

Edinburgh Research Explorer

An ML Editor based on Proofs-as-Programs

Citation for published version:
Whittle, J, Bundy, A, Boulton, R & Lowe, H 1999, An ML Editor based on Proofs-as-Programs. in Automated
Software Engineering, 1999. 14th IEEE International Conference on.. pp. 166	- 173, Automated Software
Engineering, 1999. 14th IEEE International Conference on., Cocoa Beach, FL, United States, 12-15
October. DOI: 10.1109/ASE.1999.802196

Digital Object Identifier (DOI):
10.1109/ASE.1999.802196

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Automated Software Engineering, 1999. 14th IEEE International Conference on.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28971061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ASE.1999.802196
http://www.research.ed.ac.uk/portal/en/publications/an-ml-editor-based-on-proofsasprograms(516ab6b4-fac9-4aa6-aa0a-c4bc2ab34614).html

An ML Editor Based on Proofs-as-ProgramsJon Whittle1, Alan Bundy1, Richard Boulton1, and Helen Lowe21 Division of Informatics, University of Edinburgh, 80 South Bridge,Edinburgh EH1 1HN, Scotland.2 Dept of Computer Studies, Glasgow Caledonian University, City Campus,Cowcaddens Road, Glasgow G4 0BA, Scotland.jonathw@dai.ed.ac.ukAbstract. CYNTHIA is a novel editor for the functional program-ming language ML in which each function de�nition is represented asthe proof of a simple speci�cation. Users of CYNTHIA edit programsby applying sequences of high-level editing commands to existing pro-grams. These commands make changes to the proof representation fromwhich a new program is then extracted. The use of proofs is a soundframework for analysing ML programs and giving useful feedback abouterrors. Amongst the properties analysed within CYNTHIA at presentis termination. CYNTHIA has been successfully used in the teaching ofML in two courses at Napier University.1 IntroductionCurrent programming environments for novice functional programming (FP) areinadequate. This paper describes ways of using mechanised theorem proving toimprove the situation, in the context of the language ML [9]. ML is a strongly-typed FP language with type inference [4]. ML incorporates extensive use ofpattern matching. Datatypes are de�ned by a number of constructors which canbe used to write patterns which de�ne a function. The most common way to writeML programs is via a text editor and compiler (such as the Standard ML of NewJersey compiler). Such an approach is de�cient in a number of ways. Programerrors, in particular type errors, are generally di�cult to track down. For novices,the lack of debugging support forms a barrier to learning FP concepts [14].CYNTHIA is an editor for a subset of ML that provides improved supportfor novices. Programs are created incrementally using a collection of correctness-preserving editing commands. Users start with an existing program which is ad-apted by the using the commands. This means fewer errors are made. CYNTHIA'simproved error-feedback facilities enable errors to be corrected more quickly.Speci�cally, CYNTHIA provides the following correctness guarantees:1. syntactic correctness;2. static semantic correctness, including type correctness as well as checkingfor undeclared variables or functions, or duplicate variables in patterns etc.;3. well-de�nedness | all patterns are mutually exhaustive and have no redund-ant matches;4. termination.

Note that, in contrast to the usual approach, correctness-checking is done in-crementally. Errors (1), (3) and (4) can never be introduced into CYNTHIAprograms. (2) may be introduced as in general it is impossible to transformone program into another without passing through states containing such er-rors. However, all such errors are highlighted to the user by colouring programexpressions in the program text. The incremental nature of CYNTHIA meansthat as soon as an error is introduced, it is indicated to the user, although theuser need not change it immediately.In CYNTHIA, each ML function de�nition is represented as a proof of aspeci�cation of that function, using the idea of proofs-as-programs [6]. As editingcommands are applied, the proof is developed hand-in-hand with the program,as given in Fig. 1. The user starts with an existing program and a correspondinginitial proof (from an initial library). The edits are actually applied to the proof,giving a new partial proof which may contain gaps or inconsistencies. CYNTHIAattempts to �ll these gaps and resolve inconsistencies. Any which cannot beresolved are fed back to the user as program errors.
Proof

Initial

New Partial

Proof

ProofNew

Program

Initial

New Program

EDIT

EXTRACT

EXTRACT

RESOLVE

Fig. 1. Editing Programs in CYNTHIA.CYNTHIA's proofs are written in Oyster [3], a proof-checker implementinga variant of Martin-L�of Type Theory [7]. Oyster speci�cations (or conjectures)may be written to any level of detail, but to make the proof process tractable inreal-time, CYNTHIA speci�cations are restricted severely. Speci�cations stateprecisely the type of the function and various lemmas needed for terminationanalysis (see x3.1). Proofs of such speci�cations provide guarantees (1)-(4) above.Given this restriction, all theorem proving can be done automatically.The type systems of Oyster and ML are not quite the same. In particular,in ML type-checking is decidable which is not true of Oyster. However, it ispossible to restrict to a subset of Oyster 's types which resembles that of ML veryclosely. We only consider a functional subset of the Core ML language [14]. Inaddition, we exclude mutual recursion and type inference. Mutual recursion couldbe added by extending the termination checker. We made a conscious decision

to insist that the user provide type declarations. This is because the system isprimarily intended for novices and investigations have shown that students �ndtype inference confusing [14]. Given that edits are done incrementally anyway,providing a type declaration is not too burdensome. A possible future project isto extend CYNTHIA for expert users. This version would include type inference.2 An Example of CYNTHIA in ActionFig. 2 shows an example of an interaction with CYNTHIA. The datatypesexp and statement and the function unparse exp are already de�ned. Theyrepresent the abstract syntax of a simple imperative programming language.unparse exp is an unparser for expressions. Suppose the user wishes to modifythis function into a function, unparse st, to unparse statements. unparse stcan be generated by applying a sequence of CYNTHIA's edits to unparse exp.The �rst thing to do is to apply rename to any occurrence of unparse exp.The user speci�es a new name, unparse st, and CYNTHIA carries out a globalrename. More interesting is the command change type. In general, when chan-ging type from T1 to T2, CYNTHIA �nds a mapping between the constructorsof T1 and those of T2. In this example, CYNTHIA �nds the mapping:Var 7! fEmptyg, Const 7! fAssigng, Op 7! fCond, While, BlockgMany possible mappings could have been found, but CYNTHIA restricts tomappings which map (non-)recursive constructors to (non-)recursive construct-ors. In addition, each constructor of type T2 must have a pre-image. This guar-antees that the new patterns produced by change type are well-de�ned. Notehow CYNTHIA produces a well-de�ned set of patterns for statement.CYNTHIA �nds a similar mapping for the arguments of each constructor.In some cases, fresh variables may have to be introduced (e.g. the clause forAssign), or variables may be dropped (e.g. the clause for While).After the application of change type, the de�nition of unparse st containserrors. CYNTHIA highlights these to the user in di�erent colours. In this paper,boxes denote type errors and circles denote other semantic errors. The user maynow use these annotations as a guide to �nish the de�nition. Consider the Whileclause, immediately after change type is applied.unparse st (While(s,e1))=unparse st e1 ^ `` `` ^ s ^ `` ``^ unparse st e2nCYNTHIA tells the user that there are two errors here. By using CYNTHIA'stype inspection facility, the user may highlight s and discover that the reason forthe type error is that s has type exp. To rectify this, the user applies changeterm to replace the boxed occurrence of s with unparse exp s. e2 is circledbecause it is not declared. In response, the user invokes change term to replaceit by e1. The expression now contains no errors but to give the correct result,the user replaces unparse st e1 by \while \ and introduces \do \.The user may add further ML constructs by using the command add con-struct. The �nal stage of writing unparse st involves using this commandtwice | once to add a local variable declaration and once to add a conditional

statement. The user speci�es the parameters to let val and if and then useschange term to make any further modi�cations.
datatype exp = Var of string | Const of string | Op of exp * string * exp;
datatype statement = Empty | Assign of string * exp | Cond of exp * statement * statement |
 While of exp * statement | Block of statement * statement;

statement -> string

| unparse_st (Assign(t,e)) = t

| unparse_st (Block(e1,e2)) = unparse_st e1 ^ " " ^ s ^ " " ^ unparse_st e2;

exp -> string
fun unparse_exp (Var t) = t

statement -> string

| unparse_st (Assign(t,e)) = t
fun unparse_st Empty = ""

statement -> string

| unparse_st (Assign(t,e)) = t ^ " := " ^ unparse_exp e
| unparse_st (Cond(s,e1,e2)) = let val (ss:string) = "if " ^ unparse_exp s ^ "then " ^ unparse_st e1

end

| unparse_st (While(s,e1)) = "while " ^ unparse_exp s ^ "do " ^ unparse_st e1

RENAME,
CHANGE TYPE

ADD CONSTRUCT (LET VAL),
ADD CONSTRUCT (IF),
CHANGE TERM

| unparse_exp (Const t) = t
| unparse_exp (Op(e1,s,e2)) = unparse_exp e1 ^ " " ^ s ^ " " ^ unparse_exp e2;

fun unparse_st Empty = t

| unparse_st (Cond(s,e1,e2)) = unparse_st e1 ^ " " ^ s ^ " " ^ unparse_st e2

| unparse_st (Cond(s,e1,e2)) = unparse_st e1 ^ " " ^ s ^ " " ^ unparse_st e2

| unparse_st (While(s,e1)) = "while " ^ unparse_exp s ^ "do " ^ unparse_st e1
| unparse_st (Block(e1,e2)) = "begin " ^ unparse_st e1 ^ "; " unparse_st e2 ^ " end";

fun unparse_st Empty = ""

| unparse_st (Block(e1,e2)) = "begin " ^ unparse_st e1 ^ "; " unparse_st e2 ^ " end";

CHANGE TERM (multiple times)

in if e2 = Empty then ss
 else ss ^ "else " ^ unparse_st e2

| unparse_st (While(s,e1)) = unparse_st e1 ^ " " ^ s ^ " " ^ unparse_st e2

Fig. 2. An Unparser for Statements.CYNTHIA has other commands too. make pattern replaces a variable bya number of patterns | one for each constructor of the datatype. In this way, ar-bitrarily complex patterns can be built-up and are guaranteed to be well-de�ned.add recursive call allows the user to construct functions with new recursionschemes. CYNTHIA keeps (and displays) a list of currently valid recursive calls| i.e. recursive calls which may be used in the program without compromisingtermination. The user may add to this by applying add recursive call andspecifying a new recursive call. CYNTHIA then checks that this new call main-tains the termination property and if so, makes it available during editing. Forfurther details about CYNTHIA's editing commands, see [13].

3 Representing ML De�nitions as ProofsThis section presents the underlying proof engine in CYNTHIA. Note that allthe theorem proving is completely hidden from the user so that the user ofCYNTHIA requires no specialised knowledge of logic or proof. We will use anongoing example to illustrate the ideas | the representation of qsort, illustratedin Fig. 3.1
int list -> int list
fun qsort nil = nil

| qsort (h::t) = (qsort (partition (op <) h t)) @ [h]

@ (qsort (partition (op >=) h t));

 else partition f k t;
| partition f k (h::t) = if f(h,k) then h::partition f k t
fun partition f k nil = nil
(int * int -> bool) -> int -> int list -> int list

Fig. 3. A Version of Quicksort.3.1 Termination AnalysisOne of the main correctness guarantees provided by CYNTHIA is termination.Termination is in general undecidable. Hence, the usual approach is to providethe user with a pre-de�ned set of well-founded induction schemes. To use ascheme not speci�ed in this set, the user must specify an ordering and provethat this ordering is well-founded. Since CYNTHIA is meant for programmers,not logicians, the user must not be expected to carry out such theorem proving.The di�culty in designing CYNTHIA then is to �nd a decidable subset of ter-minating programs that is large enough to include most de�nitions a (novice)ML programmer may want to create. The set of Walther Recursive functions [8]is such a set. CYNTHIA restricts the user to this set which includes primitiverecursive functions over an inductively-de�ned datatype, multiple recursive func-tions, nested recursive functions and functions that reference previously de�nedfunctions in a recursive call, such as qsort. Walther Recursion assumes a �xedsize ordering, with a semantics de�ned by the rules in Fig. 6. Intuitively, thisordering is de�ned as follows: w(c(u1; : : : ; un)) = 1 +Pi2Rc w(ui) where c is aconstructor and Rc is the set of recursive arguments of c2. In the case of lists,this measure is just length.There are two parts to Walther Recursion | reducer / conserver (RC) ana-lysis and measure argument (MA) analysis. Every time a new de�nition is made,reducer / conserver lemmas are calculated for the de�nition. These place a bound1 :: is the ML cons operator for lists. @ is append.2 If c(u1; : : : ; un) has type T then the recursive arguments of c are the i such that uialso has type T . A constructor is a step constructor if at least one of its argumentsis recursive, and is a base constructor otherwise.

on the de�nition based on the �xed size ordering. To guarantee termination, itis necessary to consider each recursive call of a de�nition and show that therecursive arguments decrease with respect to this ordering. Since recursive argu-ments may in general involve references to other functions, a measure decrease isguaranteed by utilising previously derived RC lemmas. The distinction betweenreducer and conserver lemmas is given as follows. First, de�ne the semantics ofthe inequality operator.De�nition 1. u �w t if the following conditions hold:� If u is well typed then t is well typed.� If u is well typed then the top level constructor of u is either a baseconstructor or the same as the top level constructor of t.� If u is well typed then the measure of u, w(u), is no larger than themeasure of t, w(t).De�ne strict inequality in a similar way.Reducer / Conserver AnalysisDe�nition 2. A function f is a reducer on its ith argument iff x1 : : : xn <w xi (1)and a conserver on its ith argument iff x1 : : : xn �w xi (2)To simplify the analysis, <w can be eliminated by rewriting (1) as:f x1 : : : cj(: : : ; rj;k; : : :) : : : xn �w rj;k (3)where cj is a constructor and rj;k is a recursive argument of cj . This means thatonly one form of inequality is ever present.RC analysis is done each time a de�nition is made.Consider partition. It satis�es the conserver lemma:partition f k z �w z (4)This is proved by the rules in Fig. 6 and induction.Measure Argument AnalysisDe�nition 3. Given a function f , de�ned over arguments x1; : : : ; xn, the setof measure arguments is the set of i such that for every recursive call f u1 : : : unof f , ui �w xi.

1. Find measure arguments, M , for f by considering each xi in turn and applyingthe rules in Fig. 6;2. if M = fg, termination analysis fails.else for each recursive call, f u1 : : : un, try to �nd an m 2M such thatum <w xm | i.e. if xm is a constructor term c(: : : ; rj ; : : :), we needum �w rj for some j.if this can be done for all recursive calls, then f terminates.else termination analysis failsFig. 4. Procedure for Checking Termination.Measure argument (MA) analysis involves showing that the measure decreasesover each recursive call. To check for termination, the procedure in Fig. 4 isadopted.In attempting to derive um <w xm, it may be necessary to use previouslyde�ned RC lemmas. Consider qsort. In this exampleM = f1g, since partition(op <) h t �w t and partition (op >=) h t �w t. Since t �w h::t, ter-mination is proved.It is worth pointing out that for the measure argument analysis to guaranteetermination, the function must be de�ned by a well-de�ned pattern.In [8], Walther Recursion was described for a small functional language with asyntax and semantics di�erent to that of ML. We made extensions to encompassthe subset of ML supported by CYNTHIA. The major changes were:� In the language in [8] de�nitions are made using destructors. It is morenatural to use constructors in ML. Therefore, the rules were recast inconstructor-fashion.� McAllester suggests a forward application of the rules. CYNTHIA isbased on a backwards style so our system sets up subgoals for eachpossible lemma and then applies the rules in a backwards fashion.� A function de�ned by an exhaustive pattern cannot be a reducer be-cause the measure of the base case argument cannot be reduced. Mc-Allester forces the user to make an additional de�nition, restricted tonon-base-cases. It is naive to expect programmers to go through thisprocess of making additional de�nitions. A better solution is to placeside-conditions on reducer lemmas that rule out base cases. This allowsthe user to write de�nitions as normal.� [8] does not include ML case expressions or local function declarations.It does allow local variable declarations but only of the form dec = expwhere dec is a variable. In CYNTHIA dec may be a pattern.3.2 Speci�cationsEach ML function is represented by a proof with speci�cation (i.e. top-level goal)that is precisely the type of the function along with lemmas required for termin-ation analysis. In general, such speci�cations may specify arbitrarily complex be-haviour about the function. However, CYNTHIA speci�cations are deliberately

rather weak so that the theorem proving task can be automated. CYNTHIAspeci�cations are de�ned as follows.De�nition 4. A CYNTHIA speci�cation of an ML function is of the form:P : (8z1 : T1: : : :8zn : Tn: (f z1 : : : zn) : T0 ^(f z1 : : : zn) �w zi1 ^ : : : ^ (f z1 : : : zn) �w zir ^(f z1 : : : cj1(: : : ; rj1;k ; : : :) : : : zn) �w rj1;k ^ : : :: : : ^ (f z1; : : : ; cjs(: : : ; rjs;k ; : : :) : : : zn) �w rjs;k) (5)where:f represents the name of the function3;T1 ! : : :! Tn ! T0 is the type of the function;P is a variable representing the de�nition of the ML function. P gets instantiatedas the inference rules are applied. A complete proof instantiates P to a completeprogram. This is a standard approach to extracting programs from proofs;cj1 ; : : : ; cjs are constructors;i1; : : : ; ir 2 f1; : : : ; ng.The �rst part of the speci�cation merely states the existence of a function oftype T1 ! : : : ! Tn ! T0. Clearly, there are an in�nite number of proofs ofsuch a speci�cation. The particular function represented in the proof is given bythe user, however, since each editing command application corresponds to theapplication of a corresponding inference rule. In addition, many possible proofsare outlawed because the proof rules (and corresponding editing commands) havebeen designed in such a way as to restrict to certain kinds of proofs, namely thosethat correspond to ML de�nitions. The second part of the speci�cation statesRC lemmas that hold for the function.In the example, the speci�cation for partition is:P : (8z1 : (int � int ! bool): 8z2 : int: 8z3 : int list:(f z1 z2 z3) : int list ^ (f z1 z2 z3) �w z3)CYNTHIA speci�cations are in fact dynamic | in the sense that as editsare applied, the speci�cation may be changed to reect the modi�cations.3.3 Inference RulesEach ML function de�nition is represented by a proof of the relevant speci�ca-tion. There are three kinds of inference rules used in these proofs. Fig. 5 givesrules that mirror the structure of the ML de�nition. Each program constructhas a corresponding inference rule. When the user introduces a construct usingthe editing commands, the appropriate inference rule is applied to the currentgoal in the proof. Fig. 5 omits the rules for the ML constructs fn and case |3 In this paper, f is given in curried fashion. Either curried or uncurried is allowed.

see [14]. As each rule is applied, the variable which represents the program (Pin (5)) is gradually instantiated. Rules are written in sequent calculus fashion.witness is similar to the usual 9R rule. let fun introduces a local functioninto the program. In proof terms, this corresponds to a lemma stating the exist-ence of a function f of type T1 ! : : :! Tn ! T0 satisfying certain RC lemmas.ind is a super-rule setting up an induction corresponding to the recursion in theprogram and also setting up an induction to show the termination of this recur-sion scheme. ab1 ; : : : ; abn are base cases. u1; : : : ; un are therefore non-recursivearguments. For the sake of clear presentation, each constructor cbi is restrictedto have only one argument. as1 ; : : : ; asn are step cases. Each vij is a recursiveargument. Again, we restrict to just two arguments.There are two things going on with the ind rule. Firstly, subgoals are set upto carry out measure argument analysis | i.e. check that the recursive calls Rsijare measure decreasing. This is true as long as each Rsij is measure preservingon a strict subexpression of the pattern over which recursion is de�ned. Secondly,ind carries out an induction to show that the RC lemmas in the speci�cationhold. The induction scheme is based on the patterns over which the ML functionis de�ned. For each pattern csi(vi1; vi2), the induction hypotheses state that theproperty A holds for vi1 and vi2.Once a proof is completed, the ML program represented by it can be extractedeasily. For rules witness, if, let val and let fun, the extract is precisely theinstantiation of P . For ind, we need a simple translation from the ind functionto an ML function de�nition using patterns.The second kind of rules are rules for type-checking and checking that aterm inhabits �. The third kind are rules for Walther Recursion analysis. Theseare given in Fig. 6. wsubst is needed to make substitutions of local variables.The equality on the LHS, below the line, is introduced by the let val rule.CYNTHIA actually includes a more general version of wsubst where equalitiesof the form (x1; x2) = (u1; u2) are decomposed into x1 = u1 and x2 = u2.An example of rule application may be illustrative. Consider the partitionexample again. After the usual 8R rule has been applied to the speci�cation anumber of times, the goal looks like:z1 : (int � int ! bool); z2 : int; z3 : int list `P1 : ((f z1 z2 z3) : int list ^ (f z1 z2 z3) �w z3)where P has been instantiated to �z1:�z2:�z3:P1. ind now applies. In this case,the form of the ind rule used is as follows:H ` ab1 : ((f z1 z2 nil) : int list ^ (f z1 z2 nil) �w nil)H;h : int; t : int list; (f z1 z2 t) : int list;X1 : (f z1 z2 t) �w t` as1 : ((f z1 z2 (h :: t)) : int list ^ (f z1 z2 (h :: t)) �w (h :: t) ^ t �w t)H; z3 : int list ` (ind(z3; ab1 ; �h:�t:�X1:as1(t))) : (f z1 z2 z3) ^ (f z1 z2 z3) �w z3This rule mirrors the structure of the patterns in the de�nition of partition| i.e. there is a case for nil and a case for h::t. It checks that the recursive callis measure decreasing (t �w t). It also tries to prove the RC lemma by induction.

H ` t : T0H ` t 2 �H ` A � ft=(f x1 : : : xn)gH ` t : ((f x1 : : : xn) : T0 ^ A) witnessH ` e1 : boolH;X : e1 ` e2 : AH;X : :e1 ` e3 : AH ` e1 2 �H ` (if e1 then e2 else e3) : A ifH ` e1 : TH ` e1 2 �H; v : T;X : (v = e1) ` e2 : AH ` (let val (v : T) = e1 in e2 end) : A let valH ` e1 : (8v1 : T1: : : : 8vn : Tn:(f v1 : : : vn) : T0 ^(f v1 : : : vn) �w vir ^: : : ^ (f v1 : : : cj(: : : ; rjk ;: : :) : : : vn) �w rjk)H; v1 : T1; : : : ; vn : Tn; f : (T1 ! : : :! Tn ! T0);(f v1 : : : vn) �w vir ;: : : ; (f v1 : : : cj(: : : ; rjk ;: : :) : : : vn) �w rjk `e2 :AH ` (let fun f (v1 : T1) : : : (vn : Tn) =(e1 : T0) in e2 end) : A let funH;u1 : (cb1 ; 1) ` ab1 : (f(cb1(u1)) : T0 ^A(cb1 (u1)))...H; un : (cbn ; 1) ` abn : (f(cbn (un)) : T0 ^ A(cbn(un)))H; v11 : (cs1 ; 1); v12 : (cs1 ; 2);f(Rs11) : T0; : : : ; f(Rs1p1) : T0;X11 : A(v11); X12 : A(v12) `as1 : (f(cs1(v11; v12)) : T0 ^A(cs1(v11; v12)) ^(Rs11 �w v11 _ Rs11 �w v12) ^: : : ^ (Rs1p1 �w v11 _ Rs1p1 �w v12))...H; vn1 : (csn ; 1); vn2 : (csn ; 2);f(Rsn1) : T0; : : : ; f(Rsnpn) : T0;X11 : A(vn1); X12 : A(vn2) `asn : (f(csn(vn1; vn2)) : T0 ^A(csn(vn1; vn2)) ^(Rsn1 �w vn1 _ Rsn1 �w vn2) ^: : : ^ (Rsnpn �w vn1 _Rsnpn �w vn2))H;L : B ` (ind(L; �u1:ab1 ; : : : ; �un:abn ;�v11:�v12:�Xn1:�Xn2:as1(Rs11 ; : : : ; Rs1p1);...�vn1:�vn2:�Xn1:�Xn2:asn(Rsn1 ; : : : ; Rsnpn))) : (f(L) : T0 ^A(L)) ind
t : T t has type T ;t 2 � t is (statically) semantically valid (e.g. no undeclared variables or functions); (c; n) returns the type of the nth argument of constructor c;f(X) replace the distinguished argument of f (given by context) by X;Rsij are the recursive call arguments over which the function is de�ned;L is the induction variable (we restrict to a single induction variable here).Fig. 5. Structure Rules for CYNTHIA (1).

H ` x �w x wreflH ` ui �w tH; (f : : : xi : : :) �w xi ` (f : : : ui : : :) �w t wcons1H ` ui �w tH; (f : : : cj(: : : ; xi; : : :) : : :) �w xi ` (f : : : cj(: : : ; ui; : : :) : : :) �w t wred(8i 2 Rc) H ` ui �w ti (8i 2 f1; : : : ; ng) ` i 62 Rc ! (ui = ti)H ` c(u1;: : : ; un) �w c(t1; : : : ; tn) wcons2H ` u �w ti H ` i 2 Rc` u �w c(: : : ; ti; : : :) wcons3H ` (u �w t) � fx2=x1gH;Y : x1 = x2 ` u �w t wsubstFig. 6. Rules for Walther Recursion.By applying ind, P2 is instantiated to:ind(z3; ab1 ; �h:�t:�X1:as1(t))The ind rule gives rise to two subgoals. Consider the base case �rst:: : : ` ab1 : ((f z1 z2 nil) : int list ^ (f z1 z2 nil) �w nil)The base case continues by applying witness where ab1 is instantiated to nil.This instantiation is in general provided by the user and is the one used herebecause it is the result in the base clause in the de�nition of partition.witnessgives us three subgoals:: : : ` nil : int list : : : ` nil 2 � : : : ` nil �w nilThe �rst two subgoals are proved easily using tactics for type-checking andsemantics-checking respectively. The third is proved using wrefl.The step case subgoal is as follows:H;h : int;t : int list; (f z1 z2 t) : int list;X1 : (f z1 z2 t) �w t` as1 :((f z1 z2 (h :: t)) : int list ^ (f z1 z2 (h :: t)) �w (h :: t) ^ t �w t)Instantiating as1 to if z1(h; z2) then E2 else E3, we can apply if. This givesfour subgoals. Type-checking and semantics-checking are done easily. The othertwo subgoals correspond to each branch of the conditional split. Let us considerthe �rst branch only. The subgoal in this branch is:: : : ; X : z1(h; z2); (f z1 z2 t) : int list;X1 : (f z1 z2 t) �w t` E2 : ((f z1 z2 (h :: t)) : int list ^ (f z1 z2 (h :: t)) �w (h :: t) ^ t �w t)

Now we apply witness, instantiating E2 to h :: (f z1 z2 t). Again, type-checking and semantics-checking are dealt with easily. The remaining subgoal is:: : : ; X : z1(h; z2); (f z1 z2 t) : int list;X1 : (f z1 z2 t) �w t` (h :: (f z1 z2 t)) : int list ^ (h :: (f z1 z2 t)) �w (h :: t) ^ t �w tThere are three conjuncts to prove. The �rst is trivial. The second needs to beproved using the rules for Walther Recursion and an induction hypothesis. First,apply wcons2. This gives the subgoal:: : : ` (f z1 z2 t)) �w twhich is proved by the induction hypothesis. The third conjunct is easily provedusing wrefl.The second branch of the conditional statement can be proved similarly.Collecting together all the instantiations, P has been instantiated to:�z1:�z2:�z3:ind(z3; nil; �h:�t:�X1:if z1(h; z2) then h :: (f z1 z2 t) else (f z1 z2 t))A simple translation, along with a mechanism for keeping track of variablenames, gives the program partition.3.4 Replaying Proofs According to User EditsWhen the user applies an editing command to the current program, CYNTHIAmust apply a corresponding edit to the current synthesis proof. Typically, thisedit will make an isolated change to the proof. CYNTHIA's replay mechanismthen propagates this change through to the rest of the proof.De�nition 5. The Abstract Rule Tree (ART) of a proof is the tree of rule ap-plications, where the hypotheses list, goal etc. have been omitted.The procedure for editing the proof is as follows. The user highlights theposition in the programwhere he wishes to make a change. CYNTHIA calculatesthe corresponding position, pos, in the proof tree. Let the synthesis proof bedenoted by Pt and the proof subtree below pos by Ps. CYNTHIA abstracts Psinto an ART As. CYNTHIA then makes changes to As to give �(As). �(As) isthen unabstracted or replayed to give the new proof subtree �(Ps). The completenew proof tree is then Pt with Ps replaced by �(Ps). Note that CYNTHIAabstracts only Ps and not the whole proof tree Pt. This saves e�ort because, dueto the re�nement nature of the proofs, any rules not in Ps will be una�ected.Some commands also require a change to the speci�cation. For example, addcurried argument adds an additional type to the speci�cation.The replay of the ART is the main method for propagating changes through-out the proof. The ART captures the dependencies between remote parts ofthe program and the replay of the ART updates these dependencies in a neatand exible way. Changes to the program will mean that some of the previoussubproofs no longer hold. In some cases, the system can produce a new proof.

However, it may be that a subgoal is no longer true. Such subgoals corresponddirectly to errors in the program. The replay of the ART is a powerful mechan-ism for identifying program errors and highlighting them to the user. During thereplay, if a rule no longer holds, a gap will be left in the proof. This correspondsto a position in the ML program and so the program fragment corresponding towhere the proof failed can be highlighted to the user. This failed proof rule usu-ally denotes a type error or other kind of semantic error (e.g. unbound variable).Various optimizations have been implemented to improve the e�ciency of theART replay. Correctness-checking rules can be time-consuming and soCYNTHIAselectively replays these rules. CYNTHIA automatically decides which correctness-checking rules need to be replayed according to which editing command wasapplied. As an example, consider type-checking rules. In some cases, expressionswithin the ML program will not need to be type-checked during the replay.Consider applying the add construct command to introduce a conditional ifthen else statement into the program. This will copy the highlighted expres-sion, E, to each branch of the condition to give: if C then E else E where Ehas been copied. Clearly, there is no point type-checking E during the replay as itsstatus will be unchanged. Some commands will require that E is type-checked,however. If change type is used to change the top-level signature, then thetarget synthesis proof may require E to inhabit some new type. We must applytype-checking to see if this holds.4 Why Use Proofs?The use of proofs to represent ML programs is a exible framework within whichto carry out various kinds of analyses of the programs. The idea for CYNTHIAgrew out of work on the recursion editor [2], an editor for Prolog that only allowsterminating de�nitions. The recursion editor was severely restricted, however,to a much smaller class of terminating programs. It also had CYNTHIA-liketransformations but these were stored as complex rewrite rules, the correctnessof which had to be checked laboriously by hand. The use of a proof to checkcorrectness eliminates the possibility of error in such soundness-checking.The use of a proof is a natural way to provide detailed feedback on programerrors. When an editing command is applied, any errors correspond directly tofailed proof obligations. No extra e�ort is required to look for new errors | theedit is just applied and then the proof is replayed as far as possible.In addition, CYNTHIA provides a framework for carrying out more soph-isticated analysis than is done at present. This could be done by expressingadditional properties in the speci�cation of the proof. Clearly, the proof of suchspeci�cations could be arbitrarily hard, but the proofs could still be done auto-matically if only certain properties or restrictions were considered and proofstrategies for these were implemented. CYNTHIA could also be extended toincorporate optimizing transformations such as those in the KIDS [12] system.The proof framework is also a very natural one for this purpose.

5 Evaluating CYNTHIACYNTHIA has been successfully evaluated in two trials at Napier University.The �rst trial involved a group of 40 postgraduates learning ML as part ofa course in Formal Methods. The second trial involved 29 Computer Scienceundergraduates. Full results of these trials can be found in [14]. Although somesemi-formal experiments were undertaken, most analysis was done informally.However, the following trends were noted:� Students make fewer errors when using CYNTHIA than when using atraditional text editor.� When errors are made, users of CYNTHIA locate and correct the errorsmore quickly. This especially applies to type errors.� CYNTHIA discourages aimless hacking. The restrictions imposed by theediting commands mean that students are less likely, after compilationerrors, to blindly change parts of their code.� CYNTHIA encourages a certain style of programming. This style isgenerally considered to be a good starting point for learning functionalprogramming. The editing commands correspond to FP concepts andhence discourage, for example, attempts to program procedurally.6 Related WorkProofs-as-programs seems to be a good framework for designing correctness-checking editors. Another possible framework is that of attribute grammars [1,10], which attach annotations to a language's grammar so that properties canbe propagated throughout the abstract syntax tree. Proofs-as-programs wins intwo main ways. First, proofs-as-programs gives a sounder theoretical underpin-ning. The correctness of programs in CYNTHIA comes from the underlyingproof. The soundness of the proof rules is easy to check. In contrast, however,it would be a massive, if not impossible, undertaking to check the correctness ofan attribute grammar implementing a CYNTHIA-like editor. Second, proofs-as-programs seems more suited for functional programming. The proof structurelocalises the relevant parts of the program | for instance, an induction rule en-capsulates the kind of recursion. This means that information is localised ratherthan being spread across the grammar.No ML editors have been produced using attribute grammars. A couple ofother ML editors have recently become available, however. MLWorks [5] and Ct-Caml [11] have di�erent objectives than CYNTHIA. MLWorks is an integratedenvironment for ML with no structure-editing facilities or advanced correctness-checking. CtCaml is a structure editor for ML. Its structure editing is primitive,however, in contrast to CYNTHIA's specially designed commands. CYNTHIAo�ers incremental correctness-checking whereas MLWorks users must compiletheir programs to receive feedback.

7 ConclusionsThis paper has presented CYNTHIA, a novel environment for writing ML pro-grams, primarily aimed at novices. The user writes ML programs by apply-ing correctness-preserving editing commands to existing programs. Each MLde�nition is represented as the proof of a simple speci�cation which guaranteesvarious aspects of correctness, including termination. The use of an underlyingproof provides a sound framework in which to analyse and provide feedback onusers' programs. The proof checking is fully automatic and hidden from the user.CYNTHIA has been successfully tested on novice ML students.References1. H. Alblas and B. Melichar. Attribute grammars, applications and systems. InInternational Summer School, Prague, June 1991. Springer-Verlag. LNCS v. 545.2. A. Bundy, G. Grosse, and P. Brna. A recursive techniques editor for Prolog.Instructional Science, 20:135{172, 1991.3. A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam system.In M. E. Stickel, editor, 10th International Conference on Automated Deduction,pages 647{648. Springer-Verlag, 1990. Lecture Notes in Arti�cial Intelligence No.449. Also available from Edinburgh as DAI Research Paper 507.4. L. Damas and R. Milner. Principal type schemes for functional programs. In 9thACM Symposium on Principles of Programming Languages, 1982.5. MLWorks. Harlequin, Inc., 1996.6. W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin andJ. R. Hindley, editors, To H. B. Curry; Essays on Combinatory Logic, LambdaCalculus and Formalism, pages 479{490. Academic Press, 1980.7. Per Martin-L�of. Constructive mathematics and computer programming. In 6thInternational Congress for Logic, Methodology and Philosophy of Science, pages153{175, Hanover, August 1979. Published by North Holland, Amsterdam. 1982.8. David McAllester and Kostas Arkoudas. Walther recursion. In M.A. McRobbieand J.K. Slaney, editors, 13th International Conference on Automated Deduction(CADE13), pages 643{657. Springer Verlag LNAI 1104, July 1996.9. R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press,1990.10. T. W. Reps and T. Teitelbaum. The Synthesizer Generator: A System for Con-structing Language-Based Editors. Springer-Verlag, New York, 1989.11. L. Rideau and L. Th�ery. An interactive programming environment for ML. Rapportde Recherche 3139, INRIA Sophia Antipolis, March 1997.12. Douglas R. Smith. KIDS | a knowledge-based software development system. InM. Lowry and R. McCartney, editors, Automating Software Design, pages 483{514.AAAI/MIT Press, 1991.13. J. Whittle, A. Bundy, and H. Lowe. An editor for helping novices to learn standardML. In Proceedings of the Ninth International Symposium on Programming Lan-guages, Implementations, Logics and Programs, 1997. LNCS v. 1292. Also availablefrom the Dept of Arti�cial Intelligence, University of Edinburgh.14. J.N.D. Whittle. The Use of Proofs-as-Programs to Build an Analogy-Based Func-tional Program Editor. PhD thesis, Division of Informatics, University of Edin-burgh, 1999.

