

Edinburgh Research Explorer

Meta-Level Inference and Program Verification

Citation for published version:
Sterling, L & Bundy, A 1982, 'Meta-Level Inference and Program Verification'. in 6th Conference on
Automated Deduction: New York, USA, June 7–9, 1982. vol. 138, Lecture Notes in Computer Science, vol.
138, Springer-Verlag GmbH, pp. 144-150., 10.1007/BFb0000056

Digital Object Identifier (DOI):
10.1007/BFb0000056

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

Published In:
6th Conference on Automated Deduction

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28971082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/BFb0000056
http://www.research.ed.ac.uk/portal/en/publications/metalevel-inference-and-program-verification(b76df6f1-2759-42a4-a472-bb93ae78efb4).html

META-LEVEL INFERENCE AND PROGRAM VERIFICATION

Leon Sterling and Alan Bundy

Department of Artificial Intelligence
University of Edinburgh

Abstract

In [Bundy and Sterling 81] we described how mete-level inference was useful

for controlling search and deriving control information in the domain of

algebra. Similar techniques are applicable to the verification of logic

programs. A developing mete-language is described, and an explicit proof plan

using this language is given. A program, IMPRESS, is outlined which executes

this plan.

Acknowledgments

This work was supported by SERC grant GR/B/29252.

Keywords

meta-level inference, logic programming, program verification

I. Introduction

It is well-known that logic programs have a dual interpretation - a procedural one

and a semantic one (see for example [Kowalski ?9]). Program statements can be

interpreted both as commands to be executed under some control regime and as

flrst-order predicate calculus clauses.

Consider the following 'code' for appending two lists.*

append([],Y,Y) <--
append([H~X],Y,[HIZ]) <-- append(X,Y,Z)

where [] denotes the nil llst, and [HIT] the constructor function oons(H,T).

The naive semantic interpretation of this 'code' is that two theorems about

'append' are true, namely append([],Y,Y) is true for all Y, and for all X,Y,Z if

append(X,Y,Z) is true then append([HIX],Y,[H~Z]) is true. More powerful things can

be said moreover. Clark [Clark 79] shows how applying a fixpolnt interpretation to

the above logic program for append leads to the theorem in flrst-order predicate

calculus

append(X,Y,Z) <) (X=[] & Y=Z) v
3 H,XI,ZI (X=[HIXI] & Z=[HIZi] & append(XI,Y,Z1)).

Using the fact that the two c~Ses above are essentially disjoint, he further breaks

this down into two theorems. The 'nil' case is

*Throughou t t h e pape r we w i l l u se t h e n o t a t i o n c o n v e n t i o n s o f DEC-IO P r o l o g
[Perelra et al 79], one implementation of some of the ideas of logic programming. In
particular, variables begin with upper-case letters and constants begin with
lower-ease letters.

144

append([],Y,Z) < > Y:Z .

We shall be making implicit use of this sort of inference throughout the paper.

To give a procedural interpretation one needs to distinguish between input and

output variables, i.e. decide what use will be made of the program. The most common

use of the append program is when X and Y are input variables, both lists, and one

wants to compute Z, the result of appending X and Y. This is a determinate program.

On the other hand, one could use Z as the input variable, a list, and compute

nondeterministically ways of partitioning it into two lists, X and Y.

Given a specific use of a program one can analyse its properties. In [Clark 79]

three properties of logic programs are given special attention - namely, correctness,

termination, and total correctness. We will concentrate mainly on the first

property, correctness, though the techniques to be described seem to have

applications to the other properties. If P(X,Y) is a program, where X is a vector of

input variables and Y is a vector of output variables then a correctness property of

P is a theorem of the form:

I(X) & P(X,Y) > O(X,Y)

where I(X) is an input condition and O(X,Y) is an output condition.

Program verification is basically proving program correctness properties. For

example, with the append example above and the use for computing the result of

appending two lists, one might like to verify that if you start off with two lists,

you end up with a list. As a theorem, expressed in Prolog form, this is

list(Z) 4-- list(X) & list(Y) & append(X,Y,Z).

We have built a program which can prove the above theorem among others. The

program, IMPRESS, was originally designed for proving properties of an equation

solving program written in Prolog [Bundy and Sterling 81]. Its scope has since

expanded to general theorems expressed in horn-clause form. This has particular

applications for verification of logic programs.

An important aspect of building IMPRESS is developing a suitable meta-language of

concepts about proofs and proof plans. These concepts will he described throughout

the paper.

In the next section we give an example verification. Then the meta-level concepts

are discussed in some detail. A brief comparison to other work in this area follows,

and the final section gives conclusions and points to future directions of the

research.

145

2. An Example Verification

As an example of a verification which illustrates the language we are evolving,

consider the relationship between the length of the lists involved in the append

predicate. That is, if you append two lists together, the length of the resultant

list should be the sum of the lengths of the two lists. In verification terms this

could be expressed as

append(X,Y,Z) > {length(X,N) & length(Y,M) ----> length(Z,N+M) }.

The form of the theorem as proved by IMPRESS, and as will be described in this paper,

is

length(Z,N+M) 4-- length(X,N) & length(Y,M) & append(X,Y,Z).

This is proved by induction on the variable list X. Using an induction schema of

append or an induction schema of length would give rise to a virtually identical

proof.

Before describing the proof, let us write down the program~axioms for length and

append.

length([],O).
length([HIT],N+1) 4-- length(T,N).

append([],X,X).
append([HIX],Y,[HlZ]) 4-- append(X,Y,Z).

The structure of the programs for length and append are essentially identical. Both

consist of two clauses, the base clause and the step clause. The step clause has a

simple structure, just a recursive call to itself. This recursive call we call the

recursant. In general this structure will not be so simple. In [Bundy and Sterling

81] we describe a proof of the correctness of isolation, a method for solving

equations. There the step clause has the form

isolate([NITail],Y,Z) 4-- isolax(N,Y,Y1) & isolate(Tail,Y1,Z).

In this case we distinguished between the isolate term, which we called the

recursant, and the isolax term which we called the performant. These distinctions

were important in guiding the correctness proof. In this paper we will restrict the

proofs to programs whose step clauses only have a recursant. (This can be regarded

as a clause with a nil performant).

An induction proof has two parts, the base case and the step case. The

appropriate instantiation for the base case when proving a theorem about lists is the

nil list, []. The instantiation for the step case is cons(Head,Tail), or in our

terms [HeadlTail]. Taking the base ease first, the theorem to be proved is

length(Z,N+M) 4-- length([],N) & length(Y,M) & append([],Y,Z).

Using the implicit information from the fixpoint semantics, N is instantiated to 0

because of the theorem length([],N) < > N=O and Z is unified with Y because of the

theorem append([],Y,Z) () Y=Z. This leaves the theorem to be proved as

146

length(Y,M) <-- length(Y,M),

which is trivially established.

The step case is more interesting. Here an induction hypothesis is asserted as a

theorem, and critically used in the proof. The form of the induction hypothesis can

be written down immediately. In this example the induction hypothesis is

length(Z,N+M) 4-- length(list,N) & length(Y,M) & append(list,Y,Z).

The theorem to be proved is then

length(Z1,N1+M)
4-- length([Hlllst],N1) & length(Y,M) & append([Hllist],Y,Zl).

Prior to skolemizing the theorem to be proved we use the theorems,

length([HIX],N+1) < > length(X,N) and append([HIX],Y,[HIZ]) < > append(X,Y,Z) to

replace NI by N+I and Zl by [HIZ]. After skolemization, the theorem to be proved

becomes

length([hlz],n+m+1)
4-- length([hllist],n+1) & length(y,m) & append([hIlist],y,[hZz]).

The proof is as follows:

I. The three propositions in the body of the theorem are asserted into the

database, namely

length([hilist],n+1) 4--
length(y,m) 4--
append([hllist],y,[hlz]) <"

2. Resolve append{[hllist],y,[hlz]) <-- against

append(X,Y,Z) 4-- append([HIX],Y,[HIZ]) to get

append(list,y,z) 4-

3. The proof now proceeds backwards by linear search with goal

4- length([hlz],n+m+1). Resolve the goal against

length([HIX],N+1) 4-- length(X,N) to give

<--- length(z,n+m)

4. Resolve this against the induction hypothesis to give

4-- length(list,n) & length(y,m) & append(list,y,z)

5. Use the assertion length(y,m) 4-- to remove the central proposition, leaving

4- length(list,n) & append(list,y,z)

6. Use the theorem length(X,N) 4- length([HIX],N+1) and the assertion

length([hllist],n+1) <-- to leave as the goal

4-- append(list,y,z)

7. Resolving this against append(list,y,z) <-- produces the empty clause and

147

hence a proof of the theorem.

3. Meta-level Concepts

The inductive proofs of many other correctness theorems appear to follow the same

basic plan as the proof above. Let us try to identify the meta-level concepts

involved. We restate the theorem for convenience.

length(Z,N+M) <-- length(X,N) & length(Y,M) & append(X,Y,Z). (i)

This fits the schema for a correctness property with program hypothesis,

append(X,Y,Z), input condition, length(X,N) & length(Y,M), and output condition,

length(Z,N+M).

We choose an induction scheme and induction variable by analogy with the recursion

scheme and recursion variable of the program hypothesis. The predicate append is

defined by primitive recursion on the structure of its argument, which is a list.

Thus to prove the theorem we use the induction scheme

~X Q(X) <-- {Q([]) & VX ~H Q([HIX]) <-- Q(X))}

where Q is the conjecture (i) and X is the first argument of append.

Using this induction scheme will generate two subgoals: Q([]), which we call the

base case; and Q([HIX]) <-- Q(X), which we call the step case.

Note that, in this example, had length(X,N) been chosen as the program hypothesis

we would have ended up with an identical induction scheme and base and step subgoals.

A specific proof plan can thus be spelt out.

- Locate the program hypothesis of the conjecture.

- Choose an appropriate induction scheme and induction variable by analogy with

the recursion scheme and recursion variable of the program hypothesis.

- Prove the base case after the appropriate instantiation.

- Prove the step case after the appropriate instantiation.

In [Bundy and Sterling 81] we outlined a proof plan for the step case, which we

repeat here. Note that, since the definition of the program hypothesis has an empty

performant, the application of this proof plan is necessarily simplified. Bracketed

comments refer to the proof of the last section.

(a)Assert the induction hypothesis and the step versions of the input condition

and the program hypothesis as temporary axioms. (step I)

(b)Unfold the step program hypothesis into its performant and recursant. (step 2)

(c)Proceed to prove the step version of the output condition.

148

(d)Fold the step output condition into its performant and recursant. (step 3)

(e)Establish the step output condition performant from the program hypothesis

performant. (not needed in this proof)

(f)Apply the induction hypothesis to the step output condition recursant. (step 4)

(g)Establish the induction hypothesis input conditions from the corresponding step

input conditions and the program hypothesis performant. (steps 5 and 6)

(h)Establish the induction hypothesis program hypothesis from the program

hypothesis recursant. (step 7)

In our example steps 5 and 7, where assertions were used to establish subgoals, were

single resolutions, whereas step 6 required two resolutions. In general, these steps

can be arbitrarily complex, but a large measure of search guidance is provided by

specifying those axioms which are and those which are not involved in the search.

Currently, IMPRESS does not get involved in this search, but uses the proof plan to

print out a lemma to be proved.

4. Related work

The Edinburgh LCF project [Gordon et al 79] built a computer system for doing

formal proofs interactively. The environment provided various primitive steps which

the user combined together to generate a proof. The emphasis was to provide a

flexible tool for investigation of proofs.

IMPRESS, on the other hand, has no such interactive facility. Development is

concentrated on generating proofs automatically, according to explicit proof plans.

The proofs exhibited using LCF are goals for IMPRESS to prove.

Other important proof strategies are contained in work on program transformations.

Darlington [Darlington 81] gives a meta-language vocabulary, which we are extending,

for discussing such transformations. His basic manoeuvres, for example fold/unfold,

have been incorporated into our proof plan. His program has no a priori

representation of proof plans to apply to conjectures, at the level of the IMPRESS

plan above.

We have also built on the work of Boyer and Moore [Boyer & Moore 79]. The

selection of a suitable induction scheme and variable, by analogy with the recursion

scheme and variable, is related to their technique of chosing an induction scheme and

variable after the breakdown of symbolic evaluation. (In fact we built a toy

Boyer/Moore program in Prolog and used the experience gained when building IMPRESS.)

Much of the knowledge of the Boyer/Moore program, however, is embedded implicitly

in code. For example, much implicit inference is done when type checking at an early

149

stage of a proof. Our emphasis is more in developing a language to describe proofs.

Using this language we are able to express heuristics about how to undertake a proof.

These heuristics are then converted into explicit proof plans, such as the one

described above.

5. Future Directions and Conclusions

As suggested above, our aim is to be able to prove a wide range of theorems using

meta-level inference to guide the search. There are many directions in which to

proceed. For example, to extend the logic program proofs to termination and total

correctness. Also, to translate the experiences of other program manipulation

systems into a form suitable for IMPRESS to use. This has already been started with

respect to Darlington and Boyer and Moore's systems.

In this paper, we have outlined the current state of our ideas. An example

program verification proof is described that our program, IMPRESS, is capable of. It

should be emphasised that this schema seems to cover a wide number of proofs. Logic

programming seems an excellent domain in which to continue this research.

REFERENCES

[Boyer & Moore 79]
Boyer, R.S. and Moore, J.S.
ACM monograph series. : ~ Computational Logi 9.
Academic Press, 1979.

[Bundy and Sterling 81]
Bundy, A. and Sterling L.S.
Meta-level Inference in Algebra.
Researeh Paper 164, Dept. of Artificial Intelligence, Edinburgh,

September, 1981.
Presented at the workshop on logic programming for intelligent

systems, Los Angeles, 1981.
[Clark 79]

Clark, K.L.
Predicate Lqgic as a Computational Formalism.
Report 79/59, Department of Computing, Imperial College, London,

December, 1979.
[Darlington 81]

Darlington J.
An Experimental Program Transformation and Synthesis System.
Artificial Intelligence 16(3):I-46, August, 1981.

[Gordon et al 79]
Gordon M.J., Milner A.J., and Wadsworth C.P.
Lecture Notes in Computer Science. Volume 78: Edinburgh LCF - A

mechanised logic of computation.
Springer Verleg, 1979.

[Kowalski 79]
Robert Kowalski.
Logic for Problem Solving.
North H011and, 1979.

[Pereira et al 79]
Pereira, L.M., Pereira, F.C.N. and Warren, D.H.D.
User's %uide to DECsystem-10 PROLOG .
Occasional Paper 15, Dept. of Artificial Intelligence, Edinburgh, 1979"

150

