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ABSTRACT

Historical simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5)

archive are used to calculate the zonal mean change in seasonal land precipitation for the

second half of the twentieth century in response to a range of external forcings, including

anthropogenic and natural forcings combined (ALL), greenhouse gas forcing, anthropogenic

aerosol forcing, anthropogenic forcings combined and natural forcing. These simulated pat-

terns of change are used as fingerprints in a detection and attribution study applied to four

different gridded observational datasets of global land precipitation from 1951 to 2005. There

are large differences in the spatial and temporal coverage in the observational datasets, yet

despite these differences, the zonal mean patterns of change are mostly consistent except

at latitudes where spatial coverage is limited. The results show some differences between

datasets, but the influence of external forcings is robustly detected in March, April and

May (MAM), in December, January and February (DJF) and for annual changes for the

three datasets more suitable for studying changes. For June, July and August (JJA) and

September, October and November (SON), external forcing is only detected for the dataset

that includes only long-term stations. Fingerprints for combinations of forcings that include

the effect of greenhouse gases are similarly detectable to those for ALL forcings, suggesting

that greenhouse gas influence drives the detectable features of the ALL forcing fingerprint.

Fingerprints of only natural or only anthropogenic aerosol forcing are not detected. This,

together with two-fingerprint results suggests that at least some of the detected change in

zonal land precipitation can be attributed to human influences.
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1. Introduction

Increased temperatures over the twentieth century have led to an increase in the moisture

content of the atmosphere (Santer et al. 2007; Willett et al. 2007) and changes to global

(Zhang et al. 2007; Huffman et al. 2009; Smith et al. 2010) and regional precipitation patterns

have been observed (e.g. Hoerling et al. (2006); Min et al. (2008); Kang et al. (2011)) that

follow expectation based on physics and modelling (Held and Soden 2006). Global and

regional precipitation changes may be influenced by a complex range of factors including the

direct response to greenhouse gas forcing and to the warming of the atmosphere (Allen and

Ingram 2002; Lambert and Allen 2009), changes in atmospheric circulation (e.g. Ineson and

Scaife (2009); Kenyon and Hegerl (2010)), sea surface temperature changes (e.g. Hoerling

et al. (2012); Yoshioka et al. (2007); Lyon and DeWitt (2012); Hoerling et al. (2012)), regional

changes in vegetation (e.g. Wang et al. (2004)) and stratospheric aerosols (e.g. Gillett et al.

(2004)).

One of the predicted responses of the hydrological cycle to increasing greenhouse gas

concentrations is the intensification of the water cycle (Allen and Ingram 2002; Held and

Soden 2006; Wentz et al. 2007; Chou et al. 2009; Seager et al. 2010). As the atmosphere

warms, water vapour increases in line with the Clausius-Clapeyron relation, however energy

balance constraints mean global precipitation increases more slowly (Allen and Ingram 2002;

Lambert and Allen 2009). This increase in column water vapour compared to precipitation

results in a decrease in the convective mass flux, i.e. a slow down of the atmospheric cir-

culation in the tropics, where most moist convection occurs (Vecchi et al. 2006; Lu et al.

2007). As the horizontal transport of water vapour increases, the existing pattern of pre-

cipitation minus evaporation (P-E) is enhanced. Thus, areas that export moisture such as

the subtropical oceans get drier and areas that import water such as the Intertropical Con-

vergence Zone (ITCZ) get wetter (Held and Soden 2006). Changes in the mean circulation

in response to warming will also affect precipitation. In particular warming is expected to

lead to a poleward expansion of the Hadley Cells with an associated poleward expansion of
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the subtropical dry regions and poleward shift of the mid-latitude storm tracks (Yin 2005;

Lorenz and DeWeaver 2007; Seidel et al. 2008; Lu et al. 2007; Seager et al. 2010; Scheff

and Frierson 2012), though the exact mechanisms are still to be understood.

Held and Soden (2006) show that the zonal mean changes in P-E are robust in response

to warming associated with greenhouse gas forcing and that the structure of these changes is

dominated by changes in precipitation. Consequently, Zhang et al. (2007) and Noake et al.

(2012) used zonal means to show the global patterns of land precipitation change, for which

long-term records of precipitation are available, and to derive fingerprints of forcing that can

be used for detection and attribution. This enhancement of the P-E pattern is less relevant

over land than oceans where evaporation can be limited in arid regions. Model simulated

future precipitation change broadly follows a similar zonal pattern of moistening and drying

over ocean as over land (Meehl et al. 2007) and significant changes in precipitation over

land due to human influence are expected to have already occurred (Balan Sarojini et al.

2012).

The observed changes in precipitation are a combination of external forcing and internal

variability (together with errors and biases arising from limitations of the observational

system). Internal variations can cause regional changes in precipitation on multi-decadal

timescales (Dai 2012) making it difficult to distinguish the influence of external forcing.

The spatial scale of these decadal features tends to be regional (Cayan et al. 1998) so

by averaging over large areas, such as zonal means, the influence of internal variability on

the observed precipitation changes can be reduced. The internal variations in the model

simulations will be unique to each simulation. By averaging over many simulations, the

influence of internal variability is reduced in the patterns of precipitation change (Zhang

et al. 2007; Knutti et al. 2010).

Fingerprint detection and attribution methods (Allen and Stott 2003) have been used to

attribute observed changes in precipitation over the latter twentieth century to anthropogenic

forcing for annual global zonal land precipitation (Zhang et al. 2007) and in the Arctic
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(Min et al. 2008) and to attribute changes in seasonal global zonal land precipitation to

external forcing (Noake et al. 2012), using the Coupled Model Intercomparison Project

phase 3 (CMIP3) archive. Estimates of the mean zonal changes in annual precipitation

found the multi-model mean and individual model simulations from the CMIP3 archive

tended to underestimate the magnitude of the observed precipitation change (Zhang et al.

2007). However, using seasonal zonal mean land changes expressed as percentages from

three different datasets of near global coverage found observed precipitation changes were

only significantly underestimated by the models for all the datasets during March, April,

May (MAM) (Noake et al. 2012). For other seasons, models and observations were consistent

given data uncertainty and internal variability though the dataset used in Zhang et al. (2007)

also showed the models underestimating the changes in DJF and annual precipitation. The

precipitation changes for three observational datasets and models were found to be quite

similar to each other where the observations and models were masked to include only grid-

boxes where gauge data were available. External forcing was detectable in DJF, MAM and

SON for all observational datasets and in JJA for one dataset at the 5% level of significance,

however the authors did not separate the response of anthropogenic forcing from natural

forcing and could not therefore demonstrate that anthropogenic forcing had contributed

significantly to seasonal patterns of change as it had been shown to for annual changes

(Zhang et al. 2007).

Here we apply the methodology of Noake et al. (2012) to the models from the new CMIP5

archive (Taylor et al. 2012) and four observational datasets to compare the performance of the

latest generation of models to that of the previous generation. In addition to applying total

least squares detection to a fingerprint of all external forcings (ALL1) forcings, the analysis

is extended to include fingerprints of greenhouse gas only (GHG) forcing, anthropogenic only

(ANT) forcing, natural only (NAT) forcing and anthropogenic aerosol only (AA) forcing in

1Here ”ALL” external forcings refers to the full set of forcings prescribed in the CMIP5 protocol as

implemented by each participating modeling centre.
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order to separate the contribution of different forcings to the observed pattern of change.

The paper is organized as follows: Section 2 briefly introduces the detection and attribu-

tion method and Section 3 the data. In Section 4, robust and less robust changes in zonal

precipitation are discussed across observational data and model simulations. Section 5 gives

detection and attribution results that are discussed in Section 6.

2. Total Least Squares Detection

The goal of detection and attribution is to determine if observations show evidence of

forced changes expected from physical reasoning, e.g. as captured in climate models. In

climate change detection and attribution, F is an l x p matrix of fingerprints which define

response patterns (rank-l vectors), such as zonal mean precipitation changes, to p external

climate forcings. It is scaled to the rank-l vector of observations, y, to estimate the magnitude

of each pattern in the observed climate, using total least squares (tls) regression (Allen and

Stott 2003).

y = (F + εfinger) · β + εnoise (1)

where β is a vector of scaling factors with p entries for each forcing fingerprint, εnoise is the

residual associated with internal climate variability and εfinger is variability superimposed on

the fingerprint. As signal to noise ratio is low for precipitation, εfinger , will be non-negligible

even for a multi-model mean. If the scaling factor exceeds zero at a particular significance

level, then the fingerprint response pattern is detected in the observations (see Hegerl et al.

(2007)).

Detailed theoretical discussion of the tls method can be found in Allen and Stott (2003),

here we describe the practical implementation. We define the l x p ′ matrix Z ≡ [F, y],

where p ′ = p + 1 and take the singular value decomposition Z = UΛVT . After sorting

eigenvalues into descending order, the p ′th element of the p ′th column of V, the p ′-rank
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vector ṽ, corresponds to the best-fit scaling parameter. The scaling factor for fingerprint i

is then βi = -ṽi/ṽp′ (Allen and Stott 2003).

Internal climate variability leads to uncertainty in the fingerprint and observed response

patterns and hence to uncertainty in the scaling factor. This uncertainty must be taken

into account when applying detection and attribution. Only when the probability that β is

consistent with zero is small (e.g. 5%) can it be stated with confidence that the fingerprint

response pattern has been detected in the observations. The uncertainty in the scaling factor

can be calculated by superimposing multiple samples of noise onto both the fingerprint and

observations and re-calculating the scaling factor. Each noise sample is a rank-l vector,

meaning that the variance does not have to be the same for all elements (so the strength

of internal variability can vary with latitude; see Supplementary Material) and that the

covariance pattern of precipitation variability is preserved. Where 95% of the β values

exceed zero, it is concluded that there is a significant (p < 5%) relationship between the

observed and multi-model changes that can not be explained by internal climate variability.

For the tls method, noise-reduced observation and model fingerprints are calculated using

Z̃ = Z − ZṽṽT (2)

to produce a ’best-fit’ of both. It is onto these the sample of noise are added for evaluating

β. The regression residual, εnoise , is compared to samples of model variability using the F-

test described in Allen and Stott (2003).

We experimented with using optimal fingerprints, but found that the benefit was small,

(i.e. the results were similar), compared to the level of complexity introduced by having

to truncate to a low-dimensional space so the results shown here are for non-optimized

fingerprints (e.g. Zhang et al. (2007)).
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3. Data: Observations and Models

Four gridded observational datasets for monthly precipitation were used in this analysis.

The datasets are an updated version of data from (Zhang et al. 2007), the Climate Research

Unit (CRU) monthly precipitation dataset (updated from CRU TS3.1 of Harris et al. (2013)),

and two datasets from the Global Precipitation Climatology Centre, the VasClimO dataset

(Beck et al. 2005) and Full Reanalysis dataset (GPCC) (Schneider et al. 2011). While each

gridded dataset is constructed independently, they are use overlapping sets of the same raw

station data. Though the stations do not provide complete spatial and temporal coverage,

Wan et al. (2013) showed that they are likely to be sufficient for estimating the magnitude

of changes and variability in regional land area mean precipitation.

The GPCC dataset is spatially interpolated covering the period 1901 to 2010. It is used

with caution as inhomogeneities such as variable number of stations per grid square over

time can cause artifacts when calculating changes (Beck et al. 2005) but is included as it

uses the largest number of stations of the four datasets considered here. The VasClimO

dataset is a homogenised GPCC product adjusted to support climate variability and change

analyses, however data is only available until 2000, with an update in preparation (Becker,

pers. com.). For completeness both the datasets are included in the analysis, however the

results for the VasClimO may be more reliable because of the homogenization work. The

VasClimO dataset consists of 2.5x2.5◦ data from 1951-2000 and is based on quality-controlled

and homogenized time-series from 9343 stations. The data in Zhang et al. (2007) are on a

5x5◦ grid based on long-term stations in the Global Historical Climatology Network (GHCN)

monthly precipitation dataset (Vose et al. 1992). The authors selected stations with at least

25 years of data during 1961-1990 and at least 5 years of data in every decade during 1950-

1999. The updated version covers the period 1900 to 2009 and replaces Canadian stations in

the GHCN with homogeneity-adjusted Canadian data (Mekis and Vincent 2011). The CRU

dataset is updated from CRU TS3.1, covers the period 1901 to 2010, and uses station data

collated from various sources (see Harris et al. (2013)) similar to those used by GHCN. No
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homogenization or bias corrections are applied by CRU beyond those already implemented

by the data sources. The station data are interpolated to provide precipitation estimates at

each 0.5x0.5◦ grid-box. Here, grid-box values that lie within 450 km of an observed monthly

value are aggregated to a 5x5◦ grid and only grid-boxes containing stations in at least two

of the aggregated 0.5x0.5◦ grid-boxes are included.

Together the four datasets cover a range of methods used to constructing gridded obser-

vations. The Zhang dataset provides robust long-term homogenized records but poor spatial

cover in some regions, while the GPCC includes both long and short-term station data and

extensive interpolation, providing complete spatial coverage over land but introducing sig-

nificant uncertainty in changes of precipitation over time as these will be more affected by

changing station coverage than the Zhang dataset. The VasClimO dataset addresses some of

the homogeneity issues of the GPCC but still includes significant interpolation and infilling

of grid-boxes. The CRU dataset has been restricted, in this analysis, to only grid-boxes

where some station data exists and provides more spatial coverage than the Zhang dataset,

but without the same consistency in the station records over time.

All datasets are gridded to the same 5x5◦ grid but are not masked to be spatially consis-

tent with each other and therefore spatial coverage varies between datasets, as seen in Figure

1. This illustrates the value of using multiple datasets - for example, the CRU dataset has

poorer coverage than the Zhang dataset in Canada, but better coverage across much of

northern Asia. Temporal coverage also varies between datasets with data only available

from 1951 to 2000 for the VasClimO data, therefore calculation of changes is limited to

1952-2000 for this dataset. For the CRU, Zhang and GPCC datasets, changes were calcu-

lated for 1951-2005. grid-boxes were excluded where data were available in less than 95% of

years to minimise the impact of changes in the spatial coverage of the data over time.

The CMIP5 archive, accessed in December 2012, included 98 simulations from 33 models

forced with anthropogenic and natural external forcing to derive a fingerprint of ALL forced

change, 45 simulations from 15 models for greenhouse gas only (GHG) forced change, 38
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simulations from 15 models for natural (NAT) forced change, 18 simulations from 6 models

for anthropogenic (ANT) forced change and 16 simulations from 7 models for anthropogenic

aerosol (AA) forced change. For each observation dataset, the simulations are transferred

to the observational grid and masked to match the spatial and temporal data availability of

that dataset on a grid-box basis. The models used in this analysis are listed in Table 1.

4. Zonal Patterns of Precipitation Change

Zonal mean change in precipitation is calculated by applying a linear least squares re-

gression to precipitation averaged across each zonal band and is expressed as the percentage

change in precipitation relative to the climatologically averaged precipitation of each 5◦ zonal

band between 45◦ S to 75◦ N giving spatial dimension l = 24. Expressing changes as per-

centages rather than anomalies has been shown to improve agreement between models and

between models and observations (Noake et al. 2012) and better represents the changes that

may be small but important in relatively dry regions (e.g. Jones and Hulme (1996)). For

each 3 month season, the absolute precipitation in each 5◦ latitude band is averaged and a

linear least squares fit applied over all years to calculate the change in precipitation. This

absolute change is then divided by the mean precipitation over the same period, spatial

coverage and latitude band and converted to a percentage. This zonal percentage change is

more robust than percentage change for individual grid-boxes, as otherwise very high values

can result for climatologically extremely dry grid-boxes.

The simulated zonal precipitation change pattern is used to derive the fingerprints of

forcing where F is the multi-model mean fingerprint from the ensembles of ALL forced sim-

ulations, GHG forced simulations, NAT forced simulations, ANT forced simulations and AA

forced simulations. A one-signal detection is applied to the seasonal and annual ALL, GHG,

NAT, ANT and AA fingerprints to fit each fingerprint individually to the observed zonal

mean patterns of change, y, calculated from each observation dataset. A two-signal detec-
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tion was also applied to annual change pattern fingerprints (considering two combination:

first GHG and AA forcing, and second ANT and NAT forcing) to determine if the observed

change can be attributed to a combination of external forcings by distinguishing the role of

individual forcings in observed precipitation patterns.

Samples of seasonal and annual zonal mean precipitation changes associated with internal

climate variability were derived by subtracting the multi-model mean from each individual

simulations’ zonal mean pattern of change from the ALL forcing simulations and multiplying

by
√

n
n−1 , where n is the number of simulations in the ensemble, to avoid bias in the variance

(Von Storch and Zwiers 2001). Similarly, the samples of noise on the fingerprint for each

of the individual forcings were calculated by subtracting the multi-model mean from each

individual simulation. To account for possible underestimation of the precipitation variability

in some latitude bands by models (see (Zhang et al. 2007) and Figure S1 in the supplementary

material), the scaling factors were also calculated using double the model variance for the

samples of noise.

5. Results

a. Role of external forcing

Figure 2 shows the changes in precipitation in the four observed datasets, using each

datasets’ full coverage except for the removal of grid-boxes with coverage in fewer than 95%

of years. Blue shading shows where zonal changes for all observed changes are positive

(13%, 29%, 33% and 42% of zonal bands for JJA, DJF, MAM and SON respectively) and

the orange shading shows where they are all negative (25%, 25%, 29% and 17% of zonal

bands for JJA, DJF, MAM and SON respectively), yielding most consistent changes in

MAM (62%) and least in JJA (38%). Despite some differences in the spatial and temporal

coverage of the four observational datasets, the observational zonal change patterns are

similar with correlation coefficients between 0.4 to 0.9 for most datasets and seasons (i.e
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correlation is significant with p-value<0.05), though they are smaller for the Zhang and CRU

and Zhang and GPCC datasets in some seasons. All observational datasets show increased

precipitation in the Northern Hemisphere mid to high latitudes in all seasons, drying of

the Northern Hemisphere subtropics in DJF and tropics in all seasons, and drying in the

Southern Hemisphere subtropics in DJF, JJA and MAM. Where the different observational

datasets disagree on the sign of the change, this is typically in latitude bands where the

change is small. The largest disagreement between observations occurs in the Southern

Hemisphere tropics, where data is spatially limited and hence changes are sensitive to even

minor variations in the spatial coverage of the datasets. The magnitude of the observed

changes tends to be larger in MAM and DJF, particularly in the Northern Hemisphere. To

determine the influence of recent years on change patterns, changes were calculated for 1951-

1999 for the CRU, Zhang and GPCC datasets. and found to be very similar with changes

for 1951-2005, with correlation coefficients between 0.83 and 0.97 (see Figure 2).

Figure 3 shows the ALL forced multi-model mean where the models have been masked

to each observational dataset for space and time. Blue shading shows where changes for all

multi-model means are positive irrespective of coverage (21%, 58%, 46% and 29% of zonal

bands for JJA, DJF, MAM and SON respectively) and the orange shading shows where they

are all negative (38%, 29%, 33% and 25% of zonal bands for JJA, DJF, MAM and SON

respectively), yielding most consistency in MAM (87%) and least in SON (54%). The zonal

bands where the sign of the changes for the four observational datasets are different and

not close to zero largely coincide with areas where the different masking of the same multi-

model fingerprint notably modifies the outcome, suggesting that the sign differences, as well

as some variations in the magnitude of the changes between observational datasets, e.g. the

negative tropical change in DJF, appear to be at least partly related to data coverage. Also

changes in the Southern Hemisphere tropics tend not to be the same sign for all datasets

reflecting the poorer data availability in this region.

Figure 4 shows the ALL forced simulated changes for the individual models where the
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models have been masked to match the spatial and temporal coverage of the GPCC dataset,

which has the largest spatial and temporal coverage. The observational changes tend to be

largely within the range of simulated changes from the individual model simulations. Blue

shading shows where changes for 75% of models are positive and the orange shading shows

where 75% of models are negative. The models tend to show larger consistent changes in

DJF than other seasons, and more so in the Northern Hemisphere. The most consistent

response across models is an increase in precipitation in the Northern Hemisphere mid to

high latitudes in all seasons, which is also seen in the observations, particularly in DJF and

MAM. The models also tend to produce a consistent pattern of decreasing precipitation at

30◦ N in DJF and 20◦ N in MAM, while the observations consistently show moistening in

these latitude bands across all datasets.

Figure 1 shows the spatial precipitation change pattern for all four observational datasets

for MAM, highlighting the different spatial coverage. Figure 5 shows the spatial change

patterns for the GPCC dataset for all four seasons where the hatched areas show where all

available observational datasets agree on the sign of the change. The sign of the observed

changes agree over large areas, though not all four datasets have data in these regions, but

disagree in all season in parts of South America and eastern and northern Asia. Figure 6

shows where all observations agree with the sign of the the multi-model mean change. The

multi-model mean change tends to be the same sign as the observations in all seasons over

Europe, northern parts of North America, parts of southern Africa and South America and

western Australia, but are not the same in large parts of Asia, South America, Africa and

the USA where the observed changes are consistent across all 4 datasets. In most cases,

for example the western USA, parts of central Africa and eastern Brazil in DJF, the model

changes are not consistently positive/negative (i.e. <75% of models give changes of the

same sign) in these regions indicating that climate variability may be responsible from the

discrepancies between the multi-model mean and observations.
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b. Role of individual external forcings

Figure 7 shows the ALL, GHG, ANT, NAT and AA multi-model simulated changes

masked to the GPCC dataset. The magnitude of the changes for the NAT forced multi-

model mean tends to be smaller than for the other forcings and the ensemble encompasses

zero for all latitude bands. The blue areas show where ALL, GHG and ANT forced changes

are all positive, orange shows where they are all negative and the crosses show where over

75% of the simulations give a change of the same sign. The changes are are the same

sign for the different forcings in the mid and high latitudes, particularly in the Northern

Hemisphere where all show increased precipitation. It is also at these latitudes that the

changes of the individual simulations tend to be most consistent (>75% give changes of

the same sign). These three different forcings tend to produce changes with different signs

in the tropics and subtropics. Across much of this region, the precipitation change from

the ALL forced multi-model mean are negative while the change from the GHG and ANT

forced simulations are more structured. The changes for the NAT forced simulations tend

to be less consistent overall than for the other forcings, with only a few zonal bands with

over 75% of simulations giving a change of the same sign and none at all in MAM or SON.

Natural forcing over that period are limited to very small changes in solar forcing and few

volcanic eruptions whose effect, particularly on land precipitation, should not lead to long-

term trends. Supplementary Figures S2 to S6 show the zonal mean changes from observations

plotted against the multi-model mean changes for each latitude for ALL, GHG, NAT, ANT

and AA forcings respectively. Observations show the least agreement with only NAT or only

AA forcings and the most agreement for the ALL forced multi-model mean.

Figure 8 shows the spatial precipitation patterns of change of the multi-model means

for MAM for each of the different forcings, ALL, GHG, NAT, ANT and AA. The patterns

of change are largely consistent for the multi-model means of ALL, GHG and ANT forced

simulations. This is consistent with GHG being the largest forcing over the past 50 years. In

contrast the NAT and AA forced simulations have distinctly different patterns of moistening
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and drying, for example the NAT and AA changes show moistening over southern Europe

while the ALL, GHG and ANT changes all show drying. Conversely in large parts of Asia,

the NAT and AA forcing, according to the models, should have caused drying while the ALL,

GHG and ANT changes show an increase in precipitation. Figure 8 also shows the multi-

model mean of the ALL forced simulations from CMIP3. The sign of the changes is largely

the same for large parts of the globe for CMIP3 and CMIP5 multi-model means, however

there are some differences over parts of Africa, South America and Asia with the CMIP5

changes tending to show an increase in precipitation compared to a decrease from CMIP3.

However these differences, tend to be small and in regions where there is no consistency

between the sign of the changes in the CMIP5 models, (i.e. sign of change is the same in

<75% of models), therefore the differences are likely to be explained, at least in part, by the

different composition of models in the CMIP3 and CMIP5 ensembles.

c. Results of detection and attribution

We now discuss results of a detection and attribution method aiming to attribute causes to

observed changes. Figure 9 shows the scaling factors and 90% confidence intervals for all four

datasets for the ALL forced simulations, GHG forced simulations, NAT forced simulations,

ANT and AA forced simulations and Table 2 shows the scaling factors and 90% confidence

interval for the ALL forced simulations. For the ALL and ANT fingerprints, a detectable

result at the 5% significant level for double the variance is found for 3 datasets in MAM, DJF

and ANN (by doubling the variance of the model-based estimates of internal variability, we

allow for the possible underestimation of precipitation variability by the models, and obtain

a more conservative - i.e. wider - confidence interval) Only GPCC (shown in grey), which

has not been homogenized for trend analysis, does not show a detectable signal of external

forcing, however changes are detectable for the VasClimO dataset, a homogenized subset

of the GPCC dataset. In that case the 90% confidence interval is very close to 0 for DJF

for double the variance, so the forcing signal may only just be emerging from the climate
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noise for VasClimO in this season. Only the Zhang dataset shows detectable changes for all

four seasons, even if the variance of noise is doubled. GHG forcing is detected for the same

datasets and seasons as ALL forcings, except for VasClimO in DJF and ANN and CRU in

ANN. Neither NAT or AA forcing are detected consistently across any dataset or season,

however the 90% confidence intervals are negative for 3 datasets in MAM, i.e. the pattern of

change for AA forcing is opposite the observed. This is consistent with GHG forcing being

primarily responsible for the forced changes in the ALL and ANT fingerprints detected in

the observations.

For ALL forcing, the scaling factor is not consistently greater than 1 for any season or

for annual changes and the best-guess scaling factors are largely in the range 0-2. Thus, the

magnitude of the precipitation changes are largely captured by the models when expressed

as percentage change relatively to the internal climatology of the model or observational

dataset. The results for the ANT forced fingerprint are mostly similar to those of the ALL

forcing, as are those for GHG only forcing.

Scaling factors for the two-signal analysis are shown in Figure 10 which determines if

the response to individual forcing can be distinguished from each other. For the two-signal

analysis, no forcing is detected consistently across all datasets at the 5% level of significance

for double the variance. However GHG forcing is detectable for the Zhang dataset at the 5%

level of significance when AA forcing is included separately into the analysis and for ANT

forcing when including NAT forcing separately.

The residuals after tls fitting are compared to the variance in the simulations using an

F-test to ensure that the residuals are not significantly different from those expected from

control simulations (Allen and Stott 2003). Where the F-test fails either the regression does

not contain all relevant and realistic response fingerprints to external forcings, or the model

variability is erroneous. The residual consistency test is passed for all forcings and seasons

when the model variance is doubled.
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6. Discussion and Conclusions

In Noake et al. (2012), the datasets and models were masked to have the same spatial

and temporal coverage as each other. Here the observational datasets have not been masked

except to remove grid-boxes with poor temporal coverage and the simulations have been

masked to each dataset individually to derive fingerprints. Nevertheless, the resulting change

patterns are similar for all observational datasets despite differences in data coverage. The

Southern Hemisphere tropics are an exception, as spatial coverage is particularly poor due

to limited availability of land station data (see e.g. Becker et al. (2011)). In these regions

ocean data is required to improve the calculation of zonal mean precipitation changes, but

the relatively short satellite data coverage means that the signal to noise ratio of these data

may be too low to allow for the detection of forcing using this approach. However there is

evidence from satellite and model data that land and ocean precipitation in the tropics and

globally are negatively correlated (Gu et al. 2007; Liu et al. 2012), while analysis of salinity

data suggest that an enhanced P-E signal may also be emerging there (Durack et al. 2012).

We find that differences in spatial coverage play an important role in differences in zonal

mean changes between datasets.

The zonal patterns of change are similar for the ALL, ANT and GHG forcing at latitude

bands where over 75% of the simulations give changes of the same sign. In particular in

the Northern Hemisphere mid and high latitudes, where land coverage and hence spatial

coverage is greatest, the changes for ALL, GHG and ANT are all positive while the changes

for AA are negative. The smaller positive changes for ALL and ANT forcing compared to

the GHG forcing is consistent with the negative influence of AA forcing on the changes in

precipitation at these latitude bands. Aerosols affect the climate by direct absorption of

radiation and indirectly by changing cloud properties. Emissions of aerosols are greater in

the Northern Hemisphere. Hence, due to their relatively short lifetimes in the atmosphere,

aerosols have a stronger cooling effect on in the Northern Hemisphere. The spatial pattern

of AA induced changes shows a decrease in precipitation over much of the USA, Europe and
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Asia. Anthropogenic aerosol emissions have been shown to suppress monsoon circulation

and cause a reduction in precipitation over South and East Asia (Randles and Ramaswamy

2008; Bollasina et al. 2011; Guo et al. 2012) and to change extratropical circulation with

associated changes in patterns of precipitation (Ming et al. 2011).

Understanding the physical mechanisms responsible for the patterns of change in the

zonal mean precipitation is difficult due to a number of complicating factors, such as poor

spatial coverage in some zonal bands, the influence of natural variability which will have

a greater impact where spatial coverage is limited and the fact that we are averaging over

different circulation regimes. As a first step we consider the P-E patterns of change from

Held and Soden (2006). These are dominated by changes in precipitation so we might

expect that the zonal patterns of precipitation change would match those of P-E at least

qualitatively in terms of the sign of the change, however enhanced P-E will not apply as

well for the land-only zonal means used here, so some disagreement is expected. The ALL

forced multi-model mean changes in precipitation are the same sign as the P-E patterns in the

Northern Hemisphere subtropics and mid and high latitudes, but not the tropics or Southern

Hemisphere. The GHG and ANT forced multi-model mean are similar except that small

(<1% per decade) positive changes occur in Northern Hemisphere subtropical precipitation

in JJA and SON. The increase in observed precipitation in the Northern Hemisphere high

latitudes is consistent with increasing moisture transport into these regions (Seager et al.

2010; Bengtsson et al. 2011), while the decrease in precipitation in the Northern Hemisphere

subtropics is consistent with the expected expansion of the subtropical dry regions due to the

expansion of the Hadley Cell (Lu et al. 2007; Seager et al. 2010; Scheff and Frierson 2012)

and poleward shift of the midlatitude storm tracks which transport moisture polewards from

the subtropics (Yin 2005; Lorenz and DeWeaver 2007; Seidel et al. 2008).

The zonal mean patterns do not show the enhancement of precipitation predicted in

the zonal tropics by Held and Soden (2006). In the tropics precipitation is enhanced over

convergence regions and decreases in subsidence regions, due to increased moisture transport,
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though dynamical feedbacks can produce changes of the opposite sign within these regions

(Chou and Neelin 2004; Neelin et al. 2006; Chou et al. 2009). Seager et al. (2010) show

from modeling studies of the 21st century, that while changes in P-E are positive in the

tropics overall, changes over land are mostly negative in April-September and a mixture of

positive and negative in October-March. These patterns are largely due to the increase of

advection of water vapor by the mean flow but changes to the mean circulation dynamics

are also important. Neelin et al. (2006) also show drying over tropical land in JJA in the

21st century and Liu et al. (2012) show that precipitation decreases with temperature over

tropical land in CMIP5 models and satellite data. In the Southern Hemisphere the lack of

ocean data is particularly problematic when calculating the zonal mean changes due to poor

data coverage compared to the Northern Hemisphere, particularly in the the tropics. In the

subtropics, the expected drying is only seen in JJA, with increasing precipitation in DJF

and SON mostly due to changes over Australia which matches the increase in P-E seen in

October-March in Seager et al. (2010).

The spatial change patterns are similar for the different observational datasets in terms

of the sign of change. In many regions and in many areas where the sign of change of the

multi-model mean is not the same as observations, the individual model simulations do not

produce consistent moistening or drying either, emphasising large variability in precipitation.

However in some regions observed changes are the same sign across all datasets but are dif-

ferent for modelled changes that are consistent across the simulations, for example northeast

Asia in DJF. Internal climate variability may explain some of the discrepancies. Dai (2012)

showed how internal variability could produce apparent trends in regional precipitation on

multi-decadal timescales in the Southwest USA while Kelley et al. (2012) show that the

Winter drying seen in the Mediterranean observations may be due to multi-decadal variabil-

ity with the radiatively-forced signal only beginning to emerge from the natural variability.

Regional precipitation changes will also be affected by even subtle shifts in atmospheric

circulation. For example Noake et al. (2012) investigated whether the North Atlantic Oscil-
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lation (NAO) could explain aspects of the observed changes but reveal only a small effect on

the observed zonal mean changes. In contrast the NAO affects changes in Europe at decadal

timescales (Sutton and Dong 2012).

Noake et al. (2012) showed that using percentage change rather than absolute changes,

the model simulations tended to capture the magnitude of change for ALL forced simulations

with only MAM being consistently underestimated by the models and that the external

forcing was detectable for DJF, MAM and SON using the CMIP3 models. Here we find a

similar result using the CMIP5 models and extending the time period to 2005 for the CRU,

Zhang and the GPCC (not used in Noake et al. (2012)) datasets, with the only major change

being that the ALL forcing is no longer detected for the CRU and VasClimO datasets for

SON, and that the magnitude of change is no longer consistently underestimated in MAM for

all observational datasets. In Noake et al. (2012), all datasets were masked to limit coverage

to grid-boxes where station data was available. However here we include grid-boxes where

data has been interpolated introducing more uncertainty but allowing for greater spatial and

more consistent temporal coverage. Applying tls detection to a number of datasets and for

different seasons increases the likelihood that we will obtain false positive detection results

simply by chance. Only when forcing is detected for multiple datasets in the same seasons or

across seasons, do we have confidence that detection of forcing is robust. Robust detection

results were found for MAM, DJF and annual, where ALL forcing is detected for all datasets

except the GPCC dataset, which has not been homogenized for use in change analysis. It is

also worth noting that the Zhang dataset, which is restricted to only grid-boxes that contain

long-term station data, we detect ALL forcing across all seasons and for annual changes as

was the case in Zhang et al. (2007) for annual data.

The present study further extends the work of Noake et al. (2012), by obtaining results

for individual forcings. We find that fingerprints which include the effects of greenhouse

gas increases (ALL, ANT, GHG) are similarly detectable, with changes in DJF and MAM

detectable in at least two datasets even when the model-based estimate of internal variability
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variance is doubled. Neither NAT forcing nor AA forcing are detectable. AA shows negative

detectable signals in MAM in three datasets, which are possibly due to aerosol forcing partly

counteracting greenhouse gas forcing, possibly by precipitation response to aerosol induced

cooling (see Allen and Ingram (2002)).

The two-signal detection fails to produce a detectable forcing consistently across all

datasets if estimating the GHG and AA fingerprint separately, or the ANT and NAT forc-

ings separately. However, anthropogenic forcing is detected separately from natural forcing

and greenhouse gas forcing is detected separately from anthropogenic aerosol forcing for the

Zhang dataset. For anthropogenic forcing, the magnitude of the scaling factor is inconsis-

tent with ’1’, indicating that the model response needs to be enhanced to reproduce the

observations, as was found in Zhang et al. (2007) for annual data. Overall results of the

detection and attribution for global land precipitation using fingerprints from the CMIP5

models are consistent with older work using the CMIP3 models. The results confirm that

external forcing had a detectable influence on seasonal land precipitation in MAM and DJF

and annual land precipitation and suggests, with uncertainties, that the externally-forced

changes are largely the result of human influence, particularly greenhouse gas forcing of the

climate.
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Table 1. List of modelling groups and models used in this analysis

InstituteID ModelName Forcing(no.ofsims)
BCC BCC-CSM1.1 ALL(4), NAT(1)

CCCMA CanESM2 ALL(5), GHG(5), NAT(5), AA(4)
CNRM-CERFACS CNRM-CM5 ALL(2), GHG(1), NAT(1)

NASA GISS GISS-E2-H ALL(5), GHG(5), NAT(5), ANT(4), AA(1)
NASA GISS GISS-E2-R ALL(5), GHG(5), NAT(4), ANT(2), AA(1)

MOHC HadGEM2-ES ALL(4), GHG(4), NAT(4)
MOHC HadGEM2-CC ALL(1)
MOHC HadCM3 ALL(5)
INM INM-CM4 ALL(2)
IPSL IPSL-CM5A-LR ALL(4), GHG(5), ANT(3), AA(1)
IPSL IPSL-CM5A-MR ALL(1), GHG(3)
NCC NorESM1-M ALL(2), GHG(1), NAT(1), AA(1)
NCC NorESM1-ME ALL(1)

CSIRO-QCCCE CSIRO-Mk3.6.0 ALL(5), GHG(5), ANT(5), NAT(5), AA(5)
CSIRO-BOM ACCESS1.0 ALL(1)
NOAA GFDL GDFL-ESM2G ALL(5)
NOAA GFDL GDFL-ESM2M ALL(2), NAT(1), ANT(1)
NOAA GFDL GFDL-CM3 ALL(5), GHG(3), NAT(3), ANT(3), AA(3) MIROC MIROC4h ALL(3)

MIROC MIROC5 ALL(3)
MIROC MIROC-ESM ALL(3), GHG(1), NAT(1)
MIROC MIROC-ESM-CHEM ALL(1), GHG(1), NAT(1)
MPI-M MPI-ESM-LR ALL(3)

MRI MRI-CGCM3 ALL(5), GHG(1), NAT(1)
NCAR CCSM4 ALL(5, GHG(3), NAT(3)

NSF-DOE-NCAR CESM1(BGC) ALL(2)
NSF-DOE-NCAR CESM1(CAM5) ALL(3)
NSF-DOE-NCAR CESM1(CAM5.1,FV2) ALL(4), GHG(2), NAT(2)
NSF-DOE-NCAR CESM1(FASTCHEM) ALL(3)
NSF-DOE-NCAR CESM1(WACCM) ALL(1)

CMCC CMCC-CESM ALL(1)
CMCC CMCC-CSM ALL(1)

FIO FIO-ESM ALL(1)
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Table 2. Scaling factors for total least squares detection and attribution for ALL forcing

Observationaldataset DJF MAM JJA SON ANNUAL
CRU 1.40 [0.39-2.83] 1.88 [0.50-3.66] 1.00 [-0.58-2.76] 0.16 [-1.95-2.04] 1.32 [0.41-2.60]
Zhang 1.75 [0.75-3.31] 2.94 [1.72-5.16] 1.80 [0.18-3.79] 1.86 [0.84-3.32] 2.46 [1.56-3.66]

VasClimO 1.22 [0.007-2.79] 1.74 [0.08-3.76] 1.42 [-0.62-4.26] 0.57 [-1.35-2.57] 1.37 [0.16-2.59]
GPCC 0.38 [-0.78-1.51] 0.76 [-0.78-2.26] 1.04 [-0.77-3.323] 0.57 [-0.87-1.96] 0.40 [-0.49-1.30]

a Tables shows best-fit scaling factor and 90% confidence interval in square brackets for double the variance. Values in bold show where forcing is
detected.
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List of Figures
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Fig. 1. Percentage change in precipitation per decade for the CRU (1951-2005), Zhang
(1951-2005), VasClimO (1952-2000) and GPCC (1951-2005) datasets for MAM.
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Fig. 2. Observed and multi-model simulated seasonal zonal mean land precipitation changes
(% per decade) for the four observational datasets, CRU for 1951-2005 (Obs(C)) and 1951-
1999 (Obs(C99)) , Zhang for 1951-2005 (Obs(Z)) and 1951-1999 (Obs(Z99)), VasClimO
((Obs(V)) for 1952-2000 and GPCC for 1951-2005 (Obs(G)) and 1951-1999(Obs(G99)).
Multi-model mean of the ALL forced simulations are shown in black, grey area is model
90% confidence interval and blue/orange areas show where observed changes are all posi-
tive/negative.
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Fig. 3. Multi-model mean zonal mean land precipitation changes for ALL forcing (% per
decade), where model data has been masked to match the different spatial and temporal
coverage of the four observational datasets, CRU (1951-2005), Zhang (1951-2005), VasClimO
(1952-2000) and GPCC (1951-2005) for DJF, MAM, JJA and SON. Blue areas show where
all changes are positive irrespective of masking and orange areas show where all changes are
negative.
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Fig. 4. Individual model mean and multi-model mean (black) zonal mean land precipitation
changes for ALL forcing (% per decade), where model data has been masked to match the
spatial and temporal coverage of the GPCC dataset (1951-2005) for DJF, MAM, JJA and
SON (shown in blue). Grey area reflects the individual simulations’ 90% confidence interval,
blue areas show where 75% of models give positive changes and orange areas show where
75% of models give negative changes.
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Fig. 5. Percentage change in precipitation per decade for the GPCC dataset for 1951-2005
for DJF, MAM, JJA and SON. Hatched grid-boxes show where the sign of the change is
consistent across all observation datasets with data available for that grid-box.
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Fig. 6. Percentage change in precipitation per decade for the ALL forced multi-model mean
for 1951- 2005 for DJF, MAM, JJA and SON. Hatched grid-boxes show where the sign of the
change is consistent across all four observation datasets and the multi-model mean. Note
the smaller scale of change patterns as multi-model mean changes show a much reduced
influence of internal climate variability.
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Fig. 7. Multi-model mean zonal mean land precipitation changes for ALL, greenhouse gas
only (GHG), anthropogenic (ANT), natural (NAT) and anthropogenic aerosol (AA) forcings
(% per decade), where model data has been masked to matched the spatial and temporal
coverage of the GPCC dataset (1951-2005) for DJF, MAM, JJA and SON. The blue areas
show where the changes of the multi-model mean of the ALL, GHG and ANT forcings are
all positive and the orange areas show where they are all negative. The crosses show where
over 75% of the simulations give changes of the same sign.
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Fig. 8. Percentage change in precipitation per decade for 1951-2005 for MAM for the
multi-model mean of ALL (98 simulations), greenhouse gas only (GHG - 45 simulations),
anthropogenic (ANT - 18 simulations), natural (NAT - 38 simulations) and anthropogenic
aerosol (AA - 16 simulations) forced simulations and the multi-model mean of the ALL
forced simulations from CMIP3 (54 simulations).
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Fig. 9. Detection results for individual fingerprints. Scaling factors (see eqn. 1) are given
for seasonal (a)-(e) and annual (f) changes for CRU (Oc) for 1951-2005, Zhang (Oz) for
1951-2005, VasClimO (Ov) for 1952-2000 and GPCC (Og) for 1951-2005 observations. (a)
ALL, (b) greenhouse gas only (GHG), (c) anthropogenic (ANT), (d) natural (NAT) and
(e) anthropogenic aerosol (AA) forced simulations based fingerprints. (f) Scaling factors for
annual changes for all five fingerprints. Crosses show the ’best-guess’ scaling factor for the
multi-model mean, thick lines are the 90% confidence interval for the raw variance added as
noise and thin lines are the 90% confidence interval for double the variance.
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Fig. 10. Scaling factors two-signal fingerprint detection for GHG(Ox1)+AA(Ox2) and
ANT(Ox1)+NAT(Ox2) forced simulation based fingerprints for CRU (Oc) for 1951-2005,
Zhang (Oz) for 1951-2005, VasClimO (Ov) for 1952-2000 and GPCC (Og) for 1951-2005
observations for annual changes. Crosses show the ’best-guess’ scaling factor for the multi-
model mean, thick lines are the 90% confidence interval for the raw variance added as noise
and thin lines are the 90% confidence interval for double the variance.
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