
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An Architecture of GALILEO: A System for Automated Ontology
Evolution in Physics

Citation for published version:
Bundy, A & Lehmann, J 2009, 'An Architecture of GALILEO: A System for Automated Ontology Evolution in
Physics' Paper presented at IJCAI-09 Workshop on Automated Reasoning about Context and Ontology
Evolution, Pasadena, California, United States, 11/07/09, .

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Preprint (usually an early version)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28971079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/an-architecture-of-galileo-a-system-for-automated-ontology-evolution-in-physics(526a70d0-d15a-4e45-b0f8-05aea9f5b6ce).html


An Architecture of GALILEO: A System for Automated Ontology Evolution in
Physics

Michael Chan and Alan Bundy
School of Informatics

Unviersity of Edinburgh
{M.Chan, A.Bundy}@ed.ac.uk

Abstract
The GALILEO system implements novel mecha-
nisms for automated ontology evolution in physics.
These mechanisms, called ontology repair plans,
resolve logical conflicts between several modular
ontologies. To demonstrate that ontology evolution
can be automated using ontology repair plans, we
propose a flexible architecture for the implementa-
tion. Support for inference of formulae that trigger
repair plans and modularisation of ontologies are
central to the design. Huet’s Zipper data structure
is to be used to avoid encoding the object-level for-
malism with a deep embedding. For a high degree
of modularity, the management of a collection of
ontologies is handled by development graphs.

1 Introduction
Visions of applications involving multi-agent systems, e.g.,
the Semantic Web, have intensified the need for mechanisms
for automated ontology evolution. We address the issue
by developing ontology repair plans and applying them to
records of ontology evolution in the history of physics. The
implemented programs form the core of the GALILEO sys-
tem (Guided Analysis of Logical Inconsistencies Leads to
Evolved Ontologies). Ontology repair plans enable agents
to autonomously update their own ontologies by applying di-
agnosis and repair operations [Bundy and Chan, 2008]. As
a step towards the demonstration that automated ontology
evolution via ontology repair plans is computationally fea-
sible, the repair plans and the example ontologies are imple-
mented in Teyjus, an implementation of λProlog [Miller and
Nadathur, 1988]. Higher-order abstract syntax is used to en-
able the meta-logic to recurse over the syntactical structure
of the object-logic. Unfortunately, this results in the inability
of performing inference to reason about whether some on-
tology has a theorem that infers the triggering formulae of a
repair plan. One consequence is that theorems are forced to
be coded as axioms. This implementation is clearly unnatu-
ral, but has been kept simple because it is a mere proof-of-
concept. A more flexible architecture is essential in order to
go beyond.

The goals underlying the design of the architecture of the
new implementation are two-fold:

• Higher-order reasoning engines must be incorporated to
infer formulae that trigger ontology repair plans.

• The representation of knowledge as ontologies should
be modular.

In the current pure λProlog implementation, the inference is
left to the programmer and the encoding of the ontologies
for repair is tailored to the specific triggering formulae of the
repair plans. This issue can be addressed by adopting a rea-
soner, such as a theorem prover. Only higher-order reasoners
are useful to us because many physics properties are more re-
alistically represented as higher-order objects. For instance, a
star’s orbit is more realistically represented as a function ob-
ject that returns the 3-D spatial position of the star for a given
time moment. If it were represented as a non-functional ob-
ject, then much of the description and expressivity would be
lost and the representation would be much closer to that of
static, physical entities, e.g., a dog or a house.

The idea of making the knowledge-base modular has re-
ceived much attention from the knowledge representation
community. For instance, it is a basis of Sowa’s notion of
“knowledge soup” [Sowa, 2006]; it suggests that because the
knowledge in a person’s head is of a disorganised and dy-
namically changing nature, it consists of many self-consistent
chunks of knowledge. Similarly in Cyc [Lenat, 1995], differ-
ent contexts are represented as separate microtheories; each
is represented by a set of assertions that corresponds to the
relevant facts and assumptions valid in the particular context.
Our current representation is modular as the predictive and
observational ontologies are already separate representations
[Bundy, 2008]. Each of these is internally consistent, but pos-
sibly inconsistent with one another [Bundy and Chan, 2008].
We will extend this principle by modularising other contents
as well, e.g., foundational theories of physics and mathemat-
ics.

2 Reasoning for Ontology Evolution
Physics ontologies are represented at the object-level, quan-
tifying over physics functions, objects, and measurements.
Object-level reasoning is therefore needed to, e.g., derive the
Law of Universal Gravitational Force from an ontology con-
taining the axioms of the Newtonian theory. Repair plans are
designed to guide the ontology repair procedure, so they need
to be represented at the meta-level quantifying over objects at



the object-level. Meta-level reasoning is therefore clearly dis-
tinct from that of object-level; for instance, it reasons about
whether an ontology can trigger a repair plan by matching
some of its theorems to the trigger formulae. Moreover, on-
tology manipulation is also guided by the meta-level, e.g., the
change of signatures and the addition of axioms.

Some higher-order theorem provers, such as Isabelle [Nip-
kow et al., 2002], offer a clear separation of the logic into
meta- and object-levels. We shall discuss the possibility of
using a theorem prover as the sole basis for the implementa-
tion.

2.1 Effects of Shallow and Deep Embeddings
There are generally two techniques of encodings: shallow and
deep embeddings. In a shallow embedding, only the seman-
tics of the logic needs to be defined. As the syntactic struc-
tures are not represented, theorems about the syntax cannot
be proven. If the two logics are both shallowly-embedded, it
is then difficult for the meta-logic to reason about the syntac-
tical structure of the object-level formalism, e.g., matching
a theorem to some trigger formulae. Syntax then cannot be
deconstructed by pattern matching because higher-order uni-
fication attempts to instantiate some variable to the constant
in question. We do not want a variable to be instantiated when
almost any constant is pattern matched against it.

In a deep embedding, both the (abstract) syntax and the
semantics of the object-logic must be defined. The syn-
tax is typically defined by an inductive definition. In ef-
fect, statements of an object-logic are represented as ob-
jects of a data type of the meta-logic. For instance,
f(x) becomes (applic f x), where applic is of type
(A -> B) -> A -> B and both f and x are constants. If
inference is to be enabled, the unification algorithm may even
need to be reimplemented. Note that the current λProlog im-
plementation uses deep embedding to represent the two logics
as one.

Neither a pure shallow nor deep embedding appears to
enable both inference and the matching and instantiation of
trigger formulae. Our solution involves a kind-of hybrid ap-
proach.

2.2 Huet’s Zipper Data Structure
Due to the rigorous formalisation required, the effort for pro-
ducing a deep embedding that allows inference to be done can
be substantial. Our solution aims at the accommodation of
both the shallowly-embedded formulae and their parse trees.
It is based on using Huet’s zipper data structure [Huet, 1997],
a data structure that can deconstruct any list- and tree-like
data structure and requires a constant time to move in any
location.

The creation of a zipper from the parse tree of a formula
resembles the translation from shallow to deep embedding.
Of course, it is not true deep embedding since the zipper does
not carry information about the semantics, but the represen-
tation of the parse tree in a zipper is sufficient for our needs.
Navigating around a zipper naturally corresponds to moving
around terms, so operations for term manipulation can then
become intuitive. So, we will have the best of both shallow
and deep embeddings by passing around both the formula and

the zippers. The formula can be used for inference, while the
zipper containing the parse tree can be used for pattern match-
ing.

3 Modularising Knowledge
Currently, the theoretical and sensory ontologies are treated
as separate interacting logic theories, e.g., the Inconstancy
ontology repair plan resolves conflicts between a theoretical
and multiple sensory ontologies [Chan and Bundy, 2008]. A
major theoretic advantage of having multiple, internally con-
sistent ontologies is the better management of logical incon-
sistency. Since inconsistent theories can prove all formulae,
all instantiations of the triggers of all repair plans would also
be provable. Keeping the theories consistent only internally
avoids the combinatorial explosion of instantiations, yet a
conflict can still be detected at the global level. A high de-
gree of modularity also makes the integration of new ontolo-
gies more natural and convenient. Instead of adding axioms
and changing type declarations to existing ontologies, which
can invalidate previous proofs, a new ontology can be wholly
introduced to the collection. This is in fact close to a central
principle of object-oriented programming; that is, the work-
ings of an object are decoupled from the rest of the system
and the addition of a class does not affect other parts of the
program.

To further modularise the existing knowledge represen-
tation, the physics and mathematical theories can be par-
titioned into small ontologies. Each ontology resembles a
small context, e.g., there could be separate ontologies for
a formal theory and for a naive theory of geometry, which
only covers 2-D spaces. Certainty factors can be assigned
to an ontology, determining the vulnerability of the theory
or experiment to repair. For instance, the ontology for a
controversial theory should be valued at a lower confidence
than an established one. The factors could be expressed us-
ing a discrete representation, e.g., definitely true and
true by default, as experimented in Cyc.

3.1 Partition Management with Development
Graph

The collection of ontologies can be translated to form a struc-
tured logical representation called a development graph [Au-
texier et al., 1999], in which a node corresponds to an ontol-
ogy. A node, thus an ontology, can be defined to import sig-
natures and theorems from other nodes. Such morphisms be-
tween theories are formalised using definition links. To help
separate the axiomatisation of the theory itself from the im-
ported, the axiomatisation is split into local and global parts.

For the implementation of ontology repair, repaired ontolo-
gies are inserted into the development graph as new nodes, re-
placing those that correspond to the original ontologies. The
new nodes should have the same morphisms as the old, so
the morphisms of the replaced nodes are preserved. Clearly,
some of the old morphisms may no longer be desirable de-
pending on the type of repair performed and the notion of
minimal change adopted. The new nodes could partly import
the axiomatisation of the replaced, giving them implicit def-
initions. In this case, the replaced nodes still exist, but are
disconnected from the rest of the system.



Development graph is already implemented in HETS
[Mossakowski et al., 2007] and MAYA [Autexier et al., 2002],
which are systems for managing evolutionary development
and for analysis and proof management, respectively. In both
systems, development graph can be created by translating
an input HASCASL specification, a higher-order extension of
CASL.

3.2 Example Specification
[debugging]

4 Putting the Pieces Together
To leverage an existing implementation of development
graph, we are currently experimenting with HETS because
the implementation is better maintained. Unfortunately, HETS
has no support for evolutionary change management. We will
likely migrate to a system to be called DocTip, the successor
of HETS and MAYA, once it becomes available. Both DocTip
and HETS can be connected to a range of theorem provers, in-
cluding Isabelle. So, the trigger formulae of a repair plan can
be inferred from the conflicting ontologies if the ontologies
are encoded by using a shallow embedding.

The repair plan programs are responsible for directing
the modification of the development graph, e.g., adding and
deleting nodes and morphisms. These therefore need to com-
municate to the development graph editor via an API. A
polymorphic, higher-order logic programming language, e.g.,
λProlog, is needed to encode trigger formulae and transfor-
mation rules.

It is, however, not yet clear how to correctly instantiate the
trigger formulae by recursing over the syntactical structure
of the object-level formulae. Future work will involve the
investigation of the use of zippers in HETS or DocTip.

5 Conclusion
The current λProlog implementation deeply-embeds the
meta- and object-logics into one, and this approach limits the
ability to perform inference on the trigger formulae. As an
alternative, we have described the possibility of using Huet’s
Zipper data structure to encode the parse tree of a formula.
Our new architecture accommodates the use of various rea-
soning engines, e.g., Isabelle, to prove theorems of ontolo-
gies. Since partitioning the knowledge-base into small on-
tologies help control logical inconsistency and provides eas-
ier maintenance, we go beyond just separating the predictive
and sensory ontologies. Development graph is used for the
management of the highly modularised ontologies.

References
[Autexier et al., 1999] S. Autexier, D. Hutter, H. Mantel, and

A. Schairer. Towards an Evolutionary Formal Software-
Development Using CASL. Lecture Notes In Computer
Science; Vol. 1827, pages 73–88, 1999.

[Autexier et al., 2002] S. Autexier, D. Hutter,
T. Mossakowski, and A. Schairer. The development
graph manager MAYA. In Proceedings of the 9th In-
ternational Conference on Algebraic Methodology and

Software Technology, pages 495–501. Springer-Verlag
London, UK, 2002.

[Bundy and Chan, 2008] A. Bundy and M. Chan. Towards
ontology evolution in physics. In W. Hodges, editor, Procs.
Wollic 2008. LNCS, Springer-Verlag, July 2008.

[Bundy, 2008] Alan Bundy. Automating Signature Evolution
in Logical Theories, volume 5144/2008, pages 333–338.
Springer Berlin / Heidelberg, Jul 2008.

[Chan and Bundy, 2008] M. Chan and A. Bundy. Incon-
stancy: An ontology repair plan for adding hidden vari-
ables. In S. Bringsjord and A. Shilliday, editors, Sympo-
sium on Automated Scientific Discovery, number FS-08-03
in Technical Report, pages 10–17. AAAI Press, November
2008. ISBN 978-1-57735-395-9.

[Huet, 1997] G. Huet. The zipper. Journal of Functional
Programming, 7(5):549–554, 1997.

[Lenat, 1995] D.B. Lenat. CYC: a large-scale investment in
knowledge infrastructure. Commun. ACM, 38(11):33–38,
November 1995.

[Miller and Nadathur, 1988] D. Miller and G. Nadathur. An
overview of λProlog. In R. Bowen, editor, Proceed-
ings of the Fifth International Logic Programming Confer-
ence/ Fifth Symposium on Logic Programming. MIT Press,
1988.

[Mossakowski et al., 2007] Till Mossakowski, Christian
Maeder, and Klaus Lüttich. The Heterogeneous Tool Set.
In Orna Grumberg and Michael Huth, editors, TACAS
2007, volume 4424 of Lecture Notes in Computer Science,
pages 519–522. Springer-Verlag Heidelberg, 2007.

[Nipkow et al., 2002] Tobias Nipkow, Lawrence C. Paulson,
and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[Sowa, 2006] J.F. Sowa. The challenge of knowledge soup.
In J. Ramadas and S. Chunawala, editors, Research
Trends in Science, Technology and Mathematics Educa-
tion, Mumbai, 2006. Homi Bhabha Centre.


