

Edinburgh Research Explorer

The Use of Classification in Automated Mathematical Concept
Formation
Citation for published version:
Colton, S, Cresswell, S & Bundy, A 1997, The Use of Classification in Automated Mathematical Concept
Formation. in Proceedings of SimCat 1997: An Interdisciplinary Workshop on Similarity and Categorisation,
November 28-30, 1997, Edinburgh University. Department of Artificical Intelligence, Edinburgh University,
Proceedings of SimCat 1997: An Interdisciplinary Workshop on Similarity and Categorisation, Edinburgh,
United Kingdom, 1 January.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of SimCat 1997: An Interdisciplinary Workshop on Similarity and Categorisation, November 28-30,
1997, Edinburgh University

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/28971051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/the-use-of-classification-in-automated-mathematical-concept-formation(49036265-9236-4cef-9ccd-e2c1d5d86a58).html

The Use of Classification in Automated Mathematical Concept Formation

Simon Colton, Stephen Cresswell and Alan Bundy
Department of Artificial Intelligence

University of Edinburgh
(simonco@dai.ed.ac.uk, stephenc@dai.ed.ac.uk, bundy@dai.ed.ac.uk)

Abstract

Concept formation programs aim to produce a high yield of
conceptswhich are considered interesting. One intelligent way
to do this is to base a new concept on one or more concepts
which are already known to be interesting. This requires a
concrete notion of the ‘interestingness’ of a particular concept.
Restricting the concepts formed to mathematical definitions in
finite group theory, we derive three measures of the interest-
ingness of a concept. These measures are based on how much
the concept improves a classification of finite groups.

Introduction
Concept formation, broadly speaking, involves analysing
what is already known and coming up with a new idea based
on the original knowledge. How and why particular concepts
are formed can be investigated by writing computer programs
designed to automatically create new concepts based on a
corpus of knowledge. Such programs are implementations of
some theory about concept formation, and the practicalities
of writing computer programs require the theory to be con-
crete. Computers allow a great deal of experimentation and
the results obtained when running the programs can be used
to suggest improvements to the underlying theory. A good
way to test the programs is to perform concept formation in a
well known domain and to compare the output obtained with
the concepts which are classically found in the domain.
Once concept formation programs have reached a certain

standard, they can be used in a more exploratory fashion,
assisting in the construction of theories by searching for new
concepts in less well known domains. In these cases, the
computer program will need a concrete and calculable notion
of ‘interestingness’ to help it decide which concepts to keep
and which to discard. This notion can also be used in a more
pro-active way by employing heuristics designed to increase
the average level of interestingness. One such heuristic is to
base new concepts on old concepts which have been shown to
be interesting, hoping that interesting concepts lead to further
interestingconcepts. It is therefore clear that a concrete notion
of interestingness should be central to any automated concept
formation program.
The most cited work in automated mathematical concept

formation is Lenat’s work on his AM1 computer program
which invented new definitions and made conjectures based
on empirical evidence. This was an exploratory program de-
signed towork in elementary set theory which actually delved

1See [Davis & Lenat 82].

into elementary number theory. A notion of interestingness
was used to maintain an agenda of tasks to do next, calculated
using values for how interesting old concepts were and values
for how worthwhile a task involving those concepts might be.
The calculations are complex and based on many heuristic
notions of why a concept might be interesting, and there was
no overall goal to the concept formation.
Other attempts to formalise the notion of interestingness

concentrated on reducing the search space so that explora-
tion only occurred within a narrow band of concepts. With
each of the newly formed concepts having a similar nature,
it is easier to make a comparison of two concepts, and in-
terestingness can be measured more easily. For instance, in
the BACON2 programs written by Langley et al, the con-
cepts formed were polynomial relations between measure-
ments taken during physics experiments. A concept was in-
teresting if the polynomial relationwas observable in the data,
and uninteresting if not. In this case, they were able to guar-
antee some level of interestingness by looking at the data first,
spotting patterns and trends and forming the new relations in
this data driven manner.
Another example of narrowing the search space is Sims’ IL3

program, which accepted specifications for an operator (for
instance themultiplication operator onConway numbers), and
formed operators designed to fit the specifications. The num-
ber of specifications satisfied by the invented operator gives
an indication of its importance, and the process can stop once
one has been invented which satisfies all the specifications.
Therefore, finding an effective measure of the interesting-

ness of concepts is a two step process; (i) imposing a similar
format on all the concepts produced, (ii) defining why one
concept in this format is better than another, preferably in
terms of numeric values, or any partial order which can be
used to grade the concepts.
To begin to impose a similar format between the concepts,

we first restricted the mathematical domain in which the con-
cepts were formed to finite group theory. This choice was
due to our mathematical background and the fact that many
other algebras, such as ring theory, Galois theory and infin-
ite group theory depend on the concepts from finite group
theory. We further restricted the type of concept formed to
definitions, loosely speaking, the sentences which appear un-
der the ‘definition’ heading of finite group theory texts. As
detailed later, further uniformity is achieved by thinking of
each definition as a function mapping a group to some output.

2See [Langley et al 87].
3See [Sims 90].

A major goal in the development of finite group theory
is the classification of finite groups. For instance, there is
a classification of finite Abelian groups which can be found
in most elementary group theory texts. More remarkably, in
1980, a complete classification of finite simple groups was
achieved, which must surely be regarded as one of the major
intellectual achievements of all time.4 Finite simple groups
are finite groupswith no non-trivial normal subgroups and are
the atoms from which the other finite groups are constructed,
which is similar to the way prime numbers are the building
blocks for integers. Hence the classification of finite simple
groups goes a long way to classifying finite groups.
Taking the classification of finite groups as the reason

to form concepts, we can judge how important a particular
concept is by howmuch it improves a classification. A classi-
fication of an object describes the object, and we concentrate
on three intrinsic properties of a description:

Parsimony: How succinctly the description can be stated.

Acuity: How well the description differentiates
between two similar objects.

Efficiency: How efficiently the object can be explicitly
constructed, given only the description.

The work here develops calculations which can be per-
formed to measure these aspects of a classification, and how
much of an improvement a particular concept makes. This
allows us to measure three values for each concept, its parsi-
mony, its acuity, and its efficiency, which can be used to de-
termine the importance of any concept in the theory. Note that,
from this point, we abbreviate ‘finite group’ to just ‘group’.

Classifications
The first step to introducing a formal notion of interestingness
is to add some uniformity to the concepts so that the similar
structure makes it easier to compare two concepts. As previ-
ously stated, the concepts being formed here are definitions
in group theory. The three most common ways of introducing
new definitions in group theory books are as follows:

(A) By specialising the concept of group using a test on the
group. For instance:
"A group, , is Abelian iff ."

(B) By specifying a calculation which can be performed on
the group. For instance:
"The centre of a group, , is given by

: "

(C) By detailing a constructionwhich is possible from a group.
For instance:
"Given a group, , then is a subgroup of iff and
forms a group itself under the group operation from ."

It is possible to think of formats (A) and (C) in terms
of format (B). Firstly, the tests on groups can be written as
boolean functions, which take a group as input, and output
‘true’ or ‘false’. For example, we could write the Abelian

4To quote John Humphreys in [Humphreys 96]. For details of
the classification of finite simple groups, see [Gorenstein 82].

property of groups given above as:

IsAbelian true if
false otherwise

Secondly, to use constructions as a function on a group we
can make a function which outputs all the possible examples
of the construction for a given input group. Eg.
SubgroupCollection : is a subgroup of

Then, as soon as a construction definition is given, we can
make this second, functional, definition which can be used
instead of the construction definition.
Note that in practice there are many ways to turn the con-

struction definition into a function accepting a group as input.
For instance, we could make a function which tests whether
a given group has any examples of a particular construction.
Eg.

HasSubgroup
true if such that

is a subgroup of
false otherwise

Hence all the sentences given in the definitions can be writ-
ten as functions taking a single group as input, and outputting
something based on the group. To add further uniformity
to the format of the concepts, and to make later calculations
possible, we impose the restriction that the output from the
functions is a nested vector of atoms. This is true anyway of
the functions made from definitions of type A and C above,
and we only have to worry about those of type B, which are
the functions occurring naturally in group theory. As group
theory is built heavily on set theory, most of the outputs are
elements, sets or groups, all of which can be written as nested
vectors, and in practice this imposition is not too restrictive.
We now have a starting point for a formalisation, and can

continue by noting that the output of a function can be used
to describe any input group. For instance, given a particular
group, , instead of saying " is Abelian", we can say:
"IsAbelian true". Further, a set of such functions can be
used in conjunction for amore complete description of groups.
We can then use these descriptions to build a classification of
a set of groups. We formalise this as follows:

Definition 1

A classifying function in group theory is a unary function
which takes a single group as input, and outputs a nested
vector. [Note that in the examples, the outputs will be single
atoms, either truth values or integers, which can be thought of
as vectors with a single entry].

A classifying theory of groups, , is a vector of (the names
of) classifying functions, 1 .

Given a group, , the description of by , written
is the vector of output values given when is

used as input to all the functions in . ie.
1

Given a set of groups, , the classification of by ,
written , is the set of descriptions of the members
of . ie.

:

Example 1

The following are classifying functions in group theory:

[The size of the underlying set].

true if
false otherwise

: 1

(stands for the Number of Self Inverse Elements).

and using 1 2 3 4 , with group tables:

1 1 2 3
1 1 2 3
2 2 3 1
3 3 1 2

2 1 2 3 4
1 1 2 3 4
2 2 3 4 1
3 3 4 1 2
4 4 1 2 3

3 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 4 5 6 1 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 1 2 3 4 5

4 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 1 5 6 3 4
3 3 6 1 5 4 2
4 4 5 6 1 2 3
5 5 4 2 3 6 1
6 6 3 4 2 1 5

it is easy to calculate:

1 3 1 true 1 1
2 4 2 true 2 2
3 6 3 true 3 2
4 6 4 false 4 4

So, if we let , we get:

1 3 true 1 2 4 true 2 ,
3 6 true 2 4 6 false 4 ,

and this gives us:

3 true 1 4 true 2
6 true 2 6 false 4

Measures of Importance
Having defined a classification of a set of groups, we can now
find some measurable properties of it, and compare the classi-
fication given by a single function against that given by a set of
functions, to gauge the importance of the single function. It is
therefore necessary to identify what is desirable in a classific-
ation. To help with this, there are two special classifications
which represent the worst and best cases. Firstly, there is the
trivial classification, describing each group with the same
sentence, "G is a group". ie. The trivial classification is given
by the single function: iff is a group.
Secondly, there is the explicit classification which describes
each group by giving its group table.
Note that each of the three measures introduced are cal-

culated for a classifying theory. To assess each individual
classifying function, the classification given using only the
single function is measured. Note also that each of the meas-
ures is normalised to give a value between 0 and 1, with 0
representing the worst case and 1 representing the best case.

Parsimony of a Classification
If you wanted to tell a colleague something about a particular
group, youwouldfirst have to establish that they knew exactly
which group you were talking about. This could be achieved
either bywritingdown the group table, or describing the group
in sufficient detail to ensure there is no ambiguity. The second
methodhas the advantage of beingmore parsimonious than the
first, as the group table is a very cumbersome way to represent
the group. For instance, if the group under discussion was of
order 20, a group table would have 400 entries, and it is
clearly more sensible to write this down once in a reference
book, but refer to the group by descriptions in day to day
use. To illustrate this point, group theorists would describe
the groups 1 2 3 and 4 in example 1 as 3 4 6 and
3 respectively, with no ambiguity. We see that they waste

as little ink as possible.
One of the reasons to pursue a classification is to enable us

to describe a complex object in a compact manner, with the
description being used to represent the object, rather than a
more cumbersome, explicit representation. We can then try to
measure how parsimonious a particular classification is, and
use this to assess the worth of the classifying theory, and the
individual functions in that theory. Remembering firstly that
the output of the functionswill be used to describe the groups,
and secondly thatwe restricted the outputs to be nested vectors
only, if we flatten these vectors into a single list of atoms, the
size of the list will give an indication of the parsimony. We
can formalise this with the following definitions:

Definition 2

Given a classifying function, , and a group, , then
will be a nested vector. If weflatten this vector completely into
a list of atoms, and call theflattened vector , then the storage
space required to describe with , written , is
the size of . ie.

Given a classifying theory, , the storage space required
to describe using ,written , is a measure of the
space required to describe using all the functions available
in , and is given by:

Given a set of groups, , the parsimony of , ap-
proximated using , written , measures
the compactness of the outputs of the functions when is
used to describe the members of . It is normalised to give a
value between 0 and 1 and is given by:

1 1

Given a classifying function, , the parsimony of ap-
proximated using ,written , is
a measure of the parsimony of the classification given by the
function alone. It is given by:

Example 2

The , and functions all output single
atoms, either the word true, or the word false, or an integer.
Hence the nested vector outputs in these cases contain only
one element and so we find that, with and as before:

1 1 1 3

for 1 2 3 4.

So, 1
4

1
3

1
3

1
3

1
3

1
3

and it is easy to check that:

1
1

1

Therefore, in terms of parsimony, these functions are perfect.
They were chosen for this reason, to reduce the space needed
for the examples. To see a less parsimonious example, look at
the function given by:

:
Here, the output is a set, which can be written as a vector. It
is not difficult to calculate:

1 1 2 3 2 1 2 3 4
3 1 2 3 4 5 6 4 1

Hence 1 3 2 4
3 6 4 1.

From these, using as before, we can calculate:
1
4

1
3

1
4

1
6

1
1

7
16

Acuity of a Classification
When representing a group with a description rather than
its group table there are drawbacks, because, to increase the
parsimony, the amount of information on display must be re-
duced. The first drawback is a loss in the power to discriminate
between two groups. If we look at the trivial classification,
we see that it describes every group in the same way, which is
clearly a defect. It is desirable to have a classification which
describes each group differently. We can approximate how
well the descriptions differentiate between any two groups
by looking at a set of groups, and judging how many have
different descriptions. This leads to the following definitions:

Definition 3

Given a set of groups, , and a classifying theory, , the
acuity of , approximated using , written ,
is a measure of the number of groups which are given distinct
descriptions by . It is normalised to give a value between 0
and 1 and is given by:

1 if 1
1

1 otherwise
[Note that if two groups have the same description using ,
then as is a set, the description only appears once
in the set, making , and 1]

Given a classifying function, , the acuity of approx-
imated using ,written , is ameasure
of the acuity of the classification given by the function alone.
It is given by:

Example 3

Using and from the previous examples, we see that each
has a different description using , and so they are all

uniquely identified by . As this is the ideal case, we should
find that the acuity of on is 1. We can check this:

There are 4 groups in , so 4, and remembering that

3 true 1 4 true 2
6 true 2 6 false 4

we see that
1

1
4 1
4 1 1

So forms a classification of which is perfect in terms
of acuity. We can also calculate the acuities of the three
classifying functions in . Noting that

:
we see that

3 4 6
true, false

1 2 4

Hence
1

4 1
3 1
3

2
3

and similar calculations show that
1
3 and

2
3

These figures indicate that the function is below
par in terms of acuity. This is because it has only two pos-
sible outputs, true or false, and so splits groups into only two
categories. This will be a problem for all boolean functions.

Before leaving the subject of acuity, it is worth noting that
the acuity measure does not address the problem of a func-
tion describing two equivalent groups differently. In group
theory, two groups are regarded as the same if they are iso-
morphic, that is, there is a 1:1map between the elements of the
two groups which preserves the group operation. Isomorphic
groups can have different group tables, and so it is possible for
a classifying function to describe isomorphic groups differ-
ently. Given a set of isomorphic group tables, this deficiency
can also be measured, but such calculations have been omitted
for the sake of brevity.
Calculations of acuity and those determining the problem

caused by isomorphisms are both addressing the same prob-
lem: whether we can tell if two objects are truly different
given only descriptions of them. This would appear to be a
goal for classifications in any domain.

Efficiency of a Classification
The third value we can calculate to assess the quality of a
classification measures the second drawback to having more
parsimonious descriptions, and takes themost explaining. The
group table tells us for every pair of elements in the group,
and this information is enough for us to perform any calcu-
lation involving the group. In general, any description of a
group other than the group table will not give us enough in-
formation to perform an arbitrary calculation, which is clearly
a drawback. Therefore, if group theorists are going to work
with the descriptions, they have two alternatives. They can
either conjecture and prove theorems about the results of cer-
tain calculations when performed upon groups with given
descriptions (for instance, that all cyclic groups are Abelian),
or they can derive methods by which the group table can be re-
covered from the description. Of course, once the group table
has been recovered, it can be used to perform any calculation.
We concentrate on the second method for working with

group descriptions, ie. we try to assess how difficult it is to
recover a group table given only a description of it. Of course,
if we are given an explicit description of the group, that is, one
fromwhichwe can read for each , then it takes no
effort to write down the group table. Other descriptions will
require more effort to reconstruct the group table, involving
a search of some kind wherein various possibilities for the
group table (or parts of it) are tested to see if they fit the
description, with backtracking occurring if not.
Note that if we know the order of the group, a search for

the group table of the group will be finite, and, while losing
generality slightly, things are made much easier if we assume
that the order of the group is a constraint which is always
given in the description. Given the assumption that the order
of the group is known to be , one implausible way that a
mathematician might construct a group table for a group is to
write down all the possible multiplication tables for a set of
elements, and check each one to see if it fits the description

given. There are 2 possiblemultiplication tables, and noting
that 442 4 3 109, we see that this method is impractical
for groups of any moderate size.
A much more plausible method is to fill in the group table

one entry at a time, checking that the incomplete multiplic-
ation table satisfies the description. This means that the de-
scription of the group has to be interpreted as ways of ruling
out incompletemultiplicationtables. This interpretation is not
always straightforward but is usually possible. The advantage
to this method is that once an incomplete multiplication table
has been rejected by the description, any larger table built by
adding more elements to this table will also be rejected, and
so there is no point trying those possibilities. This has the
potential to drastically cut down the search space.
Stated in this manner, we see that the problem of finding

the group table given a non-explicit description of the group
is a Constraint Satisfaction Problem (CSP).5 A CSP is defined
by three things, (i) variables which we want values for, (ii)
domains fromwhich these values can be assigned (one domain
for each variable), and (iii) constraints which rule out certain
combinations of assignments. Each description of a group
of order given by our classifying functions will produce a

5For a comprehensive account of CSPs, see [Tsang 93].

separate CSPwith 2 variables (one for each entry of the group
table). These variables will be assigned values from the group
elements, that is the integers 1 , and the constraints will
be provided by the descriptions of the group.
Having formulated the retrieval of the group table as a CSP,

we have been able to use the large body of knowledge in
this area to define a concrete calculation which estimates how
difficult the search will be when constructing the group table
given only a description of the group. This estimate is an
adaption of the cost to find all solutions measure introduced
in [Williams & Hogg 94], and draws heavily on that paper,
specifically sections 3.3, 3.3.2 and 6.1.4. We urge consultation
of this work to put the following definitions in context.

Definition 4

An incompletemultiplicationtable of order [Shorthand:
] is a multiplicationtable for a closed binary operation

on the first integers, with 1 or 2 or or 2 entries filled in.

Given a group of order , , and a classifying theory, ,
then an , , is a no-good for in if it contains
enough entries to decide that it violates the description of
given by . ie. Any group, , for which is a subtable of the
group table for will be such that .

is a minimised no-good for in if there is no proper
subtable of which is also a no-good for in .

Letting be the number of minimised no-goods for in
with entries filled in, the expected cost to construct

given , written , is given by:
2

1
¯

where

¯
1

2 2 1

[with !
! ! if , but 0 if].

We can scale the expected cost to give us a value between 0
and 1 by dividing by the cost of doing the search without any
constraints. We get the scaled expected cost to construct
given , written , which is given by:

1 2

1

Given a set of groups, , the efficiency of approxim-
ated using , written , is given by:

1

Given a classifying function, , the efficiency of
approximated using , written ,
is a measure of the efficiency of the classification given by the
function alone. It is given by:

Example 4

To find a true value for the efficiency of a classifying theory,
it is necessary to find the minimised no-goods for each group
given by each classifying function, and also those given by the
group axioms. It is then necessary to determine the extent of
the overlap between the sets of no-goods, and account for this
in the calculation. This is too much work for this introductory
example, so we shall concentrate on the easier problem of
finding the efficiency of the IsAbelian and NSIE functions.

If we first look at the efficiency of the function on
1, then we see that 1 ,

ie. 1 .

Hence, a no-good will occur if the table has two entries filled
in, one for and one for , and the values in the entries
are different.

For instance, this imt(3) must be no-
good for 1, because we can see that
1 2 3 but 2 1 2, so it cannot
be part of any Abelian group table.

T 1 2 3
1 3
2 2
3

It is clear that of this type are minimised, as the only
smaller alternative is to have 1 entry filled in, and these will
not break the Abelian rule. Any larger no-good must break
the rule with at least one pair of entries, and that pair will
form a subtable which is no-good, and so the larger no-good
will not be minimised. Therefore, these are the only types of
minimised no-goods which violate the ‘IsAbelian(1) = true’
description.

In constructing a no-good of this type, we can first choose
any position in the group table above the diagonal, and there
are 2 2 ways to do this. [For an arbitrary group of
order]. We can then put any value into that entry, so there
are ways to do that. The entry above the diagonal fixes the
position of the entry below the diagonal, but we can choose
any value for that entry, as long as it isn’t the same as the
value above the diagonal. There are 1 ways to do this.
Therefore for a group, , of order , there are

2 1 2 2 1 2 2

possible minimised no-goods with 2 entries filled in which
violate the ‘IsAbelian() = true’ description. As these are
the only minimised no-goods, if we let be the number of
minimised no-goods with entries filled in, for a group, , of
order described as ‘IsAbelian() = true,’ then

2 1 2 2 if 2
0 otherwise

Using theMapleComputer Algebra System,6 the above values
for were used to calculate these scaled expected costs:

1 0 8439073 7
2 0 9881643 7
3 0 9999965 7

Now, 4 is described as ‘IsAbelian(4) = false,’ so we cannot
use the above values of . To have a minimised no-good in

6See [Wat] for details about Maple.

this case, we must be able to tell that it is not non-Abelian. To
do this, we must know it is Abelian, and so the minimum we
require is that all the elements above the diagonal are filled
in and the corresponding entries below the diagonal are filled
in with the same values. There are

2 2 ways to do this,
and so we see that in this case,

2 2 if 2

0 otherwise

Using the approximation ! for large , these
values for were used to calculate:

4 0 0000000 7

The reason for this very poor score is that during a search
for a non-Abelian group which fills in elements of the group
table one at a time, if we reject an incomplete table on the
grounds that it is not non-Abelian, we must have filled in all
the non-diagonal entries. Hence most of the search will have
been carried out before the constrainingpower of the descrip-
tion can be used, so the ‘IsAbelian() = false’ description is
inefficient as a constraint for finding group tables.

With this last scaled cost value, we can finally calculate:

0 8439073 0 9881643 0 9999965 0 0000000
4 0 7080170 7

An analysis of the minimised no-goods for the NSIE classi-
fying function revealed that, for a group, , of order , if

, the number of minimised no-goods are:

if 1
1 1 1 if 1

0 otherwise
[Note that if 1 1 then

1 1 1].
Using the above approximation for !, we can calculate:

1 0 4316053 7
2 0 8053208 7
3 0 9097097 7
4 0 9999870 7

and so
0 4316053 0 8053208 0 9097097 0 9999870

4 0 7866557 7

Examining these results, we see that both the choice of clas-
sifying function used to describe a group and the output
from that function determine how efficient a search for the
group table will be. For example, if a group is described as
‘IsAbelian() = true’, this is a fairly efficient description, but
if described as ‘IsAbelian()= false’, the search for its group
table is hardly improved at all by this information. Similarly,
the more elements which are self inversing, ie. the larger
the value of when , the more efficient the
search. Note that because the function adds no more
constraints to the search, it scores zero with this efficiency
measure, which does not reflect the fact that a constrained
search is only possible knowing the order of the group.

Conclusions and Further Work
With the aim of automating the formation of definitions in
finite group theory, we set out to derive concrete calculations
to measure the interestingness, or importance, of a definition,
as this is a central requirement of any concept formation pro-
gram. Noting that a major driving force in group theory is
the classification of groups and that classifications provide
descriptions of groups, we wrote the group theory definitions
as descriptions of groups. We then identified the parsimony,
acuity and efficiency properties of descriptions, which can be
evaluated to measure how good the descriptions are.
Intuitively, these properties are desirable of descriptions in

any domain: Given an object, and asked to describe it, you
would hope that your description was (a) concise and to the
point, (b) enough to tell the difference between the object
and a similar one and (c) some help towards constructing the
object. For example, if you were asked to describe a person,
you might perhaps say they were tall, or equally you might
say that they lived at number 17. While both of these are
concise, the first would be of use if you had to pick the person
out of an identity parade, but the second would be of use if
you had to track the person down.
In an arbitrary domain it is unlikely that concrete meas-

ures could be specified to approximate the worth of descrip-
tions with respect to these three properties. However, due
to the formal nature of mathematics and by imposing cer-
tain restrictions, we have been able to derive calculations and
produce some values for example definitions. Although the
example calculations are fairly poor approximations, due to
the small sample of groups used, it is possible to compare
the classifications given by the , ,
and functions against an explicit classification and
the trivial classification. Instead of the explicit classification
which gives the group table for each group, we will use the
function : , as this
has outputwhich can be writtenas a nested vector, a restriction
needed to calculate its parsimony. The values for parsimony,
acuity and efficiency are approximately:

Function Parsimony Acuity Efficiency
Trivial 1 0 0
Order 1 0 67 0
NSIE 1 0 67 0 79
IsAbelian 1 0 33 0 71
Centre 0 44 1 0 95
Explicit 0 02 1 1

- Calculation of this value not included in the examples.

Remembering that these values have 0 as the worst case and
1 as the best case, we see that the more parsimonious descrip-
tions have a lower acuity and efficiency than the less parsi-
monious descriptions. Hence the figures calculated highlight
the drawbacks of working with descriptions of objects rather
than the objects themselves.
Now, as we can measure how good a particular function is,

it is possible to write heuristic methods which produce new
functions, with the heuristics designed to increase the average
parsimony, acuity or efficiency of the functions. For instance,
if the acuity of the classification given by all the functions in
the classifying theory is lower than we require, the program

could use a production rule to base a new concept on an old
one which has a high acuity itself. The heuristic employed
here is that interesting concepts lead to further interesting
concepts. Such a heuristic could be similarly employed if the
parsimony or efficiency of the classification was below par,
and more analytical heuristics, based on the failings of the
classification for particular groups, are planned.
The writing and testing of the heuristic production rules as

a computer program7 is an ongoingproject. Further workwill
include relating these definitions to the more general work of
information theory and constraint satisfaction problems. The
linkwith information theory is possible because by represent-
ing a group with a description, we are writing it in a code.
Then the average codeword size and our parsimony measure
are analogous, as are the entropy of the code and our acuity
measure and the decoding time and our efficiency measure.
The method chosen to decode the descriptions is to solve a
constraint satisfaction problem using the group axioms and
the description of the group as constraints on a search over
the space of incomplete multiplication tables.

Acknowledgements
We would like to thank Ian Gent and Toby Walsh for their
comments on constraint satisfaction problems. This project
has been funded by EPSRC research grant GR/L 11724.

References
[Colton 97] S Colton. Classification driven the-

ory formation in mathematics. Avail-
able by FTP from ftp://ftp.dai.ed.ac.uk
/pub/user/simonco/proposal.ps , 1997.

[Davis & Lenat 82] R Davis and D Lenat. Knowledge-
Based Systems in Artificial Intelli-
gence. McGraw-Hill AdvancedCom-
puter Science Series, 1982.

[Gorenstein 82] D Gorenstein. Finite Simple Groups:
An Introduction to Their Classifica-
tion. Plenum Press, New York, 1982.

[Humphreys 96] J Humphreys. A Course in Group
Theory. OUP, 1996.

[Langley et al 87] P Langley, H A Simon, G L Brad-
shaw, and JM Zytkow. Scientific Dis-
covery - ComputationalExplorations
of the Creative Processes. MIT Press,
1987.

[Sims 90] M Sims. IL: An artificial intelligence
approach to theory formation inmath-
ematics. Technical Report ML-TR-
33, Department of Computer Science,
Rutgers University, 1990.

[Tsang 93] E Tsang. Foundations of Constraint
Satisfaction. Academic Press, Lon-
don and San Diego, 1993.

[Wat] Waterloo Maple. Maple Manual at
http://www.maplesoft.on.ca.

[Williams & Hogg 94] C Williams and T Hogg. Exploiting
the deep structure of constraint prob-
lems. Artificial Intelligence, 70, 1994.

7Named HR after Hardy and Ramanujan - see [Colton 97].

