(t, x)|2] ≤ NR(t) (a.s.) (4.3)

for every t ∈ [t0, t1]. By introducing

Hn(t) := Xn0 +

∫ t

t0

b(u,Xn(κn(u)))du+

∫ t

t0

σ(u,Xn(κn(u)))dWu

and pn(t) := Xn(κn(t))−Hn(t), one obtains that

Hn(t) = Hn(t0) +

∫ t

t0

b(u,Hn(u) + pn(u))du+

∫ t

t0

σ(u,Hn(u) + pn(u))dWu (4.4)

with Hn(t0) = Xn0. Furthermore, by introducing en(t) := Xn(t)−Hn(t) and the following
stopping time

τn(R) := inf{t ≥ t0 : |Hn(t)|+ |en(t)| ≥ R/2}

for any R > 0, one observes that

|Xn(t)| ≤ R/2 and |pn(t)| = |Xn(κn(t))−Hn(t)| ≤ R on (t0, τn(R)].
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In addition, one calculates that as n→∞,

P(τn(R) ≤ t1, sup
t0≤t≤τn(R)

|Hn(t)| ≤ R
4

) ≤ P( sup
t0≤t≤τn(R)∧t1

|en(t)| ≥ R
4

)→ 0, (4.5)

due to (4.2) and known results on convergence of stochastic integrals. Moreover, one
observes that pn(t) = Xn(κn(t))−Xn(t) + en(t), and thus

E
∫ t1∧τn(R)

t0

|pn(t)|dt ≤ E
∫ t1∧τn(R)

t0

|Xn(κn(t))−Xn(t)|dt+ E
∫ t1∧τn(R)

t0

|en(t)|dt. (4.6)

By taking into account property (4.3) and Lebesgue’s dominated convergence theorem,
one concludes that

|Xn(κn(t))−Xn(t)| I1[t0, τn(R)∧t1] ≤ I1[t0, τn(R)∧t1]

∣∣∣ ∫ t

κn(t)

bn(u,Xn(κn(u)))du
∣∣∣

+ I1[t0, τn(R)∧t1]

∣∣∣ ∫ t

κn(t)

σn(u,Xn(κn(u)))dWu

∣∣∣
converges to 0 in probability for each t, since one observes that

I1[t0, τn(R)∧t1]

∫ t

κn(t)

|σn(u,Xn(κn(u)))|2du ≤
∫ t∧τn(R)∧t1

κn(t)∧τn(R)∧t0
|σn(u,Xn(κn(u)))|2du

=

∫ t1

t0

I1An|σn(u,Xn(κn(u)))|2du

converges almost surely to 0 as n→∞, where An := (κn(t) ∧ τn(R), t ∧ τn(R)]. Hence

lim
n→∞

E
∫ t1∧τn(R)

t0

|Xn(κn(t))−Xn(t)|dt = lim
n→∞

∫ t1

t0

E I1(t0, τn(R)]|Xn(κn(t))−Xn(t)|dt = 0,

by Lebesgue’s dominated convergence theorem, since

|Xn(κn(t))−Xn(t)| ≤ R on (t0, τn(R)].

Due to equation (4.2) and the application of the dominated convergence theorem

lim
n→∞

E
∫ t1∧τn(R)

t0

|en(t)|dt = 0,

which results in

lim
n→∞

E
∫ t1∧τn(R)

t0

|pn(t)|dt = 0.

Thus, the corresponding conditions of Lemma 2 in Krylov [13] are satisfied and, therefore,

sup
t0≤t≤t1

|Hn(t)−H(t)| P−→ 0, as n→∞,

for some process {H(t)}t∈[t0, t1]. Furthermore, one calculates that for any ε > 0,

P( sup
t0≤t≤t1

|en(t)| ≥ ε) ≤ P( sup
t0≤t≤τn(R)∧t1

|en(t)| ≥ ε) + P(τn(R) ≤ t1). (4.7)
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Moreover,

P(τn(R) ≤ t1) ≤ P( sup
t0≤t≤τn(R)∧t1

{|Hn(t)|+ |en(t)|} ≥ R
2

)

≤ P( sup
t0≤t≤t1

|Hn(t)| ≥ R
4

) + P( sup
t0≤t≤τn(R)∧t1

|en(t)| ≥ R
4

),

which implies, by taking into account (4.5)

lim sup
n→∞

P(τn(R) ≤ t1) ≤ lim sup
n→∞

P( sup
t0≤t≤t1

|Hn(t)| ≥ R
4

) = P( sup
t0≤t≤t1

|H(t)| ≥ R
4

) (4.8)

for all R > 0 apart from countably many. Letting R = Rk → ∞, for points Rk where
(4.8) holds, one obtains

lim
Rk→∞

lim sup
n→∞

P(τn(R) ≤ t1) = 0.

Thus, by letting n→∞ and then R ↑ ∞ in (4.7), one further obtains that

lim
n→∞

P( sup
t0≤t≤t1

|en(t)| ≥ ε) = 0.

As a result,

sup
t0≤t≤t1

|Xn(t)−H(t)| ≤ sup
t0≤t≤t1

|en(t)|+ sup
t0≤t≤t1

|Hn(t)−H(t)| P−→ 0, as n→∞. (4.9)

Furthermore ∫ t1

t0

|bn(u,Xn(κn(u)))− b(u,H(u))|du P−→ 0, as n→∞,

since ∫ t1

t0

|bn(u,Xn(κn(u)))− b(u,Xn(κn(u)))|du P−→ 0, as n→∞, (4.10)

due to (4.2), and∫ t1

t0

|b(u,Xn(κn(u)))− b(u,H(u))|du P−→ 0, as n→∞,

due to the continuity of b(t, x) in x, (4.9), (D2) and the application of Lebesgue’s domi-
nated convergence theorem. More precisely, equation (4.10) holds since

P(

∫ t1

t0

|bn(u,Xn(κn(u)))− b(u,Xn(κn(u))|du > ε) ≤ P(ρn(R) ≤ t1)+

P(

∫ t1∧ρn(R)

t0

|bn(u,Xn(κn(u)))− b(u,Xn(κn(u))|du > ε)

for any ε > 0 and R > 0, where

ρn(R) := inf{t ≥ t0 : |Xn(t)| ≥ R}.
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One then observes that due to (4.2),

P(

∫ t1∧ρn(R)

t0

|bn(u,Xn(κn(u)))− b(u,Xn(κn(u))|du > ε) ≤

P(

∫ t1

t0

sup
|x|≤R

|bn(u, x)− b(u, x)|du > ε)→ 0, as n→∞.

Moreover,

P(ρn(R) ≤ t1) ≤ P( sup
t0≤t≤t1

|Xn(t)| ≥ R)

≤ P( sup
t0≤t≤t1

|Xn(t)−H(t)| ≥ R
2

) + P( sup
t0≤t≤t1

|H(t)| ≥ R
2

)

which yields, due to (4.9), that

lim
R→∞

lim sup
n→∞

P(ρn(R) ≤ t1) = 0.

One similarly proves that∫ t1

t0

|σn(u,Xn(κn(u)))− σ(u,H(u))|2du P−→ 0, as n→∞.

In other words, the Euler scheme converges in probability to H(t), uniformly in t ∈ [t0, t1],
and H(t) satisfies

dH(t) = b(t,H(t))dt+ σ(t,H(t))dWt, ∀t ∈ [t0, t1],

which yields H(t) = X(t) (a.s.) for every t ∈ [t0, t1]. The proof is complete. 2

We are ready now to proceed with the proof of the main result of this section.

Proof of Theorem 2.2. We prove the theorem by showing that

sup
(i−1)τ≤t≤iτ

|Xn(t)−X(t)| P−→ 0 as n→∞, (4.11)

for every i ∈ {1, . . . , N}. For i = 1, the problem reduces to the well-known case of
stochastic differential equations (without delay) where the assumptions (C1)-(C5) are
enough to prove the result. Furthermore, assume (4.11) is true for i < N . Then, as noted
in the proof of Theorem 2.1, conditions (C1)–(C4) imply that (D1)–(D4) hold for b and σ
as defined in (3.2) with t0 = iτ and t1 = (i+ 1)τ . Moreover, consider

bn(t, x) := β(t, Yn(t), x), σn(t, x) := α(t, Yn(t), x). (4.12)

where Yn(t) := (Xn(δ1(t)), . . . , Xn(δk(t))). Then, condition (C5) implies that (4.2) holds
since for every t ∈ [iτ, (i+ 1)τ) and R > 0,

sup
|x|≤R

[|β(t, Yn(t), x)− β(t, Y (t), x)|+ |α(t, Yn(t), x)− α(t, Y (t), x)|2]
P−→ 0 as n→∞.

Thus, the application of Lebesgue’s dominated convergence theorem, due to (C2) and
Remark 2.1, yields that, for every R > 0,

P(

∫ (i+1)τ

iτ

sup
|x|≤R

[|β(t, Yn(t), x)− β(t, Y (t), x)|+ |α(t, Yn(t), x)− α(t, Y (t), x)|2]dt > ε)→ 0,

as n→∞. Consequently, in light of Theorem 4.1, one concludes that the inductive step
is correct and thus the desired result is obtained. 2
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5 Rate of convergence

Let {Xn}n≥1 be a sequence of almost surely finite random variables and {bn}∞n=1 be a
positive numerical sequence. Then

Xn = o(bn)

denotes that there exists a sequence of random variables {ηn}n≥1 converging to 0 almost
surely, such that

|Xn| ≤ ηnbn (a.s.) for any n ≥ 1.

A useful lemma follows that originates from the Gyöngy and Krylov [7].

Lemma 5.1 Let Xn := {Xn(t)}t∈[0,T ] be a cadlag stochastic process taking values in Rk

for every integer n ≥ 1. Define

τnε = inf{t ∈ [0, T ] : |Xn(t)| ≥ ε}, Xnε(t) = Xn(t ∧ τnε)

for some ε > 0. Then, the following statements hold:

(i) If supt∈[0,T ] |Xnε(t)| → 0 in probability, then supt∈[0,T ] |Xn(t)| → 0 in probability as
well.

(ii) If supt∈[0,T ] |Xnε(t)| → 0 almost surely, then supt∈[0,T ] |Xn(t)| → 0 almost surely as
well.

(iii) If supt∈[0,T ] |Xnε(t)| = O(an) for a numerical sequence 0 < an → 0, then supt∈[0,T ] |Xn(t)| =
O(an) as well.

Proof. See Lemma 3.5 in Gyöngy and Shmatkov [9]. 2

Lemma 5.2 Let T ∈ [0, ∞) and let f := {ft}t∈[0,T ] and g := {gt}t∈[0,T ] be non-negative
continuous F-adapted processes such that, for any constant c > 0,

E[fτ I1{g0≤c}] ≤ E[gτ I1{g0≤c}]

for any stopping time τ ≤ T . Then, for any stopping time τ ≤ T and γ ∈ (0, 1),

E[sup
t≤τ

fγt ] ≤ 2− γ
1− γ

E[sup
t≤τ

gγt ]

Proof. See [14] and also Gyöngy and Krylov [8]. 2

The proof of the following lemma is an easy exercise left for the reader.

Lemma 5.3 Let Xn = {Xn(t)}t∈[0,T ] be a cadlag stochastic process taking values in Rk

for every integer n ≥ 1, and let {an}∞n=1 be a positive numerical sequence. Assume there
exists a sequence of stopping times {τR}∞R=1, such that limR→∞ P (τR < T ) = 0, and for
each R

sup
t≤T
|Xn(t ∧ τR)| = O(an).

Then
sup
t≤T
|Xn(t)| = O(an).

11



To formulate our next lemma we consider for each integer n ≥ 1 an Itô process Zn =
{Zn(t)}t∈[0,T ] with stochastic differential

dZn(t) = fn(t)dt+ gn(t)dWt, t ∈ [0, T ],

where fn and gn are adapted stochastic processes with values in Rd and Rd×m respectively,
such that almost surely∫ T

0

|fn(t)|dt <∞,
∫ T

0

|gn(t)|2dt <∞.

Lemma 5.4 Let γ > 0 be a fixed number and assume that

Zn(0) = O(n−κ) for all κ < γ, (5.1)

and almost surely

max(Zn(t)fn(t), |gn(t)|2) ≤ Ln(t)|Zn(t)|2 + ηn(t), for all t ∈ [0, T ], (5.2)

where Ln and ηn are non-negative adapted processes such that∫ T

0

Ln(t)dt = o(lnn) (5.3)

and ∫ T

0

ηn(t)dt = O(n−2κ) for any κ < γ. (5.4)

Then,
sup
t≤T
|Zn(t)| = O(n−κ) for any κ < γ. (5.5)

Proof. Let κ ∈ (0, γ) and set ΩR = {supn≥1 |Zn(0)|nκ ≤ R}. Note that ΩR is F0

measurable. Then limR→∞ P (ΩR) = 1 by condition (5.1), i.e., it is enough to prove (5.5)
for almost every ω ∈ ΩR for each R. Thus by replacing Zn, fn and gn with R−1 I1ΩRZn,
R−1 I1ΩRfn and R−1 I1ΩRgn, respectively, we see that without loss of generality we may
assume that almost surely

|Zn(0)| ≤ n−κ for all n ≥ 1. (5.6)

Using this assumption we consider the stopping time τn := inf{t ≥ 0 : |Zn(t)| ≥ 1} to
obtain that

sup
t≤T
|Zn(t ∧ τn)| ≤ 1, for all n ≥ 1.

Thus, by Lemma 5.1, replacing Zn, fn, gn, Ln and ηn with Zn(· ∧ τn), fn I1[0, τn], gn I1[0, τn],
Ln I1[0, τn] and ηn I1[0, τn] respectively, without loss of generality we may assume

sup
t≤T
|Zn(t)| ≤ 1, for all n ≥ 1. (5.7)

Consider for every integer R ≥ 1 the stopping time

σR := inf{t ≥ 0 : sup
n≥1

n2κ

∫ t

0

ηn(s)ds ≥ R2} ∧ T
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to get ∫ σR

0

ηn(s)ds ≤ R2n−2κ, for all n ≥ 1.

Due to condition (5.4) we have limR→∞ P (σR < T ) = 0. Hence by virtue of Lemma 5.3 we
need only show (5.5) for Zn(·∧σR), for each R, in place of Zn. Thus using R−1Zn(·∧σR),
R−1fn I1[0, σR], R

−1gn I1[0, σR], Ln I1[0, σR] and R−2ηn I1[0, σR] in place of Zn, fn, gn, Ln and ηn
respectively, without loss of generality we may assume∫ T

0

ηn(s)ds ≤ n−2κ, for all n ≥ 1. (5.8)

Introduce finally the stopping times

ρεN := inf{t ≥ 0 : sup
n≥N

∫ t
0
Ln(s)ds

lnn
≥ ε} ∧ T,

for integers N ≥ 2 and for any (small) ε > 0. Then

exp
(∫ ρεN

0

Ln(s)ds
)
≤ nε, for all n ≥ N,

which implies that the random variable

ψNε := sup
n≥1

n−ε exp
(∫ ρεN

0

Ln(s)ds
)

is almost surely finite and we have

exp
(∫ ρεN

0

Ln(s)ds
)
≤ ψNε n

ε, for all n ≥ 1.

Due to condition (5.3) limN→∞ P (ρεN < T ) = 0. Thus using Lemma 5.3 as before, we
can see that without loss of generality we may assume that for any small ε > 0 there is a
finite random variable ψε such that almost surely

exp
(∫ T

0

Ln(s)ds
)
≤ ψεn

ε, for all n ≥ 1 (5.9)

holds. Now we prove the lemma under the additional conditions (5.6) through (5.9). Set

φn(t) := exp
(
− (2r + 1)

∫ t

0

Ln(s)ds
)
.

Then, for any r ≥ 2, Ito’s formula yields

d
(
φn(t)|Zn(t)|2

)r
=2rφrn(t)

(
|Zn(t)|2(r−1)Zn(t)dZn(t) + (r − 1)|Zn(t)|2(r−2)|gTn (t)Zn(t)|2dt

+
1

2
|Zn(t)|2(r−1)|gn(t)|2dt

)
+ |Zn(t)|2rdφrn(t)

≤rφrn(t)|Zn(t)|2(r−1)
(

2Zn(t)dZn(t) + (2r − 1)|gn(t)|2dt
)

− r(2r + 1)Ln(t)φrn(t)|Zn(t)|2rdt.
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Hence by (5.2),

d
(
φn(t)|Zn(t)|2

)r ≤ r(2r + 1)φrn(t)|Zn(t)|2(r−1)ηn(t)dt+ 2r|Zn(t)|2(r−1)φrn(t)Zn(t)gn(t)dWt

on [0, T ]. Thus, for every stopping time τ ≤ T

E
(
φn(τ)|Zn(τ)|2

)r ≤ n−2rκ + r(2r + 1)E
∫ τ

0

(
φn(t)|Zn(t)|2

)r−1
ηn(t)dt.

Then, one applies Lemma 5.2 with the non-negative processes f and g being represented
by ft :=

(
φn(t)|Zn(t)|2

)r
and

gt := n−2rδκ + r(2r + 1)

∫ t

0

φrn(s)|Zn(s)|2(r−1)ηn(s)ds,

for every t ∈ [0, T ], to obtain that, for any δ ∈ (0, 1),

E[sup
t≤T

(
φn(t)|Zn(t)|2

)rδ
] ≤ Cn−2rδκ + CE

( ∫ T

0

(
φn(t)|Zn(t)|2

)r−1
ηn(t)dt

)δ
.

Hence the application of Young’s inequality yields

E[sup
t≤T

(
φn(t)|Zn(t)|2

)rδ
] ≤ Cn−2rδκ +

1

2
E sup
t≤T

(
φn(t)|Zn(t)|2

)rδ
+ CE

(∫ T

0

ηn(t)dt
)rδ

.

Thus, due to (5.8) we have∑
n

P
(

sup
t≤T

(
φn(t)|Zn(t)|2

)
> n−2κ

′)
≤ C

∑
n

n2rδ(κ
′−κ) <∞

for a sufficiently large r, δ ∈ (0, 1) and any κ
′
< κ < γ. Here and above, C denotes

constants that depend on r and δ but are independent of n. Borel-Cantelli lemma then
implies that for each κ < γ there is a finite random variable ζκ such that almost surely

sup
t≤T

(
φn(t)|Zn(t)|2

)
≤ ζκn

−2κ

for all n ≥ 1. Hence, due to (5.9)

sup
t≤T
|Zn(t)|2 ≤ ζκn

−2κ exp
(
(2r + 1)

∫ T

0

Ln(t)dt
)
≤ ψεζκn

ε(2r+1)−2κ.

By taking ε sufficiently small and κ sufficiently close to γ, the desired result follows
immediately. The proof is complete. 2

One is then ready to proceed with the calculation of the rate of convergence for the Euler
scheme (4.1). The conditions we need are described below.

(E1) For every R > 0, there exist finite Ft0-measurable random variable CR such that,
almost surely,

|b(t, x)− b(t, y)| ≤ CR|x− y| (5.10)

|σ(t, x)− σ(t, y)|2 ≤ CR|x− y|2

for every t ∈ [t0, t1] and |x|, |y| < R.
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(E2) For every R > 0, there exist finite Ft0-measurable random variables KR such that,
almost surely,

|bn(t, x)| ≤ KR and |σn(t, x)| ≤ KR

for every n ≥ 1, t ∈ [t0, t1] and |x| < R.

(E3) For every R > 0, there exist adapted processes MRn such that, almost surely,

|b(t, x)− bn(t, x)|2 ≤MRn(t)

|σ(t, x)− σn(t, x)|2 ≤MRn(t)

for every n ≥ 1, t ∈ [t0, t1] and |x| < R, and for every γ < 1/2,∫ t1

t0

MRn(t)dt = O(n−2γ).

(E4) Alternatively to (5.10), there exists a finite Ft0-measurable random variable CR such
that, almost surely,

2(x− y)
(
b(t, x)− b(t, y)

)
≤ CR|x− y|2

for every t ∈ [t0, t1] and |x|, |y| < R.

Remark 5.1 Conditions (E2) and (E3) imply that for every R > 0, there exists a process
MR ∈ A such that, almost surely,

|b(t, x)|2 ≤MR(t) and |σ(t, x)|2 ≤MR(t).

for any t ∈ [t0, t1] and |x| < R. Hence, due to conditions (E1) – (E3), equation (3.1) has
a unique (complete) local solution. The same is true if (5.10) is replaced by (E4). The
existence of a unique (global) solution can be guaranteed by appropriate assumptions on
the growth of b and σ, e.g. by (D4).

Theorem 5.5 Let conditions (E1)–(E3) hold. Assume that equation (3.1) with initial
data X(t0) admits a solution {X(t)}t∈[t0, t1]. Let {Xn(t)}t∈[t0, t1] denote the solution of the
Euler scheme (4.1) with initial data Xn0 such that

|X(t0)−Xn0| = O(n−γ) (a.s.) (5.11)

for every γ < 1/2. Then

sup
t0≤t≤t1

|X(t)−Xn(t)| = O(n−γ) (a.s.) (5.12)

for every γ < 1/2. Moreover, if one replaces condition (5.10) with (E4), then (5.12) holds
for every γ < 1/4. In this case, it is sufficient to require that (E3) and (5.11) hold for
every γ < 1/4.
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Proof. Due to Lemma 5.1 and 5.3, it suffices to prove that

sup
t0≤t≤t1

|Zn(t)| = O(n−γ) (a.s.)

for every γ < 1/2, where

Zn(t) := X(t ∧ τnεR)−Xn(t ∧ τnεR),

τnε := inf{t ≥ t0 : |X(t)−Xn(t)| ≥ ε}, τR := inf{t ≥ t0 : |X(t)| ≥ R− 1}

and τnεR = τnε ∧ τR for every R > 0 and arbitrary ε ∈ (0, 1).

Moreover, it is enough to prove our result under the condition that assumption (E2) holds
with a constant L instead of a finite Ft0-measurable random variable KR. One only needs
to replace bn and σn with bn I1{KR≤L} and σn I1{KR≤L} respectively, for each (fixed) R > 0,
since

[KR < L] ∈ Ft0 and P(
∞⋃
L=1

[KR < L]) = 1.

Then, for hn(s) := σn(s,Xn(κn(s))) I1{s≤τnεR}, one has |hn(t)| ≤ L on [t0, t1] and for r ≥ 2,

E
(∫ t1

t0

∣∣∣ ∫ t

κn(t)

hn(s)dWs

∣∣∣dt)r ≤ KE
(∫ t1

t0

∣∣∣ ∫ t

κn(t)

hn(s)dWs

∣∣∣2rdt) 1
2

(Hölder)

≤ K
(∫ t1

t0

E
∣∣∣ ∫ t

κn(t)

hn(s)dWs

∣∣∣2rdt) 1
2

(Jensen)

≤ Kn−
r
2

holds, where K denote positive constants which are independent of n. As a result, due to
Markov’s inequality,∑

n

P
(∫ t1

t0

∣∣∣ ∫ t

κn(t)

hn(s)dWs

∣∣∣dt > n−γ
)
≤ K

∑
n

nγr−
r
2 <∞

for a sufficiently large r and γ ∈ [0, 1/2), which proves that∫ t1

t0

∣∣∣ ∫ t

κn(t)

hn(s)dWs

∣∣∣dt = O(n−γ)

by the application of the Borel-Cantelli lemma. Consequently,∫ t1

t0

|Xn(t)−Xn(κn(t))| I1{t≤τnεR}dt ≤
∫ t1

t0

|
∫ t

κn(t)

I1{s≤τnεR}bn(s,Xn(κn(s)))ds|dt

+

∫ t1

t0

|
∫ t

κn(t)

hn(s)dWs|dt

= O(n−γ) (5.13)

for any γ ∈ [0, 1/2). Furthermore, in order to apply Lemma 5.4, one defines

fn(t) := I1Tn [b(t,X(t))− bn(t,Xn(κn(t)))]
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and
gn(t) := I1Tn [σ(t,X(t))− σn(t,Xn(κn(t)))].

where Tn := (t0, τnεR]. Moreover, one calculates

Zn(t)fn(t) ≤|Zn(t)|
(
|b(t,X(t))− b(t,Xn(t))|+ |b(t,Xn(t))− b(t,Xn(κn(t)))|

+ |b(t,Xn(κn(t)))− bn(t,Xn(κn(t)))|
)

I1Tn

≤(CR + 1)|Zn(t)|2 + CR|Xn(t)−Xn(κn(t))|2 I1Tn
+ |b(t,Xn(κn(t)))− bn(t,Xn(κn(t)))|2 I1Tn ,

and,

|gn(t)|2 ≤3
(
|σ(t,X(t))− σ(t,Xn(t))|2 + |σ(t,Xn(t))− σ(t,Xn(κn(t)))|2

+ |σ(t,Xn(κn(t))− σn(t,Xn(κn(t)))|2
)

I1Tn

≤CR|Zn(t)|2 + CR|Xn(t)−Xn(κn(t))|2 I1Tn
+ |σ(t,Xn(κn(t))− σn(t,Xn(κn(t)))|2 I1Tn .

which yields

max(Zn(t)fn(t), |gn(t)|2) ≤ Ln|Zn(t)|2 + ηn(t), for all t ∈ [t0, t1], (5.14)

due to (5.13) and (E3), where Ln := CR + 1 and

ηn(t) :=
(
CR|Xn(t)−Xn(κn(t))|2 + |b(t,Xn(κn(t)))− bn(t,Xn(κn(t)))|2

+ |σ(t,Xn(κn(t))− σn(t,Xn(κn(t)))|2
)

I1Tn

satisfy the conditions of Lemma 5.4 for any γ ∈ [0, 1/2). Thus, application of Lemma
5.4 yields the desired result (5.12) for any γ ∈ [0, 1/2). Finally, if assumption (5.10) is
replaced by (E4), then

Zn(t)fn(t) =
(
X(t)−Xn(t)

)[
b(t,X(t))− bn(t,Xn(κn(t)))

]
I1Tn

=
(
X(t)−Xn(κn(t))

)[
b(t,X(t))− b(t,Xn(κn(t)))

]
I1Tn

+
(
X(t)−Xn(κn(t))

)[
b(t,Xn(κn(t)))− bn(t,Xn(κn(t)))

]
I1Tn

+
(
Xn(κn(t))−Xn(t)

)[
b(t,X(t))− bn(t,Xn(κn(t)))

]
I1Tn

≤1

2
CR|X(t)−Xn(κn(t))|2 I1Tn

+ |X(t)−Xn(κn(t))||b(t,Xn(κn(t)))− bn(t,Xn(κn(t)))| I1Tn
+ |Xn(κn(t))−Xn(t)||b(t,X(t))− bn(t,Xn(κn(t)))| I1Tn

≤(CR + 1)|Zn(t)|2 + (CR + 1)|Xn(κn(t))−Xn(t)|2 I1Tn +
1

2
MRn(t)

+ 2|Xn(κn(t))−Xn(t)| I1Tn

(
L+M

1/2
R (t)

)
,
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where MR comes from Remark 5.1. Thus

Zn(t)fn(t) ≤ Ln|Zn(t)|2 + ηn(t), for all t ∈ [t0, t1], (5.15)

where Ln := CR+1 and ηn is a non-negative F-adapted process which satisfy the conditions
of Lemma 5.4 for any γ ∈ [0, 1/4) due to (5.13). Thus the proof is complete. 2

Remark 5.2 One could further observe that assumptions (5.10) & (E2) can be relaxed
to allow

|b(t, x)− b(t, y)|2 ≤MR(t)|x− y|2 and sup
|x|≤R

|bn(t, x)|2 ≤MR(t),

for some process MR ∈ A, while Theorem 5.5 remains true.

The proof of the main and final result of this section follows.

Proof of Theorem 2.3. We prove the theorem by showing that

sup
(i−1)τ≤t≤iτ

|X(t)−Xn(t)| = O(n−γ) (a.s.) (5.16)

for every i ∈ {1, . . . , N}. For i = 1, the conditions of Theorem 5.5 are satisfied and thus,
estimate (5.16) is achieved on the interval [0, τ ]. Assume that estimate (5.16) holds for
i < N . Then let us show that the conditions of Theorem 5.5 for equations (3.1) and (4.1)
hold with initial data X(t0) = X(iτ) and Xn0 = Xn(iτ) and with b, σ and bn, σn given by
(3.2) and (4.12) respectively. Clearly, (5.11) is satisfied. Furthermore, assumption (E1)
is satisfied since, for every R > 0, there exist a constant cR such that

|b(t, x)− b(t, y)| ≤ cR|x− y| (a.s.)

and
|σ(t, x)− σ(t, y)|2 ≤ cR|x− y|2 (a.s.)

for every t ∈ [iτ, (i + 1)τ) and |x|, |y| < R, due to (A2). Moreover, for integers l ≥ 1,
define

Ωl := {sup
n≥1

sup
mτ≤t<(m+1)τ

|Yn(t)| ≤ l} and Ω
′

l := Ωl\Ωl−1

and observe that P(∪lΩ
′

l) = 1 due to (5.16). Thus assumption (E2) is satisfied since

sup
|x|≤R

|bn(t, x)| = sup
|x|≤R

|β(t, Yn(t), x)| ≤ kR I1ΩR +
∞∑

l=R+1

kl I1Ω
′
l
<∞ (a.s.)

and

sup
|x|≤R

|σn(t, x)| = sup
|x|≤R

|α(t, Yn(t), x)| ≤ kR I1ΩR +
∞∑

l=R+1

kl I1Ω
′
l
<∞ (a.s.),

where kl are constants from (A1). Finally, observe that

sup
|x|≤R

|b(t, x)− bn(t, x)|2 ≤ cR|Y (t)− Yn(t)|2

18



and

sup
|x|≤R

|σ(t, x)− σn(t, x)|2 ≤ cR|Y (t)− Yn(t)|2

for every t ∈ [iτ, (i + 1)τ), due to (A2). Consequently, (E3) holds for γ < 1/2. The
application of Theorem 5.5 shows that the inductive step is correct on [iτ, (i+ 1)τ ] which
yields the result

sup
t≤T
|X(t)−Xn(t)| = O(n−γ) (a.s.)

for every γ < 1/2. Moreover, if one replaces (2.4) with (A3), then (2.5) holds for every
γ < 1/4 due to the fact that Theorem 5.5 applies for the case where assumption (5.10) is
replaced by (E4). 2
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[8] I. Gyöngy, N.V. Krylov, On the rate of convergence of splitting-up approxima-
tions for SPDEs, Progress Prob., 56 (2003), pp. 301-321.
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